

Loctite 403 #815-7356, 815-7359

RS Components

Chemwatch: 5151-41
Version No: 2.1.1.1
Material Safety Data Sheet according to NOHSC and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 24/09/2014
Print Date: 25/09/2014
Initial Date: Not Available
S.Local.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Loctite 403 #815-7356, 815-7359
Chemical Name	Not Applicable
Synonyms	Manufacturer's Codes: 815-7356, 815-7359
Proper shipping name	AVIATION REGULATED LIQUID, N.O.S. Not subject to this Code (see SP 106) (contains methoxyethyl cyanoacrylate)
Chemical formula	Not Applicable
Other means of identification	Not Available
CAS number	Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Adhesive.
--------------------------	-----------

Details of the manufacturer/importer

Registered company name	RS Components	RS Components
Address	25 Pavesi Street Smithfield 2164 NSW Australia	Units 30 & 31, 761 Great South Road Penrose 1006 Auckland New Zealand
Telephone	+1 300 656 636	+64 9 526 1600
Fax	+1 300 656 696	+64 9 579 1700
Website	Not Available	www.rsnewzealand.com
Email	Not Available	Not Available

Emergency telephone number

Association / Organisation	Not Available	Not Available
Emergency telephone numbers	1800 039 008 (24 hours), +61 3 9573 3112	Not Available
Other emergency telephone numbers	1800 039 008 (24 hours), +61 3 9573 3112	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

COMBUSTIBLE LIQUID, regulated for storage purposes only

Poisons Schedule	S5
Risk Phrases ^[1]	R36/37/38 Irritating to eyes, respiratory system and skin. R52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. R22 Harmful if swallowed. R8 Contact with combustible material may cause fire.
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Relevant risk statements are found in section 2

Indication(s) of danger	O, Xn
-------------------------	-------

SAFETY ADVICE

S13	Keep away from food, drink and animal feeding stuffs.
S17	Keep away from combustible material.

Continued...

S23	Do not breathe gas/fumes/vapour/spray.
S25	Avoid contact with eyes.
S26	In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.
S29	Do not empty into drains.
S35	This material and its container must be disposed of in a safe way.
S36	Wear suitable protective clothing.
S37	Wear suitable gloves.
S39	Wear eye/face protection.
S46	If swallowed, seek medical advice immediately and show this container or label.
S56	Dispose of this material and its container at hazardous or special waste collection point.
S57	Use appropriate container to avoid environmental contamination.
S64	If swallowed, rinse mouth with water (only if the person is conscious).

Other hazards

Possible respiratory and skin sensitizer*.
Cumulative effects may result following exposure*.
Inhalation may produce health damage*.
Vapours potentially cause drowsiness and dizziness*.
May possibly affect fertility*.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS**Substances**

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
27816-23-5	>80	methoxethyl cyanoacrylate
105391-33-1	0.25-<2.5	bis(3-ethyl-5-methyl-4-maleimidephenyl)methane
119-47-1	0.1-<0.9	2,2'-methylenebis(6-tert-butyl-4-methylphenol)
123-31-9	0.01-<0.1	hydroquinone

SECTION 4 FIRST AID MEASURES**Description of first aid measures**

Eye Contact	Eyelid Adhesion
	<ul style="list-style-type: none"> Wash thoroughly with water and apply moist pad; maintain in position. DO NOT force separation. Transport to hospital, or doctor without delay. Minor eye contamination should be treated by copious washing with water or 1% sodium carbonate solution. The eye will generally open without further action, typically in one to two days. there should be no residual damage. Adhesive introduced Removal of contact lenses after eye injury should only be undertaken by skilled personnel.
	Adhesive in the Eye:
	<ul style="list-style-type: none"> Adhesive will attach itself to eye proteins and will disassociate from these over intermittent periods, usually within several hours. This will result in weeping until clearance of the protein complex. It is important to understand that disassociation will normally occur within a matter of hours even with gross contamination.
	Cyanoacrylate adhesives is a very fast setting and strong. they bond human tissues including skin in seconds. Experience shows that accidents involving cyanoacrylates are best handled by passive, non-surgical first aid.
Skin Contact	Skin Contact:
	<ul style="list-style-type: none"> Remove excessive adhesive. Soak in warm water - the adhesive should loosen from the skin in several hours. Dried adhesive does not present a health hazard. Contact with clothes, fabric, rags or tissues may generate heat, and strong irritating odours; skin burns may also ensue.
Skin Adhesion:	Skin Adhesion:
	<ul style="list-style-type: none"> IMMEDIATELY immerse affected areas in warm soapy water. DO NOT force bonded surfaces apart. Use a gentle rolling action to peel surfaces apart if possible. It may be necessary to use a blunt edge such as a spatula or spoon handle. Do NOT attempt to pull the surfaces apart with a direct opposing action. Remove any cured material with warm, soapy water. Seek medical attention without delay. A solvent such as acetone may be used (with care!) to separate bonded skin surfaces. NEVER use solvent near eyes, mouth, cuts, or abrasions.
Inhalation	<ul style="list-style-type: none"> If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. If fumes or combustion products are inhaled remove from contaminated area.

Continued...

- ▶ Lay patient down. Keep warm and rested.
- ▶ Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- ▶ Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- ▶ Transport to hospital, or doctor.

► IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.

- ▶ For advice, contact a Poisons Information Centre or a doctor.
- ▶ Urgent hospital treatment is likely to be needed.
- ▶ In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- ▶ If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- ▶ If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

Ingestion

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

- ▶ **INDUCE** vomiting with fingers down the back of the throat, **ONLY IF CONSCIOUS**. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- ▶ For material bonded in the mouth seek medical/dental attention.
- ▶ If lips are accidentally stuck together apply lots of warm water and encourage maximum wetting and pressure from saliva inside the mouth.
- ▶ Peal or roll lips apart.
- ▶ **Do NOT attempt to pull the lips with direct opposing action.**
- ▶ It is almost impossible to swallow cyanoacrylates. The adhesive solidifies and adheres in the mouth. Saliva will lip the adhesion in one or two days.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

It should never be necessary to use surgical means to separate tissues which become accidentally bonded. The action of physiological fluids or warm soapy water will cause this adhesive to eventually fail.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ Foam.
- ▶ Dry chemical powder.
- ▶ BCF (where regulations permit).
- ▶ Carbon dioxide.
- ▶ Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
-----------------------------	--

Advice for firefighters

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- ▶ Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- ▶ Avoid spraying water onto liquid pools.
- ▶ **DO NOT** approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- ▶ If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

- ▶ Combustible.
- ▶ Slight fire hazard when exposed to heat or flame.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).
- ▶ May emit acrid smoke.
- ▶ Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO₂), nitrogen oxides (NO_x), other pyrolysis products typical of burning organic material

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

- If cloth has been used to wipe up spills, immediately soak the cloth in water to produce polymerisation and prevent possibility of autoignition.
 - ▶ Clean up all spills immediately.
 - ▶ Avoid breathing vapours and contact with skin and eyes.
 - ▶ Control personal contact with the substance, by using protective equipment.
 - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite.
 - ▶ Wipe up.
 - ▶ Place in a suitable, labelled container for waste disposal.

Major Spills

- Moderate hazard.
 - ▶ Clear area of personnel and move upwind.
 - ▶ Alert Fire Brigade and tell them location and nature of hazard.
 - ▶ Wear breathing apparatus plus protective gloves.
 - ▶ Prevent, by any means available, spillage from entering drains or water course.
 - ▶ No smoking, naked lights or ignition sources.
 - ▶ Increase ventilation.

Continued...

- ▶ Stop leak if safe to do so.
- ▶ Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Absorb remaining product with sand, earth or vermiculite.
- ▶ Collect solid residues and seal in labelled drums for disposal.
- ▶ Wash area and prevent runoff into drains.
- ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Most acrylic monomers have low viscosity therefore pouring, material transfer and processing of these materials do not necessitate heating.
- ▶ Viscous monomers may require heating to facilitate handling. To facilitate product transfer from original containers, product must be heated to no more than 60 deg. C. (140 F.), for not more than 24 hours.
- ▶ **Do NOT use localised heat sources such as band heaters to heat/ melt product.**
- ▶ **Do NOT use steam .**
- ▶ Hot boxes or hot rooms are recommended for heating/ melting material. The hot box or hot room should be set a maximum temperature of 60 deg. C. (140 F.).
- ▶ **Do NOT overheat - this may compromise product quality and /or result in an uncontrolled hazardous polymerisation.**
- ▶ If product freezes, heat as indicated above and mix gently to redistribute the inhibitor. Product should be consumed in its entirety after heating/ melting; avoid multiple "reheats" which may affect product quality or result in product degradation.
- ▶ Product should be packaged with inhibitor(s). Unless inhibited, product may polymerise, raising temperature and pressure, possibly rupturing container. Check inhibitor level periodically, adding to bulk material if needed. In addition, the product's inhibitor(s) require the presence of dissolved oxygen. Maintain, at a minimum, the original headspace in the product container and do NOT blanket or mix with oxygen-free gas as it renders the inhibitor ineffective. Ensure air space (oxygen) is present during product heating / melting.
- ▶ Store product indoors at temperatures greater than the product's freezing point (or greater than 0 deg. C. (32 F.)) if no freezing point available and below 38 deg. C (100 F.).
- ▶ Avoid prolonged storage (longer than shelf-life) storage temperatures above 38 deg. C (100 F.).
- ▶ Store in tightly closed containers in a properly vented storage area away from heat, sparks, open flame, strong oxidisers, radiation and other initiators.
- ▶ Prevent contamination by foreign materials.
- ▶ Prevent moisture contact.
- ▶ Use only non-sparking tools and limit storage time. Unless specified elsewhere, shelf-life is 6 months from receipt.
- ▶ **DO NOT allow clothing wet with material to stay in contact with skin**
- ▶ Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ **DO NOT enter confined spaces until atmosphere has been checked.**
- ▶ Avoid smoking, naked lights or ignition sources.
- ▶ Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT eat, drink or smoke.**
- ▶ Keep containers securely sealed when not in use.
- ▶ Avoid physical damage to containers.
- ▶ Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately.
- ▶ Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Safe handling

- ▶ Store below 38 deg. C.
- ▶ Store in original containers.
- ▶ Keep containers securely sealed.
- ▶ Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- ▶ Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- For cyanoacrylates:
 - ▶ Avoid contact with acids, bases, amines.
 - ▶ Avoid contact with clothes, fabric, rags (especially cotton and wool) rubber or paper; contact may cause polymerisation.
 - ▶ Cyanoacrylate adhesives undergo anionic polymerization in the presence of a weak base, such as water, and are stabilized through the addition of a weak acid. The stabiliser is usually in the form of a weak acidic gas such as SO₂, NO, or BF₃. An essential function of the stabiliser is to prevent polymerisation in the container, which is usually made of polyethylene. If too little stabiliser is added, the product will be prone to premature polymerization and if too much is added it will be less active and function less effectively as an adhesive.
 - ▶ When the adhesive contacts a slightly alkaline surface, trace amounts of adsorbed water or hydroxide ions (OH⁻) that are present on the substrate's surface neutralise the acidic stabilizer in the adhesive, resulting in rapid polymerisation.
 - ▶ Unmodified cyanoacrylate adhesives do not polymerise readily on acidic surfaces such as wood or dichromated metals.
 - ▶ Cyanoacrylate adhesives (or super-glues) do not wet or adhere well to polyolefins. The surface tension of the adhesive is much higher than that of the substrate. However, polyolefins can be primed for adhesion with cyanoacrylates by certain chemical compounds normally considered to be activators for cyanoacrylate polymerisation.
 - ▶ Free radical stabilisers such as hydroquinone are added to improve storage stability
 - ▶ Store below 38 deg. C.
 - ▶ Segregate from alcohol, water.
 - ▶ **NOTE:** May develop pressure in containers; open carefully. Vent periodically.

PACKAGE MATERIAL INCOMPATIBILITIES

Continued...

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION**Control parameters****OCCUPATIONAL EXPOSURE LIMITS (OEL)****INGREDIENT DATA**

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hydroquinone	Hydroquinone	2 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	TEEL-0	TEEL-1	TEEL-2	TEEL-3
Locite 403 #815-7356, 815-7359	Not Available	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
methoxyethyl cyanoacrylate	Not Available	Not Available
bis(3-ethyl-5-methyl-4-maleimidephenyl)methane	Not Available	Not Available
2,2'-methylenebis(6-tert-butyl-4-methylphenol)	Not Available	Not Available
hydroquinone	Unknown mg/m3 / Unknown ppm	50 mg/m3

Exposure controls

Appropriate engineering controls	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:										
	Process controls which involve changing the way a job activity or process is done to reduce the risk.										
	Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.										
	Employers may need to use multiple types of controls to prevent employee overexposure.										
	Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.										
	An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.										
<table border="1"> <thead> <tr> <th>Type of Contaminant:</th> <th>Air Speed:</th> </tr> </thead> <tbody> <tr> <td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td> <td>0.25-0.5 m/s (50-100 f/min.)</td> </tr> <tr> <td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td> <td>0.5-1 m/s (100-200 f/min.)</td> </tr> <tr> <td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td> <td>1-2.5 m/s (200-500 f/min.)</td> </tr> <tr> <td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td> <td>2.5-10 m/s (500-2000 f/min.)</td> </tr> </tbody> </table>		Type of Contaminant:	Air Speed:	solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)	direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Type of Contaminant:	Air Speed:										
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)										
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)										
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)										
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)										

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection	
Eye and face protection	<ul style="list-style-type: none"> ► Safety glasses with side shields. ► Chemical goggles. ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed

Continued...

	<ul style="list-style-type: none"> at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] 						
Skin protection	<p>See Hand protection below</p> <p>NOTE:</p> <ul style="list-style-type: none"> The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. <p>The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.</p> <p>The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.</p> <p>Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:</p> <ul style="list-style-type: none"> frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity <p>Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).</p> <ul style="list-style-type: none"> When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. <p>Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.</p> <p>General warning: Do NOT use latex gloves! Use only recommended gloves - using the wrong gloves may increase the risk:</p>						
Hands/feet protection	<table border="1"> <tr> <td>Exposure condition Short time use; (few minutes less than 0.5 hour) Little physical stress</td><td>Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm) Excellent tactility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weight acrylic monomers</td></tr> <tr> <td>Exposure condition Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.)</td><td>Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactility ("feel"), powder-free Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour</td></tr> <tr> <td>Exposure condition Long time Cleaning operations</td><td>Nitrile rubber, NRL (latex) free; >0.56 mm low tactility ("feel"), powder free High price Gives adequate protection for most acrylates in combination with commonly used solvents up to 8 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions.</td></tr> </table>	Exposure condition Short time use; (few minutes less than 0.5 hour) Little physical stress	Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm) Excellent tactility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weight acrylic monomers	Exposure condition Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.)	Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactility ("feel"), powder-free Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour	Exposure condition Long time Cleaning operations	Nitrile rubber, NRL (latex) free; >0.56 mm low tactility ("feel"), powder free High price Gives adequate protection for most acrylates in combination with commonly used solvents up to 8 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions.
Exposure condition Short time use; (few minutes less than 0.5 hour) Little physical stress	Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm) Excellent tactility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weight acrylic monomers						
Exposure condition Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.)	Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactility ("feel"), powder-free Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour						
Exposure condition Long time Cleaning operations	Nitrile rubber, NRL (latex) free; >0.56 mm low tactility ("feel"), powder free High price Gives adequate protection for most acrylates in combination with commonly used solvents up to 8 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions.						
	<p>Where none of this gloves ensure safe handling (for example in long term handling of acrylates containing high levels of acetates and/ or ketones, use laminated multilayer gloves.</p> <p>Guide to the Classification and Labelling of UV/EB Acrylates Third edition, 231 October 2007 - Cefic</p> <ul style="list-style-type: none"> Polyethylene gloves <p>Avoid contact with moisture.</p>						
Body protection	<p>See Other protection below</p>						
Other protection	<ul style="list-style-type: none"> Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. 						
Thermal hazards	Not Available						

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the **computer-generated** selection:

Loctite 403 #815-7356, 815-7359

Material	CPI
NATURAL RUBBER	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
PVC	A

* CPI - Chemwatch Performance Index

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A (All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), R3 = Acid gas or hydrogen cyanide(HCN), F = Sulfur dioxide(SO2), G =

Continued...

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES**Information on basic physical and chemical properties**

Appearance	Clear colourless liquid; reacts with water.		
Physical state	Liquid	Relative density (Water = 1)	1.1 @ 20 deg.C
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	149 (initial)	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	80 (TCC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	<3 (VOC)
Vapour pressure (kPa)	<0.03	Gas group	Not Available
Solubility in water (g/L)	Reacts	pH as a solution(1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	► Unstable in the presence of incompatible materials. ► Product is considered stable. ► Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION**Information on toxicological effects**

Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Cyanoacrylate vapours are irritating to the upper respiratory tract. In very dry atmospheres (below 50% relative humidity), vapour will irritate the eyes and respiratory system. High vapour concentrations may cause pneumonitis or other respiratory complications including chemical bronchitis. When relative humidity is adjusted above 55% by use of suitable humidifiers there should be little or no irritant effects. Such vapours produce no acute or chronic effects in normal industrial exposures with appropriate industrial hygiene controls.
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Uncured cyanoacrylates are difficult to swallow as saliva cures the surface of the adhesive with negligible bonding. The cured material is considered to be non-hazardous.

	<p>Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.</p> <p>The material may accentuate any pre-existing dermatitis condition</p>
Skin Contact	<p>The material will bond human tissues within seconds. A large drop undergoing curing on the skin may cause thermal burns. No permanent skin damage is known to occur from a single dermal exposure although a small proportion of individuals show sensitisation and allergic skin reactions following repeated and prolonged exposure. Monomeric homologues of the n-alkyl cyanoacrylates (from methyl to octyl) undergo an exothermic reaction on polymerisation. The heat of polymerisation and the release of toxic metabolites upon degradation (thought to be formaldehyde and cyanoacetate) probably account for death or damage to the cells of tissues following exposure. Irritant dermatitis may occur following exposure to monomer vapours at low relative humidity. When the humidity is raised above 55%, skin complaints generally cease.</p> <p>Open cuts, abraded or irritated skin should not be exposed to this material</p> <p>Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.</p>
Eye	<p>Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.</p> <p>Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.</p> <p>Vapour exposure to 40-60 ppm cyanoacrylate is objectionable producing lacrimation, rhinorrhoea and blurred vision. The material is capable of gluing the eyelids together. Free moisture on the eyeball usually cures the surface of the adhesive with negligible bonding. If the eyeballs or lids are bonded, the eye will become mobile after 1-2 days without permanent damage. Weeping and double vision may occur during this time. Although cyanoacrylates do not bond to the eyeball the cured material may scratch the cornea.</p>
Chronic	<p>Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.</p> <p>Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.</p> <p>Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population.</p> <p>Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.</p> <p>There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.</p> <p>Dermatitis may result from prolonged exposures. On repeated and prolonged exposure by skin contact or inhalation, a small proportion of individuals develop allergic sensitivities.</p>

Loctite 403 #815-7356, 815-7359	TOXICITY	IRRITATION
	Not Available	Not Available
methoxyethyl cyanoacrylate	TOXICITY	IRRITATION
	Oral (rat) LD50: >5000 mg/kg *	*[Henkel]
	Not Available	Not Available
bis(3-ethyl-5-methyl-4-maleimidephenyl)methane	TOXICITY	IRRITATION
	Not Available	Not Available
2,2'-methylenebis(6-tert-butyl-4-methylphenol)	TOXICITY	IRRITATION
	Dermal (rat) LD50: >10000 mg/kg *	* [Van Waters Rogers]
	Oral (mouse) LD50: 11000 mg/kg	Eye (rabbit): 100 mg/24h - mod
	Oral (rat) LD50: >10000 mg/kg *	
	Not Available	Not Available
hydroquinone	TOXICITY	IRRITATION
	Oral (rat) LD50: 320 mg/kg	Skin (human): 2% - mild
		Skin (human): 5% - SEVERE
	Not Available	Not Available

* Value obtained from manufacturer's msds
unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances

Loctite 403 #815-7356, 815-7359	<p>Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.</p> <p>For methyl cyanoacrylate (MCA) and ethyl cyanoacrylate (ECA)</p> <p>From the data available, the key toxicological features of MCA and ECA seem to be as a result of local activity at the site of contact. Human data</p>
--	---

Continued...

indicate that liquid MCA and ECA are not skin irritants as a result of single exposure. However, there are indications from human studies that repeated exposure can result in skin irritant effects. Eye irritancy has been observed in humans exposed to liquid cyanoacrylate adhesives. No conclusions can be drawn with respect to the skin sensitisation potential of MCA; the only study available did not provide any meaningful information. For ECA, there are a number of reports, but in only two individuals are the data consistent with a skin sensitisation response. It should be borne in mind that there are likely to be considerable difficulties in performing tests on a substance that polymerises rapidly on the skin; although speculative, it seems plausible that the removal of hardened adhesive could contribute to some of the skin reactions observed. The main health effects that have been observed to date in relation to occupational exposure to MCA and ECA are eye and respiratory tract irritation. A number of studies, both case reports and workplace surveys, have been reported in which occurrences of asthma have also been linked to exposure to ECA and/or MCA. The available information does not allow conclusions to be drawn regarding whether asthma was induced by an allergenic or an irritation mechanism. In many of the bronchial challenge tests, it seems that the challenge concentrations involved were directly irritant. In a human experimental study using MCA vapour, no sensory irritant effects were reported at 1 ppm (4.5 mg/m³) (a human no-observed-adverse-effect level [NOAEL]); throat and nose "irritation" were subjectively reported from 2 to 20 ppm (9.1 to 91 mg/m³) or more. Eye irritation and "burning" were reported from 4 to 15 ppm (18 to 68 mg/m³) or more. At concentrations above 20 ppm (91 mg/m³), lacrimation and rhinorrhoea were reported (except in one individual for whom rhinorrhoea was reported at around 7 ppm [32 mg/m³]), and these were more pronounced at 50-60 ppm (227-272 mg/m³) (a level at which burning pain in the eyes was also reported). In the absence of similar quantitative data for ECA, it would seem reasonable to assume that a similar dose-response relationship exists for ECA as for MCA, given their close structural similarities, similar physicochemical properties, and, for most end-points, similar toxicological profiles.

Genotoxicity: There is no evidence of mutagenic response in several test assays

Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example

Monoalkyl or monoarylesters of acrylic acids should be classified as R36/37/38 and R51/53

Monoalkyl or monoaryl esters of methacrylic acid should be classified as R36/37/38

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For methyl cyanoacrylate (MCA) and ethyl cyanoacrylate (ECA)

From the data available, the key toxicological features of MCA and ECA seem to be as a result of local activity at the site of contact. Human data indicate that liquid MCA and ECA are not skin irritants as a result of single exposure. However, there are indications from human studies that repeated exposure can result in skin irritant effects. Eye irritancy has been observed in humans exposed to liquid cyanoacrylate adhesives. No conclusions can be drawn with respect to the skin sensitisation potential of MCA; the only study available did not provide any meaningful information. For ECA, there are a number of reports, but in only two individuals are the data consistent with a skin sensitisation response. It should be borne in mind that there are likely to be considerable difficulties in performing tests on a substance that polymerises rapidly on the skin; although speculative, it seems plausible that the removal of hardened adhesive could contribute to some of the skin reactions observed.

The main health effects that have been observed to date in relation to occupational exposure to MCA and ECA are eye and respiratory tract irritation. A number of studies, both case reports and workplace surveys, have been reported in which occurrences of asthma have also been linked to exposure to ECA and/or MCA. The available information does not allow conclusions to be drawn regarding whether asthma was induced by an allergenic or an irritation mechanism. In many of the bronchial challenge tests, it seems that the challenge concentrations involved were directly irritant. In a human experimental study using MCA vapour, no sensory irritant effects were reported at 1 ppm (4.5 mg/m³) (a human no-observed-adverse-effect level [NOAEL]); throat and nose "irritation" were subjectively reported from 2 to 20 ppm (9.1 to 91 mg/m³) or more. Eye irritation and "burning" were reported from 4 to 15 ppm (18 to 68 mg/m³) or more. At concentrations above 20 ppm (91 mg/m³), lacrimation and rhinorrhoea were reported (except in one individual for whom rhinorrhoea was reported at around 7 ppm [32 mg/m³]), and these were more pronounced at 50-60 ppm (227-272 mg/m³) (a level at which burning pain in the eyes was also reported). In the absence of similar quantitative data for ECA, it would seem reasonable to assume that a similar dose-response relationship exists for ECA as for MCA, given their close structural similarities, similar physicochemical properties, and, for most end-points, similar toxicological profiles.

Genotoxicity: There is no evidence of mutagenic response in several test assays

Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example

Monoalkyl or monoarylesters of acrylic acids should be classified as R36/37/38 and R51/53

Monoalkyl or monoaryl esters of methacrylic acid should be classified as R36/37/38

Based on the available oncogenicity data and without a better understanding of the carcinogenic mechanism the Health and Environmental Review Division (HERD), Office of Toxic Substances (OTS), of the US EPA previously concluded that all chemicals that contain the acrylate or methacrylate moiety (CH₂-CHCOO or CH₂-C(CH₃)COO) should be considered to be a carcinogenic hazard unless shown otherwise by adequate testing. This position has now been revised and acrylates and methacrylates are no longer *de facto* carcinogens.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible

METHOXYETHYL CYANOACRYLATE

BIS(3-ETHYL-5-METHYL-4-MALEIMIDEPHENYL)METHANE

Locite 403 #815-7356, 815-7359

after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. for 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (syn 6,6'-di-tert-butyl-2,2'-methylenediphenol)

Acute toxicity of this substance is low; oral LD50 values in animals is greater than 5,000 mg/kg. The substance is not irritating to skin and moderately irritating to eyes. There is no skin sensitisation in humans.

Repeat dose toxicity: In repeated dose toxicity studies, including a rat 28-day repeated dose toxicity test [Japan TG], a preliminary reproduction toxicity screening test [OECD TG 421] and a rat 18 month chronic toxicity test, effects on sperm in the cauda epididymis and histopathological changes in the testis, such as degeneration of step 19 spermatids and vacuolation of Sertoli cells, were observed in the 42.3 mg/kg and higher dose groups. Based on the above results, the NOAEL for repeated dose toxicity is considered to be 12.5 mg/kg/day.

Reproductive and developmental toxicity: In a reproductive/developmental toxicity study [OECD TG 421], the effects on reproductive parameters, such as decrease in number of corpora lutea, implantation scars and pups born, were observed in the 200 mg/kg/day and higher dose groups but not 50 mg/kg/day. Therefore, NOAEL for female reproductive toxicity is considered to be 50 mg/kg/day. However, NOAEL for male reproductive toxicity is 12.5 mg/kg/day because of the testicular toxicity as described above.

As for the developmental toxicity, low body weight gain of offspring and increased number of stillbirths were observed at 800 but not 200 mg/kg/day. The teratogenic effects were not observed in a study with rats up to 375 mg/kg/day. Based on these findings, the NOAEL for developmental toxicity is considered to be 200 mg/kg/day.

Genotoxicity: Three bacterial reverse mutation tests and mammalian chromosomal tests with and without metabolic activation show negative results [OECD TG 471, 472, 473]. No tumors were observed in a 18-month chronic feeding study with rats up to 1,000 ppm, however this study is not qualified to be regarded as a carcinogenicity study. Therefore, no conclusion could be reached on the carcinogenicity.

For hindered phenols:

Available data shows that acute toxicity of these substances is low.

Mutagenicity. Data from bacterial reverse mutation assays and *in vitro* and *in vivo* chromosome aberration studies were reviewed. All assays, with and without metabolic activation, were negative. The weight of evidence for mutagenic potential for this category indicates these substances are not mutagenic.

In Vitro Chromosome Aberration Studies. *In vitro* chromosome aberration studies are available for several members. All except 2,6-di-tert-butyl-p-cresol were negative

In Vivo Chromosome Aberration Studies. *In vivo* studies evaluating chromosome damage are available for six of the hindered phenols. All *in vivo* evaluations were negative.

Repeated Dose Toxicity. Repeated dose toxicity data of approximately three months (90-day, 12- and 13-week) are available for some of the substances in this group. The liver was the target organ in rats for almost all of the substances with subchronic toxicity data in that species. Other target organs included thyroid and kidney and mesenteric lymph nodes. NOAELs in rats ranged from 100 ppm (approximately 5 mg/kg/day) to 10,000 ppm (500 mg/kg/day)

Carcinogenicity: Data is available for 2,6-di-tert-butyl-p-cresol (128-37-0); and 4,4'-thiobis-6-(t-butyl-m-cresol) (96-69-5). Liver adenomas were reported for 2,6-di-tert-butyl-p-cresol (128-37-0) and a NOAEL was established for the study at 25 mg/kg/day. 4,4'-Thiobis-6-(t-butyl-m-cresol) (96-69-5) was not carcinogenic in rats or mice, but the kidney was identified as a target organ in female rats

Liver changes, changes in blood cell count, pigmented/ nucleated red blood cells, changes in testicular weight recorded.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

Hydroquinone is rapidly and extensively absorbed from the gut and lungs of animals. Absorption via the skin is slow but may be accelerated with vehicles such as alcohols. Hydroquinone distributes rapidly and widely among tissues. It is metabolized to 1,4-benzoquinone and other oxidized products, and is detoxified by conjugation to monoglucuronide, monosulfate, and mercapturic derivatives. The excretion of hydroquinone and its metabolites is rapid, and occurs primarily via the urine.

Hydroquinone exhibits moderate acute oral toxicity for animals. Limited data suggest that powdered hydroquinone causes transient eye irritation and corneal opacity in dogs and guinea-pigs; in rabbits powdered hydroquinone induced slight irritation of the eye. Hydroquinone may be a skin sensitiser in animals. The ability to induce sensitization has been found to vary from "weak" to "strong" depending on the test procedure and vehicle used.

Repeated oral dosing caused tremors and reduced activity ($>=64$ mg/kg), reduced body weight gain ($>=200$ mg/kg), convulsions ($>=400$ mg/kg), and nephropathy in F-344 rats ($>=100$ mg/kg). No adverse effects on the kidneys were reported in Sprague-Dawley rats treated for the same length of time with the same dose levels. Effects in mice include tremors and convulsions (400 mg/kg), increased liver weight ($>=25$ mg/kg), and irritation of the forestomach ($>=200$ mg/kg). A functional observational battery and neuropathological examinations of rats failed to give any evidence of persistent or structural neurotoxicity after repeated dosing for 90 days. A NOEL for all effects was 20 mg/kg per day.

Fourteen days of repeated dermal dosing caused reduced body weights of male rats at the 3840 mg/kg dose level (6% relative to the controls), but the body weights of female rats at this dose level and of mice at 4800 mg/kg were comparable to controls. There were no clinical signs of toxicity in either species. Prolonged dermal dosing over 13 weeks with 2.0, 3.5, or 5.0% hydroquinone in an oil-in-water emulsion cream resulted in minimal to minor dermal irritation, but no overt toxicity. No adverse effects or compound-related effects occurred in organ weight, clinical pathology, or histopathology. A NOEL was not determined because of the dermal irritation in all treated groups, but the NOAEL was the highest dose level of 5% hydroquinone (74 mg/kg in males and 110 mg/kg in females) based on the lack of systemic effects.

Reproductive effects: A two-generation reproduction study was conducted in rats. The NOAEL for reproductive effects through two generations was 150 mg/kg per day (the highest dose tested).

Genetic toxicity: Numerous genotoxicity studies of hydroquinone have been conducted. Hydroquinone is not mutagenic in the *Salmonella*/microsome test. Other data indicate that hydroquinone induces structural chromosome aberrations and c-mitotic effects *in vivo* in mouse bone-marrow cells following ip injection. *In vitro* studies with various cell lines showed that hydroquinone was capable of inducing gene mutations, structural chromosome aberrations, sister-chromatid exchange, and DNA damage. Hydroquinone produces adducts with DNA *in vitro*, but recent *in vivo* studies were unable to produce DNA adducts. While several experiments with hydroquinone have shown mutagenic effects; the relevance of these results to human risk is uncertain. The majority of positive mutagenicity studies use routes of exposure (parenteral or *in vitro*) which are not relevant to human exposures. A dominant lethal assay in rats was negative.

HYDROQUINONE

Continued...

Carcinogenicity: Sprague-Dawley rats treated for two-years with hydroquinone in the diet showed "atrophy of the liver cord cells, lymphoid tissue of the spleen, adipose tissue, and striated muscle together with superficial ulceration and hemorrhage of the stomach mucosa" but no carcinogenesis. Two-year studies performed by the NTP reported that hydroquinone exposure was associated with some evidence of carcinogenicity in F-344 rats and B6C3F1 mice. In the NTP study, renal tubular cell adenomas occurred in male rats and mononuclear cell leukemia in female rats, and hepatocellular neoplasms, mainly adenomas, in female mice. The NTP concluded that these data indicated "some evidence of carcinogenic activity" in male and female rats and in female mice. In another study using F-344 rats and B6C3F1 mice, renal tubular cell adenomas were also noted in male rats; hepatocellular adenomas and renal cell hyperplasia were noted in male mice; and hyperplasia of the forestomach was noted in both male and female mice fed 0.8% hydroquinone diets for two years. The evidence provided by cancer bioassay studies is considered limited A U.S.E.P.A. review of the NTP bioassay found the bioassay results provide limited evidence of carcinogenicity in animals.

Mechanisms: Covalent binding and oxidative stress are mechanisms postulated to be associated with hydroquinone-induced toxicity. Oxidised hydroquinone metabolites may covalently bind cellular macromolecules or alkylate low molecular weight nucleophiles (e.g., glutathione (GSH)) resulting in enzyme inhibition, alterations in nucleic acids and oxidative stress; however, redox cycling is not likely to contribute significantly to oxidative stress. The reaction of hydroquinone metabolites with GSH results in the formation of conjugates which can be further processed to cysteine conjugates which are postulated to cause kidney toxicity. Cell proliferation associated nephrotoxicity in a sensitive strain and species of animal (male F344 rat) has been postulated to be involved in the production of renal tumors in rats.

Interaction with Phenols:

A number of studies reporting interactive effects between hydroquinone and other phenolic compounds. Coadministration of hydroquinone and phenol (75 mg/kg), when given by intraperitoneal injection twice per day, produced a synergistic decrease in bone marrow cellularity in B6C3F1 mice that was similar to that induced by benzene. This compound treatment was significantly more myelotoxic than that observed when either hydroquinone or phenol was administered separately. Associated *in vitro* studies suggested that this interactive effect was due to a phenol-induced stimulation of the myeloperoxidase-mediated conversion of hydroquinone to 1,4-benzoquinone in the bone marrow. Subsequent studies have indicated that interactions between hydroquinone and other phenolic compounds can result in a variety of cytotoxic, immunotoxic and genotoxic effects.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Acute Toxicity	✓	Carcinogenicity	∅
Skin Irritation/Corrosion	✓	Reproductivity	∅
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	∅	STOT - Repeated Exposure	∅
Mutagenicity	∅	Aspiration Hazard	∅

Legend: ✓ – Data required to make classification available
 ✗ – Data available but does not fill the criteria for classification
 ∅ – Data Not Available to make classification

CMR STATUS

Not Applicable

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
Not Available	Not Available	Not Available

Bioaccumulative potential

Ingredient	Bioaccumulation
Not Available	Not Available

Mobility in soil

Ingredient	Mobility
Not Available	Not Available

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal	<ul style="list-style-type: none"> ▶ Containers may still present a chemical hazard/ danger when empty. ▶ Return to supplier for reuse/ recycling if possible. <p>Otherwise:</p> <ul style="list-style-type: none"> ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. ▶ Where possible retain label warnings and MSDS and observe all notices pertaining to the product. <p>Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.</p> <p>A Hierarchy of Controls seems to be common - the user should investigate:</p> <ul style="list-style-type: none"> ▶ Reduction

Continued...

- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- **DO NOT allow wash water from cleaning or process equipment to enter drains.**
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO

HAZCHEM

2Z

Land transport (ADG)

UN number	3334	
Packing group	Not Applicable	
UN proper shipping name	AVIATION REGULATED LIQUID, N.O.S. Not subject to this Code (see SP 106) (contains methoxyethyl cyanoacrylate)	
Environmental hazard	No relevant data	
Transport hazard class(es)	Class	9
	Subrisk	Not Applicable
Special precautions for user	Special provisions	106 274 276
	Limited quantity	0

Air transport (ICAO-IATA / DGR)

UN number	3334	
Packing group	III	
UN proper shipping name	Aviation regulated liquid, n.o.s. * † (contains methoxyethyl cyanoacrylate)	
Environmental hazard	No relevant data	
Transport hazard class(es)	ICAO/IATA Class	9
	ICAO / IATA Subrisk	Not Applicable
	ERG Code	9A
Special precautions for user	Special provisions	A27
	Cargo Only Packing Instructions	964
	Cargo Only Maximum Qty / Pack	450L
	Passenger and Cargo Packing Instructions	964
	Passenger and Cargo Maximum Qty / Pack	450L
	Passenger and Cargo Limited Quantity Packing Instructions	Y964
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	3334	
Packing group	Not Applicable	
UN proper shipping name	AVIATION REGULATED LIQUID, N.O.S. (contains methoxyethyl cyanoacrylate)	
Environmental hazard	No relevant data	
Transport hazard class(es)	IMDG Class	9
	IMDG Subrisk	Not Applicable

Special precautions for user	EMS Number	Not Applicable
	Special provisions	960
	Limited Quantities	Not Applicable

Inland waterways transport (ADNR / River Rhine): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

methoxyethyl cyanoacrylate(27816-23-5) is found on the following regulatory lists	"Australia Exposure Standards", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
bis(3-ethyl-5-methyl-4-maleimidephenyl)methane(105391-33-1) is found on the following regulatory lists	"International Air Transport Association (IATA) Dangerous Goods Regulations"
2,2'-methylenebis(6-tert-butyl-4-methylphenol)(119-47-1) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)", "International Air Transport Association (IATA) Dangerous Goods Regulations"
hydroquinone(123-31-9) is found on the following regulatory lists	"Australia Exposure Standards", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia Hazardous Substances Information System - Consolidated Lists"

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.