Data Sheet

Lead (Pb) Free
RoHS 6 fully compliant
RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

These diode-transistor optocouplers use an insulating layer between a LED and an integrated photodetector to provide electrical insulation between input and output. Separate connections for the photodiode bias and out-put-transistor collector increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

These single channel optocouplers are available in 8-Pin DIP, SO-8 and Widebody package configurations.

The 6N135, HCPL-0500, and HCNW135 are for use in TTL/ CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for these devices is 7% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.
The 6N136, HCPL-2502, HCPL-0501, and HCNW136 are designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR for these devices is 19% minimum at $I_{F}=16 \mathrm{~mA}$.

Functional Diagram

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

Features

- $15 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode transient immunity at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}(4503 / 0453)$
- High speed: $1 \mathrm{Mb} / \mathrm{s}$
- TTL compatible
- Available in 8-Pin DIP, SO-8, widebody packages
- Open collector output
- Guaranteed performance from temperature:
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Safety approval

UL Recognized - $3750 \mathrm{~V}_{\text {rms }}$ for 1 minute ($5000 \mathrm{~V}_{\text {rms }}$ for 1 minute for HCNW and Option 020 devices)
per UL1577
CSA Approved
IEC/EN/DIN EN 60747-5-2 Approved
$-\mathrm{V}_{\text {IORM }}=630 \mathrm{~V}$ peak for HCPL-4503\#060
$-\mathrm{V}_{\text {IORM }}=1414 \mathrm{~V}$ peak for HCNW devices

- Dual channel version available (253X/4534/053X/0534)
- MIL-PRF-38534 hermetic version available (55XX/65XX/4N55)

Applications

- High voltage insulation
- Video signal isolation
- Power transistor isolation in motor drives
- Line receivers
- Feedback element in switched mode power supplies
- High speed logic ground isolation - TTL/TTL, TTL/CMOS, TTL/LSTTL
- Replaces pulse transformers
- Replaces slow phototransistor isolators
- Analog signal ground isolation

The HCPL-4502, HCPL-0452, and HCNW4502 provide the electrical and switching performance of the 6N136, HCPL0501, and HCNW136 with increased ESD protection.

The HCPL-4503, HCPL-0453, and HCNW4503 are similar to the HCPL-4502, HCPL-0452, and HCNW4502 optocouplers but have increased common mode transient immunity of $15 \mathrm{kV} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ guaranteed.

Schematic

* NOTE: FOR HCPL-4502/-3, HCPL-0452/3, HCNW4502/3, PIN 7 IS NOT CONNECTED.

Selection Guide

Minimum CMR		8-Pin DIP (300 Mil)		Small-Outline S0-8		(400 Mil) Widebody \quadHermetic		
dV/dt (V/ $/ \mathrm{s}$)	$\begin{aligned} & V_{c u} \\ & (\mathbf{V}) \end{aligned}$	Current Transfer Ratio (\%)	Single Channel Package	Dual Channel Package*	Single Channel Package	Dual Channel Package*	Single Channel Package	Single and Dual Channel Packages*
1,000	10	7	6N135	HCPL-2530	HCPL-0500	HCPL-0530	HCNW135	
		19	$\begin{gathered} \text { 6N136 } \\ \text { HCPL-4502 } \dagger \\ \hline \text { HCPL-2502 } \end{gathered}$	HCPL-2531	$\begin{aligned} & \text { HCPL-0501 } \\ & \text { HCPL-0452† } \end{aligned}$	HCPL-0531	HCNW136 HCNW4502 \dagger	
15,000	1500	19	HCPL-4503 \dagger	HCPL-4534	HCPL-0453 \dagger	HCPL-0534	HCNW4503 \dagger	
1,000	10	9						$\begin{gathered} \text { HCPL-55XX } \\ \text { HCPL-65XX } \\ \text { 4N55 } \end{gathered}$

*Technical data for these products are on separate Avago publications. \dagger Pin 7, transistor base, is not connected.

Ordering Information

6N135, 6N136, HCPL-2502, HCPL-4502 and HCPL-4503, HCPL-0452, HCPL-0453, HCPL-0500, HCPL-0501 are UL Recognized with 3750 Vrms for 1 minute per UL1577.

HCNW135, HCNW136, HCNW4502 and HCNW4503 are UL Recognized with 5000 Vrms for 1 minute per UL1577. All devices above listed are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	UL 5000 Vrms/ 1 Minute rating	IEC/EN/DIN EN 60747- 5-2	Quantity
	RoHS Compliant	Non RoHS Compliant							
6N135 6N136 HCPL-2502 HCPL-4502 HCPL-4503	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	\#060						X	50 per tube
	-360E	\#360		X	X			X	50 per tube
	-560E	\#560		X	X	X		X	1000 per reel
$\begin{aligned} & \text { HCPL-0452 } \\ & \text { HCPL-0453 } \\ & \text { HCPL-0500 } \\ & \text { HCPL-0501 } \end{aligned}$	-000E	No option	SO-8						100 per tube
	-500E	\#500		X	X	X			1500 per reel
	-060E	\#060						X	100 per tube
	-560E	\#560		X	X	X		X	1500 per reel
HCNW135	-000E	No option	400mil Widebody DIP-8				X	X	42 per tube
HCNW136 HCNW4502	-300E	\#300		X	X		X	X	42 per tube
HCNW4503	-500E	\#500		X	X	X	X	X	750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

HCPL-4502-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.

Example 2:

HCPL-4502 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks:The notation '\#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use'-XXXE'.

Package Outline Drawings

8-Pin DIP Package (6N135/6, HCPL-4502/3, HCPL-2502)

DIMENSIONS IN MILLIMETERS AND (INCHES).
*MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin DIP Package with Gull Wing Surface Mount Option 300 ($6 \mathrm{~N} 135 / 6$, HCPL-4502/3)

8-Pin Widebody DIP Package (HCNW135/6, HCNW4502/3)

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW135/6, HCNW4502/3)

Solder Reflow Temperature Profile

NOTE: NON-HALIDE FLUX SHOULD BE USED.

Recommended Pb-Free IR Profile

> NOTES:
> THE TME FROM 25° C to PEAK TEMPERATURE $=8$ MINUTES MAX. $\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {Smin }}=150^{\circ} \mathrm{C}$
> NON-HALIDE FLUX SHOULD BE USED.
> * RECOMMENDED PEAK TEMPERATURE FOR WIDEBODY 400mils PACKAGE IS $245^{\circ} \mathrm{C}$

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL

Recognized under UL 1577, Component Recognition Program, File E55361.

CSA
Approved under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01
(HCNW and Option 060 only)

Insulation and Safety Related Specifications

| Symbol | 8-Pin DIP
 (300 Mil)
 Value | S0-8
 Value | Widebody
 (400 Mil)
 Value | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 300 \mathrm{~V}$ rms		I-IV	
for rated mains voltage $\leq 450 \mathrm{~V}$ rms		I-III	
Climatic Classification		55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	630	$\mathrm{V}_{\text {peak }}$
```Input to Output Test Voltage, Method b* \(\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR' }^{\prime}} 100 \%\) Production Test with \(\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}\), Partial Discharge \(<5 \mathrm{pC}\)```	$V_{\text {PR }}$	1181	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\text {PR' }}$ Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	945	$V_{\text {peak }}$
Highest Allowable Overvoltage*   (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {Іотм }}$	6000	$V_{\text {peak }}$
Safety Limiting Values   (Maximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.)			
Case Temperature   Input Current   Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{s}} \\ \mathrm{I}_{\mathrm{s} \text { INPUT }} \\ \mathrm{P}_{\mathrm{s}, \text { OUTPUT }} \end{gathered}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{5^{\prime}} \mathrm{V}_{10}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{s}}$	$\geq 10^{9}$	$\Omega$

IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW135/6, HCNW4502/3 ONLY)

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 600 \mathrm{~V}$ rms		I-IV	
for rated mains voltage $\leq 1000 \mathrm{~V}$ rms		I-III	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1414	$\mathrm{V}_{\text {peak }}$
$\begin{aligned} & \text { Input to Output Test Voltage, Method } \mathrm{b}^{*} \\ & \mathrm{~V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}^{\prime}}, 100 \% \text { Production Test with } \mathrm{t}_{\mathrm{m}}=1 \mathrm{sec} \text {, } \\ & \text { Partial Discharge }<5 \mathrm{pC} \end{aligned}$	$V_{\text {PR }}$	2652	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2121	$V_{\text {peak }}$
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {Іотм }}$	8000	$\mathrm{V}_{\text {peak }}$
Safety Limiting Values   (Maximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.)   Case Temperature   Input Current   Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{s}} \\ \mathrm{I}_{\mathrm{S}, \text { INPUT }} \\ \mathrm{P}_{\mathrm{S}, \text { OUTPUT }} \end{gathered}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \end{aligned}$	${ }^{\circ} \mathrm{C}$   mA   mW
Insulation Resistance at $\mathrm{T}_{\mathrm{s}^{\prime}}, \mathrm{V}_{10}=500 \mathrm{~V}$	$\mathrm{R}_{5}$	$\geq 10^{9}$	$\Omega$

[^0]
## Absolute Maximum Ratings


*Data has been registered with JEDEC for the 6N135/6N136.

## Electrical Specifications (DC)

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified. See note 13 .

Parameter	Symbol	Device	Min.	Typ.**	Max.	Units		Test Conditions		Fig.	Note
Current	CTR*	6N135	7	18	50	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1,2,	5,11
Transfer Ratio		HCPL-0500 HCNW135	5	19				$\mathrm{V}_{\mathrm{o}}=0.5 \mathrm{~V}$			
		HCPL-2502	15		22		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V}$			
			15	25				$\mathrm{V}_{\mathrm{o}}=0.5 \mathrm{~V}$			
		6N136	19	24	50		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$			
		$\begin{gathered} \text { HCPL-4502/3 } \\ \text { HCPL-0501 } \end{gathered}$	15	25				$\mathrm{V}_{\mathrm{o}}=0.5 \mathrm{~V}$			
		HCPL-0452/3   HCNW136									


Logic Low	$\mathrm{V}_{\text {oL }}$	6N135	0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{0}=1.1 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$,
Output Voltage		HCPL-0500   HCNW135	0.1	0.5			$\mathrm{I}_{\mathrm{o}}=0.8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$
		6N136	0.1	0.4		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{o}}=3.0 \mathrm{~mA}$	
		HCPL-2502 HCPL-4502/3	0.1	0.5			$\mathrm{I}_{\mathrm{o}}=2.4 \mathrm{~mA}$	
		HCPL-0501						
		HCPL-0452/3						
		HCNW136						
		HCNW4502/3						


Logic High Output Current	$\mathrm{IOH}^{*}$			0.003	0.5	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	7
				0.01	1		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		
					50		$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {cc }}=15 \mathrm{~V}$		
Logic Low Supply Current	$\mathrm{I}_{\text {cL }}$			50	200	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open }, \\ \mathrm{V}_{\mathrm{cC}}=15 \mathrm{~V} \end{gathered}$		13
Logic High Supply Current	$\mathrm{ICCH}^{*}$			0.02	1	$\mu \mathrm{A}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open, } \end{array}$		13
					2		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$		
Input Forward		8-Pin DIP		1.5	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		3
		SO-8			1.8				
		Widebody	1.45	1.68	1.85		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		
			1.35		1.95				
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$	8-Pin DIP	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
		SO-8							
		Widebody	3				$\begin{gathered} I_{R}=100 \\ \mu \mathrm{~A} \end{gathered}$		
Temperature Coefficient of Forward Voltage	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{F}} / \\ & \Delta \mathrm{T}_{\mathrm{A}} \end{aligned}$	8-Pin DIP		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		
		SO-8							
		Widebody		-1.9					
Input Capacitance	$\mathrm{C}_{\text {IN }}$	8-Pin DIP		60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
		SO-8							
		Widebody		90					
Transistor DC Current Gain	$\mathrm{h}_{\mathrm{FE}}$	8-Pin DIP		150			$\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}, \mathrm{I}_{0}=3 \mathrm{~mA}$		
		SO-8		130			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$		
		Widebody		180			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$		
				160			$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{0}=3 \mathrm{~mA}$		

*For JEDEC registered parts.
${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications (AC)

Over recommended temperature $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

*For JEDEC registered parts.
${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Package Characteristics

Over recommended temperature $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Input-Output   Momentary   Withstand Voltage**	$\mathrm{V}_{150}$	$\begin{gathered} \hline \text { 8-Pin DIP } \\ \text { SO-8 } \\ \hline \end{gathered}$	3750			V rms	$\begin{aligned} & \mathrm{RH}<50 \%, \\ & \mathrm{t}=1 \mathrm{~min} ., \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		6,14
		Widebody	5000						6,15
		$\begin{gathered} \text { 8-Pin DIP } \\ \text { (Option 020) } \end{gathered}$	5000						$\begin{gathered} 6,12, \\ 15 \end{gathered}$
	$\mathrm{I}_{1-\mathrm{O}}$	8-Pin DIP			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kVdc}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		6,16
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$	$\begin{gathered} \hline \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\text {- }-0}=500 \mathrm{Vdc}$		6
		Widebody	$10^{12}$	$10^{13}$			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
			$10^{11}$				$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		
Input-Output Capacitance	$C_{10}$	$\begin{aligned} & \hline \text { 8-Pin DIP } \\ & \text { SO-8 } \end{aligned}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		6
		Widebody		0.5	0.6				

${ }^{*}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

## Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(8-\mathrm{Pin}$ DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(8-\mathrm{Pin}$ DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(8-\mathrm{Pin}$ DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(8$-Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{\text {r }}$, times 100 .
6. Device considered a two-terminal device: Pins $1,2,3$, and 4 shorted together and Pins $5,6,7$, and 8 shorted together.
7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}^{\prime}}$ to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}^{\prime}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
11. The JEDEC registration for the 6 N136 specifies a minimum CTR of $15 \%$. Avago guarantees a minimum CTR of $19 \%$.
12. See Option 020 data sheet for more information.
13. Use of a $0.1 \mu$ bypass capacitor connected between pins 5 and 8 is recommended.
14. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$ ). This test is performed before the $100 \%$ Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table if applicable.
15. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$ ). This test is performed before the $100 \%$ Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table if applicable.
16. This rating is equally validated by an equivalent ac proof test.


Vo - OUTPUT VOLTAGE - V

$\mathbf{V}_{\mathbf{O}}$ - OUTPUT VOLTAGE - $\mathbf{V}$

Figure 1. DC and pulsed transfer characteristics.



Figure 2. Current transfer ratio vs. input current.



Figure 3. Input current vs. forward voltage.


Figure 4. Current transfer ratio vs. temperature.

$\mathrm{T}_{\mathrm{A}}$ - TEMPERATURE - ${ }^{\circ} \mathrm{C}$


Figure 5. Propagation delay vs. temperature.




Figure 6. Propagation delay time vs. load resistance.


Figure 7. Logic high output current vs. temperature.


Figure 8. Small-signal current transfer ratio vs. quiescent input current.


Figure 9. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-2.


Figure 10. Frequency response.


Figure 11. Switching test circuit.


Figure 12. Test circuit for transient immunity and typical waveforms.


[^0]:    *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a detailed description.
    Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

