Protection of wind turbines

Application Note AN015 for protection of power and data/signal/telecoms lines in wind turbines

Full specifications of all of the products in the Furse ESP range of transient overvoltage protectors can be found in the Total Solution Product Catalogue.

To request a copy, contact Furse Sales at the address opposite.

Full product data can be downloaded in PDF form from our website at www.furse.com. Copies of the Total Solution Product Catalogue can also be requested from our website.

Important
This Application Note refers only to protection of electronic systems in wind turbines using SPDs. A full Lightning Protection System (LPS) for wind turbines would require a risk assessment to BS EN 62305-2 and installation of an appropriate external LPS and earthing arrangement. For more information on lightning protection and earthing, please contact us.

UK OFFICE
Thomas & Betts Limited
Furse
Wilford Road
Nottingham
NG2 1ER
United Kingdom
Switchboard +44 (0)115 964 3700
Fax +44 (0)115 986 0538
Sales tel +44 (0)115 964 3800
Sales fax +44 (0)115 986 0071
Email: enquiry@furse.com
www.furse.com

EUROPEAN HEADQUARTERS
Thomas & Betts
European Centre SA
200 Chaussée de Waterloo
B-1640 Rhode-St-Genèse
Belgium
Tel +32 (0)2 359 8200
Fax +32 (0)2 359 8201

www.tnb-europe.com

MIDDLE EAST OFFICE
Thomas & Betts Ltd. Br.
Office 724 IWA West Wing
Dubai Airport Free Zone
PO Box 54567
Dubai
United Arab Emirates
Tel +971 (0)4 609 1635
Fax +971 (0)4 609 1636
Email: furseenquiryme@tnb.com

SOUTH EAST ASIA OFFICE
Thomas & Betts Asia (Singapore) Pte Ltd
10 Ang Mo Kio Street 65
#06-07 Techpoint
Singapore 569059
Tel +65 6720 8828
Fax +65 6720 8780
Email: asia.inquiry@tnb.com

Copyright Thomas & Betts Corp. 2011. Copyright in these pages is owned by Thomas & Betts except where otherwise indicated. No part of this publication may be reproduced, copied or transmitted in any form or by any means, without our prior written permission. Brands, trade marks, logos, designs and technology are also protected by other intellectual property rights and may not be reproduced or appropriated in any manner without the written permission of Thomas & Betts. Thomas & Betts reserves the right to change and improve any product specifications or other mentions in the publication at its own discretion and at any time. These conditions of use are governed by the laws of the Netherlands and the courts of Amsterdam shall have exclusive jurisdiction in any dispute.
Protection of power and data/signal/telecoms lines in wind turbines

Wind turbines contain a substantial array of electronic systems, including power, control, and telecoms systems, which are all vulnerable to damage from partial lightning currents and transient overvoltages.

Partial lightning currents can enter a wind turbine following a lightning strike either to the blades, tower, or to incoming/outgoing power & data/signal/telecoms lines. Transient overvoltages can be electromagnetically induced onto the turbine’s electrical network as a result of power switching or nearby lightning activity. These overvoltages can result in severe damage to electronic circuitry and need to be effectively countered to avoid expensive downtime and repair/maintenance costs.

Zonal approach to protecting electronic systems

Electronic systems in wind turbines are sited in a number of locations:

- The nacelle (generator, pitch & yaw controls and motors, sensor/actuator controls)
- The turbine base (frequency converter, LV switchgear & transformer, control system)
- The local HV transformer station

For all of these locations, external and internal Lightning Protection Zones (LPZ) have been defined, in accordance with the principles established in BS EN62305:2007 & IEC 61640, to protect key equipment (see Table 1).

This zonal approach requires the classification of SPDs required (Type 1 or Type 2 mains and Type B or Type C data/signals/telecoms) to protect equipment in line with its voltage withstand and operating characteristics.

Power line protection

Lightning current SPDs (Type 1) are required at boundaries between LPZ 0 and LPZ 1, to counter partial lightning currents, with transient overvoltage SPDs (Type 2) required between LPZ 1 and LPZ 2, to protect critical equipment within the wind turbine (see Figure 1).

Furse ESP combined 1+2 SPDs for 690 V systems and combined 1+2+3 SPDs for 230 V 400 V systems prove highly suitable for protecting wind turbines. As combined SPDs they offer both low let-through voltage and full mode protection between all sets of conductors, for optimum surge protective performance to minimum LPZ 2.

SPDs should be installed on the line side, as close as possible to the equipment being protected. Where connected downstream equipment is greater than 10 m away, a second SPD should be installed at the downstream equipment (in line with the guidance in DD CIE/TS 50529:22:2010).

690 V circuits require a SPD specific for the voltage level, such as the Furse ESP 690/12.5/WT or higher surge current ESP 690/25/WT SPDs. Power lines at 230 V 400 V AC and alternative voltages should also be protected by a suitable Furse SPD (see Table 2). Where the main HV transformer is housed separately from the wind turbine, incoming/outgoing lines from both the wind turbine and the transformer station should be protected – LPZ boundary LPZ 0 to LPZ 1 (control system electronics where installed to minimum LPZ 2).

Data/signal/telecoms line protection

Figure 1 also highlights the points at which Furse SPDs should be installed to protect data, signal and telecommunications lines. A wide range of Furse SPDs is available for this purpose, including Furse ESP SL Series, or Furse ESP D, E, H Series.

The SPD selected should be compatible with the system to be protected, and must offer sufficient protection to reduce overvoltages below the immunity threshold of the protected equipment. The SPD must not impede system performance and must have the ability to survive repeated transients.

Control equipment at the wind turbine is most likely to be networked to remote locations and, following BS EN62305, protection at these remote points should also be risk assessed.

Table 1: Wind turbine equipment requiring protection

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Typical Location</th>
<th>Lightning Protection Zone (LPZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>Nacelle</td>
<td>LPZ 2 to LPZ 1</td>
</tr>
<tr>
<td>Motor (yaw/pitch)</td>
<td>Nacelle</td>
<td>LPZ 0 to LPZ 1</td>
</tr>
<tr>
<td>Auxiliary circuits</td>
<td>Nacelle</td>
<td>LPZ 2 to LPZ 2</td>
</tr>
<tr>
<td>Frequency converter</td>
<td>Turbine base</td>
<td>LPZ 2 to LPZ 1</td>
</tr>
<tr>
<td>Wind turbine control</td>
<td>Turbine base</td>
<td>LPZ 0 to LPZ 2</td>
</tr>
<tr>
<td>UV side of transformer</td>
<td>Turbine base/Transformer station</td>
<td>LPZ 0 to LPZ 1</td>
</tr>
<tr>
<td>HV side of transformer</td>
<td>Turbine base/Transformer station</td>
<td>LPZ 0 to LPZ 2</td>
</tr>
</tbody>
</table>

Table 1: Wind turbine equipment requiring protection
Protection of power and data/signal/telecoms lines in wind turbines

Zonal approach to protecting electronic systems
Electronic systems in wind turbines are sited in a number of locations:
- The nacelle (generator, pitch & yaw controls and motors, sensor/actuator controls)
- The turbine base (frequency converter, LV switchgear & transformer, control system)
- The local HV transformer station

For all of these locations, external and internal Lightning Protection Zones (LPZ) have been defined, in accordance with the principles established in BS EN/IEC 62305 & IEC 61400, to protect key equipment (see Table 1).

This zonal approach regulates the classification of SPD required (Type 1 or Type 2 mains and Type B or Type C data/signal/telecoms) to protect equipment in line with its voltage withstand and operating characteristics.

Power line protection
Lightning current SPDs (Type 1) are required at boundaries between LPZ 0 and LPZ 1, to counter partial lightning currents, with transient overvoltage SPDs (Type 2) required between LPZ 1 and LPZ 2, to protect critical equipment within the wind turbine (see Figure 1).

Furse ESP combined 1+2 SPDs for 690 V systems and combined 1+2+3 SPDs for 230 V / 400 V systems prove highly suitable for protecting wind turbines. As combined SPDs they offer both low let-through voltage and full mode protection between all sets of conductors, for optimum surge protective performance to minimum LPZ 2.

SPDs should be installed on the line side, as close as possible to the equipment being protected. Where connected downstream equipment is greater than 10 m away, a second SPD should be installed at the subsequent equipment (in line with the guidance in DD CICHTS 50202-22:2010). 690 V circuits require a SPD specific for the voltage level, such as the Furse ESP 690/12.5/WT or higher surge current ESP 690/25/WT SPDs.

Power lines at 230 V / 400 V AC and alternative voltages should also be protected by a suitable Furse SPD (see Table 2). Where the main HV transformer is housed separately from the wind turbine, incoming/outgoing lines from both the wind turbine and the transformer station should be protected – LPZ boundary LPZ 0 to LPZ 1 (control system electronics where installed to minimum LPZ 2).

Data/signal/telecoms line protection
Figure 1 also highlights the points at which Furse SPDs should be installed to protect data, signal and telecommunications lines. A wide range of Furse SPDs is available for this purpose, including Furse ESP SL Series, or Furse ESP D, E, H Series.

The SPD selected should be compatible with the system to be protected, and must offer sufficient protection to reduce overvoltages below the immunity threshold of the protected equipment. The SPD must not impede system performance and must have the ability to survive repeated transients.

Control equipment at the wind turbine is most likely to be networked to remote locations, and following BS EN/IEC 62305, protection at these remote points should also be risk assessed.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Typical Location</th>
<th>Lightning Protection Zone (LPZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>Nacelle</td>
<td>LPZ 0 to LPZ 1</td>
</tr>
<tr>
<td>Motor (yaw/pitch)</td>
<td>Nacelle</td>
<td>LPZ 0 to LPZ 1</td>
</tr>
<tr>
<td>Auxiliary circuits (avionics)</td>
<td>Nacelle</td>
<td>LPZ 0 to LPZ 2</td>
</tr>
<tr>
<td>Frequency converter</td>
<td>Turbine base</td>
<td>LPZ 0 to LPZ 2</td>
</tr>
<tr>
<td>Wind turbine control system</td>
<td>Turbine base</td>
<td>LPZ 0 to LPZ 2</td>
</tr>
<tr>
<td>LV side of transformer + switchgear</td>
<td>Turbine base/ Transformer station</td>
<td>LPZ 0 to LPZ 1</td>
</tr>
<tr>
<td>HV side of transformer</td>
<td>Turbine base/ Transformer station</td>
<td>LPZ 0 to LPZ 1</td>
</tr>
<tr>
<td>Transformer station control systems</td>
<td>Transformer station</td>
<td>LPZ 0 to LPZ 2</td>
</tr>
</tbody>
</table>

Table 1: Wind turbine equipment requiring protection

<table>
<thead>
<tr>
<th>Location</th>
<th>SPD required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator (690 V)</td>
<td>ESP 690/12.5/WT or ESP 690/25/WT</td>
</tr>
<tr>
<td>Frequency converter (690 V)</td>
<td>ESP 690/12.5/WT or ESP 690/25/WT</td>
</tr>
<tr>
<td>Transformer (690 V)</td>
<td>ESP 690/12.5/WT or ESP 690/25/WT</td>
</tr>
<tr>
<td>Control system (230 V)</td>
<td>ESP 240 D1 or ESP 240 M1</td>
</tr>
<tr>
<td>Hub control (20 V)</td>
<td>ESP 240 D1 or ESP 240 M1</td>
</tr>
<tr>
<td>Anemometer (24 V)</td>
<td>ESP SL30</td>
</tr>
<tr>
<td>Modem</td>
<td>ESP TN</td>
</tr>
</tbody>
</table>

Table 2: SPD selection
Protection of wind turbines

Application Note AN015 for protection of power and data/signals/telecoms lines in wind turbines