JUMO Quantrol LC100/LC200/LC300 Universal PID Controller Series

B 702030.0
Operating Manual

Content

1 Introduction 5
1.1 Device documentation 5
1.2 Safety information 5
1.3 Scope of delivery 6
2 Installation - Electrical Connection 7
2.1 Identifying the device version 7
2.2 Excerpt from the technical data 7
2.3 Installation 9
2.4 Installation notes 10
2.5 Electrical isolation 10
2.6 Connection diagram 11
3 Operation - Configuration - Parameterization 13
3.1 Operation 13
3.1.1 Display and operating elements 13
3.1.2 Self-optimization, setpoint and manual mode 13
3.1.3 Ramp function/firing curve 13
3.1.4 Level concept 14
3.1.5 Operator level (OPr) 14
3.2 Configuration (ConF) 15
3.2.1 Analog input (InP) 15
3.2.2 Controller (Cntr) 16
3.2.3 Ramp function/firing curve (rAFC) 17
3.2.4 Limit value monitoring (Li1, Li2) 17
3.2.5 Timer (tFCt) 18
3.2.6 Outputs (OutL, OutA) 19
3.2.7 Binary functions (binF) 20
3.2.8 Display and operation (diSP) 20
3.2.9 Interface (IntF) 21
3.3 Parameterization (PArA) 22
4 Supplement 23
4.1 Additional information about installation 23
4.1.1 Device representation including dimensions 23
4.1.2 Cleaning the device front 25
4.2 Additional information about the device functions 26
4.2.1 Entries and operator prompting 26
4.2.2 Analog input 27
4.2.3 Analog output 27
4.2.4 Ramp function and firing curve 28
4.2.5 Timers 29
4.2.6 Limit value monitoring 30

Content

4.2.7 Self-optimization (TUNE) 30
4.3 Error messages 33
4.4 Technical Data 34

1.1 Device documentation

Data sheet T 702030 (as a PDF document)

The data sheet contains general information about the device and forms the basis for planning and purchase decision.

Brief instructions B 702030.7 (printed in DIN A6 format)

These brief instructions contain the most important information about installation, the electrical connection as well as operation, parameterization and configuration of the device. The brief instructions are supplied with every device. For further information, please refer to the operating manual B 702030.0 available as a PDF document.

Operating manual B 702030.0 (as a PDF document)

This operating manual contains all information about installation, the electrical connection as well as operation, parameterization and configuration of the device.

Interface description B 702030.2.0 (as a PDF document)

It contains information about the RS485 interface, the Modbus protocol and the communication with other devices.

All PDF documents can be downloaded under www.jumo.net.

1.2 Safety information

This manual contains information that must be observed in the interest of your own safety and to avoid damage to assets. This information is supported by symbols which are used in this manual as follows.
Please read this manual before starting up the device. Keep the manual in a place accessible to all users at all times.
All necessary settings are described in this manual. Manipulations not described in this manual or expressly forbidden will jeopardize your warranty rights.

Warning signs

4 | DANGER! |
| :--- |
| This symbol indicates that Injury or death caused by electrical shock can occur, if the |
| respective protective measures have not been taken. | respective protective measures have not been taken.

CAUTION!

This symbol in combination with the signal word indicates that damage to assets or data loss will occur if suitable precautions are not taken.

READ DOCUMENTATION!

This symbol - placed on the device - indicates that the associated device documentation has to be observed. This is necessary to recognize the kind of the potential hazards as well as to take the measures to avoid them.

1 Introduction

Note signs

TIP!

This symbol refers to Important information about the product or its handling or additional use.

REFERENCE!

\Rightarrow
This symbol refers to Further information in other sections, chapters or manuals.

1.3 Scope of delivery

- Controller (including seal and fastening elements)
- Brief instructions B 702030.7 in DIN A6 format

2 Installation - Electrical Connection

2.1 Identifying the device version

2.2 Excerpt from the technical data

Case

Case type	Plastic case for panel mounting as per IEC 61554 (indoor use)
Dimensions (front)	LC100: $48 \mathrm{~mm} \times 48 \mathrm{~mm} ;$ LC200: $48 \mathrm{~mm} \times 96 \mathrm{~mm}$ (portrait format); LC300: $96 \mathrm{~mm} \times 96 \mathrm{~mm}$
Panel cut-out	LC100: $45 \mathrm{~mm} \times 45 \mathrm{~mm} ;$ LC200: $45 \mathrm{~mm} \times 92 \mathrm{~mm} ;$ LC300: $92 \mathrm{~mm} \times 92 \mathrm{~mm}$
Minimum spacing horizontal / vertical	LC100: $11 \mathrm{~mm} / 30 \mathrm{~mm}(65 \mathrm{~mm}$ with USB cable); LC200/LC300: $22 \mathrm{~mm} / 30 \mathrm{~mm}(65 \mathrm{~mm}$ with USB cable)
Depth behind panel	LC100: $\mathrm{max} .95 \mathrm{~mm} ; \mathrm{LC} 200 / \mathrm{LC} 300:$ max. 80 mm
Ambient / storage temperature range	-5 to $+55^{\circ} \mathrm{C} /-40$ to $+70^{\circ} \mathrm{C}$
Ambient conditions	rel. humidity < 90% annual average, without condensation

2 Installation - Electrical Connection

Site altitude	up to 2000 m above sea level
Operating position	any
Protection type	as per DIN EN 60529, at the front IP 65, at the rear IP 20
Weight (fully equipped)	LC100: approx. $150 \mathrm{~g} ;$ LC200: approx. 200 g ; LC300: approx. 300 g

Electrical data

Voltage supply (switch mode PSU)	AC 110 to $240 \mathrm{~V}+10 /-15 \%, 48$ to 63 Hz AC/DC 20 to $30 \mathrm{~V}, 48$ to 63 Hz
Electrical safety	as per DIN EN 61010, part 1 overvoltage category III, pollution degree 2
Power consumption	max. 14 VA
Electrical connection	on the rear via screw terminals; with core-end ferrule of a pipe shape, open cable lug or pin cable lug fine-strand 0.25 to $1.5 \mathrm{~mm}^{2}$
Conductor cross section Tightening torque	0.5 Nm

2 Installation - Electrical Connection

2.3 Installation

Installation of LC100	Installation of LC200 and LC300
1.Insert the device from the front into the panel cut-out and ensure that the seal is correctly positioned.	1.Insert the device from the front into the panel cut-out and ensure that the seal is correctly positioned.
2.Push the fastening frame from the panel rear onto the device and press the springs against the panel rear until the lugs engage in their slots and it is sufficiently fastened.	2.Slide the mounting brackets from the panel rear into the lateral openings and push to the rear against the stop.3.Place the mounting brackets against the panel rear, and tighten evenly with a screwdriver.

2 Installation - Electrical Connection

2.4 Installation notes

- The device is not suitable for installation in explosive areas (Ex areas).
- The choice of cable material, the installation and the electrical connection of the device must conform to the requirements of DIN VDE 0100 "Installation of low-voltage power circuits" and/or the appropriate local/national regulations (e.g. based on IEC 60364).
- At maximum load, the cables must be heat resistant up to at least $80^{\circ} \mathrm{C}$.
- The electrical connection must only be carried out by qualified personnel.
- The device is intended to be installed in electrical cabinets or systems. It shall be operated by mains protected with a branch circuitry overcurrent protection device not more than 20 Amps. For servicing/repairing a Disconnecting Device shall be provided to disconnect all conductors.
- The load circuit must be fused for the maximum relay current, in order to prevent the output relay contacts from becoming welded in the event of a short circuit occurring at that point.
- The electromagnetic compatibility (EMC) meets the standards and regulations cited in the technical data.
- Run input, output and supply cables separately and not in parallel with one another.
- Sensor and interface cables should be shielded cables with twisted conductors. Do not run cables close to current-carrying components or cables. Ground the shielding on one side.
- Do not connect other consumers to the power terminals of the device.

2.5 Electrical isolation

2 Installation - Electrical Connection

2.6 Connection diagram

The terminal strips on the device rear are equipped with screw terminals. Please refer to the technical data for specifications concerning the conductor cross section.

LC100	LC200	LC300

TIP!

The USB interface (socket Mini-B, 5-pole) is labeled on the device with "SETUP" and is located on the case top of the LC100 and on the case bottom of the LC200 and LC300. It is used for connection to a PC that is running the setup program.

2 Installation - Electrical Connection

4	DANGER! The electrical installation may carry voltage. Risk of electrocution. The electrical connection must only be performed by qualified personnel.
TIP!	
Prior to starting the electrical connection, check that the device version complies with the order code.	

Connections	Symbol	LC100		LC200/LC300			
Analog input							
Thermocouple		$\begin{aligned} & 9 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$			
RTD temperature probe, 2-wire		10 8		9 11			
RTD temperature probe, 3-wire		$\begin{gathered} 10 \\ 9 \\ 8 \end{gathered}$		$\begin{gathered} 9 \\ 10 \\ 11 \end{gathered}$			
Voltage DC 0 to 10 V	$+{ }^{+}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$		$\begin{aligned} & 7 \\ & 8 \end{aligned}$			
Current DC 0(4) to 20 mA	$+\begin{aligned} & + \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$			
Binary input for potential-free contact		$\begin{aligned} & 11 \\ & 12 \end{aligned}$		$\begin{aligned} & 7 \\ & 8 \end{aligned}$			
	Output:	12	3	12	3	4	5
Analog output DC 0 to 10 V , $\mathrm{DC} 0(4)$ to 20 mA	$\begin{aligned} & +\Psi_{U_{x}, I_{x}}^{0} \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$		12 13			
Relay output (N/O) (max. 3 A at AC 230 V, resistive load)		$\begin{array}{ll} 4 & 13 \\ 5 & 14 \end{array}$	6 7	$\begin{array}{ll} 4 & 12 \\ 5 & 13 \end{array}$	14 15	16 17	18 19
Logic output (DC 0/14V)	$\begin{aligned} & + \\ & - \\ & \hline \end{aligned}$		7 6	12 13	14 15	16 17	18 19
RS485 interface	$+\underbrace{R x D / T x D}_{-}$		7 6		14 15		
Output 1 as standard; Outputs 2 to 5 optional (options 1 to 4)							
Voltage supply	$\underline{\mathrm{AC} / \mathrm{DC}}^{0}$	$\begin{gathered} \text { L1 (L+) } \\ \text { N(L-) } \end{gathered}$		$\begin{gathered} \text { L1 (L+) } \\ \text { N(L-) } \end{gathered}$			
Setup interface	USB socket, type Mini-B 5-pole						

3 Operation - Configuration - Parameterization

3.1 Operation

3.1.1 Display and operating elements

The software version is displayed on the device when simultaneously pressing keys (A) and (C).
(A) Programming / one level deeper
(B) Value reduction / previous parameter
(C) Value increase / next parameter
(D) Function key / leave level
(E) Red 7-segment display (factory-set: Actual value); 4-digit, configurable decimal place (automatic adjustment in the case of display overflow)
(F) Green 7-segment display (factory-set: Setpoint); 4-digit, configurable decimal place; also display of level and parameter symbols
(G) LED 1 to 3(5): Switching position of binary output (LED is lit = output active)
(H) LED ramp function or firing curve

3.1.2 Self-optimization, setpoint and manual mode

On the basis of the Normal display, the following Functions are available:

Start of self-optimization: Simultaneously press keys (B) and (C) (> 2 s)
Abort of self-optimization: Simultaneously press keys (B) and (C)
Change setpoint using keys (B) and (C)

Function key (D) (>2 s) is used to
Change-over to manual mode and to exit the manual mode
"tUnE" flashes in the lower display.
No parameters are changed by the abort.
The longer the key is kept pressed, the faster the set point value changes. The value will be automatically applied.
The output level (\%) is displayed in the lower display and can be changed with the keys (B) and (C).
(The controller automatically changes to manual mode in the event of overrange/underrange and probe break.)

3.1.3 Ramp function/firing curve

Ramp function (start after mains ON or with the binary function)	Firing curve (start with the binary function or using the function key)
 t1: Start (actual value) t2: Setpoint setting was reached	t1: Start t2: SP1 -> SP2 (automatically) t3: Timer start t4: Timer end
LED (H): Is lit with the ramp function activ	LED (H): Flashes in phase 1 (t 1 to t 2), is lit in phases 2 and 3 (t 2 to t 4) GIFF (F): Firing curve not active

3 Operation - Configuration - Parameterization

3.1.4 Level concept

The parameters for device setting are organized at different levels.

$\text { E4, } 5 \text { 国 } \xrightarrow{(1)}$	(1) Changeover from normal display to the levels
	(2) Changeover between levels
	(3) Changeover to the operator level (setpoints, process values, timer value and time)
$\xrightarrow{\hat{\imath}(5)}$	(4) Changeover to the parameter level (controller parameters)
	(5) Changeover to configuration level (analog input, controller, ramp function, limit value monitoring, timer, outputs, binary functions, display and operation, interface)
	(6) Return to the normal display
If no key is pressed for 180 s (factorysetting), the device will return to its normal display. This time period can be configured.	(10) Navigation principle:
	(11) - one level deeper
	(12) - next parameter / increase value
	(13) - previous parameter / reduce value
	(14) - one level back

The various levels are also accessible in manual mode.
Level inhibit (factory-setting: all levels are free):
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Code } & \begin{array}{l}\text { Operator } \\ \text { level }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { level }\end{array} & \begin{array}{l}\text { Configura- } \\ \text { tion level }\end{array} & \begin{array}{l}\text { 1. Simultaneously press (A) and (B) (>5 s) } \\ \text { 2. Press (A) (display flashes) }\end{array} \\ \hline 0 & \text { free } & \text { free } & \text { free } & \text { 3. Enter code using (B) or (C) }\end{array}\right\}$

3.1.5 Operator level (OPr)

Depending on the configuration, the following parameters are available:

Symbol	Description
SP	Setpoint 1 (can be edited)
SPI	Setpoint 2 (can be edited)
E :	Timer value (if timer or firing curve are inactive; can be edited)
EL	Timer run time (if timer or firing curve are active)
Er	Residual timer run time (if timer or firing curve are active)

Symbol	Description
rASL	Ramp rate (for firing curve; can be edited)
SPr	Current ramp setpoint (for ramp function or firing curve)
InP	Measured value at analog input
ζ	Output level

3 Operation - Configuration - Parameterization

3.2 Configuration (ConF)

TIP!

The device will map out parameters unless the equipment level permits the function assigned to the parameter. Factory settings appear in bold in the following table.

Analog selector

With some parameters in the configuration level, the user can choose from a series of analog values. The following list contains all available signals.

Value	Description	Value	Description
0	Switched off	7	Setpoint 2
1	Analog input	8	Output level display (-100 \% to +100 \%)
2	Actual value	9	Controller output 1 (e.g. heating, output level 0 to +100 \%)
3	Current setpoint	10	Controller output 2 (e.g. cooling, output level 0 to -100 \%)
4	Ramp end value	11	Timer run time (time unit of the timer)
5	(reserved)	12	Timer residual time (time unit of the timer)
6	Setpoint 1		

3.2.1 Analog input (InP)

ConF -> inl ->

Parameters	Value	Description	Value	Description
Probe type SEn5		RTD temperature probe:		Thermocouples:
	$\mathbf{0}$	Pt100 3-wire	9	NiCr-Ni K
1	Pt1000 3-wire	10	Pt10Rh-Pt S	
	2	Pt100 2-wire	11	Pt13Rh-Pt R
	3	Pt1000 2-wire	12	NiCrSi-NiSi N
	4	KTY 2 wire	13	NiCr-CuNi E
	5	Cu-50 3-wire		Standard signals:
	Thermocouples:	14	0 to 20 mA	
	6	Cu-CuNi T	15	4 to 20 mA
	7	Fe-CuNi J	16	0 to 10 V
	8	Fe-CuNi L		
	When selecting "0 to 10 V", binary input bin \ln is inactive.			

3 Operation - Configuration - Parameterization

Parameters	Value	Description
Measured value offset IIFFS	$\begin{aligned} & -1999 \ldots \\ & 0 \ldots \\ & +9999 \end{aligned}$	The measured value is corrected through this value (offset), prior to being used as a controller input value and in the analog selector.
Display start 5CL	$\begin{aligned} & -1999 \ldots \\ & \mathbf{0} \ldots \\ & +9999 \end{aligned}$	On transducers with standard signal, a display value is assigned to the physical signal. Example: 0 to $20 \mathrm{~mA}=0$ to $1500^{\circ} \mathrm{C}$
Display end STH	$\begin{aligned} & -1999 \ldots \\ & 100 \ldots \\ & +9999 \end{aligned}$	
Filter time constant df	$\begin{aligned} & 0.0 \ldots \\ & 0.6 \ldots \\ & 100.0(\mathrm{~s}) \end{aligned}$	Adaptation of the digital input filter ($0=$ Filter OFF)
Temperature unit	1	deg. Celsius
Lint t	2	deg. Fahrenheit
(Setup program: Adjustable resistance of the KTY at $25^{\circ} \mathrm{C}$.)		

3.2.2 Controller (Cntr)

The actual value is provided for the controller by the analog input.
Conf -> Enter ->

Parameters	Value	Description
Controller type CESIP	1	2-state controller
	2	3-state controller
	3	Continuous controller
Action CRCL	0	Direct: (The output level of the controller is >0 when the actual value exceeds the setpoint, e.g. cooling).
	1	Inverse: (The output level of the controller is >0 when the actual value is smaller than the setpoint, e.g. heating.)
Output value, manual mode HRind		Output level after switching to manual mode 101 = last output value
Output level at Out-of-Range rBut	$\begin{aligned} & -100 \ldots \\ & 0 \ldots \\ & +100 \end{aligned}$	Output level in the event of overrange or underrange
Setpoint limit start SPL	$\begin{aligned} & \hline-1999 \ldots \\ & +9999 \end{aligned}$	The setpoint limitation prevents the entry of values exceeding the default range.
Setpoint limit end 5 SH	$\begin{aligned} & \hline-1999 \ldots \\ & +9999 \end{aligned}$	The setpoint limits are not effective when entering setpoints via the interface. The correction value is limited for external setpoints with offset.
(Setup program: Manual mode and self-optimization can be inhibited.)		

3 Operation - Configuration - Parameterization

3.2.3 Ramp function/firing curve (rAFC)

The device can be operated as a fixed value controller with and without ramp function. In addition, a firing curve is supported.

ConlF $>$ rAFE ->

Parameters	Value	Description
Function Frint	0	Ramp function/firing curve switched off
	1	Ramp function Kelvin/Minute
	2	Ramp function Kelvin/Hour
	3	Ramp function Kelvin/Day
	4	Firing curve Kelvin/Minute
	5	Firing curve Kelvin/Hour
	6	Firing curve Kelvin/Day
Ramp rate rRSL	$\begin{aligned} & 0 \ldots \\ & 999 \end{aligned}$	Value of the ramp rate (only for function = 1 to 6)

(Setup program: For the firing curve, timer value, time unit and setpoint can also be set here.)

3.2.4 Limit value monitoring (Li1, Li2)

The device is equipped with two functions for limit value monitoring (Li 1, Li 2) each with eight different alarm functions (AF1 to AF8). The two output signals are available for binary functions.

Parameters	Value	Description
Alarm function Fritt	0	Limit value monitoring switched off
	1	AF1: Limit value above and below the setpoint (monitoring range); symmetric or asymmetric
	2	AF2: As AF1, output signal inverted
	3	AF3: Limit value below the setpoint
	4	AF4: As AF3, output signal inverted
	5	AF5: Limit value above the setpoint
	6	AF6: As AF5, output signal inverted
	7	AF7: Fixed limit value (setpoint independent)
	8	AF8: As AF7, output signal inverted
Limit value PH, RHL	$\begin{aligned} & -1999 \ldots \\ & 0 \ldots \\ & +9999 \end{aligned}$	Limit value to be monitored For asymmetrical limit value: AL is below the setpoint, $A L 2$ is above the setpoint. Limit value range for AF1 and AF2: 0 to 9999
Switching differential HU5L	$\begin{aligned} & 0 \ldots 1 \ldots \\ & 9999 \end{aligned}$	Switching differential in respect to the limit value

3 Operation - Configuration - Parameterization

Parameters	Value	Description
Response at Out-of-Range / symmetry of limit value RIL-R	0	Off / symmetric (only AL is active)
	1	On / symmetric (only AL is active)
	2	Off / asymmetric (AL and AL2 are active)
	3	On / asymmetric (AL and AL2 are active)
		Switching state in the event of overrange or underrange ("Out-of-Range") / symmetry of alarm functions AF1, AF2
Switch-on delay toin	0 ... 9999	Switch-on delay of the output signal (in seconds)
Actual value AFPr	2	Signal to be monitored; 2 = actual value \Rightarrow "Analog selector", page 15
Setpoint value RFEP	3	Setpoint for limit value monitoring (reference signal for AF1 to AF6); 3 = current setpoint \Rightarrow "Analog selector", page 15

3.2.5 Timer (tFCt)

The timer provides an output signal available for the binary functions. This signal can be used, e.g. to realize a time-limited control or a time-dependent setpoint changeover.

The timer value is not saved during a mains failure. After the mains connection is restored, the timer remains inactive.

Conk -> tFIL ->

Parameters	Value	Description
Function Frit	0	Timer switched off
	1	Timer signal is "high" while the timer is running
	2	Timer signal is "low" while the timer is running
Start condition Strt	0	Manual start via function key or binary signal (no restart after mains failure)
	1	Automatic start after mains ON (restart after mains failure); manual start is also possible
Time unit Lin! t	0	mm:ss
	1	hh:mm
	2	hhh.h
Timer value ti	$\begin{aligned} & \text { 00.00. } \\ & \ldots \\ & 999.9 . \end{aligned}$	Timer run time (in the time unit set)
Tolerance band toit	$\begin{aligned} & 0 \ldots \\ & 9999 \end{aligned}$	Tolerance band for timer start The timer only starts once the actual value has reached the tolerance band. $0=$ Start without tolerance band

3 Operation - Configuration - Parameterization

3.2.6 Outputs (OutL, OutA)

The configuration of the device outputs is subdivided in binary outputs (OutL) and analog output (OutA). The switching states of binary outputs 1 to 3 (5) are displayed by LEDs K1 to K3 (K5) (LED is lit = output active).

Binary outputs

The device is equipped with a relay output (N/O, output 1) as standard and can be optionally equipped with two (four) additional binary outputs (relay or logic output; outputs 2 to 5).

ConF -> OULEL ->

Parameters	Value	Description
Output $1 . . .5$	0	Output not active (factory setting for Out2 ... Out5)
But 1	1	Controller output 1 (factory setting for Out1)
Outa	2	Controller output 2
But3	3	Binary input
Out	4	Limit value monitoring 1
But5	5	Limit value monitoring 2
	6	Timer signal
(Setup program: The output signal can be inverted.)		

Analog output

The device can be optionally equipped with an analog output (output 2).
ConF -> Buth ->

Parameters	Value	Description
Function Frint	9	Function of the output; 9 = Controller output 1 \Rightarrow "Analog selector", page 15
Type of signal 5ın		Physical output signal
	0	0 ... 20 mA
	1	$4 \ldots 20 \mathrm{~mA}$
	2	$0 . . .10 \mathrm{~V}$
Value at Out-of-Range rant	0 ... 101	Signal (in percent) at overrange or underrange 101 = last output signal
Zero point OPnt	$\begin{aligned} & -1999 \ldots \\ & 0 \ldots \\ & +9999 \end{aligned}$	Value range of the output variable for the physical output signal
End value End	$\begin{aligned} & -1999 \ldots \\ & 100 \ldots \\ & +9999 \end{aligned}$	

3 Operation - Configuration - Parameterization

3.2.7 Binary functions (binF)

The binary signals of the binary output, the limit value monitoring and the timer can be used to trigger different functions.

The binary functions for start and abort react to the rising flank of the triggering signal, all other binary functions are state-dependent controlled and active with "High".

Conk -> bin $\mathrm{nl}^{\text {F }}$->

Parameters	Value	Description
Binary input bu!	0	Signal without function
	1	Start self-optimization
	2	Abort self-optimization
Limit value monitoring 1 and 2 L $1, \mathrm{~L}, 2$	3	Change to manual mode
	4	Switch off controller (controller outputs inactive)
	5	Switch on controller
	6	Inhibit manual mode
Timer signal LF :	7	Stop ramp/firing curve
	8	Abort ramp/firing curve
	9	Restart ramp, start/abort firing curve
	10	Switch over from setpoint 1 to setpoint 2
	11	Lock keypad
	12	Inhibit parameter and configuration level, inhibit self-optimization start
	13	Switch off the display
	14	Start timer
	15	Abort timer
	16	Stop timer
	17	Start/abort timer

3.2.8 Display and operation (diSP)

Both displays and the function key can be individually adapted to the respective requirements.
ConF -> di SP $^{\text {SP }}$

Parameters	Value	Description
Upper display d SiU	2	Display value for the upper display; 2 = Actual value \Rightarrow "Analog selector", page 15
Lower display di S_{L}	3	Display value for the lower display; 3 = current set point value \Rightarrow "Analog selector", page 15

3 Operation - Configuration - Parameterization

Parameters	Value	Description
Display change when timer is started d 5		Time appears in the bottom display once the timer is started
	0	No display change
	1	Residual timer time
	2	Timer run time
Time-out tout	$\begin{aligned} & 0 \ldots \\ & 180 \ldots \\ & 255 \end{aligned}$	Time period in seconds, after which the device automatically returns to its normal display (if no key is pressed). $0=$ Function switched off
Decimal place dECP	0	No decimal place
	1	One decimal place
	2	Two decimal places
Function key, press briefly (< 2 s) tR5	0	No function
	1	Start timer/firing curve
	2	Abort timer/firing curve
	3	Stop/continue timer/firing curve run
	4	Start/abort timer/firing curve
	5	Timer display (timer run time or residual timer time)
(Setup program: The function of pressing the function key longer ($>2 \mathrm{~s}$) can also be configured.)		

3.2.9 Interface (IntF)

An optional RS485 interface can be used to integrate the device in a data network. When the communication takes place via the setup interface, the RS485 interface is inactive.

Conf -> intif ->

Parameters	Value	Description
Baud rate	$\mathbf{0}$	$\mathbf{9 6 0 0}$ baud
bdirt	1	19200 baud
Device address	$0 \ldots$	Address in data network
Rdir	$\mathbf{1} \ldots$	
	254	

For further information about the RS485 interface, the Modbus protocol and the communication with other devices, please refer to the interface description B 702030.2.0 available as a PDF document under www.jumo.net.

3 Operation - Configuration - Parameterization

3.3 Parameterization (PArA)

Enter the controller parameters here.
PR-R ->

Parameters	Value	Description
Proportional band $\mathrm{Pb} 1, \mathrm{PbD}^{1}$	$\begin{aligned} & 0 \ldots \\ & 9999 \end{aligned}$	Range of the proportional band The larger the proportional band the lower the controller amplification. The controller structure is not effective with $\mathrm{Pb}=0$ (behavior identical to limit value monitoring). For the continuous controller, ensure that Pb is >0.
Derivative time dt	$\begin{aligned} & 0 \ldots \\ & 80 \ldots \\ & 9999 \text { (s) } \end{aligned}$	Influences the differential portion of the controller output signal The larger the derivative time the higher the effectiveness of the D portion. 0 = derivative time switched off (no D portion)
Reset time $r t$	$\begin{aligned} & 0 \ldots \\ & 350 \ldots \\ & 9999 \text { (s) } \end{aligned}$	Influences the integral portion of the controller output signal The larger the reset time the lower the effectiveness of the I portion. $0=$ reset time switched off (no I portion)
Cycle time [41, Cu2 ${ }^{1}$	$\begin{aligned} & 0.0 \ldots \\ & 20.0 \ldots \\ & 999.9 \text { (s) } \end{aligned}$	When using a switched output, the cycle time should be chosen so that the energy flow to the process is as continuous as is practicable without overloading the switching elements.
Contact spacing dt	$\begin{aligned} & 0.0 \ldots \\ & 999.9 \end{aligned}$	Spacing between the two control contacts of a 3-state controller
Hysteresis 	$\begin{aligned} & 0.0 \ldots \\ & 1.0 \ldots \\ & 999.9 \end{aligned}$	Hysteresis for a switching controller with proportional range $\mathrm{Pb}=0$ (behavior identical to that for limit value monitoring)
Working point 40	$\begin{aligned} & -100 \ldots \\ & 0 \ldots \\ & +100 \end{aligned}$	The output level for P and PD controllers (if $x=w$ then $y=y 0$)
Output level limiting 41,42	$\begin{aligned} & 0 \ldots \\ & 100 \text { (\%) } \end{aligned}$	y1: Maximum output level limitation
	$\begin{aligned} & \hline-100 \ldots \\ & +100 \text { (\%) } \end{aligned}$	y2: Minimum output level limitation (only effective when $\mathrm{Pb}>0$)

${ }^{1}$ Only available for 3 -state controllers (controller output 2)
The display of parameters depends on the controller type. For some parameters, the decimal place depends on the device setting.
Factory settings appear in bold.

4 Supplement

4.1 Additional information about installation

TIP!

The information given in this chapter is exclusively contained in this operating manual provided as PDF document. It supplements the information contained in the previous chapters of this operating manual as well as in the brief instructions added to every device as a print out.

The ambient conditions at the installation site must meet the requirements specified in the technical data.

The device is not suitable for installation in explosive areas (Ex areas).

4.1.1 Device representation including dimensions

LC100

(1) Setup interface (USB)
(2) Panel cut-out on the device top

4 Supplement

LC200

63

(1) Setup interface (USB) on the device bottom

(2)

(2) Panel cut-out

LC300

Minimum spacing of panel cut-outs

Type	without USB cable			with USB cable
	horizontal	vertical	horizontal	vertical
LC100	11 mm	30 mm	11 mm	65 mm
LC200	22 mm	30 mm	22 mm	65 mm
LC300	22 mm	30 mm	22 mm	65 mm

4.1.2 Cleaning the device front

The device front panel can be cleaned with commercial cleaning and rinsing agents. It has a limited resistance to organic solvents (such as ethyl alcohol, turpentine substitute, P1, xylol and similar). Do not use high-pressure cleaning equipment.

4 Supplement

4.2 Additional information about the device functions

TIP!

The information given in this chapter is exclusively contained in this operating manual provided as a PDF document. It supplements the information contained in the previous chapters of this operating manual as well as in the brief instructions added to every device as a print out.

4.2.1 Entries and operator prompting

Value entry

When entries are made within the levels, the parameter symbol appears in the lower display.

Time entry
A decimal place is mapped in the centre and on the right to display times. The time unit can be configured.

		(1) Select parameter (lower display - green) (2) Change value (upper display - red) (3) Parameter flashes

Procedure

1.	Select parameter with key (B) or (C)
2.	Change-over to the input mode with key (A): The lower display flashes.
3.	Change value with key (B) or (C) The longer the key is kept pressed, the faster the value changes.
4.	Apply setting with key (A) (value is automatically applied after 2s) - or cancel entry using key (D) (value will not be applied)

TIP!

When pressing function key (D) for more than 2 seconds, the device will return to the normal display

4 Supplement

4.2.2 Analog input

Measured value offset

A measured value correction (offset) can be carried out to correct system specific deviations. The offset value is added to the measured value with the correct prefix (the measured value is reduced by entering a negative offset value).
CAUTION!
Measured value offset: The controller uses the corrected value for calculation (= dis-
played value). When the measured value has been offset, the corrected value does
no longer correspond to the value measured at the measuring point.
Incorrect use can cause inadmissible values of the control variable.
Only carry out a measured value offset within the admissible range.

Filter time constant

The filter time constant serves to adapt the digital input filter (filter of second priority). At a step change of the input signal, approx. 26% of the change is detected after the elapse of a time period corresponding to the filter time constant dF ($2 \times \mathrm{dF}$: approx. 59%; 5 xdF : approx. 96%).

A high filter time constant means:

- High damping of interference signals
- Slow reaction of the actual value display to actual value changes
- Low limit frequency

4.2.3 Analog output

Zero point and end value

The factory setting corresponds to an output level of $0 . . .100 \%$ for the continuous controller (controller output 1): zero point $=0$, end value $=100$

If the analog output is used as controller output 2 for the 3-state controller (e.g. for cooling), the following setting is required: zero point $=0$, end value $=-100$

If, for example, the actual value is to be put out, which can be within the range of $150^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$, select the limits so that they correspond to the minimum and maximum temperature: zero point $=150$, end value $=500$

4 Supplement

4.2.4 Ramp function and firing curve

Ramp function

This function allows the continuous change of the setpoint up to the ramp end value (setpoint setting $5 \mathbb{S P}$ or $5 \mathbb{5}$). Depending on the actual value at ramp start, this results in a rising or falling ramp with identical gradient (adjustable ramp ratio rASi).

	The ramp starts after mains ON (or through the binary function) at time t1 and starts at the actual value. The setpoint SP $!$ (or SPI) is moved to at ramp ratio rRSI and is reached at time t2. When switching over or changing the setpoint, the new setpoint is also moved to at ramp ratio rRSL.
LED "Ramp" (H): Is lit with active ramp function (until it is cancelled)	The ramp can be stopped or aborted using the binary function. When aborted, the setpoint setting SP 1 (or SP?) is used to control.

TIP!

The ramp function is interrupted in the event of a probe break, probe short-circuit, overrange/underrange or changeover to manual mode. Once the event is remedied (or after switching to automatic mode), the ramp function continues at the current actual value.
After the power supply is restored, the ramp function starts at the current actual value.

Firing curve

For use in small kilns, a firing curve can be saved for controlled start-up and time-dependent firing.

With this function, the parameters setpoint 1 (5P i), setpoint 2 (5Р己), ramp rate (rRSi) and timer value ($\left(L^{\prime}\right)$ are automatically linked to each other.

LED "Ramp" (H):
Flashes in phase 1, is lit in phase 2 and 3

Phase 1 (t 1 to t): The firing curve is started by using the function key or with the binary function (time t1) and starts at the actual value. The setpoint 5P ; is moved to at ramp ratio rRSL
Phase 2 (t2 to t3): Once the current ramp value has reached the setpoint SPI (t2), the device automatically switches over to setpoint 5PD (w). The actual value (x) approaches the new setpoint (the ramp ratio is of no importance).
Phase 3 (t 3 to t4): The timer starts when the actual value has reached the setpoint $5 P 2$ (t 3) and keeps running for the set time (timer value $t i$). Once the timer has elapsed (t4), the controller switches off (setpoint display $=0$).

4 Supplement

TIP!

The firing curve can only be started when the actual value is smaller than setpoint 1.
The firing curve is aborted in the event of a probe break, probe short-circuit, overrange/underrange or change-over to manual mode (controller switched off).
After the power supply is restored, the firing curve is not active (controller switched off).
When the firing curve is not active, OFF appears in the lower display.

4.2.5 Timers

The following functions can be realized when using the binary functions.

Time-limited control

The control is switched off once the timer has elapsed (output level 0%).
(A)

Time-dependent setpoint changeover

After the timer is started, the controller is automatically set to setpoint SP2. Once the timer has elapsed, the controller automatically switches to SP1.

4 Supplement

4.2.6 Limit value monitoring

The following representations show the function of limit value (AL, AL2) for the various alarm functions AF1 to AF8. The hysteresis (HySt) is always symmetrical in relation to the limit value.

Limit value referring to setpoint w

AF1 symmetric	AF2 symmetric
AF1 asymmetric	AF2 asymmetric
AF3	AF4
AF5	AF6

Fixed limit value

4.2.7 Self-optimization (TUNE)

Self-optimization operates according to the oscillation method and determines the optimum parameters for a PID or PI controller.

The following parameters are optimized depending on the controller type configured (2-state, 3state, continuous controller) and the controller structure (parameterization):
Proportional band (Pb1, Pb2), derivative time (dt), reset time (rt), cycle time (Cy1, Cy2), filter time constant (dF; parameter of the analog input).

4 Supplement

Depending on the value of the control deviation, the controller selects between two self-optimization methods:

Self-optimization in the start-up-phase

Self-optimization at the setpoint

w Setpoint
S Switching curve
T Start time of self-optimization

Prerequisites

The following prerequisites must be fulfilled to be able to start self-optimization:

- Self-optimization start is not inhibited by the binary function (binF)
- Controller is in the automatic mode, not in the manual mode
- No parameter level inhibit active via setup program
- Ensure that keys (B) and (C) are not pressed one after the other. They must always be pressed simultaneously.

Furthermore, the following points should be taken into consideration, checked and, if necessary, adjusted, prior to starting self-optimization:

- Is the suitable controller type configured?
- Check and/or adjust the control action of the controller
- Is it possible to sufficiently influence the actual value in the manual mode?
- Only for continuous controller: The function of the output (OutP -> OutA) must be configured as controller output 1 and scaled to $0 \ldots 100 \%$. This means:
Function (FnCt) = Controller output 1 (9)
Zero point (OPnt) $=0$
End value (End) = 100
Depending on the controller type and parameter setting, the controller structures and specific parameters are optimized:

Controller type	Parameter setting	Optimized controller structure	Optimized parameters
2-state controller	$\mathrm{rt}>0 ; \mathrm{dt}=0 ; \mathrm{Pb} 1=\mathrm{any}$	PI	Pb1, rt, Cy1, dF
	all other settings	PID	Pb1, dt, rt, Cy1, dF
3-state controller	$\begin{aligned} & \text { rt > 0; dt = 0; } \\ & \text { Pb1 = Pb2 = any } \end{aligned}$	PI	Pb1, Pb2, rt, Cy1, Cy2, dF
	all other settings	PID	Pb1, Pb2, dt, rt, Cy1, Cy2, dF
Continuous controller	$\mathrm{rt}>0 ; \mathrm{dt}=0 ; \mathrm{Pb} 1=\mathrm{any}$	PI	Pb1, rt, dF
	all other settings	PID	Pb1, dt, rt, dF

4 Supplement

Start of self-optimization

Simultaneously press keys (B) and (C) (> 2 s):
"tUnE" flashes in the lower display.
Self-optimization is completed when the display automatically changes to the normal display. The duration of self-optimization depends on the control process.

Abort of self-optimization

Simultaneously press keys (B) and (C)
No parameters are changed by the abort.

4 Supplement

4.3 Error messages

Display	Cause	Fault remedy
-1999	Underrange of the dis- played value.	Is the medium being measured within the (flashing!)
ragge (too hot? too cold?) (flashing!)	Overrange of the displayed value.	Check probe for break and short-circuit. Check the probe connection and the termi- nals. Check cable. Check that the connected probe complies with the configured probe type
PErr	Firing curve start is impos- sible because the actual value is \geq than the setpoint 1	The firing curve can be started when the actual value is < than the setpoint 1

Overrange / underrange covers the following events:

- Probe break/short-circuit
- Measured value outside the probe measuring range
- Display overflow

No keyboard operations are possible during device initialization (all displays are switched on, the upper 7-segment display flashes).

4 Supplement

4.4 Technical Data

Thermocouple input

Designation	Standard	Measuring range ${ }^{\text {a }}$	Measuring accuracy ${ }^{\text {b }}$	Ambient temperature influence
Fe-CuNi „L"		-150 to $+900{ }^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
Fe-CuNi „J"	EN 60584	-200 to $+1200{ }^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
Cu-CuNi „T"	EN 60584	-200 to $+400{ }^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
NiCr-Ni „K"	EN 60584	-200 to $+1372{ }^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
NiCr-CuNi „E"	EN 60584	-200 to $+1000^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
NiCrSi-NiSi „, ${ }^{\text {c }}$	EN 60584	-100 to $+1300^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
Pt10Rh-Pt „S"	EN 60584	-40 to $+1768{ }^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$
Pt13Rh-Pt „R"	EN 60584	-40 to $+1768{ }^{\circ} \mathrm{C}$	≤ 0.4 \%	$\leq 100 \mathrm{ppm} / \mathrm{K}$

${ }^{\text {a }}$ The specifications refer to an ambient temperature of $20^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Including measuring accuracy at the internal cold junction. The accuracy values refer to the measuring range.

RTD temperature probe input

Designation, connection type	Measuring range	Measuring accuracy ${ }^{\text {a }}$	Ambient temperature influence
Pt100 DIN EN 60751 2-wire connection 3-wire connection	-200 to $+650{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \leq 0.4 \% \\ & \leq 0.4 \% \end{aligned}$	$\leq 50 \mathrm{ppm} / \mathrm{K}$
Pt1000 DIN EN 60751 2-wire connection 3-wire connection	-200 to $+650{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \leq 0.4 \% \\ & \leq 0.4 \% \end{aligned}$	$\leq 50 \mathrm{ppm} / \mathrm{K}$
KTY, $R_{25}=1000 \Omega$ 2-wire connection	-50 to $+150{ }^{\circ} \mathrm{C}$	≤ 1.0 \%	$\leq 50 \mathrm{ppm} / \mathrm{K}$
KTY, $R_{25}=2000 \Omega$ 2-wire connection	-50 to $+80^{\circ} \mathrm{C}$	≤ 1.0 \%	$\leq 50 \mathrm{ppm} / \mathrm{K}$
Cu-50 3-wire connection	-50 to $+200{ }^{\circ} \mathrm{C}$	≤ 1.0 \%	$\leq 50 \mathrm{ppm} / \mathrm{K}$
Probe wire resistance: max. 30Ω per wire with 3-wire circuit			
Measured current: Pt100 approx. 1 mA ; Pt1000 and KTY approx. $100 \mu \mathrm{~A}$			
Lead compensation: Not required for 3-wire circuit. For a 2-wire circuit, the lead resistance can be compensated by correcting the actual value.			

[^0]
4 Supplement

Input for standard signals

Measuring range	Measuring accuracy $^{\mathbf{a}}$	Ambient temperature influence
Voltage 0 to 10 V Input resistance $>650 \mathrm{k} \Omega$	$\leq 0.4 \%$	$\leq 150 \mathrm{ppm} / \mathrm{K}$
Current 0(4) to 20 mA voltage drop $>2.2 \mathrm{~V}$	$\leq 0.4 \%$	$\leq 100 \mathrm{ppm} / \mathrm{K}$

${ }^{\text {a }}$ The accuracy values refer to the maximum measuring range.

Binary input

Input for potential-free contact	open $=$ inactive; closed $=$ active

Measuring circuit monitoring

In the event of a fault, the outputs adopt a defined (configurable) status.

Measuring probe	Overrange / underrange	Probe / cable short circuit	Probe / cable break
Thermocouple	\bullet	-	\bullet
RTD temperature probe	\bullet	\bullet	\bullet
Voltage 0 to 10V	-	-	-
Current 4 to 20 mA	\bullet	\bullet	\bullet
Current 0 to 20 mA	-	-	-

- = detected - = not detected

Outputs

Relay (N/O)	
Contact rating	max. 3 A at 230 V AC resistive load
Contact life	150,000 operations at nominal load
	350,000 operations at 1 A
	310,000 operations at 1 A and $\cos \varphi>0.7$
Logic output	$0 / 14 \mathrm{~V} / 20 \mathrm{~mA}$ max.
Voltage (option)	0 to 10 V
Output signal	$>600 \Omega$
Load resistance	$<0.5 \%$
Accuracy	0 to $20 \mathrm{~mA} / 4$ to 20 mA
Current (option)	$<450 \Omega$
Output signals	$<0.5 \%$
Load resistance	Accuracy

4 Supplement

Controller

Controller type	2-state controller, 3-state controller, continuous controller
Controller structures	P/PI/PD/PID
Sampling time	250 ms
A/D converter	16 bit resolution

Timers

Accuracy	$0.8 \% \pm 10 \mathrm{ppm} / \mathrm{K} \pm 250 \mathrm{~ms}$

Electrical data

Voltage supply (switch mode PSU)	AC 110 to $240 \mathrm{~V}+10 /-15 \%, 48$ to 63 Hz AC/DC 20 to $30 \mathrm{~V}, 48$ to 63 Hz
Electrical	
safety	as per DIN EN 61010, part 1 overvoltage category III, pollution degree 2
Power consumption	max. 14 VA
Electrical connection	on the rear via screw terminals; with core-end ferrule of a pipe shape, ope-n cable lug or pin cable lug fine-strand 0.25 to 1.5 mm
Conductor cross section	

Requirements for core-end ferrules and cable lugs

Core-end ferrule	pipe shape, without plastic sheath as per DIN 46228 part 1, with plastic sheath as per DIN 46228 part 4
Cable lug	open crimp cable lug, dimensionally adapted to DIN 46237 for closed crimp cable lugs
Pin cable lug	as per DIN 46231
With UL applications	use of the cable lugs or ferrules acc. to UL 486A-B (UL listed or recognized)

Case

Case type	plastic case for panel mounting as per IEC 61554 (indoor use)
Dimensions (front)	LC100: $48 \mathrm{~mm} \times 48 \mathrm{~mm} ;$ LC200: $48 \mathrm{~mm} \times 96 \mathrm{~mm}$ (portrait format); LC300: $96 \mathrm{~mm} \times 96 \mathrm{~mm}$
Panel cut-out	LC100: $45 \mathrm{~mm} \times 45 \mathrm{~mm} ;$ LC200: $45 \mathrm{~mm} \times 92 \mathrm{~mm} ;$ LC300: $92 \mathrm{~mm} \times 92 \mathrm{~mm}$
Minimum spacing horizontal / vertical	LC100: $11 \mathrm{~mm} / 30 \mathrm{~mm}(65 \mathrm{~mm}$ with USB cable); LC200/LC300: $22 \mathrm{~mm} / 30 \mathrm{~mm}(65 \mathrm{~mm}$ with USB cable)
Depth behind panel	LC100: $\mathrm{max} .95 \mathrm{~mm} ;$ LC200/LC300: max. 80 mm
Ambient / storage temperature range	-5 to $+55^{\circ} \mathrm{C} /-40$ to $+70^{\circ} \mathrm{C}$
Ambient conditions	rel. humidity $<90 \%$ annual average, without condensation

4 Supplement

Site altitude	up to 2000 m above sea level
Operating position	any
Protection type	as per DIN EN 60529, at the front IP 65, at the rear IP 20
Weight (fully equipped)	LC100: approx. 150 g ; LC200: approx. 200 g ; LC300: approx. 300 g

Interface

Interface type	RS485
Protocol	Modbus RTU
Baud rate	9600,19200
Data format	8 data bits, no parity bit, 1 stop bit
Device address	0 to 254
No. of subscribers	max. 32

7-segment displays

Digit height	
LC100, LC200	upper display: 10 mm ; lower display: 7 mm
LC300	upper display: 20 mm ; lower display: 13 mm
Color	upper display: red; lower display: green
Places	4 (including decimal places)
Decimal places	$0,1,2$ (configurable)
Display range	-1999 to 9999

Approvals/approval marks

Approval marks	Inspection authority	Certificate / Ins- pection number	Inspection/test basis	Valid for
c UL us	Underwriters Laboratories	E201387	UL 61010-1, CAN/CSA C22.2 No. 61010-1	all versions

JUMO GmbH \& Co. KG
Street address:
Moritz-Juchheim-Straße 1 36039 Fulda, Germany Delivery address: Mackenrodtstraße 14 36039 Fulda, Germany Postal address: 36035 Fulda, Germany Phone: +49 661 6003-0 Fax: +49661 6003-607
E-mail: mail@jumo.net Internet: www.jumo.net

JUMO Instrument Co. Ltd.
JUMO House
Temple Bank, Riverway
Harlow - Essex CM20 2DY, UK
Phone: +44 1279635533
Fax: $\quad+441279635262$
E-mail: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.
6733 Myers Road
East Syracuse, NY 13057, USA
Phone: 315-437-5866
1-800-554-5866
Fax: 315-437-5860
E-mail: info.us@jumo.net Internet: www.jumousa.com

[^0]: a The accuracy values refer to the measuring range.

