## Wiring Manual

## Automation and <br> Power Distribution



## Mozlier ( ©

All brand and product names are trade marks or registered trademarks of the owner concerned
$1^{\text {st }}$ edition 2000, 12/99
$2^{\text {nd }}$ updated edition 2006, publication date 02/05
© Moeller GmbH, Bonn
Editor: Heidrun Riege
Translators: Uli Wright, Nigel Green, Dominik Kreuzer, David Long, Terence Osborn

All the circuits are designed according to our best expertise and have been carefully tested. They serve as practical examples. Moeller GmbH refuses to accept liability for any errors.

All rights reserved, including those of the translation. No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without the written permission of Moeller GmbH, Bonn, Germany.

Subject to alterations without notice.

Printed on bleached cellulose, 100 \% free from chlorine and acid.
chapter
Automation Systems ..... 1
Electronic motor starters and drives ..... 2
Command and signalling devices ..... 3
Rotary Switches ..... 4
Contactors and Relays ..... 5
Motor-protective circuit-breaker ..... 6
Circuit-breakers ..... 7
All about Motors ..... 8
Specifications, Formulae, Tables ..... 9
Alphabetical index ..... 10

## Page

| Programmable logic controllers | $1-2$ |
| :--- | ---: |
| PLCs | $1-4$ |
| Modular I/O system XI/ON | $1-6$ |
| Networkable motor starters xStart-XS1 | $1-8$ |
| Networking PS40 series | $1-10$ |
| Networking xSystem | $1-11$ |
| Networking display and operating devices | $1-12$ |
| Networking embedded HMI-PLCs | $1-13$ |
| Engineering XC100/XC200 | $1-14$ |
| Engineering PS4 | $1-16$ |
| Engineering EM4 and LE4 | $1-19$ |

## Automation Systems <br> Programmable Logic Controllers, PLCs

## Programmable logic controllers

The programmable (logic) controller (PLC) is an electronic device for machine or process control. The PLC receives signals via inputs, processes them according to the instructions of a program, and transfers signals to the outputs.
The program is created using programming software which is able to link inputs and outputs in any required sequence, to measure time, or even carry out arithmetic operations.

The most important specifications of a PLC are its maximum number of inputs/outputs, its memory size and its processing speed.
The PS40 Series and the new xSystem are the two automation systems offered by Moeller. These are described below.

## PS40 Series

## Compact PLCs

The PS4 compact PLCs have the following system characteristics:

- Standard programming
- Remote and local expansion options
- Integrated fieldbus interface (Suconet)
- Plug-in screw terminals
- Small, compact in size

The controllers in this range are very versatile with a wide range of features, such as integrated setpoint potentiometers, analog inputs/outputs or memory expansion modules (from PS4-150).

## Modular PLCs

The PS416 modular PLC has the following key features:

- High processing speed
- Compact size
- Wide range of networking options
- Extensive memory


## Sucosoft programming software

 Sucosoft is the name of the software for programming the PS40 PLCs.Program examples are provided in the PLC Beginners' Guide "Automation with Programmable Logic Controllers" (FB2700-017).

Moellers' entire PLC range is described in the Main Catalogue for Automation Systems and Drives, as well as in the Product overview for automation.

## Automation Systems

Programmable Logic Controllers, PLCs


PS4/EM4:
Compact PLC or expansion module



PS416:
Modular PLC

## Automation Systems

xSystem

## xSystem

xSystem is Moeller's latest modular automation system. It can be configured for the individual requirements of small or large applications. xSystem reduces the hardware and software interfaces required. The system features IT functions that are already integrated.

The XSoft software combines programming, configuring, testing, commissioning and visualization functions in a single tool designed for the entire xSystem product range.


## Automation Systems

## xSystem

## System components

- Modular PLCs
- XC100 88

8 DI, 6 DO, CANopen, RS 232, 4 interrupt inputs
Slot for multimedia memory card, 64 - 256 KByte program/data memory, 4/8 KByte for retentive data, $0.5 \mathrm{~ms} / 1000$ instructions

- XC200 (7)

8 DI, 6 DO, CANopen, RS 232, Ethernet, 2 counters, 2 interrupt inputs, WEB/OPC server, USB, locally expandable with XI/OC I/O modules, 256 - 512 KByte program/data memory, $0.05 \mathrm{~ms} / 1000$ instructions

- Text display PLCs
- Modular text display PLCs (1) Consisting of XC100, up to 3 XI/OC modules and LCD text display with $4 \times 20$ or $8 \times 40$ lines/characters
- Compact text display PLC (2)

Minimum mounting dimensions and high interface integration density (10 DI, 8 DO, 8 DIO, 2 AI, 2 AO, 2 counter inputs, 2 interrupt inputs, 1 encoder input)

- XI/OC input/output modules (3)
- Can be fitted to the XC100/200 (max. 15 modules)
- Plug-in terminals with screw or springloaded terminal
- XSoft
- Programming, configuring, testing/commissioning in a single tool

Refer to the following product overview and manuals for further information:

- Automation product overview (AWB2700-7546)
- XC100 hardware and engineering (AWB2724-1453)
- XC200 hardware and engineering (AWB2724-1491)
- XI/OC hardware and engineering (AWB2725-1452)
- XV100 hardware and engineering (AWB2726-1461)
- xStart-XS1 hardware and engineering (AWB2700-1426)
- XSoft PLC programming (AWB2700-1437)
- Function blocks for XSoft (AWB2786-1456); including data handling function blocks for text display PLCs

The latest edition is available from
http://www.moeller.net/support: Enter the numbers shown in brackets, e.g. "AWB2725-1452G", as a search term.

## Automation Systems

Modular I/O System XI/ON

## XI/ON - the concept

XI/ON is a modular I/O system for use in industrial automation applications. It links sensors and actuators on the field level with the higher-level controller. Fieldbus protocols PROFIBUS-DP, CANopen and DeviceNet are supported.
XI/ON offers modules for virtually every application:

- Digital input and output modules
- Analog input and output modules
- Technology modules

A XI/ON station consists of a gateway, power supply modules and I/O modules.

A complete $\mathrm{XI} / \mathrm{ON}$ structure counts as a single bus station in any fieldbus structure and therefore only requires one bus address. The individual XI/ON peripheral modules are therefore independent of the higher-level fieldbus.
The I/O modules consist of a combination of a base module designed as a terminal block, and a plug-in electronics module.
The XI/ON peripheral modules are linked to the fieldbus via the XI/ON gateway. This is used for the communication between the XI/ON station and the other fieldbus stations.


## Automation Systems <br> Modular I/O System XI/ON

## Flexibility

Each XI/ON station can be adapted exactly for the required number of channels since the modules are available in different levels of granularity.
For example, digital input modules with 2, 4, 16 or 32 channels are available in slice or block design.
A XI/ON station can contain modules in any combination. This enables the system to be adapted to virtually any application in industrial automation.

## Compact design

The narrow mounting width of the XI/ON modules (gateway 50.4 mm ; slice 12.6 mm , block 100.8 mm ) and the low mounting height make the system ideal for use in applications where space is at a premium.

## Simple handling

Apart from the gateway, all XI/ON modules consist of a base module and an electronics module.
The gateway and the base modules can be snap-fitted on mounting rails. The electronics
modules can then be plugged simply onto the assigned base module.
The base modules are available as terminal blocks. They are wired either with spring-loaded or screw terminals. The electronic modules can be fitted or removed during commissioning or for maintenance without disturbing the wiring. A design coding feature ensures that the electronic modules can only be fitted at the correct locations provided.

## I/Oassistant diagnostics and engineering software

The I/Oassistant provides support during the entire planning and implementation phase of an I/O system. It provides help for engineering the stations, the configuration and for setting the parameters. The software is used for commissioning systems and carrying out tests and diagnostics on the stations.
The entire documentation for the station, including a parts list for ordering, can be generated after the engineering phase.


## Automation Systems

 Networkable Motor Starters xStart-XS1
## xStart-XS1

xStart-XS1 is the modular, networkable version of the tried and tested motor starter from Moeller. It connects the motors with the $\mathrm{XI} / \mathrm{ON}$ system and thus ensures flexible availability between systems, irrespective of the fieldbus in use.
xStart-XS1 offers DOL and reversing starters in different ratings and available with or without a trip-indicating auxiliary contact (AGM).

(1) XI/ON gateway
(2) Supply module
(3) $\mathrm{XI} / \mathrm{ON} I / O$ modules
(4) $x$ Start-XS1 DOL starter module
(5) XStart-XS1 reversing starter module
The XStart-XS1 modules consist of a base module and a power module that contains the tried and tested PKZM0 motor-protective circuit-breaker and one or two DILEM contactors. They enable the connection of assigned motor ratings up to 4.0 kW at a rated operational voltage $U_{\mathrm{e}}$ of 400 VAC .

## Mounting

The complete module is mounted by simply snap-fitting it onto two top-hat rails. You can also simply mount the base module and add the power section at a later time. Mounting and removal are carried out without any tools.

## Flexibility

You can adapt xStart-XS1 exactly to the requirements of the system used.
xStart-XS1 can be used at any position on a XI/ON station so that you can organise your station conveniently into system areas.
The motor can be disconnected at the machine by using the rotary handle.

## Automation Systems

## Networkable Motor Starters XStart-XS1



Power supply accessories are available for reducing wiring costs. If several xStart-XS1 modules are mounted next to each other, the
power can be fed via a distribution system. This power distribution is available for an operating current of up to 63 A .

(1) Incoming terminal for three-phase commoning link
(2) Three-phase commoning link for up to 4 DOL starters without trip-indicating auxiliary contact AGM
(3) DOL starter without AGM trip-indicating auxiliary contact

Automation Systems Networking PS40 Series


## Automation Systems

Networking xSystem


Automation Systems
Networking Display and Operator Devices

Automation Systems Networking Embedded HMI-PLC


Note: The XVH- ... devices are also available with RS 232 or MPI interface.

## Automation Systems

Engineering XC100/XC200

## Device arrangement

Install the rack and the PLC horizontally in the control cabinet - as shown in the following figure.

(1) Clearance $>50 \mathrm{~mm}$
(2) Clearance $>75 \mathrm{~mm}$ from active elements
(3) Cable duct

## Terminal assignment

The terminals for the power supply and the local I/O have the following assignment:


Wiring example of power supply unit
The voltage terminal $0 \mathrm{VQ} / 24 \mathrm{VQ}$ is only used for the power supply of the local 8 inputs and 6 outputs, and is potentially isolated from the bus. The outputs 0 to 3 can be loaded with 500 mA and the outputs 4 and 5 with 1 A , each with a 100 \% duty factor (DF) and a simultaneity factor of 1 .
The wiring example shows the wiring with a separate power supply for the PLC and the IO terminals. If only one power supply is used, the following terminals must be connected:
24 V to 24 VQ and 0 V to 0 VQ .

## Automation Systems

Engineering XC100/XC200


## RS 232 serial interface

This interface is used by the XC100 to communicate with the PC. The physical connection is implemented via an RJ 45 interface. The interface is not isolated. The connector has the following assignment:

| Pin | Designation | Description |
| :---: | :---: | :---: |
| 4 | GND | Ground |
| 5 | TxD | Transmit Data |
| 7 | GND | Ground |
| 8 | RxD | Receive Data |

You can use the COM1 or COM2 interface on the PC.

You use the XT-SUB-D/RJ45 programming cable for the physical connection.

CANopen interface
Assignment of the 6-pole Combicon connector:

|  |  | Terminal | Signal |
| :---: | :---: | :---: | :---: |
|  |  | 6 | GND |
| 6 $\bullet$ $\square$ <br> 5 $\bullet$  <br> 4 $\bullet$  <br> 3 $\bullet$  <br> 2 $\bullet$  <br> 1 $\bullet$ $\square$ |  | 5 | CAN_L |
|  |  | 4 | CAN_H |
|  |  | 3 | GND |
|  |  | 2 | CAN_L |
|  |  | 1 | CAN_H |

Only use a cable that is permissible for CANopen with the following properties:

- Surge impedance 108 to $132 \Omega$
- Capacitance per unit length $<50 \mathrm{pF} / \mathrm{m}$


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 20 | 1000 | 0.75-0.80 | 16 |
| 125 | 500 | 0.50-0.60 | 40 |
| 250 | 250 | 0.50-0.60 | 40 |
| 500 | 100 | 0.34-0.60 | 60 |
| 1000 | 40 | 0.25-0.34 | 70 |

## Automation Systems

## Engineering PS4

## PS4-151-MM1 compact PLC

- Wiring for a 230 V AC supply circuit
- Relay contacts with different potentials: 230 V
- 24 V DC inputs from an external power supply unit, earthed operation AC and 24 V DC
 (EN 60204-1 and VDE 0100-725)


## Automation Systems

## Engineering PS4

## PS4-201-MM1 compact PLC

- Shared power supply for PLC and inputs/outputs
- Non-earthed operation with insulation monitoring
* For operation without insulation monitoring,
0 V must be linked with the PE potential in
* For operation without insulation monitoring
0 V must be linked with the PE potential in the control circuits.



## Automation Systems

## Engineering PS4

## PS4-341-MM1 compact PLC

- Shared power supply for PLC and inputs/outputs
- Non-earthed operation with insulation monitoring

* For operation without insulation
monitoring, 0 V must be linked with the PE
potential in the control circuits.


## Automation Systems

## Engineering EM4 and LE4

## EM4-201-DX2 expansion module and LE4-116-XD1 local expansion

- Inputs and outputs have a separate power supply
- Earthed operation

* Insulation monitoring must be provided where the control circuits are not earthed.

Notes

## Electronic motor starters and drives

|  | Page |
| :--- | ---: |
| General | $2-2$ |
| Basics of drives engineering | $2-7$ |
| Soft starters DS4 | $2-19$ |
| Soft starters DM4 | $2-22$ |
| Frequency inverters DF5, DV5, DF6 and DV6 | $2-26$ |
| Connection examples DS4 | $2-38$ |
| Connection examples DM4 | $2-54$ |
| Connection examples DF5, DV5 | $2-69$ |
| Connection examples DF6 | $2-77$ |
| Connection examples DV6 | $2-80$ |
| Rapid Link system | $2-86$ |

## Electronic motor starters and drives

General

## The complete power supply and control programme for motors

As the applications differ, so do the requirements made of the electric drives:

- In the simplest case, the motor is switched with an electromechanical contactor. Combinations consisting of motor protection and line protection are termed motor starter.
- If frequent and/or silent switching is required, contactless semiconductor contactors are used. In addition to conventional line, short-circuit and overload protection, superfast semiconductor fuses are required for type " 2 " coordination and may be needed for type "1" coordination.
- During DOL starting (star-delta, reversing starter or pole-switching), unwanted current and torque peaks occur. Soft starters eliminate these to ensure gentle starting and prevent an excessive burden on the power source.
- Where an infinitely adjustable speed or a torque adjustment is necessary, frequency inverters (U/f inverters, vector frequency inverters, servo) are used today.
As a general rule, the application determines the drive.



## Three-phase asynchronous motors

A drive task first requires a drive motor whose characteristics with regard to speed, torque and control options are in accord with the set task.

## Electronic motor starters and drives

General

The three-phase asynchronous motor is the world's most common electric motor. Its popularity is the result of a rugged, simple construction, high degrees of protection, standardized sizes and low cost.


Three-phase motors have typical starting characteristics, with tightening torque $M_{\mathrm{A}}$, pull-out torque $M_{\mathrm{K}}$ and rated-load torque $M_{\mathrm{N}}$.


The three-phase motor contains three phase windings that are offset from one another by $120 \%$ ( $p=$ number of pole pairs). To generate a rotating field in the motor, a voltage is applied to each phase in turn at a time delay of $120^{\circ}$.


The effect of induction produces the rotating field and a torque in the rotor winding. The motor speed is determined by the number of pole pairs and the frequency of the supply voltage. The direction of rotation can be reversed by swapping over two of the supply phases:
$n_{s}=\frac{f \times 60}{p}$
$n_{\mathrm{s}}=$ Revolutions per minute
$f=$ Frequency of voltage in Hz
$p=$ Number of pole pairs
Example: 4-pole motor (number of pole pairs $=2$ ), mains frequency $=50 \mathrm{~Hz}, \mathrm{n}=1500$ r.p.m. (synchronous speed, speed of rotating field) Because of the induction effect, the asynchronous motor's rotor can not reach the rotating field's synchronous speed even at idle. The difference between synchronous speed and rotor speed is termed slip.

Slip speed:
$S=\frac{n_{\mathrm{s}}-n}{n_{\mathrm{s}}}$
Speed of an asynchronous machine:
$n=\frac{f \times 60}{p}(1-s)$
The output power is as follows:
$P_{2}=\frac{M \times n}{9550} \quad \eta=\frac{P_{2}}{P_{2}}$
$P_{1}=U \times I \times \sqrt{3}-$ p.f.
$P_{2}=$ Shaft rating in kW
$M=$ Torque in Nm
$n=$ Speed in r.p.m.

## Electronic motor starters and drives

General

The motor's electrical and mechanical rating are recorded on its nameplate.

| O | Motor \& Co GmbH |  | 0 |
| :---: | :---: | :---: | :---: |
| Typ 160 |  |  |  |
| 3 ~ Mot. |  | 12345-88 |  |
| $\Delta$ Y 400/690 V |  | 29/17 | A |
|  | 15 kW | $\cos \varphi \quad 0,85$ |  |
|  | 1430 U/min | 50 Hz |  |
| Iso.-KI. F | IP 54 | t |  |
| $\bigcirc$ | IEC34-1/VDE 0530 |  | 0 |

Star connection

$U_{\mathrm{LN}}=\sqrt{3} \times U_{\mathrm{W}} \quad I_{\mathrm{LN}}=I_{\mathrm{W}}$

As a rule, three-phase asynchronous motors are connected to their power supply with six terminal bolts. There are basically two connection configurations: star and delta.


Delta connection
L3

$U_{\mathrm{LN}}=U_{\mathrm{W}} \quad I_{\mathrm{LN}}=\sqrt{3} \times I_{W}$


## Note:

In continuous operation, the mains voltage must be the same as the motor's rated voltage.

## Electronic motor starters and drives

General

## Starting and operating methods

The most important starting and operating
methods for three-phase asynchronous motors
include:

| DOL starting |
| :--- |
| (electromechanical) |

Star-delta circuit (electromechanical)


## Electronic motor starters and drives

General

Soft starter and semiconductor contactor (electronic)

Frequency inverter (electronic)


## Electronic motor starters and drives

Basics of drives engineering

## Power electronics devices

The power electronics devices provide infinitely variable adjustment of physical variables - such as speed or torque - to the application process. The power is drawn from the electrical mains, converted in the power electronics apparatus and fed to the consumer (i.e. the motor).

## Semiconductor contactors

Semiconductor contactor allow fast, silent switching of three-phase motors and resistive loads. Switching takes place automatically at the ideal point in time and suppresses unwanted current and voltage peaks.

## Soft starters

Soft starters ramp the voltage fed to the motor up to mains voltage, so that the motor starts almost jolt-free. The voltage reduction leads to a square-law torque reduction in relation to the motor's normal starting torque. Soft starter are therefore especially well suited to starting loads with a square-law speed or torque characteristic (such as pumps or fans).

## Frequency inverters

Frequency inverters convert the AC or three-phase system with its constant voltage and frequency into a new, three-phase system with variable voltage and frequency. This voltage/frequency control enables stepless speed control of three-phase motors. The controlled drive can be operated at rated-load torque even at low speeds.

## Vector frequency inverters

While conventional frequency inverters control three-phase motors using a charactieristic-controlled U/f (voltage/frequency) relationship, vector frequency inverters work using a sensorless, flow-oriented control of the motor's magnetic field. The controlled variable is the motor current. This allows an opimized control of the torque for demanding applications (mixers and agitators, extruders, transport and conveying installations).

## Electronic motor starters and drives

Basics of drives engineering

## Moeller drives

| Semiconductor contactor for resistive and inductive load | DS4-140-H | 10-50 | 1 AC 110-500 | - |
| :---: | :---: | :---: | :---: | :---: |
| Soft starter | DS4-340-M | 6-23 | 3 AC 110-500 | 2.2-11 (400 V) |
| Soft starter with bidirectional operation | DS4-340-MR | 6-23 | 3 AC 110-500 | 2.2-11 (400 V) |
| Soft starter with bypass relay | $\begin{aligned} & \text { DS4-340-MX, } \\ & \text { DS4-340-M + DIL } \end{aligned}$ | 16-46 | 3 AC 110-500 | 7.5-22 (400 V) |
| Soft starter with bypass relay and bidirectional operation | DS4-340-MXR | 16-31 | 3 AC 110-500 | $7.5-15$ (400 V) |
| Soft starters (in-line connection type) | DM4-340... | 16-900 | 3 AC 230-460 | 7.5-500 (400 V) |
| Soft starters (delta connection type) | DM4-340... | 16-900 | 3 AC 230-460 | 11-900 (400 V) |
| Frequency inverters | DF5-322... | 1.4-10 | $\begin{aligned} & 1 \text { AC } 230 \\ & 3 \text { AC } 230 \end{aligned}$ | 0.18-2.2 (230 V) |
| Frequency inverters | DF5-340... | 1.5-16 | 3 AC 400 | 0.37-7.5 (400 V) |
| Frequency inverters | DF6-340... | 22-230 | 3 AC 400 | 11-132 (400 V) |
| Vector frequency inverters | DV5-322... | 1.4-11 | $\begin{aligned} & 1 \text { AC } 230 \\ & 3 \text { AC } 230 \end{aligned}$ | 0.18-2.2 (230 V) |
| Vector frequency inverters | DV5-340... | 1.5-16 | 3 AC 400 | 0.37-7.5 (400 V) |
| Vector frequency inverters | DV6-340... | 2.5-260 | 3 AC 400 | 0.75-132 (400 V) |

## Electronic motor starters and drives

Basics of drives engineering


Semiconductor contactors DS4-...


Soft starters DM4-...

Frequency inverters DF5-... Vector frequency inverters DV5-...


Frequency inverters DF6-320-...
Vector frequency inverters DV6-320-...

## Electronic motor starters and drives

## Basics of drives engineering

## DOL starting

In the simplest case, and especially at low rated output (up to about 2.2 kW ), the three-phase motor is connected directly to mains voltage. In most applications, the connection is made with an
electromechanical contactor.
In this control mode, - on the mains at fixed voltage and frequency - the asynchronous motor's speed is only slightly below the

$I / I_{\mathrm{e}}: 6 \ldots 10$

## Features of DOL starting

- For low- and medium-power three-phase motors
- Three connection lines (circuit layout: star or delta)
- High starting torque
- Very high mechanical load
- High current peaks
- Voltage dips
- Simple switching devices
synchronous speed $\left[n_{5} \sim f\right]$.
Due to rotor slippage, The operating speed [ $n$ ] deviates from this value in relation to the rotating field $\left[n=n_{s} \times(1-\mathrm{s})\right]$, slippage being $\left[\mathrm{s}=\left(n_{\mathrm{s}}-n\right) / n_{\mathrm{s}}\right.$.
On starting ( $s=1$ ), a high starting current occurs, reaching up to ten times the rated current $I_{\mathrm{e}}$.

$M / M_{N}: 0.25 \ldots 2.5$

If an application demands frequent and/or silent switching, or if adverse environmental conditions prevent the effective use of electromechanical switching elements, electronic semiconductor contactors are required. In addition to short-circuit and overload protection, the semiconductor contactor must be protected with a superfast fuse.
According to IEC/EN 60947, type "2"
coordination requires the use of a superfast semiconductor fuse. For type " 1 " coordination, the majority of cases - a superfast semiconductor fuse is not necessary. Here are a few examples:

## Electronic motor starters and drives

## Basics of drives engineering

- Building services management:
- Reversing drive for lift doors
- Starting heat-exchanger units
- Starting conveyor belts
- In critical atmospheres:
- Controlling filling station petrol pump motors
- Controlling pumps in paint processing plants.
- Other applications: Non-motor-driven loads, such as
- Heater elements in extruders
- Heater elements in kilns
- Controlling lighting systems.


## Motor start in star-delta configuration

The star-delta circuit layout is the most commonly used configuration for starting three-phase motors.
The completely factory prewired SDAINL star-delta combination from Moeller provides convenient

$I / I_{\mathrm{e}}: 1.5 . . .2 .5$

## Features of star-delta starting

- For low- to high-power three-phase motors
- Reduced starting current
- Six connection cables
- Reduced starting torque
- Current peak on changeover from star to delta
- Mechanical load on changeover from star to delta
motor control. The customer saves on expensive wiring and installation time and reduces the likelihood of faults.

$M / M_{N}: 0.5$


## Electronic motor starters and drives

## Basics of drives engineering

## Soft starters (electronic motor start)

The characteristic curves for DOL and star-delta starting show current and torque step changes, which have a number of negative effects, especially at medium and high motor ratings:

- High mechanical machine loads
- Rapid wear
- Increased servicing costs
- High supply costs from the power supply companies (peak current calculation)
- High mains and generator load
- Voltage dips with a negative effect in other consumers

$I / I_{\mathrm{e}}: 1 \ldots 5$


## Features of the soft starters

- For low- to high-power three-phase motors
- No current peaks
- Zero maintenance
- Reduced adjustable starting torque

The ideal scenario of a smooth torque build-up and a controlled current reduction in the starting phase is made possible by the electronic soft starter. Providing infinitely variable control of the three-phase motor's supply voltage in the starting phase, it matches the motor to the load behaviour of the driven machine and accelerates it smoothly. This avoids mechanical jolting and suppresses current peaks. Soft starters present an electronic alternative to the conventional star-delta switch.

$M / M_{N}: 0.15 \ldots 1$

## Electronic motor starters and drives

Basics of drives engineering

## Parallel connection of several motors to a single soft starter

You can also use soft starters to start several motors connected in parallel. This does not, however, allow the behaviour of the individual motors to be controlled. Each motor must be separately fitted with suitable overload protection.

## Note:

The total current consumption of the connected motors must not exceed the soft starter's rated operational current $I_{\mathrm{e}}$.

## Note:

Each motor must be individually protected with a thermistor and/or overload relay.

## Caution!

Switching must not take place in the soft starter's output as the resulting voltage peaks can damage the thyristors in the power section.
Problems may arise during starting if there are significant differences in the connected motors' ratings (for example 1.5 kW and 11 kW ): The lower-rated motors may not be able to reach the required torque due to the relatively large ohmic resistance of these motors' stators, requiring a higher voltage during starting.

It is advisable to use this circuit type only with motors of a similar rating.

## Electronic motor starters and drives

Basics of drives engineering

## Using soft starters with pole-changing motors

Soft starters can be connected in the supply line before pole-changing, $\rightarrow$ section "Pole-changing motors", page 8-51).

## Note:

All changeovers (high/low speed) must take place at standstill.
The start signal must be issued only when a contact sequence has been selected and a start signal for pole-changing was set.
Control is comparable to cascade control with the difference that the changeover is made not to the next motor but to the other winding (TOR = top-of-ramp signal).

## Using soft starters with three-phase slipring motors

When upgrading or modernizing older installations, contactors and rotor resistors of multistage three-phase stator automatic starters can be replaced with soft starters. This is done by removing the rotor resistors and assigned contactors and short-circuiting the sliprings of the motor's rotor. The soft starter is then connected into the incomer and provides stepless starting of the motor. $(\rightarrow$ page 2-15).

## Using soft starters for motors with power-factor correction

## Caution!

No capacitive loads must be connected at the soft starter's output.

Power-factor corrected motors or motor groups must not be started with soft starters. Mains-side compensation is permissible when the ramp time (starting phase) has completed (i.e. the TOR (Top of Ramp) signal has been issued) and the capacitors exhibit a series inductance.

## Note:

If electronic devices (such as, soft starters, frequency inverters or UPS), use capacitors and correction circuits only with a choke fitted upstream.
$\rightarrow$ page 2-16.

## Electronic motor starters and drives

Basics of drives engineering


## Electronic motor starters and drives

Basics of drives engineering


## Electronic motor starters and drives

Basics of drives engineering
Connecting star points when using soft starters or semiconductor contactors

## Caution!

The connection of the star point to the PE or N conductor is not permissible when using controlled semiconductor contactors or soft starters. This applies especially to two-phase-controlled starters.



Caution!
Not permissible

## Electronic motor starters and drives

## Basics of drives engineering

## Soft starters and classification type to Type "2" coordination

## IEC/EN 60947-4-3

The following classification types are defined in IEC/EN 60947-4-3, 8.2.5.1:

## Type "1" coordination

In type "1" coordination, the contactor or soft starter must not endanger persons or the installation in the event of a short-circuit and does not have to be capable of continued use without repairs or parts replacements.

In type "2" coordination, the contactor or soft starter must not endanger persons or the installation in the event of a short-circuit and must be capable of continued use without repairs or parts replacements. For hybrid control devices and contactors, there is a risk of contact welding. In this case the manufacturer must provide appropriate maintenance instructions. The coordinated short-circuit protection device (SCPD) must trip in the event of a short-circuit. Blown fuses must be replaced. This is part of normal operation (for the fuse), also for type "2" coordination.


## Electronic motor starters and drives

## Soft starters DS4

## Product attributes

- Construction, mounting and connection as for contactor
- Automatic control voltage detection
-24 V DC $\pm 15 \% 110$ to 240 V AC $\pm 15 \%$
- Safe starting at $85 \% U_{\text {min }}$
- Operation indication by LED
- Individually adjustable start and stop ramps ( 0.5 to 10 s )
- Adjustable start pedestal (30 to $100 \%$ )
- Relay contact (N/O contact): operating signal, TOR (top of ramp)



## Electronic motor starters and drives

## Soft starters DS4

## LED displays

The LEDs indicate the operational states as follows:


## Electronic motor starters and drives

Soft starters DS4

Power section versions


2

## Electronic motor starters and drives

## Soft starters DM4

## Product attributes

- Configurable, communications-capable soft starter with plug-in control signal terminals and interface for optional units:
- Operator control and programming unit
- Serial interface
- Fieldbus module
- Application selector switch with user-programmable parameter sets for 10 standard applications
- I2t controller
- Current limitation
- Overload protection
- Idle/undercurrent detection (e.g. belt breakage)
- Kickstarting and heavy starting
- Automatic control voltage detection
- 3 relays, e.g. fault signal, TOR (top of ramp)

Ten default parameter sets for typical applications can be simply called up with a selector switch. Additional plant-specific settings can be defined with an optional keypad.
In three-phase regulator control mode, for example, three-phase resistive and inductive loads - heaters, lighting systems, transformers - can be controlled with the DM4. Both open-loop and with measured value feedback - closed-loop control are possible.

Instead of the keypad, intelligent interfaces can also be used:

- Serial RS 232/RS 485 interface (configuration through PC software)
- Suconet K fieldbus module (interface on every Moeller PLC)
- PROFIBUS DP fieldbus module

The DM4 soft starters provide the most convenient method of implementing soft starting. Because in addition to phase failure and motor current monitoring - the motor winding temperature is signalled through the built-in thermistor input, the soft starters eliminate the need for additional, external components, such as motor protective relays. DM4 conforms to the IEC/EN 60947-4-2 standard.
With the soft starter, reducing the voltage results in a reduction of the high starting currents of the three-phase motor, although the torque is also reduced $\left[I_{\text {startup }} \sim U\right]$ and $\left[M \sim U^{2}\right]$. After starting, the motor reaches its rated speed with all of the solutions described above. For starting motors at rated-load torque and/or for motor operation at a motor speed that is independent of the supply frequency, a frequency inverter is required.

## Electronic motor starters and drives

Soft starters DM4


2


Electronic motor starters and drives
Soft starters DM4
Standard applications (selector switch)
$\left.\begin{array}{llllll}\hline \begin{array}{l}\text { Labelling on } \\ \text { device }\end{array} & \begin{array}{l}\text { Indication on } \\ \text { keypad }\end{array} & & \text { Meaning } & \text { Notes } \\ \hline \text { Standard } & & \text { Standard } & & \text { Standard } & \end{array} \begin{array}{l}\text { Default settings, suitable without adaptation } \\ \text { for most applications }\end{array}\right]$

1) For the "High Torque" setting, the soft starter must be able to supply 1.5 times the motor's rated current.

## Delta circuit

Normally, soft starters are connected directly in series (in-line) with the motor. The DM4 soft starters also allow a delta connection.

## Advantage:

- This is a less expensive alternative since the soft starter has to deliver only $58 \%$ of the motor's rated current.
Disadvantages over in-line connection:
- As in a star-delta circuit, the motor must be connected with six conductors.
- The DM4's overload protection is active only in one phase, so that additional motor protection must be fitted in the parallel phase or in the supply cable.


## Note:

The delta connection is more cost-effective at motor ratings over 30 kW and when replacing star-delta switches.


## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6

## Design and mode of operation

Frequency inverters provide variable, stepless
speed control of three-phase motors.


Frequency inverters convert constant mains voltage and frequency into a DC voltage, from which they generate a new three-phase supply with variable voltage and frequency for the three-phase motor. The frequency inverter draws
almost only active power (p.f. ~1) from the supplying mains. The reactive power needed for motor operation is supplied by the DC link. This eliminates the need for p.f. correction on the mains side.

(1) Rectifier
(3) Inverter with IGBT
(2) DC link
(4) Open-/closed-loop control

## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6

The frequency-controlled three-phase motor is today a standard component for infinitely variable speed and torque regulation, providing efficient, energy-saving power either as an individual drive or as part of an automated installation.

The possibilities for individual or plant-specific coordination are determined by the specific features of the inverters and by the modulation procedure used.
circuit switches the IGBTs on and off according to various principles (modulation procedures) to change the frequency inverter's output frequency.

## Sensorless vector control

The switching patterns for the inverter are calculated with the PWM (pulse-width modulation) switching patterns. In voltage vector control mode, the amplitude and frequency of the voltage vector are controlled in dependence of slippage and load current. This allows large speed ranges and highly accurate speeds to be achieved without speed feedback. This control method (U/f control) is the preferred method for parallel operation of several motors with one frequency inverter.

In flow-regulated vector control, the active and reactive current components are calculated from the measured motor currents, compared with the values from the motor model and, if necessary, corrected. The amplitude, frequency and inclination of the voltage vector are controlled directly. This allows operation at the current limit and the achievement of large speed ranges and highly accurate speeds. Especially noteworthy is the drive's dynamic output at low speeds, for example in lifting and winding applications.

## Electronic motor starters and drives <br> Frequency inverters DF5, DV5, DF6, DV6

The key advantage of sensorless vector technology is that the motor current can be regulated to match the motor's rated current. This allows dynamic torque regulation to be implemented for three-phase asynchronous motors.

(1) Stator
(2) Air gap
(3) Rotor
(4) Rotor flow-oriented
(5) Stator-oriented

In sensorless vector control, the flux-generating current $i_{\mu}$ and the torque-generating current $i_{w}$ are calculated from the measured stator voltage $u_{1}$ and stator current $i_{j}$. The calculation is performed with a dynamic motor model (electrical equivalent circuit of the three-phase motor) with adaptive current regulators, taking into account the saturation of the main field and the iron loss. The two current components are set according to their value and phase in a rotating coordinate system $(\omega)$ to the stator reference system $(\alpha, \beta)$.

The following illustration shows a simplified equivalent circuit diagram for the asynchronous motor and associated current vectors:

$i_{1}=$ Stator current (phase current)
$i_{\mu}=$ Flux-generating current component
$i_{w}=$ Torque-generating current component
$R_{2}^{\prime} / s=$ Slip-dependent rotor resistance

The physical motor data required for the model is formed from the entered and measured (self-tuning) parameters.

## Electronic motor starters and drives <br> Frequency inverters DF5, DV5, DF6, DV6

## Characteristics of frequency inverters DF5, DF6

- Infinitely variable speed control through voltage/frequency control (U/f)
- High starting and acceleration torque
- Constant torque in motor's rated range
- EMC measures (optional: radio interference filter, screened motor cable)


## Additional features of sensorless vector control for frequency inverters DV5 and DV6

- Infinitely variable torque control, also at zero speed
- Low torque control time
- Increased concentricity and constancy of speed
- Speed control (options for DV6: control module, pulse generator)
The DF5, DF6, DV5 and DV6 frequency inverters are factory-preset for their assigned motor rating, allowing drives to be started immediately after installation.

Individual settings can be made with an optional keypad. Various control modes can be selected and configured in a number of layers, For applications with pressure and flow control, all devices contain a built-in PID controller that can be matched to any system.
A further advantage of the frequency inverters is that they eliminate the need for external components for monitoring and motor protection. On the mains side, only a fuse or circuit-breaker (PHKZ) is needed for line and short-circuit protection. The frequency inverter's inputs and outputs are monitored internally by measurement and control circuits, such as overtemperature, earth fault, short-circuit, motor overload, motor blockage and drive belt monitoring. Temperature measurement in the motor winding can also be incorporated in the frequency inverter's control circuit through a thermistor input.

## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6

## Frequency inverter, installing

Electronic devices such as soft starters and frequency inverters must normally be fitted vertically.
To ensure adequate air circulation for cooling, a
clear space of at least 100 mm should be
maintained both above and below the device. At the sides of the device, the clear space should be at least 10 mm for DF5 and DV5 and 50 mm for DF6 and DV6.
Note that the front enclosure elements of the DF5 and DV5 devices open to the side for electrical connection. Make sure that the free space in the area of the front hinged covers is at least 80 mm to the left side and at least 120 mm to the right side.


## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6
EMC-compliant connection of frequency inverters


The EMC-compliant mounting and connection is described in detail in the respective devices' manuals (AWB).

## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6

## Notes about correct installation of frequency inverters

For an EMC-compliant installation, observe the following information. Electrical and magnetic disturbance fields can be limited to the required levels. The necessary measures work only in
combination and should be taken into consideration at the engineering stage. To subsequently modify an installation to meet EMC requirements is possible only at considerable additional cost.

## EMC measures

The EMC (electromagnetic compatibility) of a device is its ability to withstand electrical interference (i.e. its immunity) while itself not emitting excessive electromagnetic interference into the environment.
The IEC/EN 61800-3 standard describes the limit values and test methods for emitted interference and noise immunity for variable-speed electrical drives (PDS = Power Drives System).
The tests and values are based not on individual components but on a typical complete drive system.

Measures for EMC-compliant installation are:

- Earthing measures
- Screening measures
- Filtering measures
- Chokes

They are described in more detail below.

## Earthing measures

These must be implemented to comply with the legal standards and are a prerequisite for the effective use of further measures such as filters and screening. All conducting metallic enclosure sections must be electrically connected to the earth potential. For EMC, the important factor is not the cable's cross-section, but its surface, since this is where high frequency current flows to earth. All earthing points must be low-impedance, highly conductive and routed directly to the central earthing point (potential equalization bar or star earth). The contact points must be free from paint and rust. Use galvanized mounting plates and materials.

K1 = Radio interference filter T1 = Frequency inverter


## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6

## Screening measures



## Electronic motor starters and drives <br> Frequency inverters DF5, DV5, DF6, DV6

Screening reduces emitted interference (noise immunity of neighbouring systems and devices against external influences). Cables laid between the frequency inverter and the motor must be screened, but the screen must not be considered a replacement for the PE cable. Four-wire motor cables are recommended (three phases plus PE). The screen must be connected to earth (PES) at both ends with a large-area connection. Do not connect the screen with pigtails. Interruptions in the screen, such as terminals, contactors, chokes, etc., must have a low impedance and be bridged with a large contact area.
To do this, sever the screen near the module and establish a large-area contact with earth potential (PES, screen terminal). Free, unscreened cables should not be longer than about 100 mm . Example: Screen attachment for maintenance switch


## Note:

Maintenance switches at of frequency inverter outputs must be operated only at zero current.

Control and signal lines must be twisted and may be double-screened, the inner screen being connected to the voltage source at one end and the outer screen at both ends. The motor cable must be laid separately from the control and signal lines ( $>10 \mathrm{~cm}$ ) and must not run parallel to any power cables.

(1) Power cables: mains, motor, internal DC link, braking resistance
(2) Signal cables: analog and digital control signals

Inside control panels, too, cables should be screened if they are more than 30 cm long.

## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6
Example for screening control and signal cables:


Example for a standard connection of frequency inverter DF5, with reference value potentiometer R1 (M22-4K7) and mounting accessories ZB4-102-KS1

## Filtering measures

Radio interference filters and line filters (combinations of radio interference filter and mains choke) protect against conducted high-frequency interference (noise immunity) and reduce the frequency inverter's high-frequency interference, which is transmitted through or emitted from the mains cable, and which must be limited to a prescribed level (emitted interference). Filters should be installed as closely as possible to the frequency inverter to keep the length of the connecting cable between frequency inverter and filter short.

## Note:

The mounting surfaces of frequency inverters and radio interference filters must be free from paint and must have good HF conductivity.


## Electronic motor starters and drives <br> Frequency inverters DF5, DV5, DF6, DV6

Filters produce leakage currents which, in the event of a fault (such as phase failure or load unbalance), can be much larger than the rated values. To prevent dangerous voltages, the filters must be earthed. As the leakage currents are high-frequency interference sources, the earthing connections and cables must have a low resistance and large contact surfaces.


For leakage currents above 3.5 mA , one of the following must be fulfilled according to EN 60335 :

- the protective conductor must have a cross-section greater than $10 \mathrm{~mm}^{2}$,
- the protective conductor must be open-circuit monitored, or
- an additional conductor must be fitted.


## Chokes

Fitted on the frequency inverter's input side, chokes reduce the current-dependent phase effect and improve the power factor. This reduces the current harmonics and improves the mains quality. The use of mains chokes is especially recommended where several frequency inverters are connected to a single mains supply point when other electronic devices are also connected to the same supply network.
A reduction of the mains current interference is also achieved by installing DC chokes in the frequency inverter's DC link.

At the frequency inverter's output, chokes are used if the motor cables are long and if multiple motors are connected in parallel to the output. They also enhance the protection of the power semiconductors in the event of an earth fault or short-circuit, and protect the motors from excessive rates of voltage rise ( $>500 \mathrm{~V} / \mu \mathrm{s}$ ) resulting from high pulse frequencies.

## Electronic motor starters and drives

Frequency inverters DF5, DV5, DF6, DV6
Example: EMC-compliant mounting and connection


## Electronic motor starters and drives

## Connection examples, DS4

## Linking the overload relay into the control system

We recommend using an external overload relay instead of a motor-protective circuit-breaker with built-in overload relay. This allows controlled ramping down of the soft starter through the control section in the event of an overload.

## Note:

Connecting the motor directly to mains power can cause overvoltage and destruction of the soft starter's semiconductors.

## Note:

The overload relay's signalling contacts are linked into the On/Off circuit.

## Minimum connection of DS4-340-M(X)



0: Off/soft stop, 1: Start/soft start

In the event of a fault, the soft starter decelerates for the set ramp time and stops.

## Standard connection, unidirectional rotation

In standard operation the soft starter is connected into the motor supply line. A central switching element (contactor or main switch) with isolating properties to isolate the mains according to EN 60947-1 section 7.1.6 and for working on the motor is required according to EN 60204-1 section 5.3. No contactors are required to operate individual motor feeders.


## Connection of DS4-340-M as semiconductor contactor



Q1 = Line protection
Q11 =Mains contactor (optional)
F1 = Motor-protective relay

(2)

F 2 = Semiconductor fuse for type "2" coordination, in addition to Q1 Q21 = Semiconductor contactor M1 = Motor

S1: Q11 Off
S2: Q11 On
(2): Control with Q11/K2t optional HLS = Semiconductor contactor On/Off

## Electronic motor starters and drives

Connection examples, DS4
Connection as soft starter without separate mains contactor


Q1: Line protection
F1: Overload relay
F2: Semiconductor fuse for type "2" coordination, in addition to Q1
T1: Semiconductor contactor
M1: Motor

(1) Emergency-Stop

S1: Soft stop
S2: Soft start

## Connection of soft starter with mains contactor



## Electronic motor starters and drives

## Connection examples, DS4

## Reversing circuit standard connection, bidirectional rotation

## Note:

The device of the DS4-...-M(X)R series have a built-in electronic reversing contactor function. You need to only specify the required direction of rotation. The DS4 then internally ensures the correct control sequence.
At ratings over 22 kW , a conventional reversing circuit layout must be used, because above this

## Minimum connection of DS4-340-M(X)R



Q1: Line protection
Q11: Mains contactor (optional)
F1: Overload relay
F2: Semiconductor fuse for type "2" coordination, in addition to Q1
rating the DS4 is not available with built-in reversing contactor function. In this case make sure that direction reversal takes place only with the DS4 in stop state. Use an external controller to implement this functionality. In soft starter operation, you can use a TOR relay to control an off-delayed relay for this purpose, whereby the deceleration time must be $t$-Stop +150 ms or higher.


T1: Soft starter
M1: Motor
(1): Emergency-Stop

0: Off/Soft stop
1: FWD
2: REV

## Connection of reversing soft starter without mains contactor



Q1: Line protection
F1: Overload relay
F2: Semiconductor fuse for type "2" coordination, in addition to Q1


T1: Semiconductor contactor
M1: Motor
(1): Emergency-Stop

S1: Soft stop
S2: Soft start FWD
S2: Soft start REV

## Electronic motor starters and drives

Connection examples, DS4

## Connection of reversing soft starter with

 mains contactor

Q1: Line protection
Q11: Mains contactor (optional)
F1: Overload relay
F2: Semiconductor fuse for type "2"
coordination, in addition to Q1
T1: Semiconductor contactor
M1: Motor

(1): Emergency-Stop

S1: Q11 Off
S2: Q11 On

## Electronic motor starters and drives

## Connection examples, DS4

## Bypass connection, single direction of rotation

## Caution!

The DS4-...-MX(R) devices have built-in bypass contacts. The examples below therefore apply only for DS4-...-M. If an external bypass for devices with reversing function (DS4-...-MR) is to be fitted, you must include an additional bypass contactor is required the second direction of rotation as well as additional interlocks to prevent a short-circuit through the bypass contactors. The bypass connection allows a direct connection of the motor to the mains to suppress heat dissipation through the soft starter. The bypass contactor is actuated once the soft starter has completed the acceleration phase (i.e. once mains voltage is reached). By default, the Top-of-Ramp
function is mapped to relay $13 / 14$. The soft starter controls the bypass contactor so that no further user action is required. Because the bypass contactor is switched only at zero current and does not, therefore, have to switch the motor load, an AC1 layout can be used. Suitable bypass contactors are listed in appendix "Technical data".
If an Emergency-Stop requires an immediate disconnection of the voltage, the bypass may have to switch under AC3 conditions (for example if the Enable signal is removed with a command or the soft stop ramp time is 0 ). In this case, the circuit must be laid out so that either a higher-priority isolating element trips first or the bypass must be laid out to AC3.

## Electronic motor starters and drives

## Connection examples, DS4



## Electronic motor starters and drives

## Connection examples, DS4

## Pump connection, single direction of rotation

In pump applications the bypass contactor is often required to provide emergency operation capability. This is achieved with a service switch that allows a changeover from soft starter operation to DOL starting through the bypass contactor. In the latter setting the soft starter is fully bypassed. But because the output circuit must not be opened during operation, the
interlocks ensure that changeovers take place only after a stop.

## Note:

In contrast to simple bypass operation, the bypass contactor must be laid out to AC3 here. For a suitable contactor, see our recommended mains contactor in appendix "Technical data".

## Pump



## Pump control



## Electronic motor starters and drives

## Connection examples, DS4

## Starting several motors sequentially with a soft starter (cascaded control)

When starting several motors one after the other using a soft starter, keep to the following changeover sequence:

- Start using soft starter
- Switch on bypass contactor
- Disable soft starter
- Switch soft starter output to the next motor
- Restart
$\rightarrow$ page 2-52
(1) Emergency-Stop

S1: Q11 Off
S2: Q11 On
(1) Soft start/soft stop
(2) Simulation of RUN relay

Timing relay K2T simulates the RUN signal of the DS4. The set off-delay time must be greater than the ramp time. To be on the safe side, use 15 s .
(4) Off-time monitoring

Set the timing relay K1T so that the soft starter is not thermally overloaded: calculate the time from the soft starter's permissible operating frequency or select a soft starter that allows the required time to be reached.
(5) Changeover monitoring

Set the timing relay to a return time of about 2 s . This ensures that the next motor branch can not be connected as long as the soft starter is running.
$\rightarrow$ page 2-53
(9) Switching off individual motors

The Off switch results in all motors being switched off at the same time. To switch off individual motors, you need to make use of N/C contact (9).

Observe the thermal load on the soft starter (starting frequency, current load). If motors are to be started at short intervals, you may have to select a soft starter with a higher load cycle.

Soft starters with motor cascade


Soft starter with motor cascade, control section part 1


Soft starter with motor cascade, control section part 2

(1) Motor 1
(2) Motor 2
£s-z
(3) Motor $n$
(9) $\rightarrow$ section "(9) Switching off individual motors", page 2-50

## Electronic motor starters and drives

## Connection examples, DM4

## Enable/immediate stop without ramp function (e.g. for Emergency-Stop)

The digital input E2 is programmed in the factory so that it has the "Enable" function. The soft starter is enabled only when a High signal is applied to the terminal. The soft starter cannot be operated without enabling signal.
In the event of wire breakage or interruption of the signal by an Emergency-Stop circuit, the regulator in the soft starter is immediately blocked and the power circuit disconnected, and after that the "Run" relay drops out.
Normally the drive is always stopped via a ramp function. When the operating conditions require

an immediate de-energization, this is effected via the enabling signal.

## Caution!

You must in all operating conditions always first stop the soft starter ("Run" relay scanning), before you mechanically interrupt the power conductors. Otherwise a flowing current is interrupted - thus resulting in voltage peaks, which in rare cases may destroy the thyristors of the soft starter.
(1): Emergency-Stop

S1: Off
S2: On
T1: (E2 $=1 \rightarrow$ enabled)

## Electronic motor starters and drives

## Connection examples, DM4

## Linking the overload relay into the control system

We recommend using an external overload relay instead of a motor-protective circuit-breaker with built-in overload relay. This allows controlled ramping down of the soft starter through the control section in the event of an overload.

## Caution!

Connecting the motor directly to mains power can cause overvoltage and destruction of the soft starter's semiconductors.
There are two options, which are shown in the following diagram:
(1): Emergency-Stop

S1: Off
S2: On
T1: Enable (E2 = $1 \rightarrow$ enabled)
(1) The signalling contacts of the overload relay are linked into the On/Off circuit. In the event of a fault, the soft starter decelerates for the set ramp time and stops.
(2) The signalling contacts of the overload relay are linked into the enabling circuit. In the event of a fault, the soft starter's output is immediately de-energized. Although the soft starter shuts off its output, the mains contactor remains energized. To de-energize the mains contactor as well, include a second contact of the overload relay in the On/Off circuit.

## Electronic motor starters and drives

Connection examples, DM4

DM4 with overload relay



T1


## Standard connection

For isolation from the mains, either a mains contactor upstream of the soft starter or a central switching device (contactor or main switch) is necessary.

## Control section



S1: Soft start
S2: Soft stop
(1) Enable
(2) Soft start/Soft stop

## Electronic motor starters and drives

Connection examples, DM4
DM4 without separate mains contactor

(1) Control voltage through Q1 or F1 or through

Q2
(2) See control section
(3) Motor current indication

## Electronic motor starters and drives

Connection examples, DM4
DM 4-340 with separate mains contactor
Control section

(1) Emergency-Stop

S1: Off
S2: On
(1) Enable
(2) Soft start/Soft stop

## Electronic motor starters and drives

Connection examples, DM4
DM4-340 with separate mains contactor

(1) Control voltage through Q1 or F1 or through

Q2
(2) See Control section
(3) Motor current indication

## Electronic motor starters and drives

## Connection examples, DM4

## Bypass connection

After the run-up (full mains voltage reached) the DM4 soft starter actuates the bypass contactor. Thus, the motor is directly connected with the mains.
Advantage:

- The soft starter's heat dissipation is reduced to the no-load dissipation.
- The limit values of radio interference class "B" are adhered to.

The bypass contactor is now switched to a no-load state and can therefore be AC-1 rated.
If an immediate de-energization is required in the event of an Emergency-Stop, then the bypass contactor must also switch the motor load. In this case it must be AC-3 rated.

## Control section



Emergency-Stop
S1: Off
S2: On
(1) Enable
(2) Soft start/Soft stop

## Electronic motor starters and drives

Connection examples, DM4
DM4-340 with bypass

(1) Control voltage through Q1 or F1 or through Q2
(2) See Control section
(3) Motor current indication

## Electronic motor starters and drives

## Connection examples, DM4

## Delta connection

A delta connection allows the use of a soft starter with a lower rating than the motor it is used to control. Connected in series with each motor winding, the current the soft starter needs to supply is reduced by a factor of $\sqrt{ } 3$. This layout has the drawback that six motor supply cables are needed. Apart from that there are no restrictions. All soft starter functions remain available.

For this you have to connect the motor in delta and the voltage in this connection method must agree with the mains voltage. For 400 V mains voltage the motor must therefore be marked with 400 V/690 V.

## Control section


(1) Emergency-Stop

S1: Off
S2: On
(1) Enable
(2) Soft start/Soft stop

E2: Enable
T1: +thermistor
T2: -thermistor

## Electronic motor starters and drives

Connection examples, DM4
DM4-340 Delta

(1) Control voltage through Q1 or F1 or through

Q2
(2) See Control section
(3) Motor current indication

## Electronic motor starters and drives

 Connection examples, DM4
## Starting several motors sequentially with a soft starter

When starting several motors one after the other
using a soft starter, keep to the following
sequence when changing over:

- Start using soft starter

2 - Switch on bypass contactor

- Block soft starter
- Switch soft starter output to the next motor
- Restart


## Electronic motor starters and drives

Connection examples, DM4


Control section part 1


DM4-340 cascade, control section part 2

(1) Emergency-Stop

S1: Off
S2: On
(1) Enable
(2) Soft start/Soft stop
(3) Set the timing relay so that the soft starter is not thermally overloaded. The appropriate time relates to the admissible operating frequency of the selected soft starter. Alternatively, select the soft starter so that the required times can be attained.
(4) Set the timing relay to a return time of about 2 s . This ensures that the next motor branch can not be connected as long as the soft starter is running. N/C contact $S 1$ switches all motors off at the same time. To switch off motors individually, you need to make use of N/C contact S3.

[^0]Notes

Block diagram, DF5 and DV5


## Electronic motor starters and drives

Connection examples, DF5 and DV5

## Basic control



Example 1
Reference input through potentiometer R1 Enable (START/STOP) and direction control through terminals 1 and 2 with internal control voltage
(1): Emergency-Stop circuit

S1: Off
S2: On
Q11: Mains contactor
F1: Line protection
PES: Cable screen PE connection
M1:Motor, 3-phase 230 V

Note:
For EMC-conformant mains connection, suitable radio interference suppression measures must be implemented according to product standard IEC/EN 61800-3.

DILM12-XP1

(4th pole can be broken off)
DILM


## Electronic motor starters and drives

Connection examples, DF5 and DV5
Wiring


FWD: Clockwise rotating field enable REV: Anticlockwise rotating field enable

## Electronic motor starters and drives

Connection examples, DF5 and DV5

## DF5-340-... frequency inverters with EMC-conformant connection

## Control section



Example 2
Reference input through potentiometer R11 $\left(f_{\mathrm{s}}\right)$ and fixed frequency $\left(f_{1}, f_{2}, f_{3}\right)$ through terminal 3 and 4 with internal control voltage
Enable (START/STOP) and rotating field selection through terminal 1
(1): Emergency-Stop circuit

S1: Off
S2: On
Q11: Mains contactor
R1: Line reactor
K1: RFI filter
Q1: Line protection
PES: Cable screen PE connection
M1:Motor, 3-phase 400 V
FWD: Clockwise rotating field enable, reference frequency $f_{S}$
FF1: Fixed frequency $f_{1}$
FF2: Fixed frequency $f_{2}$
FF1 $1+$ FF2: Fixed frequency $f_{3}$

## Electronic motor starters and drives

Connection examples, DF5 and DV5
Wiring


2

## Electronic motor starters and drives

Connection examples, DF5 and DV5

## Version A: Motor in delta circuit

Motor: $P=0.75 \mathrm{~kW}$
Mains: $3 / \mathrm{N} / \mathrm{PE} 400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
The 0.75 kW motor described below can be delta-connected to a single-phase 230 V mains (version A) or star-connected to a 3-phase 400 V mains.
Select the appropriate frequency inverter for your mains voltage:

- DF5-322 for 1 AC 230 V
- DF5-340 for 3 AC 400 V
- Model-specific accessories for EMC-complaint connection.

FAZ-1N-B16

DILM7

+ DILM12-XP1
+DILM12-XPI

DEX-LN1-009
DE5-LZ1-012-V2
$\mathrm{L} \quad 1 \sim 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$


Q11


DF5-322-075
DV5-322-075


## Electronic motor starters and drives

Connection examples, DF5 and DV5
Version B: Motor in star circuit


Notes

Block diagram, DF6


BR* DF6-320-11K, DF6-340-11K and DF6-340-15K only

## Electronic motor starters and drives

 Connection examples, DF6
## Frequency inverter DF6-340-...

## Control section

Example: Temperature regulation for ventillation system. When the room temperature rises, the fan speed must increase. The target temperature can
be set with potentiometer R11 (e.g. $20^{\circ} \mathrm{C}$ )

(1): Emergency-Stop circuit

S1: Off
S2: On
Q11: Mains contactor
Q1: Line protection
PES: Cable screen PE connection
K1: RFI filter

## Electronic motor starters and drives

Connection examples, DF6

## Wiring



## Electronic motor starters and drives

Connection examples, DV6


Block diagram: speed control circuit, vector frequency inverter DV6 with encoder interface module DE6-IOM-ENC


## Electronic motor starters and drives

Connection examples, DV6
DV6-340-... vector frequency inverters with built-in encoder module (DE6-IOM-ENC) and external DE4-BR1-... braking resistor

## Control section



Example:
Hoisting gear with speed regulation, control and monitoring through PLC
Motor with thermistor (PTC resistor)
(1): Emergency-Stop circuit

S1: Off
S2: On
Q1: Line protection
Q11:Mains contactor
K2: Control contactor enable
$\mathrm{R}_{\mathrm{B}}$ : Braking resistor
B1: Encoder, 3 channels
PES:Cable screen PE connection
M11:Holding brake

## Electronic motor starters and drives

Connection examples, DV6


## Electronic motor starters and drives

Connection examples, DV6
Installing encoder interface module DE6-IOM-ENC


## Electronic motor starters and drives

Connection examples, DV6



## Electronic motor starters and drives

## Rapid Link system

## Rapid Link system

Rapid Link is a modern automation system for material handling systems. Because the Rapid Link modules can be simply fitted into a power and data bus, it allows electrical drives to be installed and taken into operation much more quickly than with conventional methods.

## Note:

Before you take the Rapid Link system into operation, you must obtain and read manual AWB2190-1430. This publication is available for download as PDF file from the Moeller Support Portal.


Function modules:
(1) Interface control unit $\rightarrow$ the interface to the open field bus
(2) Disconnect control unit $\rightarrow$ power infeed with lockable rotary handle;
$\rightarrow$ circuit-breaker to protect from overload and short-circuits
(3) Motor control unit $\rightarrow 3$-phase electronic overload protection with DOL starter, expandable DOL starter or reversing starter function
(4) Speed control unit $\rightarrow$ controls three-phase asynchronous motors with four fixed speeds, bidirectional operation and soft starting
(5) Operator control unit $\rightarrow$ local manual control for conveying equipment
(6) Logic control unit $\rightarrow$ Intelligent unit for autonomous processing of I/O signals

## Electronic motor starters and drives

Rapid Link system

Power and data bus:
(7) AS-Interface ${ }^{\circledR}$ flat cable
(8) Link for M12 connector cables
(9) Flexible busbar for 400 V ~ and 24 V
(10) Power feed for flexible busbar
(11) Plug-in power link for flexible busbar
(12) Round cable for 400 V ~ and 24 V
(13) Plug-in power link for round cable

## Engineering

The Rapid Link function modules are installed immediately adjacent to the drives. They can be connected to the power and data bus at any point without having to interrupt the bus.
The AS-Interface ${ }^{\circledR}$ data bus is a system solution for networking different modules. AS-Interface ${ }^{\circledR}$ networks are quick and easy to implement.
AS-Interface ${ }^{\circledR}$ uses a geometrically coded, unscreened flat cable with a cross-section of $2 \times$ $1.5 \mathrm{~mm}^{2}$. It is used to transmit both power as well as all data traffic between PLC and I/O and - to some extent - supplies the connected devices with energy.
The installation meets the usual requirements. Engineering is simplified by full flexibility in system layout and mounting.
When a link is connected to the flat cable, two metal pins pierce through the cable's jacket and into the two cores to establish a contact with the AS-Interface ${ }^{\circledR}$ cable. There is no need to cut and strip cables, apply ferrules or connect individual cores.

(1) Piercing pins
(2) Flat cable, protected against polarity reversal

The power bus supplies the Rapid Link function modules with main and auxiliary power. Plug-in tap-off points can be quickly and safely connected at any point along the bus. The power bus can consist either of a flexible busbar (flat cable) or standard round cables:

- The flexible busbar RA-C1 is a 7-core flat cable (cross-section $2.5 \mathrm{~mm}^{2}$ or $4 \mathrm{~mm}^{2}$ ) and has the following structure:

- For the power bus you can also use conventional round cables (cross-section $7 \times 2.5 \mathrm{~mm}^{2}$ or $7 \times 4 \mathrm{~mm}^{2}$, outer core diameter $<5 \mathrm{~mm}$, flexible copper conductor to IEC/EN 60228) with round cable feeders RA-C2. The cable can have an external diameter of 10 to 16 mm .



## Electronic motor starters and drives

Rapid Link system

## Warning!

- Rapid Link must be operated only on three-phase systems with earthed star point and separate $N$ and PE conductors (TN-S network). It must not be operated unearthed.
- All devices am connected to the power and data bus must also meet the requirements for safe isolation according to IEC/EN 60947-1 Annex N or IEC/EN 60950. The 24 V DC power supply unit must be earthed on the secondary side. The 30 V DC PSU for the

AS-Interface ${ }^{\circledR}$-/RA-IN-power supply must meet the safe isolation requirements according to SELV.
The power sections are supplied through disconnect control unit RA-DI (see illustration below) with:

- $I_{\mathrm{e}}=20 \mathrm{~A} / 400 \mathrm{~V}$ at $2.5 \mathrm{~mm}^{2}$
- $I_{e}=20$ to $25 \mathrm{~A} / 400 \mathrm{~V}$ at $4 \mathrm{~mm}^{2}$.

Round cables up to $6 \mathrm{~mm}^{2}$ can be used to feed power to disconnect control unit RA-DI.


Disconnect control unit RA-DI protects the cable from overload and provides short-circuit protection for the cable as well as all connected RA-MO motor control units.

The combination of RA-DI and RA-MO fulfills the requirements of IEC/EN 60947-4-1 as starter with type " 1 " coordination. That means that the contactor's contacts in the RA-MO are allowed to weld in the event of a short-circuit in the motor terminal strip or the motor supply cable. This arrangement also conforms to IEE wiring regulations.

## Electronic motor starters and drives

Rapid Link system

The affected RA-MO motor control unit must be replaced after a short-circuit!
When you configure a power bus with a disconnect control unit, observe the following:

- Even in the event of a 1-pole short-circuit at the line end, the short-circuit current must exceed 150 A .
- The total current of all running and simultaneously starting motors must not exceed 110 A.
- The total load current (about $6 \times$ mains current) of all connected speed control units must not exceed 110 A .
- Observe the voltage drop in your specific application.
Instead of the disconnect control unit, you can use a 3-pole miniature circuit-breaker $I_{n} \leqq 20 \mathrm{~A}$ and B or C characteristic. Here, you must observe the following:
- The let-through energy $I^{2} t$ in the event of a short-circuit must not exceed 29800 A$^{2}$ s.
- Therefore the short-circuit current $I_{\mathrm{cc}}$ at the mounting location must not exceed $10 \mathrm{kA} \rightarrow$ characteristic curve.



## Electronic motor starters and drives

Rapid Link system

## Motor control unit

Motor control unit RA-MO allows the direct bidirectional operation of three-phase motors. The rated current is adjustable from 0.3 to 6.6 A (0.09 to 3 kW ).

## Connections

Motor control unit RA-MO is supplied ready for installation. The connection to the AS-Interface ${ }^{\circledR}$ data bus and the motor is described below. The connection to the power bus is described in the earlier general section "Rapid Link system".


The unit is connected to AS-Interface ${ }^{\circledR}$ through an M12 plug with the following PIN assignment:

| M12 plug | PIN | Function |
| :--- | :--- | :--- |
|  |  | $\frac{1}{2}$ |

External sensors are connected through an M12 socket.

| PIN |  | Function |
| :--- | :--- | :--- |
| 1 |  | $\mathrm{~L}+$ |
| 2 |  | I |
| 3 |  | $\mathrm{~L}-$ |
|  |  | I |

On the RA-MO the motor feeder features a plastic-encapsulated socket. The length of the motor cable is limited to 10 m .
The motor is connected through a halogen-free, $8 \times 1.5 \mathrm{~mm}^{2}$, unscreened, DESINA-conformant motor supply cable with a length of 2 m (SET-M3/2-HF) or 5 m (SET-M3/5-HF).
Alternatively you can assemble your own motor supply cable with plug SET-M3-A with $8 \times 1.5 \mathrm{~mm}^{2}$ contacts


## Electronic motor starters and drives

Rapid Link system

|  |  <br> SET-M3/... | $\begin{aligned} & M \\ & 3 \sim \end{aligned}$ | $\begin{array}{r} \vartheta 44 \\ -\boxed{5}- \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | U | - | - |
| - | - | - | - | - |
| 3 | 3 | W | - | - |
| 4 | 5 | - | - | B1 (~/-) |
| 5 | 6 | - | T1 | - |
| 6 | 4 | - | - | B2 ( $\sim+$ ) |
| 7 | 2 | V | - | - |
| 8 | 7 | - | T2 | - |
| PE | PE | PE | - | - |

Motor connection without thermistor


Motor connection with thermistor


If motors are connected without PTC thermistor (thermoclick), cables 6 and 7 must be linked at the motor; otherwise the RA-MO issues a fault message.

## Electronic motor starters and drives

Rapid Link system

## Note:

The two connections illustrated below apply only for motor control unit RA-MO.
Connecting a 400 V AC brake:


Connecting a 400 V AC brake with rapid braking:


For controlling braking motors, their manufacturers provide braking rectifiers, which are fitted in the motor terminal strip. If the DC circuit is opened at the same time, the voltage at the braking coil drops off much quicker, causing the motor to also brake more quickly.

## Electronic motor starters and drives

## Rapid Link system

## Speed Control Unit RA-SP

Speed control unit RA-SP is used for electronic variable speed control of three-phase motors.

## Note:

Unlike the other Rapid Link system devices, the RA-SP speed control unit's enclosure is fitted with a heat sink and requires an EMC-conformant mounting and connection.

## Connections

Speed control unit RA-SP is supplied ready for connection. The connection to the AS-Interface ${ }^{\circledR}$ data bus and the motor is described below. The connection to the power bus is described in the earlier general section "Rapid Link system".


The unit is connected to AS-Interface® through an M12 plug with the following PIN assignment:

| M12 plug | PIN | Function |  |
| :--- | :--- | :--- | :--- |
|  | $\frac{1}{2}$ |  |  |

On the RA-SP the motor feeder features a metal-encapsulated socket. To meet EMC requirements, this is connected with PE and heat sink over a large area. The matching plug is also metal-encapsulated and the motor cable is screened. The length of the motor cable is limited to 10 m . The motor cable's screen must have a large-area connection with PE at both ends, and the motor connection terminals must also, therefore, meet EMC requirements.
The motor is connected through a halogen-free $4 \times 1.5 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)$, screened, DESINA-conformant motor supply cable with a length of 2 m , (SET-M4/2-HF) or 5 m , (SET-M4/5-HF).
Alternatively you can assemble your own motor supply cable with plug SET-M4-A, with $4 \times 1.5 \mathrm{~mm}^{2}+4 \times 0.75 \mathrm{~mm}^{2}$ contact.


Electronic motor starters and drives
Rapid Link system

2

|  |  <br> Servo cable SET-M4/... |  | $\begin{array}{r} \vartheta 44 \\ -\square \end{array}$ | $\begin{aligned} & \text { RA-SP2-... } \\ & 341-\ldots \\ & 400 \mathrm{VAC} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | U | - | - | - |
| - | - | - | - | - | - |
| 3 | 3 | W | - | - | - |
| 4 | 5 | - | - | B1 (~) | B1 (~) |
| 5 | 7 | - | T1 | - | - |
| 6 | 6 | - | - | B2 (~) | B2 (~) |
| 7 | 2 | V | - | - | - |
| 8 | 8 | - | T2 | - | - |
| PE | PE | PE | - | - | - |

## Electronic motor starters and drives

Rapid Link system



For controlling braking motors, their manufacturers provide braking rectifiers, which are fitted in the motor terminal strip.

Note:
When using speed control unit RA-SP, do not connect the braking rectifier directly to the motor terminals (U/V/W)!

[^1]Notes
Page
RMQ ..... 3-2
Signal towers SL ..... 3-8
Position switches LS-Titan ${ }^{\circledR}$, AT ..... 3-10
Inductive proximity switches LSI ..... 3-17
Optical proximity switches LSO ..... 3-19
Capacitive proximity switches LSC ..... 3-20
Electronic position switches LSE-Titan ${ }^{\circledR}$ ..... 3-22
Analog electronic position switches ..... 3-23
New combinations for your solutions ..... 3-25

## Command and signalling devices RMQ

Commands and signals are the fundamental functions for controlling machines and processes. The required control signals are produced either manually by control circuit devices or mechanically by position switches. The respective application governs the degree of protection, the shape and colour.
Advanced technology has been used consistently
in the development of the new control circuit devices RMQ-Titan®. The use of LED elements and laser inscription throughout offer maximum reliability, efficiency and flexibility. In detail, this means:

- High-quality optics for a uniform appearance,
- Highest degree of protection up to IP67 and IP69K (suitable for steam-jet cleaning),
- Clear contrast using LED element lighting, even in daylight,
- 100.000 h, i.e.machine lifespan,
- Impact and vibration resistant,
- LED operating voltage from 12 to 500 V ,
- Low power consumption - only $1 / 6$ of filament lamps,
- Expanded operating temperature range -25 to $+70^{\circ} \mathrm{C}$,
- Light testing circuit,
- Built-in safety circuits for highest operational reliability and accessibility,
- Abrasion-proof and clearly contrasting laser inscription,
- Customer-specific symbols and inscriptions from 1 off,
- Text and symbols can be freely combined,
- Terminations using screws and Cage Clamp ${ }^{1)}$ throughout,
- Spring-loaded Cage Clamp terminals for reliable and maintenance free contact,
- Switching contacts suitable for use with electronic devices to EN 61131-2: $5 \mathrm{~V} / 1 \mathrm{~mA}$,
- Freely programmable switching behaviour on all selector switch actuators: spring-return/stay-put,
- All actuators in illuminated and non-illuminated version,
- Emergency-Stop buttons with pull- and turn-to-release function,
- Emergency-Stop buttons with lighting option for active safety,
- Contacts switch differing potentials,
- For use also in safety-related circuits using positive operation and positively opening contacts,
- Complying with industry Standard IEC/EN60947.

1) Cage Clamp is a registered trade mark of Messrs. WAGO Kontakttechnik GmbH, Minden.

RMQ16


Command and signalling devices
RMQ

RMQ-Titan ${ }^{\circledR}$ System Overview


## Command and signalling devices <br> RMQ

## RMQ-Titan ${ }^{\circledR}$

## Four-way pushbutton

Moeller has added more operator elements to its highly successful range of control circuit devices RMQ-Titan. They are modular in construction. Contact elements from the RMQ-Titan range are used. The front rings and front frames are of the familiar RMQ-Titan format and colour.

## Four-way pushbutton

The four-way pushbuttons enable users to control machines and systems in four directions of movement, with each direction of movement being assigned one contact element. The actuator has four individual button plates. They can be specifically selected for various applications and can be laser-inscribed to suit the customer's requirements.


## Joystick

The joystick has four precisely assigned positions. Each direction of movement is assigned one contact element. The joystick enables users to control machines and systems in four directions of movement.


## Selector switch actuators

The selector switch actuators have four positions. The actuator is available as rotary head or thumb-grip as required. One contact element is assigned to each On and each Off position.


## Labels

Moeller offers labels in various versions for all the operator elements. Versions available are:

- Blank,
- With direction arrows,
- With inscription 0-1-0-2-0-3-0-4.

In addition, customized inscriptions are possible. The software Labeleditor enables customized inscriptions to be designed and these can be subsequently applied to the labels by laser, permanently and proof against wiping off.


## Command and signalling devices <br> RMQ

Terminal markings and function numbers (conventional number/circuit symbol), EN 50013

20

11

02


21

12

03


Voltage versions with series elements



## Command and signalling devices <br> RMQ

## Circuit for light test

The test button is used to check operation of the indicator lights independently of the respective control state. Decoupling elements prevent voltage feedback.

M22-XLED-T for $U_{\mathrm{e}}=12$ to $240 \mathrm{~V} \mathrm{AC/DC}$ (also for light test with signal towers SL)

(1) Test button

1) Only for elements 12 to 30 V .

Command and signalling devices
RMQ

M22-XLED230-T for $U_{\mathrm{e}}=85$ to $264 \mathrm{~V} \mathrm{AC/50-}$
60 Hz

(1) Test button

1) For elements 85 to 264 V .


## Command and signalling devices

Signal Towers SL

## Signal Towers SL - everything under visual control at all times

Signal towers SL indicate machine states using visible and acoustic signals. Mounted on control panels or on machines, they can be reliably recognized as continuous light, flashing light, strobe light or acoustic indicator even from a distance, and dealt with as necessary.


## Product features

- Continuous light, flashing light, strobe light and acoustic indicator can be combined as required.
- Free programmability permits the actuation of five addresses.
- Simple assembly without tools by bayonet fitting.
- Automatic contacting by built-in contact pins.
- Excellent illumination by specially shaped lenses with Fresnel effect.
- Use of filament bulbs or LEDs as required.
- A large number of complete units simplifies selection, ordering and stock holding for standard applications.

The various colours of the light elements indicate the operating status in each case to IEC/EN 60204-1 an:
RED:
Dangerous state - Immediate action necessary

## YELLOW:

Abnormal status - monitor or action

## GREEN:

Normal status - no action necessary

## BLUE:

Discontinuity - action mandatory
WHITE:
Other status - can be used as required.

## Command and signalling devices

Signal Towers SL

## Programmability



Five signal lines from a terminal strip in the basic module run through each module. The module is addressed via a wire link (jumper) on each printed circuit board. Five different addresses can also be allocated several times.

Thus, for example, a red strobe light and in parallel with it an acoustic indicator can indicate and announce the dangerous status of a machine. Insert both jumpers into the same position on the pcb - and it's done!
$(\rightarrow$ section "Circuit for light test", page 3-6.)

Command and signalling devices
Position switches LS-Titan®, AT

|  | LS, LSM, ATO, ATR | AT4 | AT4/.../ZB |
| :---: | :---: | :---: | :---: |
| Standards | - IEC 60947, EN 60947, VDE 0660 $\rightarrow$ EN 50047 <br> - Dimensions <br> - Fixing dimensions <br> - Switching points <br> - Minimum IP65 | - IEC 60947, EN 60947, VDE 0660 $\rightarrow$ EN 50041 <br> - Dimensions <br> - Fixing dimensions <br> - Switching points <br> - IP65 | - IEC 60947, EN 60947, VDE 0660 $\rightarrow$ EN 50041 <br> - Dimensions <br> - Fixing dimensions <br> - Switching points <br> - IP65 |
| Suitable applications | - Also for use in safety circuits, by positive operation and positively opening contacts | - Also for use in safety circuits, by positive operation and positively opening contacts | - Safety position switches for protection of personnel <br> - With separate actuating element for protective guards <br> - Positive operation and positively opening contacts <br> - Approval by German Trade Association and SUVA (Swiss accident prevention authority) |
| Actuator | - Plunger <br> - Roller plunger <br> - Roller lever <br> - Angled roller lever <br> - Adjustable roller lever <br> - Actuating rod <br> - Spring rod actuator <br> - Operating heads adjustable in $90^{\circ}$ steps | - Plunger <br> - Roller head (adjustable in $90^{\circ}$ steps, can be operated vertically or horizontally) <br> - Roller plunger <br> - Roller lever <br> - Adjustable roller lever <br> - Actuating rod <br> - Spring rod actuator <br> - Operating heads adjustable in $90^{\circ}$ steps | - Coded actuating element <br> - Operating head: <br> - Adjustable in $90^{\circ}$ steps <br> - Can be actuated from both sides <br> - Actuating element - Convertible for vertical and horizontal fixing <br> - With triple coding |

Command and signalling devices
Position switches LS-Titan®, AT

|  | ATO-...-ZB | ATO-...ZBZ |
| :---: | :---: | :---: |
| Standards | - IEC 60947, EN 60947, VDE 0660 <br> - IP65 | - IEC 60947, <br> EN 60947, <br> VDE 0660 <br> - IP65 |
| Suitable applications | - Safety position switches for protection of personnel <br> - With separate actuating element for protective guards <br> - Positive operation and positively opening contacts <br> - Approved by German Trade Association and SUVA (Swiss Accident Insurance Institue) | - Safety position switches for protection of personnel <br> - With separate actuating element for protective guards <br> - Positive operation and positively opening contacts <br> - Electromagnetic interlocking <br> - Approved by German Trade Association and SUVA (Swiss Accident Insurance Institue) |
| Actuator | - Coded actuating element <br> - Operating head: <br> - Adjustable in $90^{\circ}$ steps <br> - Can be actuated from four sides and from above | - Coded actuating element <br> - Operating head: <br> - Adjustable in $90^{\circ}$ steps <br> - Can be actuated from four sides |

## Command and signalling devices

Position switches LS-Titan®, AT

## AT4/ZB, AT0-ZB safety position switches

Moeller safety position switches have been specially designed for monitoring the position of protective guards such as doors, flaps, hoods and grilles. They meet the requirements of the German Trade Association for the testing of positively opening position switches for safety functions (GS-ET-15). These reqquirements include:
"Position switches for safety functions must be designed such that the function used for protection cannot be changed or defeated by hand or by using simple tools." Simple tools include: pliers, screwdrivers, pins, nails, wire, scissors, pocket knives, etc.
In addition to these requirements, ATO-ZB position switches offer additional manipulation safety by means of an operating head which can rotate but cannot be removed.

## Positive opening

Mechanically operated position switches in safety circuits must have positively opening contacts (see EN 60947-5-1/10.91). Here, the term positive opening is defined as follows: "The execution of a contact separation as the direct result of a predetermined motion of the actuating element of the switch via non-spring operated parts (e.g. not dependent on a spring )".

Positive opening is an opening movement by which it is ensured that the main contacts of a switch have attained the open position at the same time as the actuating element assumes the Off position. Moeller position switches all meet these requirements.

## Certification

All Moeller safety position switches are certified by the German employers liability insurance association or by the Technical Monitoring Service (TÜV), Rheinland, and the Swiss accident prevention authority (SUVA).


Command and signalling devices
Position switches LS-Titan®, AT
"Personnel protection" by monitoring the protective device
AT0-ZB AT4/ZB


- Door open
- AT...-ZB switches off the power
- No danger



## Command and signalling devices

Position switches LS-Titan®, AT

## "Enhanced personnel protection" by monitoring and interlocking the protective device

 ATO-ZBZ

- Stop command
- Waiting time
- Machine stops
- Protective device on
- No danger



## ATO-...FT-ZBZ, spring-powered interlock (closed-circuit principle)


$\rightarrow$ Enhanced personnel protection with separate indication of the door position

1. Door closed

+ interlocked
$\rightarrow$ De-energized: even with mains failure or wire breakage: door interlocked = safe condition enable contact(21-22) closed

2. Releasing of door
$\rightarrow$ Applies voltage to coil (A1, A2) e.g. via zero-speed monitor, enabling contact (21-22) opens
3. Opening of door $\rightarrow$ Only possible once it is released. Door position contact (11-12) opens
4. Door open $\rightarrow$ Both contacts blocked in the open position, even where attempts are made to tamper using basic tools
5. Closing of door $\rightarrow$ Triple-coded actuator cancels blocking of the enabling contact. Door position contact (11-12) closes
6. Interlocking of door
$\rightarrow$ Disconnects coil voltage:
7. Actuator, interlocked
8. Enabling contact closed
$\rightarrow$ Enable only, when door interlocked

Command and signalling devices
Position switches LS-Titan ${ }^{\circledR}$, AT

## "Process protection"



- Stop command
- Waiting time
- Process sequence ended
- Protective device on
- Product satisfactory

ATO-...MT-ZBZ, magnet-powered interlock (open-circuit principle)


Process protection + personnel protection with separate indication of the door position

1. Door closed + interlocked
2. Releasing of door
3. Opening of door
$\rightarrow$ Energized: enables immediate access in the event of mains failure and wire breakage. Both contacts closed
$\rightarrow$ Disconnects power from coil (A1, A2) e.g. via zero-speed monitor, enabling contact (21-22) opens
$\rightarrow$ Only possible once it is released. Door position contact (11-12) opens
4.Door open
4. Closing of door
5. Interlocking of door
$\rightarrow$ Both contacts blocked in the open position, even where attempts are made to tamper using basic tools
$\rightarrow$ Triple-coded actuator cancels blocking of the enabling contact. Door position contact (11-12) closes
$\rightarrow$ Applies coil voltage:
6. Actuator, interlocked
7. Enabling contact closed
$\rightarrow$ Enabling possible only with the door interlocked

Command and signalling devices
Position switches LS-Titan®, AT
"Personnel protection" by monitoring of the protective device


ATR-.../TKG, ATR-.../TS

Closed

$\rightarrow$ Personnel protection

| Opening of hinged <br> protective cover | Enabling contact (21-22) <br> opening positively |
| :--- | :--- |
| Hinged protective cover <br> open | Enabling contact safely <br> open, even where <br> attempts are made to <br> tamper using basic tools |
| Closing of hinged <br> protective cover | Closes enabling contact <br> $(21-22)$ |

## Command and signalling devices

 Inductive proximity switches LSIThe inductive proximity switch operates on the principle of the attenuated LC oscillator: when metal enters the response range of the proximity switch, power is withdrawn from the system. The metal part causes an energy loss, which is caused by the formation of eddy currents. The eddy current losses are related to the size and nature of the metal part.
The change in the oscillation amplitude of the oscillator results in a current change, which is evaluated in the downstream electronics and is converted into a defined switching signal. A steady-state signal is available at the output of the unit, for the duration of the attenuation.

(1) Oscillator
(2) Rectifier
(3) Amplifier
(4) Output
(5) Power supply

## Properties of inductive proximity switches

The following details apply to all inductive proximity switches:

- Protective insulation to IEC 346/VDE 0100 or IEC 536,
- Degree of protection IP67,
- High operating frequency or switching frequency,
- Maintenance and wear-free (long service life),
- Resistant to vibration,
- Any required mounting position
- LED display indicates the switching or output status and simplifies adjustment during installation,
- Operational temperature range -25 to $+70^{\circ} \mathrm{C}$
- Oscillating load: cycle time 5 minutes, amplitude 1 mm in the frequency range 10 to 55 Hz ,
- Comply with IEC 60947-5-2,
- Have a steady-state output which remains activated as long as the unit is being attenuated
- Bounce-free switching behaviour in the microsecondsrange ( $10^{-6} \mathrm{~s}$ ).


## Switching distance S

The switching distance is the distance at which a metal part approaching the active surface effects a signal change at the output. The switching distance depends on:

- Direction of approach
- Parameter
- Material of the metal part

The following correction factors must be used for different materials:

| Steel (St 37) | $1.00 \times S_{n}$ |
| :--- | :--- |
| Brass | $0.35-0.50 \times S_{n}$ |
| Copper | $0.25-0.45 \times S_{n}$ |
| Aluminium | $0.35-0.50 \times S_{n}$ |
| High-grade steel | $0.60-1.00 \times S_{n}$ |

$S_{\mathrm{n}}=$ Rated switching distance

## Command and signalling devices

 Inductive proximity switches LSI
## AC operating mode

AC inductive proximity switches have two terminals. The load is connected in series with the sensor.


## DC operating mode

DC inductive proximity switches have three
terminals and are operated with a protective low voltage.
The switching behaviour can be determined more precisely, because the load is actuated via a separate output, and is independent of the load.


## Command and signalling devices

Optical proximity switches LSO

## Principle of operation

The optoelectronic sensors in the switch operate using modulated infrared light. Visible light therefore cannot affect their operation. Infrared light can penetrate even severe dirt on the optics, and thus ensures reliable operation. Proximity switch transmitters and receivers are matched to one another. The sensor receiver has an integral bandpass filter to amplify primarily the transmitted frequency. All other frequencies are attenuated. This gives the units good resistance to extraneous light. Precision plastic optics ensure long range and long sensing distances. There are two types of optical proximity switch, distinguished by their function.

## Reflected-light beam



The reflected-light beam transmits infrared light to the object being scanned, which reflects this light in all directions. The portion of this light which strikes the receiver ensures a switching signal is produced, assuming adequate intensity.
Evaluation takes place of "Reflection" and "No reflection". These states mean the same as presence or absence of an object in the sensing range. The degree of reflection of the object surface to be monitored affects the operating range $S_{d}$.

The following correction factors apply to different reflecting material characteristics.

| Material | Factor app. |
| :---: | :---: |
| Paper, white, matt, $200 \mathrm{~g} / \mathrm{m}^{2}$ | $1 \times S_{\text {d }}$ |
| Metal, gloss | $1.2-1.6 \times S_{\text {d }}$ |
| Aluminium, black, anodized | $1.1-1.8 \times S_{d}$ |
| Polystyrene, white | $1 \times S_{\text {d }}$ |
| Cotton, white | $0.6 \times S_{\text {d }}$ |
| PVC, grey | $0.5 \times S_{\text {d }}$ |
| Wood, untreated | $0.4 \times S_{\text {d }}$ |
| Card, black, gloss | $0.3 \times S_{\text {d }}$ |
| Card, black, matt | $0.1 \times S_{\text {d }}$ |

$S_{d}=$ Switching range

Reflected-light barrier


The unit transmits a pulsed infrared light beam, which is reflected by a triple reflector or mirror. The interruption in the light beam causes the unit to switch. Light barriers identify objects irrespective of their surface, as long as they do not have a gloss finish. The reflector size must be chosen such that the object to be detected virtually completely interrupts the light beam. Reliable detection is always achieved if the object is the same size as the reflector. The unit can also be set to detect transparent objects.

## Command and signalling devices

## Capacitive proximity switches LSC

## Principle of operation

The active area of a capacitive proximity switch LSC is formed by two concentrically arranged metal electrodes. You can imagine these as the electrodes of a capacitor that are opened up. The electrode surfaces of this capacitor are arranged in the feed-back branch of a high-frequency oscillator circuit. This is adjusted such that it will not oscillate when the surface is clear. When an object approaches the active surface of the proximity switch, it enters the electric field in front of the electrode surfaces. This effects a rise in the coupling capacitance between the plates and the oscillator begins to respond. The oscillation amplitude is monitored via an evaluation circuit and converted into a switching command.

(1) Oscillator
(2) Evaluation circuit
(3) Amplifier
(4) Output
(5) Power supply

A, B Main electrodes
C Auxiliary electrode

## Effects

Capacitive proximity switches are activated both by conductive as well as non-conductive objects. Metals achieve the greatest switching distances due to their high conductivity. Reduction factors for various metals, such as are necessary with inductive proximity switches, need not be taken into account.
Actuation by objects made of non-conductive materials (insulators):
When an insulator is brought between the electrodes of a capacitor, the capacitance rises relative to the dielectric constant $\varepsilon$ of the insulator. The dielectric constant for all solid and liquid materials is greater than that for air. Objects made of non-conductive materials affect the active surface of a capacitive proximity switch in the same way. The coupling capacitance is increased. Materials with a high dielectric constant achieve great switching distances.

## Note

When scanninng organic materials (wood, grain, etc.) it must be noted that the attainable switching distance is greatly dependent on their water content. $\left(\varepsilon_{\text {Water }}=80!\right)$

## Influence of environmental conditions

As can be seen from the following diagram, the switching distance $S_{\mathrm{r}}$ is dependent on the dielectric constant $\varepsilon_{\mathrm{r}}$ of the object to be monitored.
Metal objects produce the maximum switching distance (100 \%).
With other materials, it is reduced relative to the dielectric constant of the object to be monitored.

Command and signalling devices
Capacitive proximity switches LSC


The following table lists the dielectric constants $\varepsilon_{r}$ of some important materials. Due to the high dielectric value of water, the fluctuations with wood can be significant. Damp wood therefore is registered much more effectively by capacitive proximity switches than dry wood.

| Material | $\varepsilon_{r}$ |
| :---: | :---: |
| Air, vacuum | 1 |
| Teflon | 2 |
| Wood | 2 to 7 |
| Paraffin | 2.2 |
| Kerosene | 2.2 |
| Oil of terpentine | 2.2 |
| Transformer oil | 2.2 |
| Paper | 2.3 |
| Polyethylene | 2.3 |
| Polypropylene | 2.3 |
| Cable insulation | 2.5 |
| Soft rubber | 2.5 |
| Silicone rubber | 2.8 |
| Polyvinyl chloride | 2.9 |
| Polystyrene | 3 |
| Celluloid | 3 |
| Perspex | 3.2 |
| Araldite | 3.6 |
| Bakelite | 3.6 |
| Silica glass | 3.7 |
| Hard rubber | 4 |
| Oil-impregnated paper | 4 |
| Chipboard | 4 |
| Porcelain | 4.4 |
| Laminated paper | 4.5 |
| Quartz sand | 4.5 |
| Glass | 5 |
| Polyamide | 5 |
| Mica | 6 |
| Marble | 8 |
| Alcohol | 25.8 |
| Water | 80 |

## Command and signalling devices

Electronic position switches LSE-Titan®

## Switching point adjustable and variable

The switching point on electronic position switches LSE-Titan is adjustable and variable. Two high-speed and bounce-free PNP switching outputs enable high switching frequencies. The position switch is overload as well as conditionally short-circuit proof and has snap-action switching behaviour. This ensures a defined and reproduceable switching point. The switching point lies in the range from 0.5 to 5.5 mm (supplied as $=3 \mathrm{~mm}$ ).

Adjustment to a new switching point is carried out as follows:

Move the plunger from the original to the new switch position. For this purpose, press the setting button for 1 s . The LED now flashes with a high pulse frequency and the new switching point is retentively set.
In redundant structures, position switches LSE-Titan just like electromechanical position switches, achieve safety category 3 or 4 to EN 954-1, Safety of machinery.

## Note

This means that all the devices are also suitable for safety applications designed for personnel or process protection.
 $-\quad$

## Command and signalling devices

Analog electronic position switches

Analog electronic position switches
Two types are available:

- LSE-Al with current output,
- LSE-AU with voltage output.


## Analog, mechanically actuated position switches directly linked with the world of automation

Analog position switches LSE-AI ( 4 to 20 mA ) and LSE-AU (0 to 10 V ) represent another innovation in electronic position switches. Using them, it is now possible for the first time to monitor the actual position of a flue gas valve or an actuator continuously. The actual position is converted in analog fashion into voltage ( 0 to 10 V ) or current ( 4 to 20 mA ) and then continuously signalled to the electronics. Even objects of varying sizes or thicknesses, such as brake shoes, can be scanned and the results processed further.
Simple rotational-speed dependent control systems of fan motors or smoke-venting blowers signal the opening angle of the air damper (e.g. 25,50 or $75 \%$ ) and thus save power and material wear. The analog position switches also have a diagnosis output for further processing of
data. This means that the safe status can be monitored and analysed at all times. The position switch also has a self-test function. The outputs Q1 and Q2 are constantly scanned for overload, short circuit against 0 V and short circuit against $+U_{\mathrm{e}}$.

## Contact travel diagram

LSE-AI


LSE-AU


## Connection diagram



Command and signalling devices
Analog electronic position switches


## Circuit diagram

Normal scenario


Fault scenario

|  | LSE-AI | LSE-AU |
| :---: | :---: | :---: |
| Q1 | 0 mA | 0 V |
| Q2 | 0 V | 0 V |
| LED | LED | $\operatorname{LED} \uparrow$ |
| Reset | $+U_{\mathrm{e}} \uparrow$ | $+U_{\mathrm{e}} \uparrow$ |

## Command and signalling devices

New combinations for your solutions
RMQ-Titan ${ }^{\circledR}$ and LS-Titan®

(1) Operating heads in four positions, each turned by $90^{\circ}$, can be fitted subsequently.

## Actuating devices RMQ-Titan® simply snap fitted

Another unique feature is the possibility to combine control circuit devices from the RMQ-Titan range with the position switches LS-Titan. Pushbuttons, selector switches or Emergency-Stop buttons can all be directly snapped on to any position switch as operating head. The complete unit then has at least the high degree of protection IP66 at front and rear.

In addition, all the operating heads and the adapter for accepting the RMQ-Titan actuators have a bayonet fitting that enables quick and secure fitting. Using the bayonet fitting, the heads can be attached in any of the four directions $\left(4 \times 90^{\circ}\right)$.

Notes
Page
Overview ..... 4-2
ON-OFF Switches, main switches, maintenance switches ..... 4-3
Changeover switches, reversing switches ..... 4-5
(Reversing) star-delta switches ..... 4-6
Multi-speed switches ..... 4-7
Interlock circuits ..... 4-11
Meter selector switches ..... 4-12
Meter selector switches ..... 4-13
Heater switches ..... 4-14
Step switches ..... 4-15
Rotary switches and switch-disconnectors with ATEX approval ..... 4-17

## Rotary Switches

## Overview

## Use and mounting forms

Moeller rotary switches and switch-disconnectors are used as:
(1) Main switches, main switches used as Emergency-Stop devices,
(2) ON-OFF switches,
(3) Safety switches,
(4) Changeover switches,
(5) Reversing switches, star-delta switches, multi-speed switches,
(6) Step switches, control switches, coding switches, meter selector switches.

The following mounting forms are available:
(7) Flush mounting,
(8) Centre mounting,
(9) Surface mounting,
(10) Service distribution board mounting,
(11) Rear mounting.

Refer to the latest issue of our Main Catalogue for "Industrial Switchgear".
Other contact arrangements are listed in the K115 specialist catalog in addition to the switches listed in the Main Catalogue.

| Basic type | $\begin{aligned} & \hline \mathbf{P} \\ & {[K W]} \end{aligned}$ | $I_{u}$ <br> [A] | Use as |  |  |  | Mounting type |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
| TM | 3.0 | 10 | - | $\times$ | - | $\times$ | - | $\times$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - |
| T0 | 6.5 | 20 | $\times$ | $\times$ | - | $\times$ | $\times$ | $\times$ | + | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | + |
| T3 | 13 | 32 | $\times$ | $\times$ | - | $\times$ | $\times$ | - | + | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | + |
| T5b | 22 | 63 | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | - | + | - | $\bigcirc$ | - | + |
| T5 | 30 | 100 | $\times$ | - | $\times$ | $\times$ | - | - | + | - | $\bigcirc$ | - | + |
| T6 | 55 | 160 | $\times$ | - | - | $\times$ | - | - | - | - | + | - | + |
| T8 | 132 | 315 ${ }^{1 /}$ | $\times$ | - | - | $\times$ | - | - | - | - | + | - | + |
| P1-25 | 13 | 25 | $\times$ | $\times$ | $\times$ | - | - | - | + | $\bigcirc$ | + | $\bigcirc$ | + |
| P1-32 | 15 | 32 | $\times$ | $\times$ | $\times$ | - | - | - | + | $\bigcirc$ | + | $\bigcirc$ | + |
| P3-63 | 37 | 63 | $\times$ | $\times$ | $\times$ | - | - | - | + | - | + | $\bigcirc$ | + |
| P3-100 | 50 | 100 | $\times$ | $\times$ | $\times$ | - | - | - | + | - | + | $\bigcirc$ | + |
| P5-125 | 45 | 125 | $\times$ | $\times$ | - | - | - | - | + | - | - | - | + |
| P5-160 | 55 | 160 | $\frac{\times}{x}$ | $\frac{\times}{x}$ | - | - | - | - | + | - | - | - | + |
| P5-250 | 90 | 250 | $\frac{\times}{x}$ | $\frac{\times}{x}$ | - | - | - | - | $+$ | - | - | - | + |
| P5-315 | 110 | 315 | $\times$ | $\times$ | - | - | - | - | + | - | - | - | + |

P = Max. motor rating; 400/415 V; AC-23 A
$I_{u}=$ Max. rated uninterrupted current

1) In enclosed version (surface mounting), max. 275 A .

O Depending on the number of contact units, function and contact sequence. + Irrespective of the number of contact units, function and contact sequence.

## Rotary Switches

ON-OFF Switches, Main Switches, Maintenance Switches

ON-OFF switches, main switches

T0-2-1
P1-25
P1-32
P3-63
P3-100
P5-125


P5-160
P5-250
P5-315


FS 908

## Maintenance switches (safety switches) with auxiliary contacts

T0-3-15680


FS 908


P1-25/.../
P1-32/.../
P3-63/.../
P3-100/.../
...N/NHI11



FS 908

1) Load shedding contact

These switches can also be used as switch-disconnectors for lighting, heating or combined loads.
Main switches to IEC/EN 60204 for rear mounting switches with door interlock, padlocking feature, finger-proof incoming terminals, N and PE terminal, red thumb-grip handle (black, if required), warning label.
If it is not clear which drive is associated with which main switch, an additional maintenance switch is required close to each drive.


Maintenance switches are fitted to electrical machines or installations to provide safe working conditions in accordance with the safety regulations.
By attaching his own padlock to the SVB padlocking feature, the electrician can protect himself against anyone switching on without authorization ( $\rightarrow$ section "Circuit diagram example for maintenance switches with a load shedding contact and (or) switch position indicator", page 4-4).

## Rotary Switches

## ON-OFF Switches, Main Switches, Maintenance Switches

Circuit diagram example for maintenance $\quad$ TO(3)-3-15683 maintenance switch switches with a load shedding contact and (or) switch position indicator


P1: On
P2: Off
Q11: Load shedding
TO(3)-3-15683 circuit diagram

Function
Load shedding: When switching on, the main current contacts close first, then the contactor is activated via the late-make N/O contact. When switching off, the contactor is first disconnected by opening of the early-break contact, then the main contacts isolate the motor supply.

## Switch position

 indication: The position of the switch can be signalled to the control panel or mimic diagram panel via additional NO and NC contacts.

## Rotary Switches

Changeover Switches, Reversing Switches

## Changeover switches

T0-3-8212
T3-3-8212
T5B-3-8212
T5-3-8212
T6-3-8212
T8-3-8212


FS 684


## Reversing switches

T0-3-8401
T3-3-8401
T5B-3-8401
T5-3-8401


FS 684


## Rotary Switches

(Reversing) Star-Delta Switches

## Star-delta switches

T0-4-8410
T3-4-8410


T5B-4-8410
T5-4-8410
FS 635


## Reversing star-delta switches

T0-6-15877
T3-6-15877


FS 638


Multi-Speed Switches
2 speeds, non-reversing
Tapped winding arrangement
T0-4-8440
T3-4-8440
T5B-4-8440
T5-4-8440


FS 644


## 2 separate windings

T0-3-8451
T3-3-8451
T5B-3-8451
T5-3-8451


FS 644


## Rotary Switches

Multi-Speed Switches

## 2 speeds, reversing

## Tapped winding arrangement

T0-6-15866
T3-6-15866

FS 629
T5B-7-15866
T5-7-15866


FS 441


## 2 separate windings, reversing

 T0-5-8453T3-5-8453


FS 629


3 speeds, non-reversing
Tapped winding arrangement, single winding for low speed
T0-6-8455
T3-6-8455
T5B-6-8455
T5-6-8455


FS 616


## Rotary Switches

Multi-Speed Switches
3 speeds, non-reversing
Tapped winding arrangement, single winding for high speed
T0-6-8459
T3-6-8459
$0{ }^{1}-\sigma^{2}-3$

FS 616
4
T5B-6-8459
T5-6-8459


FS 420

$0-(B) \triangle-(B) Y Y-(A) Y$

## Rotary Switches Interlock Circuits

Interlock circuits between rotary switches and contactors with overload relays provide neat and economical solutions for many switching drive tasks. The following points are common to all interlock circuits:

Without mains disconnection (SOND 27)
Mains disconnection only by contactorprimarily for star-delta circuit


Interlock with contactor (SOND 29)
Contactor can be energized only when switch is in the Off position


- Protection against automatic restarting after a motor overload or power failure
- The facility for remote disconnection (e.g. emergency-stop) can be provided by one or more Off pushbuttons.

With mains disconnection (SOND 28)
Mains disconnection by contactor and switch


Interlock with contactor (SOND 30)
Contactor can be energized only when switch is in an operating position


## Rotary Switches

Single-Phase Starting Switches

Meter selector switches enable you to measure currents, voltages and power in three-phase systems with only one measuring device.

Numerous circuits are possible for the different measurements, some of the most common ones being shown below.

## Voltmeter selector switches

T0-3-8007
$3 \times$ phase to phase
$3 \times$ phase to neutral with " 0 " position


FS 1410759


## Ammeter selector switches

T0-5-15925
T3-5-15925
For direct measurement


FS 9440


## Rotary Switches

Meter Selector Switches

## Ammeter selector switches

T0-3-8048
T3-3-8048
For measurement via transformers, complete rotation possible


FS 9440


## Wattmeter selector switches

T0-5-8043
T3-5-8043
Two-phase method (Aron circuit) for three-cable installations loaded as required. The sum of the two readings gives the total output.


FS 953

The Aron circuit will give a correct result for four-cable systems only when the sum of the currents equals zero, i.e. only when the four-cable system is balanced.


## 1-pole disconnection, 3 steps

T0-2-8316
T3-2-8316
T5B-2-8316

FS 420


T0-2-15114, complete rotation possible


FS 193840

$\square \quad$ switched

- not switched

Further heater switches, 2- and 3-pole, with alternative circuitry, output stages, and number of steps are described in the Moeller Main Catalogue, Industrial Switchgear and in the catalogue K 115.

One step closed in each position, complete rotation possible
T0-6-8239
T3-6-8239


FS 301


4

## Stay-put switches

## On-Off stay-put switches

1-pole: T0-1-15401
2-pole: T0-1-15402
3-pole: T0-2-15403

${ }_{0}^{0}{ }^{1}$

FS 415

## Changeover switches

1-pole: T0-1-15421
2-pole: T0-2-15422
3-pole: T0-3-15423


FS 429


1-pole: T0-1-15431
2-pole: T0-2-15432
3-pole: T0-3-15433


On-Off stay-put switches (also usable as main switches, mains isolating device)
1-pole: T0-1-15521
2-pole: T0-2-15522
3-pole: T0-3-15523
With pulsed contact in the intermediate position


FS 908

## Rotary Switches

Rotary Switches and Switch-Disconnectors with ATEX Approval
What does ATEX stand for?
ATmosphéres EXplosibles = ATEX


Two standards

For operators: 1999/92/EC
(binding from 06/2006)

Explosion risk assessment
Gas, steam, Dust Ex risk
mist
Zone 0
Zone 1
Zone 2

Zone 20 continuous, frequent, long,
Zone 21 occasional
Zone 22 normally not, but otherwise for a short period

For manufacturers: 94/9/EC
(binding from 06/2003)

Device groups
Group Application field I Mining II everything apart from mining

Selection of devices by device groups

| Group | Category | Safety |
| :--- | :--- | :--- |
| I | M1 | very high |
| I | M2 | high |
| II | 1 | very high |
| II | 2 | high |
| II | 3 | normal |

## Rotary Switches

Rotary Switches and Switch-Disconnectors with ATEX Approval

## ATEX approval for Moeller

Moeller offers Trotary switches (from 32 to 100 A ) and $P$ switch-disconnectors (from 25 to 100 A ) in accordance with the binding ATEX Directive 94/6 EC (binding from 06/2006). The switches are provided with the equipment marking Ex II3D IP5X T90 ${ }^{\circ} \mathrm{C}$ and are approved for the Ex zone 22 in explosive dust atmospheres.
Explosive dust atmospheres are present in:

- Mills,
- Metal polishing workshops,
- Woodworking facilities,
- Cement industry,
- Aluminium industry,
- Animal feed industry,
- Grain storage and preparation,
- Agriculture,
- Pharmacy etc.

The ATEX switches are used as:

- Main switches
- Maintenance switches
- Repair switches,
- ON-OFF switches or,
- Changeover switches.

The following ATEX switches are available:

| Current range | T rotary switches | P switch-disconnectors |
| :---: | :---: | :---: |
| 25 A | - | P1-25/12 |
| 32 A | T3-.../12 | P1-32/12 |
| 63 A | T5B-.../14 | P3-63/14 |
| 100 A | T5-.../15 | P3-100/15 |

## Note

Moeller ATEX switches have passed the EC prototype test for main, maintenance and repair switches for the current ranges from 25 to 100 A . They are approved for explosive dust atmospheres in accordance with category II 3D, with the test number: BVS 04E 106X.
For further information see installation instructions AWA1150-2141.

## General installation and application notes

- Only suitable cable glands may be used for category 3D!
- Use only temperature resistant cables ( $>90^{\circ} \mathrm{C}$ )!
- The maximum surface temperature is $90^{\circ} \mathrm{C}$ !
- Operation only permissible at an ambient temperature between -20 and $+40^{\circ} \mathrm{C}$ !
- Observe the technical data of the switch used!
- Never open the device in dust explosive atmospheres!
- Observe the requirements of EN 50281-1-2!
- It should be checked that the device is free of dust prior to assembly!
- Do not open the device when energized!


## Page

| Contactor relays | $5-2$ |
| :--- | :---: |
| Time and special purpose relays | $5-8$ |
| Control relay easy, Multi Functions <br> Display MFD-Titan® $®$ | $5-12$ |
| Contactors DIL, Overload relays Z | $5-58$ |
| Contactors DIL | $5-60$ |
| Overload relays Z | $5-64$ |
| Electronic Motor Protective relay ZEV | $5-67$ |
| Thermistor Motor protection Device EMT6 | $5-74$ |
| Electronic Safety Relay ESR | $5-77$ |
| Measurement and Monitoring Relay EMR4 | $5-78$ |

## Contactors and Relays

## Contactor relays

## Contactor relays

Contactor relays are often used in control and regulating functions. They are used in large quantities for the indirect control of motors, valves, clutches and heating equipment.
In addition to the simplicity which they offer in project engineering, panel building, commissioning and maintenance, the high level of safety which they afford is a major factor in their favour.

## Safety

The contactor relay contacts themselves constitute a considerable safety feature. By design and construction they ensure electrical isolation between the actuating circuit and the operating circuit, in the de-energized state, between the
contact input and output. All Moeller contactor relays have double-break contacts.
The German Trade Associations demand that, for control systems of power-driven metalwork presses, the contacts of contactors must be interlocked. Interlocking means that the contacts are mechanically connected to one another such that break contacts and make contacts can never be closed simultaneously. At the same time, it is necessary to ensure that the contact gaps are at least 0.5 mm over the entire life, even when defective (e.g. when a contact is welded). The contactor relays DILER and DILA fulfil this requirement.

## Moeller contactor relays

Moeller offers two ranges of contactor relays as a modular system:

- Contactor relays DILER,
- Contactor relays DILA.
and the modules are described on the following pages.


## Modular system

The modular system has many advantages for the user. The system is formed around basic units, which are equipped with additional functions by means of modules. Basic units are intrinsically functional units, consisting of an AC or DC drive and four auxiliary contacts.

## Modules having auxiliary functions

Auxiliary contact modules having 2 or 4 contacts The combination of normally open and normally closed contacts is according to EN 50011. The auxiliary contact modules of the contactors DILEM and DILM cannot be snapped onto the basic device to prevent duplication of terminal markings e.g. contact $21 / 22$ on the basic unit and $21 / 22$ on the add-on auxiliary contact module.

## Contactors and Relays

## Contactor relays

## The system and the Standard

European Standard EN 50011 "Terminal markings, reference numbers and reference letters for certain contactor relays" has a direct bearing on the use and application of the modular system. There are various types, which the Standard differentiates between by means of reference numbers and reference letters, depending on the number and position of the make and break contacts in the device, and their terminal markings.
Ideally devices with the reference letter E should be used. The basic devices DILA-40, DILA-31, DILA-22 as well as DILER-40, DILER-31 and

For 6 and 8 pole contactor relays, the " $E$ " version means that four make contacts must be arranged in the lower/rear contact level. If, for example, the available auxiliary contact modules are used in the DILA-22 and DILA-3131, they result in contact combinations with reference letters X and Y .

Below are 3 examples of contactors with 4 normally open and 4 normally closed contacts with different reference letters. Version E is to be preferred.

## Example 3

DILA-XHI22

$$
\begin{aligned}
& -\left.\left.\right|_{54} ^{I^{53}} \underbrace{61}_{62} t_{72}^{71}\right|_{84} ^{83} \\
& + \\
& \text { DILA-22 }
\end{aligned}
$$


$\wedge 44 \mathrm{Y}$
DILA22/22

## Contactors and Relays

## Contactor relays

## Coil connections



DILER


DILA

On the top positioned terminals A1-A2 of the contactor DILER the following accessories are connected to limit the relay coil switch off voltage peaks:

- RC suppressors
- Diode suppressors
- Varistor suppressors


## Suppressor circuits

Electronic equipment is nowadays being increasingly used in combination with conventional switching devices such as contactors. This equipment includes programmable logic controllers (PLCs) timing relays and coupling modules, whose operation can be adversely affected by disturbances from interactions between all the components.
One of the disturbance factors occurs when inductive loads, such as coils of electromagnetic switching devices, are switched off. High cut-off induction voltages can be produced when such devices are switched off and, under some circumstances, can destroy adjacent electronic devices or, via capacitive coupling mechanisms, can generate interference voltage pulses and thus cause disruptions in operation.

On the contactor relay DILA the coil connection A1 is at the top and A2 at the bottom. As suppressor circuits the following are connected on the front :

- RC suppressors
- Varistor suppressors

The DC operated contactors DILER and DILA have an integrated suppressor circuit.

Since interference-free disconnection is impossible without an accessory, the coils may be connected to a suppressor module, depending on the application. The advantages and disadvantages of the various suppressor circuits are explained in the following table.

Notes

Contactors and Relays

## Contactor relays

| Circuit diagram | Load current and <br> voltage responses | Proof <br> against <br> incorrect | Addi- <br> tional <br> dropout | Induction <br> voltage <br> limiting |
| :--- | :--- | :--- | :--- | :--- |
|  |  | connec- <br> tion also | delay | defined |


|  |   | - | Very long | 1 V |
| :---: | :---: | :---: | :---: | :---: |
|  |   | - | Medium | $U_{\text {ZD }}$ |
|  |  | Yes | Short | $U_{\text {VDR }}$ |
|  |   | Yes | Short | - |

## Contactors and Relays

## Contactor relays



## Contactors and Relays

Timing and special purpose relays

Electronic timing relays are used in contactor control systems which require short reset times, high repetition accuracy, high switching frequency, and a long component lifespan. Times between 0.05 s and 100 h can be easily selected and set.
The switching capacity of electronic timing relays corresponds to the utilisation categories AC 15 and DC 13.
In terms of the actuating voltages there are with timing relays the following differences:

- Version A (DILET... and ETR4) Universal devices:
DC 24 to 240 V
AC 24 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
- Version W (DILET... and ETR4)

AC devices:
AC 346 to $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

- ETR2... (as row mounting device to DIN 43880)
Universal device:
DC 24 to 48 V
AC 24 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
The functions of each of the timing relays are as follows:
- DILET11, ETR4-11,ETR2-11

Function 11 (on-delayed)

- ETR2-12

Function 12 (off-delayed)

- ETR2-21

Function 21 (fleeting contact on energisation)

- ETR2-42

Function 42 (flashing, pulse initiating)

- ETR2-44

Function 44 (flashing, two speeds; can be set to either pulse initiating or pause initiating)

- Multifunction relay DILET70, ETR 4-69/70

Function 11 (on-delayed)
Function 12 (off-delayed)
Function 16 (on and off delayed)
Function 21(fleeting contact on energisation)
Function 22 (fleeting contact on de-energisation)
Function 42 (flashing, pulse initiating)

- Function 81 (pulse generating)

Function 82 (pulse shaping)
ON, OFF

- Multifunction relay ETR2-69

Function 11 (on-delayed)
Function 12 (off-delayed)
Function 21 (fleeting contact on energisation)
Function 22 (fleeting contact on de-energisation)
Function 42 (flashing, pulse initiating)
Function 43 (flashing, pause initiating)
Function 82 (pulse forming)

- Star/delta timing relay ETR4-51

Function 51 (on delayed)
With both DILET70 and ETR4-70 an external potentiometer can be connected. Upon connection, both timing relays automatically recognize that a potentiometer is fitted. The ETR4-70 has a special feature. Equiped with two change-over contacts which can be converted to two timing contacts 15-18 and 25-28 (A2-X1 bridged) or one timing contact 15-18 and a non-delayed contact 21-24 (A2-X1 not bridged). If the link A2-X1 is removed, only the timed contact 15-18 carries out the functions described below.

## Contactors and Relays

Timing and special purpose relays

## Function 11

On-delayed


The control voltage $U s$ is applied via an actuating contact to the terminals A1 and A2.
After the set delay time the change-over contact of the output relay goes to the position 15-18 (25-28).

## Function 12

Off-delayed


After the control voltage has been applied to the terminals A1 and A2, the changeover contact of the output relay remains in the original position 15-16 (25-26). If the terminals Y1 and Y2 in the DILET70 are linked by a potential-free make contact or, in the case of the ETR4-69/70 or ETR2-69, a potential is applied to B1, the changeover contact changes without delay to the position 15-18 (25-28).
If the connection between the terminals $\mathrm{Y} 1-\mathrm{Y} 2$ is now interrupted, or B1 is separated from the potential, once the set time has elapsed, the changeover contact returns to it's original position 15-16 (25-26).

## Function 16

On- and Off-delayed


The control voltage $U s$ is applied directly to the terminals A 1 and A 2 . If the terminals Y 1 and Y 2 in the DILET70 are linked by a potential-free contact, or in the case of of the ETR4-69/70 a potential is applied to B1, after a set time $t$ the changeover contact goes to the position 15-18 (25-28). If the connection $\mathrm{Y} 1-\mathrm{Y} 2$ is now interrupted, or B1 is separated from the potential, the changeover contact goes back to it's original position 15-16 (25-26) after the same time $t$.

Function 21
Fleeting contact on energization


After the voltage Us has been applied to A1 and A2, the changeover contact of the output relay goes to position 15-18 (25-28) and remains actuated for as long as the set fleeting contact time.
A fleeting pulse (terminals 15-18, 25-28) of defined duration is therefore produced from a two-wire control process (voltage on A1/A2) by this function.

## Contactors and Relays

Timing and special purpose relays

## Function 82

Pulse forming


After the control voltage has been applied to A1 and $A 2$, the changeover contact of the output relay remains in the rest position 15-16 (25-26). If the terminals Y 1 and Y 2 in the DILET70 are linked by a potential-free contact, or in the case of the ETR4-69/70 or ETR2-69, a potential is applied to B1, the changeover contact changes without delay to the position 15-18 (25-28).
If $\mathrm{Y} 1-\mathrm{Y} 2$ is now opened again, or B 1 is separated from the potential, the changeover contact remains actuated until the set time has elapsed. If, instead, Y1-Y2 remain closed or B1 is separated from the potential for longer, the output relay likewise changes back to its rest position after the set time. An output pulse of precisely defined duration is thus produced in the pulse-forming function, irrespective of whether the input pulse via Y1-Y2 or B1 is shorter or longer than the set time.

## Function 81

Pulse generating with fixed pulse


The actuating voltage is applied to the terminals A1 and A2 via an actuating contact. After the set delay time has elapsed the changeover contact of the output relay goes to position 15-18 (25-28) and returns to it's original position 15-16 (25-26) after 0.5 s . This function is therefore a fleeting pulse with a time delay.

## Function 22

Fleeting contact on de-energization


The control voltage $U_{5}$ is applied directly to A 1 and A2. If the terminals Y 1 and Y 2 of the DILET70, that have been shorted (DILET-70 potential-free) before at a convienient time, are opened again (or for ETR4-69/70 or ETR2-69 the contact B1 again potential-free) the contact 15-18 (25-28) closes for the duration of the set time.

## Function 42

Flashing, pulse initiated


After the voltage $U s$ has been applied to A 1 and A 2 , the changeover contact of the output relay changes to position 15-18 (25-28) and remains actuated for as long as the set flashing time. The subsequent pause duration corresponds to the flashing time.

Contactors and Relays
Timing and special purpose relays

## Function 43

Flashing, pause initiated


After the voltage $U_{5}$ has been applied to $A 1$ and A2 the change-over contact of the output relay stays in position 15-16 for the set flashing time and after the duration of this time goes to position 15-18 (the cycle begins with a pause phase).

## Function 44

Flashing, two speeds


After the voltage $U_{5}$ has been applied to $A 1$ and A2 the changeover contact of the output relay goes to position 15-18 (pulse begin). By bridging the contacts A1 and Y1 the relay can be switched to pause begin. The times $t_{1}$ and $t_{2}$ can be set to different times.

## Function 51 Star-delta

On-delayed


When the control voltage $U_{s}$ is connected to A1 and A2 the instantaneous contact goes to position $17-18$. After the set time duration the instantaneous contact opens and the timing contact 17-28 closes after a changeover time $t_{\mathrm{u}}$ of 50 ms .

## On-Off Function



The On-Off function allows the operation of a control system to be tested and is an aid, for example, for commissioning. The Off function allows the output relay to be de-energized and it no longer reacts to the functional sequence. The On function energizes the output relay. This function is dependent on the supply voltage being applied to the terminals A1/A2. The LED indicates the operational status.

Contactors and Relays

## Control relay easy, Multi Function Display MFD-Titan®

## Control relay easy



## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
1 Basic unit easy512
2 Basic unit, expandable easy719, easy721
3 Basic unit, expandable easy819, easy820, easy821, easy822
4 Multi Function Display MFD-Titan, expandable
5 Expansion unit easy618, easy620
6 Expansion unit easy202
7 Coupling unit easy200 for remote expansion of easy700, easy800 and MFD-Titan
8 Network module PROFIBUDS-DP; EASY204-DP
9 Network module AS-Interface; EASY205-ASI
10 Network module CANopen; EASY221-CO
11 Network module DeviceNet; EASY222-DN
12 Data plug EASY-LINK-DS

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®


## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
1 Basic unit easy512
2 Basic unit, expandable easy719, easy721
3 Basic unit, expandable easy819, easy820, easy821, easy822
4 Multi Function Display MFD-Titan
5 Power supply/communication module MFD-CP4-800
6 Power supply/communication module MFD-CP4-500

## Contactors and Relays

## Control relay easy, Multi Function Display MFD-Titan®

## Programming instead of wiring

Circuit diagramms are the basis of all electrotechnical applications. In practice electrical devices are wired to each other. With the control relay easy it is simply by pushbutton or with easy to use easy-soft... by computer. Simple menu operation in many languages simplify the input. That saves time and therefore costs. easy and MFD-Titan are the professionals for the world market.

"Remote" Display - Text display for easy500, easy700, easy800 in IP65


Using Plug \& Work the display MFD-80.. is connected via the supply and communication module MFD-CP4.. to the easy. The MFD-CP4.. has an integrated, 5 m long connection cable. Advantage: No software or driver is necessary for connection. The MFD-CP4.. offers real Plug \& Work. The input and output wiring is connected to the easy. The MFD-80.. is mounted into two 22.5 mm mounting holes. The IP65 display is backgound illuminated and easily readable. Individual labeling of the displays is possible.

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Control relay easy500 and easy700


easy500 and easy700 have the same functions. easy700 offers more inputs and outputs, is expandable and can be connected to a standard bus system. The series and parallel linking of contacts and coils takes place in up to 128 current paths. Three contacts and and a coil in series. The display of 16 operating and report texts is via an internal or external display.
The main functions are:

- Multi-function timing relay
- Current impulse relay,
- Counter
- forwards and backwards,
- Fast counter,
- Frequency counter,
- Operational time counter,
- Analog value comparator,
- Week and year time switch,
- Automatic summertime changeover,
- Remanent actual values of markers, numbers and timing relays.

MFD-Titan and easy800


MFD...CP8... und easy 800 have the same functions. MFD-80.. with IP65 they can be used in harsher environments. In addition for expansion and connection to standard bus systems 8 easy800 or MFD-Titan can be networked via easyNet. The series and parallel linking of contacts and coils takes place in up to 256 current paths. Four contacts and a coil in series. The display of 32 operating and report texts is via an internal or external display.
Extra to the functions offered by easy700 the easy800 and the MFD-Titan offers:

- PID controller,
- Arithmetic modules,
- Value scaling,
- and much more.

Individual labeling of the MFD-80 is possible.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

## Power supply connection

for AC devices


Basic unit
EASY512-AB-..
EASY719-AB-
EASY512-AC-...
EASY719-AC-...
EASY811-AC-...

MFD-AC-CP8-...
Expansion devices
EASY618-AC...

24 V AC
24 V AC
115/230 V AC
115/230 V AC
115/230 V AC
$115 / 230$ V AC
$115 / 230$ V AC
for DC devices


## Basic units

EASY512-DA-... 12 V DC
EASY719-DA-... 12 V DC
EASY512-DC-... 24 V DC
EASY719-DC-... 24 V DC
ASY819-DC-... 24 V DC
EASY82.-DC-... 24 V DC
MFD-CP8-... 24 V DC
Expansion devices
$\begin{array}{ll}\text { EASY618-DC... } & 24 \text { V DC } \\ \text { EASY620-DC... } & 24 \text { V DC }\end{array}$

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

## Digital input connection of the AC devices


(1) Input signal via relay contact e.g. DILER
(2) Input signal via pushbutton RMQ Titan
(3) Input signal via position switch e.g. LS Titan
(4) Conductor length 40 to 100 m for input without additional switching (e.g. easy700 I7, 18 already has addition switching, possible conductor length 100 m )
(5) Increasing the input current
(6) Limiting the input current
(7) Increasing the input current with EASY256-HCI
(8) EASY256-HCI

Note

- Due to the input circuitry the drop-out time of the input is increased.
- Length of input conductor without addtional switching $\leqq 40 \mathrm{~m}$, with additional switching $\leqq 100 \mathrm{~m}$.


## Contactors and Relays

## Control relay easy, Multi Function Display MFD-Titan®

## Digital input connection of the DC devices


(1) Input signal via relay contact e.g. DILER
(2) Input signal via pushbutton RMQ Titan
(3) Input signal via position switch e.g. LS Titan
(4) Proximity switch, three wire
(5) Proximity switch, four wire

## Note

- With conductor length consider also the volt-drop.
- Due to the high residual currents don't use two wire proximity switches.


## Contactors and Relays

## Control relay easy, Multi Function Display MFD-Titan®

## Analogue inputs

Depending upon the device two or three 0 to 10 V inputs are available.
The resolution is $10 \mathrm{Bit}=0$ to 1023 .
Valid:
\(\left.\left.$$
\begin{array}{l}17=1 A 01 \\
18=I A 02\end{array}
$$\right] \quad \begin{array}{l}EASY512-AB/DA/DC... <br>
111=I A 03 <br>

112=I A 04\end{array}\right]\)\begin{tabular}{l}
EASY719/721-AB/DA/DC... <br>

| EASY819/820/821/822-DC... |
| :--- |
| MFD-R16, MFD-R17. |
| MFD-T16, MFD-TA17 |

\end{tabular}

## Caution!

Analogue signals are more sensitive to interferance than digital signals, therefore the signal cables should be carefully routed and connected. Inappropriate connections can lead to unwanted switching conditions.

- Use screened, twisted pair conductors, to stop interference of the analogue signals.
- With short conductor lengths earth the screen on both sides and fully. With a conductor length of approx. 30 m the earthing on both sides can lead to circulating currents between the earthing points and interference of the analogue signals. In this case only earth the conductor on one side.
- Don't lay the signal conductor parallel to the power conductor.
- Inductive loads that must be switched by easy should be connected to a seperate power supply or a suppressor circuit should be used for motors and valves. Supplying loads such as motors, magnetic valves or contactors and easy from the same power supply can by switching lead to interference of the anologue input signal.


## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
Connection of power supply and analogue inputs for easy..AB device


Note
easy..AB devices that process analogue signals must be supplied via a transformer so that there is a galvanic seperation from the mains supply. The neutral conductor and the reference potential of DC supplied analogue sensors must be galvanically connected.

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
Analogue input connections to easy...DA/DC-... or MFD-R.../T...

(1) Setpoint device via separate power supply and potentiometer $\leqq 1 \mathrm{k} \Omega$, e.g. $1 \mathrm{k} \Omega, 0.25 \mathrm{~W}$
(2) Setpoint device with upstream resistance $1.3 \mathrm{k} \Omega, 0.25 \mathrm{~W}$, potentiometer $1 \mathrm{k} \Omega, 0.25 \mathrm{~W}$ (value for 24 V DC)
(3) Temperature monitoring via temperature sensor and transducer
(4) Sensor 4 to 20 mA mit resistor $500 \Omega$

## Note

- Pay attention to the differing number and designation of the analogue inputs of each device type.
- Connect the 0 V of the or the MFD-Titan with the 0 V of the power supply of the analogue encoder.
- sensor of $4(0)$ to 20 mA and a resistance of $500 \Omega$ give the following approx. values:
$-4 \mathrm{~mA} \approx 1.9 \mathrm{~V}$,
$-10 \mathrm{~mA} \approx 4.8 \mathrm{~V}$,
$-20 \mathrm{~mA} \approx 9.5 \mathrm{~V}$.
- Analogue input 0 to 10 V , Resolution 10 Bit , 0 to 1023.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
Connection "fast counter", "frequency generator"and "incremental encoder" for easy...DA/DC devices or MFD-R.../-T...

(1) Fast counter, square wave signal via proximity switch, pulse pause relationship should be 1:1 easy500/700 max. 1 kHz easy800 max. 5 kHz MFD-R/T... max. 3 kHz
(2) Square wave signal via frequency generator, pulse pause relationship should be 1:1
easy500/700 max. 1 kHz
easy800 max. 5 kHz
MFD-R/T... max. 3 kHz

(3)
(3) Square wave signal via incremental encoder 24 V DC
easy800DC... and MFD-R/T... max. 3 kHz

## Note

Pay attention to the different number and designation of the inputs of the "fast counter", "frequency generator" and "incremental encoder" for each device type.

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
Connection of relay outputs for easy and MFD-Titan


Protection operating potential L..

(1) Lamp, max. 1000 W at $230 / 240 \mathrm{~V} \mathrm{AC}$
(2) Fluorescent tube, max. $10 \times 28 \mathrm{~W}$ with electronic starter, $1 \times 58 \mathrm{~W}$ with conventional starter at $230 / 240 \mathrm{~V} \mathrm{AC}$
(3) AC motor
(4) Valve
(5) Coil
$\leqq 8$ A/B16
Possible AC voltage range:
24 to $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
z. B. L1, L2, L3 phase against neutral

## Possible DC voltage range:

12 to 300 V DC

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
Connection from transistor outputs for easy and MFD-Titan

(1)


Contactor coil with zener diode as suppressor, 0.5 A bei 24 V DC
(2)


Valve with diode as suppressor, 0.5 A at 24 V DC
(3)


Resistor,
0.5 A at 24 V DC
(4)


Indicator lamp 3 or 5 W at 24 V DC, Output dependant upon device types and outputs

## Note

When switching off inductive loads the following should be considered:
Suppressed inductances cause less interference in the total electrical system. It is generally recommended to connect the suppressor as close as possible to the inductance.
When the inductances are not suppressed, then : several inductances must not be switched off at the same time, so that in the worst case the driver block does not overheat. Should, in an emergency stop situation the +24 V DC supply be switched off by another contact and thereby more than one controlled output be switched off, the inductances must have a suppressor.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

## Parallel switching



## Note

The outputs may only be switched parallel within a group (Q1 to Q4 or Q5 to Q8, S1 to S4 or S5 to S8) ; e.g. Q1 and Q3 or Q5, Q7 and Q8. Parallel switched outputs must be similtaneously energised.

when 4 outputs in parallel, max. 2 A at 24 V DC
when 4 outputs in parallel, max. 2 A at 24 V DC Inductance without suppression max. 16 mH

12 or 20 W at 24 V DC
Output dependant upon device types and outputs
(1) Resistor

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
Connection of analogue outputs for EASY820-DC-RC..., EASY822-DC-TC..., MFD-RA... and MFD-TA...

(1) Servo valve control
(2) Set value sekection for drive control

## Note

- Analogue signals are more sensitive to interferance than digital signals, therefore the signal conductors should be carefully routed. Inappropriate connections can lead to unwanted switching conditions.
- Analogue output 0 to 10 V , Resolution 10 Bit , 0-1023.


## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Expansion of the input and output points for easy and MFD-Titan

To expand the input and output points there are various solutions:

## Central expansion, to 40 I/O

easy700, easy800 and MFD-Titan can be expanded via easy202, easy618 or easy620. Here there are a maximum of 24 inputs and 16 outputs available. An expansion of the basic device is possible.

## Decentral expansion, to 40 I/O

easy700, easy800 and MFD-Titan can be expanded via the coupling module easy200-EASY with easy618 or easy620. The expansion device can be operated up to 30 m from the basic device. There are a maximum of 24 inputs and 16 outputs available. An expansion of the basic device is possible.

Networking via EASY-Net, up to 320 I/O
When expanding the inputs and outputs via EASY-Net eight easy800 or MFD-Titan can be connected to each other. Every easy800 or MFD-Titan can be extended with an expansion device. 1000 m Network length is possible. There are two types of operation:

- One master (position 1, device address 1) plus up to 7 further devices. The programme is in the master.
- One master (position 1, device address 1) plus up to 7 further "intelligent" or
"non-intellegent" devices. Every "intelligent" device has a programme.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
Central and decentral expansion for the basic devices easy700, easy800 and MFD-Titan


5


Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
EASY-NET, Network connection "through the device"


「 - 〕 EASY-LINK-DS

- Addressing the devices:
- Automatic addressing of device 1 or via EASY-SOFT... by PC, geographic location = device,
- Single addressing on the corresponding device or via EASY-SOFT... on each device, geographic location and device can be different.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

## EASY-NET, Network connection "T piece with spur cable"



「 - 〕 EASY-LINK-DS

- Addressing the devices:
- Single addressing on corresponding device or via EASY-SOFT... on every device.
- The max. total length, including spur cables, with EASY-NET is 1000 m .
- The max. length of T pieces to easy 800 or to MFD-Titan is $0,30 \mathrm{~m}$.

| Geographic location, position ${ }^{1)}$ | Device Example 1 | Example 2 |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 2 | 3 |
| 3 | 3 | 8 |
|  | $\overline{-} \overline{8}-1$ | $\left(\frac{-1}{2}-1\right.$ |

1) The geographic location/place 1 always has the device address 1.

- Should EASY-NET be interrupted between the T piece and the device, or a device is not operational, the network is still active to any further device.
- 4 core cable unscreened, each two cores twisted. Three cores are required.
Characteristic impedance of the cable must be $120 \Omega$.


## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Network connection

## Sockets RJ 45 and plug

Connection layout of socket RJ 45 on easy and MFD-Titan.


Connection layout of plug RJ45 on easy and MFD-Titan.

(1) Cable entry side

8 pole RJ 45, EASY-NT-RJ 45

## Layout with EASY-NET

PIN 1; ECAN_H; Data conductor; conductor pair A
PIN 2; ECAN_L; Data conductor; conductor pair A
PIN 3; GND; ground conductor; conductor pair B
PIN 4; SEL_IN; Select conductor; conductor pair B

## Configuration of the network cable for EASY-NET

The network cable does not need to be screened. The characteristic impedance of the cable must be $120 \Omega$.


## Note

The minimal operation with easy-NET functions with the conductors ECAN_H, ECAN_L, GND. The SEL_IN conductor is solely for automatic addressing.

## Bus terminal resistor

A bus terminal resistor must be connected to the geographical first and last device in the network:

- Value of the bus terminal resistor $124 \Omega$,
- Connect to PIN 1 and PIN 2 of the RJ-45 plug,
- Connection plug : EASY-NT-R.

Pre-finished conductors, RJ45 plug on both ends

| Conductor length <br> $[\mathrm{cm}]$ | Part reference |
| :--- | :--- |
| 30 | EASY-NT-30 |
| 80 | EASY-NT-80 |
| 150 | EASY-NT-150 |

## Contactors and Relays

## Control relay easy, Multi Function Display MFD-Titan®

## Freely useable conductors

$100 \mathrm{~m} 4 \times 0.14 \mathrm{~mm}^{2}$; twisted in pairs:
EASY-NT-CAB
RJ-45 plug:
EASY-NT-RJ 45
Crimping tool for RJ-45 plug: EASY-RJ45-TOOL.

## Calculation of cross section when conductor length is known

The minimum cross section is calculated for the know maximum use of the network.

## $l \quad=$ Length of conductor in m

$S_{\text {min }}=$ minimum cross section in $\mathrm{mm}^{2}$
$5 \rho_{\mathrm{cu}}=$ specific resistance of copper, when nothing else given $0,018 \Omega \mathrm{~mm}^{2} / \mathrm{m}$
$S_{\min }=\frac{l \times \rho_{\mathrm{cu}}}{12.4}$

## Note

When the result of the calculation doesn't give a normal cross section use the next highest normal cross section.

Calculation of conductor length when the cross section is known
For a known conductor cross section the maximum conductor length is calculated.
$l_{\text {max }}=$ Length of conductor in $m$
$S=$ Conductor cross section in $\mathrm{mm}^{2}$
$\rho_{\mathrm{cu}}=$ specific resistance of copper, when nothing else given $0,018 \Omega \mathrm{~mm}^{2} / \mathrm{m}$

$$
l_{\max }=\frac{\mathrm{S} \times 12.4}{\rho_{\mathrm{cu}}}
$$

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
Permissible network length for EASY-NET

| Conductor length EASY-NET total m | Transmission speed <br> kBaud | Conductor cross section, standardised |  | Bus conductor, minimum conductor cross section$\mathrm{mm}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | EN | AWG |  |
|  |  | mm ${ }^{2}$ |  |  |
| $\leqq 6$ | $\leqq 1000$ | 0.14 | 26 | 0.10 |
| $\leqq 25$ | $\leqq 500$ | 0.14 | 26 | 0.10 |
| $\leqq 40$ | $\leqq 250$ | 0.14 | 26 | 0.10 |
| $\leqq 125$ | §1251) | 0.25 | 24 | 0.18 |
| $\leqq 175$ | $\leqq 50$ | 0.25 | 23 | 0.25 |
| $\leqq 250$ | $\leqq 50$ | 0.38 | 21 | 0.36 |
| $\leqq 300$ | $\leqq 50$ | 0.50 | 20 | 0.44 |
| $\leqq 400$ | $\leqq 20$ | 0.75 | 19 | 0.58 |
| $\leqq 600$ | $\leqq 20$ | 1.0 | 17 | 0.87 |
| $\leqq 700$ | $\leqq 20$ | 1.5 | 17 | 1.02 |
| $\leqq 1000$ | $=10$ | 1.5 | 15 | 1.45 |

1) Default setting

## Note

The chacteristic impedance of the conductor must be $120 \Omega$ !

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

Network connection with conductor cross section > $0.14 \mathbf{m m}^{2}$, AWG26
Network connect "through the device".

## Example A, with terminals


(1) Recommendation $\leqq 0.3 \mathrm{~m}$

Example B, with interface element

(2) Recommendation $\leqq 0.3 \mathrm{~m}$ (EASY-NT-30)

Network connection with T piece and spur cable

Network connection "T piece with spur cable"

## Example A, with terminals


(3) $\leqq 0.3 \mathrm{~m}$ (3 core)

Example B, with interface element

(4) $\leqq 0.3 \mathrm{~m}($ EASY-NT-30)

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
Remote display in IP65


On the "remote display" MFD-80... the easy indication display is shown.
The easy can also be operated with the MFD-80-B.

No extra software or programming is necessary to operate the "remote display".
The connection cable MFD-CP4-...-CAB5 can be shortened.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
COM-LINK connection

MFD-80...


MFD...CP8... + MFD..T../R..


The COM-LINK is a point to point connection serial interface. Via this interface the status of the inputs and outputs are read as well as marker areas read and written. Twenty marker double words read or written are possible. Read and written are freely selectable. This data can be used for the set values or display functions.
The devices of the COM-LINK have different functions. The active device is always a MFD...CP8... and controls the complete interface.

The remote device can be a easy800 or a MFD...CP8 ... and answers to the requests of the active devices. The remote device dosen't recognise the difference if the COM-LINK is active or a PC with EASY-SOFT-PRO uses the interface. The devices of the COM-LINK can be centralised or decentralised extended with easy expansion devices.
The remote device can also be a device in the EASY-NET.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®
Field bus connection to the production process

network module can be connected with easy700, easy800 or MFD-Titan. The network module is intergrated as slave in the configuration. Expansion of the input and output points via EASY-NET is possible $(\rightarrow$ section "EASY-NET, Network connection "through the device" ", page 5-31 and $\rightarrow$ section "EASY-NET, Network connection "T piece with spur cable" ", page 5-32).

Further information can be found in the associated manuals:

- AWB2528-1508 easy500, easy700, control relay,
- AWB 2528-1423 easy800, control relay,
- AWB2528-1480D

MFD-Titan, Multi Function Display.

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®
Contacts, coils, function modules, operand

| Operand | Description | easy500, easy700 | easy800, MFD...CP8... |
| :---: | :---: | :---: | :---: |
| I | Input basic device | $\times$ | $\times$ |
| F' | Input expansion device ${ }^{1)}$ | $\times$ | $\times$ |
| 8 | Output basic device | $\times$ | $\times$ |
| \% | Output expansion device | $\times$ | $\times$ |
| IW | Diagnosis annuciator easy-NET | - | $\times$ |
| M | Marker | $\times$ | $\times$ |
| $N$ | Marker | $\times$ | - |
| F' | P button | $\times$ | $\times$ |
| : | : | $\times$ | $\times$ |
| FiN | Bit input easy-NET | - | $\times$ |
| W | Bit output easy-NET | - | $\times$ |
| H' | Analogue value comparitor | $\times$ | $\times$ |
| P ${ }^{\text {Pr }}$ | Arithmetic | - | $\times$ |
| $\underline{m}$ | Block comparison | - | $\times$ |
| ET | Block transfer | - | $\times$ |
| E | Boolean function | - | $\times$ |
| 5 | Counting relay | $\times$ | $\times$ |
| ${ }^{\text {m }}$ | Frequency counters | $x^{2)}$ | $\times$ |
| $\mathrm{Im}_{\mathrm{m}}$ | High speed counter | $x^{2)}$ | $\times$ |
| 1 m | Incremental value counter | - | $\times$ |
| EF | Comparitor | - | $\times$ |
| W8 | Data module | - | $\times$ |
| $\square$ | Text output | $\times$ | $\times$ |
| "10] | PID controller, | - | $\times$ |
| FT | PT1 Signal smoothing filter | - | $\times$ |
| ET | Draw value out of the easy-NET | - | $\times$ |
| (1) H/HW | (clock)/Week time clock | $\times$ | $\times$ |
| Y/HY | Summer/winter changeover clock | $\times$ | $\times$ |
| L"E | Value scaling | - | $\times$ |
| 7/NFIT | Master reset | $\times$ | $\times$ |

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

| Operand | Description | easy500, easy700 | easy800, MFD...CP8... |
| :---: | :---: | :---: | :---: |
| $\cdots$ | Number transducer | - | $\times$ |
| M/TT | Hours run counter | $\times$ | $\times$ |
| F'T | Place value in the easy-NET | - | $\times$ |
| FW | Pulse width modulation | - | $\times$ |
| "m | Sychronise clock via network | - | $\times$ |
| \%'T | Reference cycle time | - | $\times$ |
| T | Time-delay relay | $\times$ | $\times$ |
| Vmm | Value limiting | - | $\times$ |
| ME | Marker byte | - | $\times$ |
| ML | Marker double word | - | $\times$ |
| PW | Marker word | - | $\times$ |
| I. IEF | Analogue input | $\times$ | $\times$ |
| 螰 | Analogue output | - | $\times$ |

1) With easy700, easy800 and MFD...CP8...
2) With easy 500 and easy 700 programmable as operation type.

## Coil functions

The switching behaviour of the relay coil is determined by the selected coil function. The specified function should for each relay coil only be used once in the wiring diagram.

| Circuit diagram symbol | easy display | Coil function | Example |
| :---: | :---: | :---: | :---: |
|  | 1. | Contactor function | $\sqrt[5]{51, w, ~}$ |
|  | I | Contactor function with inverse result | $\mathrm{S}_{4}$ |
|  | $\square$ | Cyclical impulse at negative edge |  |

Contactors and Relays
Control relay easy，Multi Function Display MFD－Titan®

| Circuit diagram symbol | easy display | Coil function | Example |
| :---: | :---: | :---: | :---: |
|  | $1 /$ | Cyclical impulse at positive edge | 品, 性点 |
|  | I | Surge function | $\begin{aligned} & 50,54 \\ & 50,5=7 \end{aligned}$ |
|  | \％ | Latch（set） | $50,54$ |
|  | F | Reset（reset） |  |

## Parameter sets for times

## Example based on EASY－512．．．

Depending up on the programme the following parameters can be set：
－Switching function，
－Time range，
－Parameter display，
－Time 1 and
－Time 2.


T1 Relay No．
I1 Time 1
12．Time 2
and Switch state output：
Normally open contact open，
Normally open contact closed
Il．Switching function
$S$ Time range
＋Parameter display
30.000 constant as value，e．g． 30 s

17 Variable，e．g．Analoge value 17
T：00．000 clock time

## Contactors and Relays

## Control relay easy，Multi Function Display MFD－Titan®

## Possible coil functions：

－Trigger＝TT．．
－ Reset＝RT．．
－Halt＝HT．．

| Parameter | Switching function |  |
| :---: | :---: | :---: |
| X | Switching with On－delay |  |
| 4 | Switching with On－delay and random time range |  |
| 䆏 | Switching with Off－delay |  |
| ？ | Switching with Off－delay and random time range |  |
| X曲 | Switching with On－delay and Off－delay |  |
| ＂ X 曲 | Switching with On－delay and Off－delay with random time |  |
| Jl | Switching with single pulse |  |
| $\underline{11}$ | Switching with flashing |  |
| Parameter | Time range and set time | Resolution |
| ＂： 10.10 .10 | Seconds： 0.000 to 99,999 s | easy500，easy700 10 ms easy800，MFD．．．CP8．．． 5 ms |
| M： ｜1］：II］ | Minutes：Seconds 00：00 to 99：59 | 1 s |
| $\mathrm{H}: \mathrm{M}$ ［1］：II］ | Hours：Minutes，00：00 to 99：59 | 1 min ． |


| Parameter set | Displaying the parameter set via menu item＂Parameter＂ |
| :--- | :--- |
| +m | Can be accessed |

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Basic circuits

The easy circuit configuration is input in ladder diagram. This section includes a few circuit examples which are intended to demonstrate the possibilities for your own circuit diagrams.
The values in the logic table have the following meanings for switching contacts:
$0=$ Normally open contact open, normally closed contact closed

1 = Normally open contact closed, normally closed contact open
For relay coils Qx"
$0=$ Coil not energized
1 = Coil energized

## Note

The examples are shown as for easy500 and easy700. For easy800 and MFD...CP8... four contacts and one coils can be used in each path.

## Negation

Negation means that the contact opens, rather than closes when actuated (NOT circuit).
In easy circuit example contact II changes with the
ALT button normally closed and normally open contacts.


## Permanent contact

To keep a relay coil permanently energised wire the connection completely across all contact areas from the coil to the
 left hand side.

## Logic table



## Logic table

| $\mathbf{I 1}$ | Q1 |
| :--- | :--- |
| 1 |  |
| 0 | 0 |
|  | 1 |

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Series circuit

Q1" is actuated via three normally open contacts connected in series (AND circuit). Q2" is actuated via three normally closed contacts connected in series (NAND circuit).
In the easy circuit configuration, up to three normally open or normally closed contacts can be connected in series in one line. Where more than three normally open contacts have to be wired in series, use an auxiliary relay M.

| 11 | 12 | 13 | Q1 | Q2 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

## Parallel switching

Q1 is controlled via a parallel circuit of several normally open contacts (OR circuit).
A parallel circuit of normally closed contacts controls Q2 (NOR circuit).


Logic table

| 11 | 12 | 13 | Q1 | Q2 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Changeover circuit

A changeover circuit is realised in easy with two series circuits that are then combined in parallel (XOR).
XOR means
eXclusive OR
circuit. Only when a contact is closed, is the coil energized.
Logic table

| $\mathbf{I 1}$ | $\mathbf{I 2}$ | $\mathbf{Q 1}$ |  |
| :--- | :--- | :--- | :--- |
| 0 |  | 0 | 0 |
| 1 | $\frac{0}{1}$ |  | $\frac{1}{1}$ |
| 0 | $\frac{1}{1}$ |  | $\frac{1}{1}$ |
|  |  |  | 0 |

## Hold-on circuit

A combination of series and parallel contacts are wired to a hold-on circuit.

The hold-on (self-maintaining) function is achieved by the Q1 contact being connected in parallel to I1. When 11 is actuated and

S1 normally open contact on I1
S2 normally closed
contact on I2
 reopened, the current flows via contact Q1 until I2 is actuated.

## Logic table

| I1 | 12 | Contact Q1 | Coil Q1 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 |

The hold-on (self-maintaining) circuit is used to switch machines on and off. The machine is switched on at the input terminals via normally open contact S1 and is switched off via normally closed contact S2.
S2 opens the connection to the control voltage in order to switch off the machine. This ensures that the machine can be switched off even in the event of a wire breaking. 12 is always closed when not actuated.
Alternatively a hold-on circuit with wire break monitoring can used with the set and reset coil functions.

S1 normally open contact on I1
S2 normally closed contact on 12


## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

When I1 is switched, coil Q1 latches. I2 inverts the normally closed signal from S2 and switches when S2 is actuated and the machine must be switched off or when there is a broken wire.
Keep to the order that each coil is wired in the easy circuit diagram: first wire the " $S$ "-coil, and then the" $R$ "-coil. When $I 2$ is actuated, the machine will then be switched off even if I1 is switched on again.

## Impulse changeover relay

## An impulse

 changeover relay is often used for lighting control e.g. stairway lighting.S1 normally open contact on I1


## On-delayed timing relay

The on-delay can be S1 normally open contact used to override a short impulse or with a machine, to start a further operation after a time delay.
on I1


## Logic table

| I1 | Status of Q1 | Q1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 0 | $\frac{1}{1}$ |
| 0 | $\frac{1}{1}$ | $\frac{1}{0}$ |
| 1 |  | 0 |

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

## Wiring of contacts and relays

Fixed wiring

5


Wired with easy


## Star-delta starting

With easy it is possible to implement two star/delta circuits. The advantage of easy is that it is possible to select the changeover time between
star and delta contactors, and also the time delay between switching off the star contactor and switching on the delta contactor.


Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®


## Operation of the easy circuit configuration

Start/stop the circuit with the external pushbuttons S1and S2. The mains protection starts the time relay in easy.
11: Mains protection switched on
Q1: Star contactor ON
Q2: Delta contactor ON

T1: Changeover time star/delta (10 to 30 s )
T2: Waiting time between starcontactor off and delta contactor on (30, 40, 50, 60 ms ) If your easy has an integral time switch, star/delta starting can be combined with the time switch. In this case, use easy to also switch the mains contactor.

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Stairway lighting

For a conventional circuit a minimum of five elements are required. An impulse relay, two timing relays, two auxiliary relays.
easy needs only four elements. With five connections and the easy circuit the stairway lighting is operational.


## Important note

Four such stairway circuits can be implemented with one easy device.

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®


| Button pressed briefly | Light On or Off, the impulse changeover relay function is able <br> to switch off continuous lighting where required. |  |
| :--- | :--- | :--- |
|  |  | Sightched off automatically. With continuous lighting this <br> function is not active. |

Contactors and Relays
Control relay easy, Multi Function Display MFD-Titan®

The easy circuit configuration for the function below looks like this:

```
IT---------TTE
T2----------M1
I| T-...-----.-.\
T:J
Q1-M1----TT:
Q1--.......--m, - N
```

Expanded easy circuit configuration: after four hours, the continuous lighting is switched off.

Meaning of the contacts and relays used:
11: Pushbutton ON/OFF
Q1: Output relay for lighting ON/OFF
M1:Auxiliary relay used to block the "switch off automatically after 6 minutes" when using continuous lighting.
T1: Cyclical impulse for switching Q1 ON/OFF, (II, impulse with value 00.00 s )
T2: Scan to determine how long the pushbutton was pressed. When pressed for longer than 5 s , it changes to continuous lighting. ( X , On-delayed, value 5 s )
T3: Switch off after the light has been on for von 6 min . ( $X$ ', on-delayed, value 6:00 min.)
T4: Switch off after 4 hours continuously on. ( X , On-delayed, value 4:00 h)

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## 4 way shift register

A shift register can be used for storing an item of information - e.g. sorting of items into "good" or "bad" - two, three or four transport steps further on.
A shift pulse and the value ( 0 " or $1^{\prime \prime}$ ) to be shifted are required for the shift register.
Values which are no longer required are deleted via the reset input of the shift register. The values in the shift register pass through the register in the following order:
1st, 2nd, 3rd, 4th storage position.
Block diagram of the 4-way shift register
(1) (2) (3)

(1) Pulse
(2) Value
(3) Reset
(4) Storage position

Function:

| Pulse | Value | Storage position |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 0 |
| 3 | 0 | 0 | 0 | 1 | 0 |
| 4 | 1 | 1 | 0 | 0 | 1 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| Reset $=1$ | 0 | 0 | 0 | 0 |  |

Allocate the value 0 with the information content bad. Should the shift register be accidently deleted, no bad parts will be reused.
11: Shift clock pulse (PULSE)
12: Information (good/bad) for shifting (VALUE)
13: Delete contents of shift register (RESET)
M1:1. memory position
M1:2. memory position
M1:3. memory position
M1:4. memory position
M7:Auxiliary relay one shot cycle pulse
M8:One shot cycle pulse clock pulse


Generate shift tact

4th memory position, set
4th memory position, delete
3rd memory position, set
3rd memory position, delete
2nd memory position, set
2nd memory position, delete
1st memory position, set
1st memory position, delete
Delete all memory positions

## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Display text and actual values , display and edit set values

easy500 and easy 700 can display 16 , easy 800 can display 32 freely editable texts. In these texts actual values of function relays such as, timer relays, counters, hours run counters, anolog value comparitors, dates, times or analog values can be displayed. Set values of timer relays, counters, hours run counters and analog value comparitors can be altered during the display of the texts.

## BUITMHINE, WOWTVOL GIEFLHV, HLL EFEY!

Example of a text display:
The text display has the following display characteristics:


The text output unit $D(D=$ Display, $)$ functions in the circuit diagram like a normal marker M .
Should a text be attached to a marker this would be shown at condition 1 of the coil in the easy display. A precondition is that the easy is in RUN mode and before the texts are displayed the status display is shown.
D1 is defined as alarm text and has therefore priority over other displays.

D2 to D16/D32 are displayed when activated. When several displays are activated they are shown one after the other every 4 secs. When a set value is edited the corresponding display remains shown until the value transfer.
In one text several values, actual and set values, from for example, function relays, analog input values or times and dates can be combined. The set values can be edited:

- easy500 and easy700, two values,
- easy800, four values.


## Contactors and Relays

Control relay easy, Multi Function Display MFD-Titan®

## Visualisation with MFD Titan

The visualisation with MFD-Titan is by "screens", on which the display is shown.
Example of a "screen":


The following screen elements can be combined.

- Graphic elements
- Bit display
- Bitmap
- Bargraph
- Pushbutton elements
- Latching pushbuttons
- Pushbutton area
- Text elements
- Static text
- Message text
- Screen menu
- Ticker text
- Rolling text
- Value display elements
- Date and time displays
- Number values
- Timer relay value display
- Value input elements
- Value inputs
- Timer relay value inputs
- Date and time inputs
- Weekly timer inputs
- Yearly timer inputs

Notes

Contactors and Relays
Contactors DIL, Motor overload relays Z

| Rated operational current Ie at 400 V <br> A | Max. AC-3 motor rating |  |  |  | Conv. therm. current $I_{\mathrm{th}}=I_{\mathrm{e}}$ AC-1 <br> A | Part no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 220 \mathrm{~V}, \\ & 230 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 380 \mathrm{~V} \\ & , 400 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 660 \mathrm{~V}, \\ & 690 \mathrm{~V} \end{aligned}$ | 1000 V |  |  |  |
|  | kW | KW | kW | kW |  |  |  |
| 6.6 | 1.5 | 3 | 3 | - | 22 | DILEEM |  |
| 8.8 | 2.2 | 4 | 4 | - | 22 | DILEM |  |
| 7 | 2.2 | 3 | 3.5 | - | 22 | DILM7 | FigEs! |
| 9 | 2.5 | 4 | 4.5 | - | 22 | DILM9 | 0 |
| 12 | 3.5 | 5.5 | 6.5 | - | 22 | DILM12 | 呉: |
| 17 | 5 | 7.5 | 11 | - | 40 | DILM17 | 0000 |
| 25 | 7.5 | 11 | 14 | - | 45 | DILM25 |  |
| 32 | 10 | 15 | 17 | - | 45 | DILM32 |  |
| 40 | 12.5 | 18.5 | 23 | - | 60 | DILM40 |  |
| 50 | 15.5 | 22 | 30 | - | 70 | DILM50 |  |
| 65 | 20 | 30 | 35 | - | 85 | DILM65 | d: |
| 80 | 25 | 37 | 63 | - | 130 | DILM80 |  |
| 95 | 30 | 45 | 75 | - | 130 | DILM95 | 100) |
| 115 | 37 | 55 | 105 | - | 190 | DILM115 |  |
| 150 | 48 | 75 | 125 | - | 190 | DILM150 |  |
| 185 | 55 | 90 | 175 | 108 | 275 | DILM185 |  |
| 225 | 70 | 110 | 215 | 108 | 315 | DILM225 |  |
| 250 | 75 | 132 | 240 | 108 | 350 | DILM250 |  |
| 300 | 90 | 160 | 286 | 132 | 400 | DILM300 |  |
| 400 | 125 | 200 | 344 | 132 | 500 | DILM400 | 0 |
| 500 | 155 | 250 | 344 | 132 | 700 | DILM500 | $0 \text { viso }$ |
| 580 | 185 | 315 | 560 | 600 | 800 | DILM580 |  |
| 650 | 205 | 355 | 630 | 600 | 850 | DILM650 |  |
| 750 | 240 | 400 | 720 | 800 | 900 | DILM750 | -3, |
| 820 | 260 | 450 | 750 | 800 | 1000 | DILM820 |  |
| 1000 | 315 | 560 | 1000 | 1000 | 1000 | DILM1000 |  |

Contactors and Relays
Contactors DIL, Motor overload relays Z


Contactors and Relays
Contactors DIL

## Accessories

| Unit | DILE(E)M | DIL7 to DILM150 |  | DILM185 to DILM500 | DILM580 to DILM1000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AC | DC |  |  |
| Suppressor circuits | - | - | integrated | integrated | integrated |
| RC suppressors | X | X |  |  |  |
| Varistor suppressors | X | X |  |  |  |
| Star-point bridge | X | X | X | X | - |
| Parallel connector | X | X | X | to <br> DILM185 | - |
| Mechanical interlock | X | X | X | X | X |
| Sealable shroud | X | - | - | - | - |
| Cable terminals | - | - | - | X | to DILM820 |
| Individual coils | - | $\mathrm{X}^{1)}$ | X ${ }^{1)}$ | X | X |
| Electronic modules | - | - | - | X | X |
| Electronic modules including coils | - | - | - | X | X |
| Terminal cover | - | - | - | X | X |

1) from DILM17

## Contactors and Relays

## Contactors DIL

## Contactors DILM

These are designed and tested to IEC/EN 60947. For every motor rating between 3 kW and 560 kW there is a suitable contactor available.

## Equipment features

- Magnet system

Due to the new electronic operation the DC contactors from 17 to 65 A have a sealing power of only 0.5 W . Even for 150 A is only 1.5 W necessary.

- Accessible control voltage connections The coil connections are on the front of the contactor. They are not covered by the main current wiring.
- Can be controlled directly from the PLC The contactors DILA and DILM to 32 A can be controlled directly from the PLC.
- Intergrated suppressor DC With all DC contactors DILM a suppressor is integrated in the electronics.
- Plug-in suppressors AC

With all AC contactors DILM up to 150 A a suppressor can be simply plugged in on the front when required.

- Control of the contactors DILM185 to DILM1000 by three different methods:
- Conventionally via coil terminals A1-A2
- Directly from a PLC via terminals A3-A4
- by a low power contact via terminals A10-A11.
- Conventional control of contactors DILM185-S to DILM500-S via coil terminals A1-A2. There are two coil versions ( 110 to 120 V $50 / 60 \mathrm{~Hz}$ and 220 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ ) available.
- All contactors up to DIL150 are finger and back-of-hand proof to IEC 536. Additional terminal covers are available from DILM185 onwards.
- Double-frame terminal for contactors DILM7 to DILM150
With the new double frame-clamp the connection area is not limited by the screw. They give total security with varying cross
sections and have protection against incorrect insertion to ensure safe connection.
- Integrated auxiliary contact

The contactors up to DILM32 have an integrated auxiliary contact as normally open or normally closed contact.

- Screw or spring terminals

The contactors DILE(E)M and DILA/DILM12, including the corresponding auxiliary contacts, up to 1000 A , are available with screw or spring terminals.

- Contactors with screwless terminals They have spring terminals in the mains current circuit as well as for the coil terminals and auxiliary contacts. The shake proof and maintenance free spring terminals can terminate two conductors each of 0.75 to $2.5 \mathrm{~mm}^{2}$ with or without ferrules.
- Connection terminals Up to DILM65 the connection terminals for all auxiliary contacts and coils as well as for main conductors can be tightened with a Pozidriv screwdriver size 2.
For contactors DILM80 to DILM150 Allen screws are used.
- Mounting All contactors can be fitted on to a mounting plate with fixing screws. DILE(E)M and DILM up to 65 A can also be snapped on to a 35 mm top-hat rail to IEC/EN 60715.
- Mechanical interlock

With two connectors and a mechanical interlock an interlocked contactor combination up to 150 A can be achieved without extra space requirement. The mechanical interlock ensures that both connected contactors cannot be similtaneously be operated. Even with a mechanical shock the contacts of both contactors cannot close similtaneously.

## Contactors and Relays

## Contactors DIL

In addition to individual contactors, complete contactor combinations are also available from Moeller:

- DIUL reversing contactors from 3 to 75 kW/400 V
- SDAINL star-delta starters from 5.5 to 132 kW/400 V


## Application

The three-phase motor dominates the electric motor sector. Apart from individual low-power drives, which are often switched directly by hand, most motors are controlled using contactors and contactor combinations. The power rating in kilowatts (kW) or the current rating in amperes (A) is therefore the critical feature for correct contactor selection.

Physical motor design results in that rated currents for the same rating sometimes differ widely. Furthermore it determines the ratio of the transient peak current and the locked-rotor current to the rated operational current ( $I_{\mathrm{e}}$ ). Switching electrical heating installations, lighting fittings, transformers and power factor correction installations, with their typical individual characteristics, increases the wide range of different uses for contactors.
The switching frequency can vary greatly in every application. The difference can be, for example, from less than one operation per day up to a thousand operations or more per hour. Quite often, in the case of motors, a high switching frequency coincides with inching and plugging duty.
Contactors are actuated by hand or automatically, using various types of command devices, depending on the travel, time, pressure or temperature. Any interrelationships required between a number of contactors can easily be produced by means of interlocks via their auxiliary contacts.
The auxiliary contact of the contactor DILNM can be used as mirror contact to IEC/EN 60947-4-1
Appendix F to show the condition of the main contacts. A mirror contact is a normally closed contact that cannot be similtaneously closed with the normally open main contacts.

## Contactors and Relays

## Contactors DIL

## Contactor DILP

DILP contactors are used for problem-free switching of supply systems including the neutral pole or for economical switching of resistive loads. In three-phase distribution systems, mainly 3 pole switchgear and protective devices are used. 4 pole switchgear and protective devices are used in
order to switch the neutral pole as well in special applications.
In the area of 4 pole applications, there are national differences concerning the Standards situation, the customary distribution system and conventions that go beyond the Standards.

## Rating data

max. rated operational current $I_{\mathrm{e}}$

| AC-1 open |  |  | conv. therm. current |  |
| :---: | :---: | :---: | :---: | :---: |
| $40^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ | $I_{\mathrm{th}}=I_{\mathrm{e}} \mathrm{AC}-1$ <br> open | Part no. |
| 160 A | 160 A | 155 A | 160 A | DILP160/22 |
| 250 A | 230 A | 200 A | 250 A | DILP250/22 |
| 315 A | 270 A | 215 A | 315 A | DILP315/22 |
| 500 A | 470 A | 400 A | 500 A | DILP500/22 |
| 630 A | 470 A | 400 A | 630 A | DILP630/22 |
| 800 A | 650 A | 575 A | 800 A | DILP800/22 |

## Contactors and Relays

Overload relays Z

## Motor protection using $Z$ thermal overload relays

Overload relays are included in the group of current-dependent protective devices. They monitor the temperature of the motor winding indirectly via the current flowing in the supply cables, and offer proven and cost-efficient protection from destruction as a result of:

- Non starting,
- Overload,
- Phase-failure.

Overload relays operate by using the characteristic changes of shape and state of the bimetal when subjected to heating. When a specific temperature is reached, they operate an auxiliary contact. The heating is caused by resistances through which the motor current flows. The equilibrium between the reference and actual value occurs at various temperatures depending on the magnitude of the current.

Tripping occurs when the reference temperature is reached. The tripping delay depends on the magnitude of the current and preloading of the relay. Whatever the current, the relay must trip out before the motor insulation is endangered, which is why EN 60947 states maximum response times. To prevent nuisance tripping, minimum times are also given for the limit current and locked-rotor current.

## Phase-failure sensitivity

Overload relays Z offer, due to their design, an effective protection against phase failure. They have phase failure sensitivity to IEC 947-4-1 and therefore can also provide protection for EEx e motors ( $\rightarrow$ following diagramms).
(1) Trip bridge
(2) Differential bar
(3) Differential travel

## Contactors and Relays

## Overload relays Z

When the bimetallic strips in the main current section of the relay deflect as a result of three-phase motor overloading, all three act on a trip bar and a differential bar. A shared trip lever switches over the auxiliary contact when the limits are reached. The trip and differential bars lie against the bimetallic strips with uniform pressure. If, in the event of phase failure for instance, one bimetallic strip does not deflect (or recover) as strongly as the other two, then the trip and differential bars will cover different distances.

This differential movement is converted in the device by a step-up mechanism into a supplementary tripping movement, and thus accelerates the tripping action.

Design note $\rightarrow$ section "Motor protection in special applications", page 8-7;
Further information to motor protection
$\rightarrow$ section "All about Motors", page 8-1.

## Tripping characteristics

The overload relays $\mathrm{ZE}, \mathrm{ZB} 12, Z B 32$ and the $\mathrm{Z5}$ up to 150 A are, due to the German
Physical/Technical Bureau (PTB), suitable for protection of EEx e-motors to the ATEX-Guidelines 94/9 EG. In the relevant manual all tripping characteristics are printed for all currents.


These tripping characteristics are mean values of the scatter bands at an ambient temperature of $20^{\circ} \mathrm{C}$ from cold. The tripping time is dependant upon the current. When units are warm, the tripping delay of the overload relay drops to about a quarter of the value shown.


Contactors and Relays
Overload relays Z


## Contactors and Relays

ZEV electronic motor-protective system

## Method of operation and control

Like overload relays operating on the bimetallic strip principle, electronic motor-protective relays are current-dependent protective devices. The acquisition of the actual flowing motor current in the three external conductors of the motor connections is with motor protection system ZEV with seperate push-through sensors or a sensor belt. These are combined with an evaluation unit so that seperate arrangement of the current sensor and the evaluation unit is possible.
The current sensor is based on the Rogowski principle from the measurement technology. . The sensor belt has no iron core, unlike a current transformer, therefore it doesn't become saturated and can measure a very wide current range.
Due to this inductive current detection, the conductor cross-sections used in the load circuit have no influence on the tripping accuracy. With electronic motor-protective relays, it is possible to set higher current ranges than is possible with electromechanical thermal overload relays. In the ZEV System, the entire protected range from 1 to 820 A is covered using only an evaluator .
The ZEV electronic motor-protective system carries out motor protection both by means of indirect temperature measurement via the current and also by means of direct temperature measurement in motors with thermistors.
Indirectly, the motor is monitored for overload, phase failure and unbalanced current consumption.

With direct measurement, the temperature in the motor winding is detected by means of one or more PTC thermistors. In the event of excessive temperature rise, the signal is passed to the tripping unit and the auxiliary contacts are actuated. A reset is not possible until the thermistors cool to less than the response temperature. The built-in thermistor connection allows the relay to be used as complete motor protection.
In addition, the relay protects the motor against earth faults. Small currents flow out even in the event of minor damage to the motor winding insulation. These earth faults currents are registered on an external summation current transformer which adds together the currents in the phases, evaluats them and reports earth-fault currents to the microprocessor in the relay.
By selecting one of the eight tripping classes (CLASS) allows the motor to be protected to be adapted from normal to extended starting conditions. This allows the thermal reserves of the motor to be used safely.
The motor-protective relay is supplied with an auxiliary voltage. The evaluator has a multi-voltage version, which enables all voltages between 24 V and 240 V AC or DC to be applied as supply voltage. The devices have monostable behaviour; they trip out as soon as the supply voltage fails.

## Contactors and Relays

ZEV electronic motor-protective system

In addition to the usual normally closed contact (95-96) and the normally open contact (97-98) for overload relays the motor protection relay ZEV is equipped with a programmable normally open contact (07-08) and a programmable normally closed contact (05-06). The above mentioned, usual contacts react directly via thermistors or indirectly via the current, to the detected temperature rise of the motor, including phase-failure sensitivity.
The programmable contacts can be assigned to various signals, such as

- Earth-fault,
- Pre-warning at 105 \% thermal overload,
- separate indication of thermistor tripping
- internal device fault

The function assignment is menu-guided using a display. The motor current is entered without tools using the keypad, and can be clearly verified on the display.
In addition the display allows a differential diagnosis of tripping causes, and therefore a faster error handling is possible.

Tripping in the event of a three-pole balanced overload at x-times the set current takes place within the time specified by the tripping class. The tripping delay in comparison with the cold state is reduced as a function of the preloading of the motor. Very good tripping accuracy is achieved and the tripping delays are constant over the entire setting range.
If the motor current imbalance exceeds $50 \%$, the relay trips after 2.5 s .
The accredition exists for overload protection of explosion proof motors of the explosion protection "increased safety" EEx e to guideline 94/9/EG as well as the report of the German Physical/Technical Bureaux (PTB report ) (EG-Prototype test certificate number PTB 01 ATEX 3233). Further information can be found in the manual AWB2300-1433D "Motor protection system ZEV, overload monitoring of motors in EEx e areas".

## Electronic motor protection system ZEV



Evaluation device
1 to 820 A


Push-through sensor
1 to 25 A 3 to 65 A
10 to 145 A


Sensor belt
40 to 820 A

## Contactors and Relays

ZEV electronic motor-protective system

## Tripping characteristics



Tripping characteristics for 3 phase loads These tripping characteristics show the relationship between the tripping time from cold to the current (multiples of set current $I_{E}$ ). After preloading with $100 \%$ of the set current and the temperature rise to the operational warm state associated with it, the stated tripping delays are reduced to approx. 15 \%.

## Tripping limits for 3 pole balanced load

Response time
$<30 \mathrm{~min}$. at up to $115 \%$ of the set current
$>2$ hat up to $105 \%$ of the set current from cold

Contactors and Relays
ZEV electronic motor-protective system
Electronic motor protection sytem ZEV with earth-fault monitoring and thermistor monitored motor

(1) Fault
(2) Programmable contact 1
(3) Programmable contact 2
(4) Current sensor with A/D transducer
(5) Self hold-in of the contactor prevents an automatic re-start after the control voltage has failed and then returned (important for EEx e applications, $\rightarrow$ AWB2300-1433D)
(6) Remote reset

## Contactors and Relays

## ZEV electronic motor-protective system

## Thermistor protection

With thermistor motor protection, to DIN 44081 and DIN 44082, up to six PTC thermistor
temperature sensors with a thermistor resistance of $R_{K} \leqq 250 \Omega$ or nine with a $R_{K} \leqq 100 \Omega$ can be connected to terminals T1-T2.


TNF $=$ Nominal response temperature
(1) Tripping range IEC 60947-8
(2) Re-switch on range IEC 60947-8
(3) Tripping at $3200 \Omega \pm 15 \%$
(4) Re-switch on at $1500 \Omega+10 \%$

The ZEV switches off at $R=3200 \Omega \pm 15 \%$ and switches on again at $R=1500 \Omega+10 \%$. With switch off due to thermistor
input the contacts 95-96 and 97-98 switch over. Additionally, the thermistor trip can be programmed to different trip messages on contacts 05-06 or 07-08.
With temperature monitoring with thermistors, no dangerous condition can occur should a sensor fail as the device would directly switch off.

Contactors and Relays
ZEV electronic motor-protective system
Electronic motor protection system ZEV with short-circuit monitoring at the thermistor input


Short-circuit in the thermistor circuit can, when required, be detected by the additional use of a current monitor K1 (e. g. type EIL 230 V AC from the company Cronzet or the similar type 3U6352-1-1AL20 from the company Siemens).

## Basic data

- Short-circuit current in the sensor circuit $\leqq$ 2.5 mA ,
- max. cable length to sensor 250 m (unscreened),
- Total PTC thermistor sensor resistance $\leqq 1500 \Omega$
- Programming ZEV: "Auto reset",
- Setting current monitor:
- Device to lowest current level,
- Overload tripping,
- Store the tripping,
- Confirmation of the short-circuit after clearing with pushbutton S3.


## Contactors and Relays

ZEV electronic motor-protective system

## Device mounting

The mounting of the device is very simple due to the clip-on and the push-through mounting.
Mounting details of every device can be found in the mounting instructions AWA2300-1694 or the manual AWB2300-1433D.

## Mounting ZEV and current sensor



- Place the ZEV in the desired mounting position.
- Click the ZEV on the current sensor.
- Position motor conductors through the current sensor.


## Mounting on the current conductors

Due to the fixing band the Rogowski sensor ZEV-XSW-820 is particularly easy to mount. And this saves the user time and money.


1 Wrap the band around the current conductors.
2 Engage the fixing pin.
3 Pull the fixing band tight and close with the velcro fastener.
Attaching the sensor coils $\rightarrow$ following diagram.


## Contactors and Relays

Thermistor machine protection device EMT6

## EMT6 for PTC thermistors



## Method of operation

The output relay is actuated when the control voltage is switched on and the resistance of the PTC thermistor temperature sensor is low. The auxiliary contacts operate. On reaching the nominal actuation temperature (NAT), the sensor resistance becomes high and causes the output relay to drop out. The defect is indicated by an

LED. As soon as the sensors have cooled enough so that the respective smaller resistance is reached the EMT6-(K) switches automatically on again. With the EMT6-(K)DB(K) the automatic re-switch on can be defeated by switching the device to "Hand". The unit is reset using the reset button. The EMT6-K(DB) and EMT6-DBK are fitted with a short-cicuit in sensor circuit monitor. Should the resistance in the sensor circuit fall below 20 Ohm it trips. The EMT6-DBK also has a zero voltage safe, re-switch on lock-out and stores the fault by a loss of voltage. Switching on again is possible only after the fault has been rectified and the control voltage is present again.
Since all the units use the closed-circuit principle, they also respond to a broken wire in the sensor circuit.
The thermistor machine protection relays EMT6... are accredited for protection of EEx e motors to ATEX-Guideline 94/9 EG by the German Physical/Technical Bureaux. For protection of EEx e motors the ATEX Guidelines require short-circuit monitoring in the sensor circuit. Because of their integrated short-circuit monitoring the EMT6-K(DB) and EMT6-DBK are especially suitable for this application.

Contactors and Relays
Thermistor machine protection device EMT6

## EMT6 as contact protection relay



## Application example

Control of a storage tank heater
(1) Control circuit
(2) Heater

Q11: Heater protection

## Description of operation

## Switching on the heater

The heater can be switched on provided the main switch Q1 is switched on, the safety thermostat F4 has not tripped and the condition $T \leqq T \mathrm{~min}$ is satisfied. When S1 is actuated, the control voltage is applied to the contactor relay K1, which maintains itself via a make contact. The changeover contact of the contact thermometer has the position I-II. The low resistance sensor circuit of the EMT6 guarantees that Q11 is actuated via K2 normally open contact 13-14; Q11 goes to self-maintain.

## Switching off the heater

The heater protection Q11 stays in self maintain until the main switch Q1 is switched off, the pushbutton SO is pressed, the thermostat trips or $T=T_{\text {max }}$.
When $T=T_{\text {max }}$ the changeover contact of the contact thermometer has the position I-III. The sensor circuit of the EMT6 (K3) is low resistance, the normally closed contact K3/21-22 open. The main protection Q11 drops out.

## Contactors and Relays

Thermistor machine protection device EMT6

## Safety against broken wires

Security against wire break in the sensor circuit of K3 (e.g. non-recognition of the limit value $T_{\text {max }}$ ) is guaranteed by the use of a safety thermostat that
when $T_{\text {max }}$ is exceeded it's normally closed contact F4 switches off so that "switch off by deenergisation" is carried out.

(1) Contact thermometer change over contact

I-II position at $T \leqq T_{\text {min }}$
I-III position at $T \leqq T_{\max }$

K1: Control voltage "On"
K 2 : switch on at $T \leqq T_{\text {min }}$
K3: switch off at $T_{\text {max }}$

SO: Off
S1: Start
F4: Safety thermostat

## Contactors and Relays

Electronic safety relay ESR

## Application

The electronic safety relay is used for monitoring safety relevant controls. The requirements for the electrical equiping of machines is defined in IEC/EN 60204. The machine operater must assess the risk on his machine to EN 954-1 and install the controls to the necessary safety category 1, 2, 3 or 4 .

## Surface mounting

The electronic safety relay consists of a mains unit, the electronics and two redundant relays with forced contacts for the switching and indication circuits.


## Function

After switch on, in failure free operation the safety relevant circuit is controlled via the electronics and using a relay the switching circuit is switched on. After switch off and in the case of a failure (earth-fault, short-circuit, wire break) the switching circuit is immediately (stop category 0 ) or delayed (Stop category 1) switched off and the motor isolated from the mains supply.
In redundant safety circuits a short-circuit is not dangerous, so that only by renewed switch on is the failure recognised and re-switch on is blocked.

## Further information sources

Mounting instructions

- Evaluation device for two handed switching ESR4-NZ-21, AWA2131-1743
- Basic device for emergency and safety barrier apllications
- ESR4-NV3-30, ESR4-NV30-30, AWA2131-1838
- ESR3-NO-31 (230V), AWA2131-1740
- ESR4-NO-21, ESR4-NM-21, AWA2131-1741
- ESR4-NO-30, AWA2131-2150
- ESR4-NT30-30, AWA2131-1884
- Basis device for emergency applications ESR4-NO-31, AWA2131-1742
- Emergency relay

ESR4-NE-42, ESR4-VE3-42, AWA2131-1744
Safety manual, TB0-009D
Main catalogue Industrial Switchgear, Section 4 "monitoring relays".

## Contactors and Relays

Measurement and monitoring relay EMR4

## General

For the various applications measurement amd monitoring relays are necessary. With the new EMR4 range Moeller covers a large number of requirements :

- general use, current monitor EMR4-I
- space saving monitoring of the rotary field, phase sequence relay EMR4-F
- protection against destruction or damage of single system parts, phase monitoring relay EMR4-W
- safe recognition of phase failure, phase imbalance monitoring relay EMR4-A
- increased safety by motor current principle, level relay EMR4-N
- increase of the operational safety, insulation monitoring relay EMR4-R


## Current monitoring relay EMR4-I



The current monitoring relay EMR4-I is suitable for the monitoring of AC as well as DC current. Pumps and drill machines can be monitored for low load or overload. That is due to the selectable under or over limit.
There are two versions each with three measuring ranges ( $30 / 100 / 1000 \mathrm{~mA}, 1.5 / 5 / 15 \mathrm{~A}$ ). The multi-voltage coil allows universal use of the relay. The two auxiliary changeover contacts allow for a direct feedback.

## Selected bridging of short current peaks

By using the selected time delay of between 0.05 and 30 s short current peaks can be bridged.

Phase monitoring relay EMR4-W


The phase monitoring relay EMR4-W monitors as well as the field rotation also the voltage height. That means protection against destruction or damage of single system parts. Here the minimum low voltage and also the maximum over voltage can be easily set, within a defined range, to the required voltage.
Also a delayed on or a delayed off can be set. In the delayed on position short voltage breaks can be bridged. The delayed off position allows for a failure storage for the set time. The delay time can be set between 0.1 und 10 s .
The relay activates with the correct rotation and voltage. After drop-out the device reactivates when a the voltage exceeds a $5 \%$ hysteresis.

## Contactors and Relays

Measurement and monitoring relay EMR4

## Phase sequence relay EMR4-F500-2



With the only 22.5 mm wide phase sequence relay, portable motors, by which the direction of rotation is important (e. g. pumps, saws, drills), can be monitored for correct rotation. That means space in the switchboard due to the narrow width and protection against damage due to the monitoring of the rotating field.
With correctly rotating field the changeover contact switches the control voltage of the motor switching device. The EMR4-F500-2 covers the total voltage range from 200 to 500 V AC.

Phase imbalance relay EMR4-A


The 22.5 mm wide phase imbalance relay is the correct protection device against phase failure. The motor is then protected against destruction. That the phase failure is monitored on the basis of phase displacement can be recognised with a higher motor feedback and an overload of the motor can be prevented. The relay is able to protect motors with a rated voltage of $U_{\mathrm{n}}=380 \mathrm{~V}, 50 \mathrm{~Hz}$.

Level monitoring relay EMR4-N


The level monitoring relay EMR4-N is used mostly as dry running protection for pumps or for level regulation of liquids. It operates with sensors that measure conductivity. A sensor is required for the maximum and also a sensor for the minimum level. A third sensor is used for earth potential.
The 22.5 mm wide device EMR4-N100 is suitable for conductive liquids. It can be switched from level regulation to dry running protection. The safety is increased as in both cases the motor current principle is used.


The level monitoring relay EMR4-N500 has an increased sensitivity and is suitable for less conductive liquids. Due to an integrated rise and fall delay of between 0.1 and 10 s moving liquids can also be monitored.

## Contactors and Relays

Measurement and monitoring relay EMR4

## Insulation monitoring relay EMR4-R



EN 60204 "Safety of machines" provides increased operational safety by the monitoring of the control voltage circuit for earth-fault using an insulation monitor. This is the main application for the EMR4-R. There are similar requirements in medically used areas. An earth-fault is signalled via a changeover contact so that a fault can be cleared without expensive down time.
The device has a selectable fault memory so that the fault must be acknowledged after it's removal. By the use of a Test button the device can be checked for correct operation at any time.

## AC or DC control voltage

There is a device for AC and also DC . Therefore the total control voltage range is covered. The DC device has a multi-voltage source. Therefore AC as well as DC is possible.

## Further information sources

Mounting instructions

- Phase imbalance monitoring relay

EMR4-A400-1 AWA2431-1867

- Insulation monitoring relay EMR4-RAC-1-A AWA2431-1866
- Insulation monitoring relay EMR4-RDC-1-A AWA2431-1865
- Level monitoring relay EMR4-N100-1-B AWA2431-1864
- Phase sequence relay EMR4-F500-2 AWA2431-1863
- Phase monitoring relay EMR4-W... AWA2431-1863
- Current monitoring relay EMR4-I... AWA2431-1862

Main catalogue Industrial Switchgear, Section 4 "monitoring relays".

|  | Page |
| :--- | ---: | ---: |
| Overview | $6-2$ |
| PKZM01, PKZM0 and PKZM4 | $6-4$ |
| PKZM01, PKZM0 and PKZM4 - <br> auxiliary contacts | $6-7$ |
| PKZM01, PKZM0 and PKZM4 - releases | $6-9$ |
| PKZM01, PKZM0 and PKZM4 - <br> operating principle schematics | $6-10$ |
| PKZ2 - overview | $6-16$ |
| PKZ2 - remote operator | $6-18$ |
| PKZ2 - release | $6-20$ |
| PKZ2 - auxiliary contact, trip-indicating |  |
| auxiliary contact | $6-21$ |
| PKZ2 - operating principle schematics | $6-22$ |

## Motor-protective circuit-breaker

## Overview

## Definition

Motor-protective circuit-breakers are circuit-breakers used for switching, protection and isolation of circuits primarily associated with motor loads. At the same time, they protect these motors against destruction from locked-motor starting, overload, short-circuit and phase-failure in three-phase power supplies. They have a thermal release for protection of the motor

## Moeller motor-protective circuit-breakers

## PKZM01

The motor-protective circuit-breaker PKZM01 reintroduces the pushbutton actuation up to 16 A which was very popular with customers. The mushroom actuator for Emergency-Stop operation on simple machines is also being reintroduced.
The PKZM01 is preferably installed in surface-mount or flush-mount enclosures. Many accessory parts from the PKZM0 can be used.
Major system module: motor-protective circuit-breaker

## PKZM4

The PKZM4 system is a modular and efficient system for switching and protecting motor loads up to 63 A . It is the "big brother" of the PKZM0 and can be used with almost all PKZM0 accessory parts.
Major system modules: motor-protective circuit-breakers

## PKZMO

The PKZM0 motor-protective circuit-breaker is a modular and efficient system for switching and protecting motor loads up to 32 A and transformers up to 25 A .
winding (overload protection) and an electromagnetic release (short-circuit protection). The following accessories can be fitted to motor-protective circuit-breakers:

- Undervoltage release,
- Shunt release,
- Auxiliary contact,
- Trip-indicating auxiliary contact.

The major system modules are:

- Motor-protective circuit-breakers
- Transformer-protective circuit-breakers
- (High-capacity) contact modules

Description $\rightarrow$ section "The motor-protective circuit-breakers PKZM01, PKZM0 and PKZM4", page 6-4.

## PKZ2

PKZ2 for motor and distribution circuit protection The PKZ2 is a modular and efficient system for protecting, switching, signalling and remote operation of motors and systems in low-voltage switchgear systems up to 40 A .
The major system modules are:

- Motor-protective circuit-breakers
- System-protective circuit-breakers
- (High-capacity) contact modules

Description $\rightarrow$ section "Motor and system protection", page 6-16.

Motor-protective circuit-breaker
Overview


PKZM0
compact starter


MSC-D
direct-on-line starter


PKZ2
compact starter


MSC-R
reversing starter


## Motor-protective circuit-breaker PKZM01, PKZM0 and PKZM4

## The motor-protective circuit-breakers PKZM01, PKZM0 and PKZM4

The PKZM01, PKZM0 and PKZM4 use bimetallic releases which are delayed depending on the magnitude of the current to offer a proven, technical solution for motor protection. The releases are sensitive to phase failure and are temperature-compensated. The rated current with the PKZM0 up to 32 A is split into 15 ranges, for the PKZM01 it is split into 12 ranges and for the PKZM4 up to 63 A into 7 ranges. The installation (motor) and the supply cable are reliably protected by short-circuit releases, permanently set to $14 \times$ $I_{\mathrm{u}}$. The motor start is also guaranteed in every operational situation. The single-phasing
sensitivity of PKZM0 and PKZM4 allows for the use in the protection of EEx e motors. An ATEX certificate has been awarded. The motor-protective circuit-breakers are set to the rated motor current in order to protect the motors. The following accessories complement the motor-protective circuit-breaker for the various secondary functions:

- Undervoltage release U,
- Shunt release A,
- Standard auxiliary contact NHI,
- Trip-indicating auxiliary contact AGM.


## The compact starter

It consists of the motor-protective circuit-breaker PKZM0 and the contact module SEOO-...-PKZO which can be attached and features identical contours. It has been developed for standard applications such as switching and protection of a cooling water pump or a similar application, and complies to the latest motor starter standards:

- IEC/EN 60 947-4-1
- \&\$§
- \&\$§

Whereas the motor-protective circuit-breaker PKZM0 guarantees the disconnection, short-circuit and overload protection tasks, the contact module (contactor) S(E)00-...-PKZO assumes the operational switching of the motor current. The compact starter can master a short-circuit current of 100 kA at 4 kW and 400 V . While the compact starter represents an economic solution for standard tasks, the high-capacity compact starter was developed specifically for switching and protection of motors in critical processes. This refers to motors whose failure would involve severe consequential costs. In order to guarantee the highest possible level of system availability, the high-capacity compact starter is comprised of the motor-protective circuit-breaker PKZM0 and the weld-free high-capacity contact module (contactor) SOO-...-PKZO. It is guaranteed
to be capable of immediate switch on even after a short-circuit of up to $100 \mathrm{kA} / 400 \mathrm{~V}$.
The compact starters and high-capacity compact starters from the PKZ2 are available for motor ratings of more than $4 \mathrm{~kW} / 400 \mathrm{~V}$ (up to $18.5 \mathrm{~kW} / 400 \mathrm{~V}$, or the combination of PKZM4 with the proven contactor DIL.

# Motor-protective circuit-breaker <br> PKZM01, PKZM0 and PKZM4 

## Motor starter combinations

The motor-starter combinations MSC are available up to 32 A . Motor starters up to 12 A consist of a motor-protective circuit-breaker PKZM0 and a contactor DILM. Both are connected by a tool-less mechanical connection element. Furthermore, a plug-in electrical connector is used to establish the connection with the main circuit wiring. The motor-protective circuit-breaker PKZM0 and the contactor DILM up to 12 A feature the respective interfaces for this purpose.

The motor-starter combination MSC from 16 A consists of a motor-protective circuit-breaker PKZM0 and a contactor DILM. Both are fitted to a top-hat rail and mechanically and electrically interconnected by a connector element.
The MSC is available as a direct-on-line starter MSC-D and as a reversing starter MSC-R.

## Motor-protective circuit-breakers for starter combinations

## PKMO

The PKM0 motor-protective circuit-breaker is a protective switch for starter combinations or for use as a basic unit in a short-circuit protective switch in the range 0.16 A to 32 A . The basic unit is without overload release, but equipped with short-circuit release. This circuit-breaker is used
for protection of resistive loads where no overloading is to be expected.
These protective switches are also used in motor-starter combinations with and without automatic reset, where an overload relay or a thermistor overload relay is used as well.

## Transformer-protective circuit-breaker and current limiter

## PKZM0-T

The transformer-protective circuit-breaker is designed for protecting transformer primaries. The short-circuit releases in the types from 0.16 A to 25 A are permanently set to $20 \times I_{\mathrm{u}}$. The response ranges of the short-circuit releases are higher here than with motor-protective circuit-breakers in order to cope with the even higher inrush currents of idling transformers without tripping. The overload release in the PKZMO-T is set to the rated current of the transformer primary. With the exception of the SOO-...-PKZO high-capacity contact module, all the PKZM0 system accessories can be combined with the PKZM0-T.

PKZMO-...-C
The PKZM0 features a version with springloaded terminals. A version with springloaded terminals on both sides, and a combined version which features springloaded terminals on the outgoer side only can be chosen. The conductors can be connected here without ferrules. The connections are maintenance-free.

## CL-PKZO

The current limiter module CL-PKZO is a short-circuit protective device specially developed for the PKZM0 and PKZM4 for non-intrinsically-safe areas. The CL module has the same base area and uses the same termination's as the PKZM0. When they are mounted on a top-hat rail alongside one another, it is possible to connect them by means of B3...-PKZO three-phase commoning links. The switching capacity of the series connected PKZM0 or PKZM4 +CL is 100 kA at 400 V . In a short-circuit the contacts of the motor-protective circuit-breaker and CL will open. While the current limiter returns to the closed rest position, the motor-protective circuit-breaker trips via the instantaneous release and produces a permanent isolating gap. The system is ready to operate again, once any defect has been rectified. The current limiter can conduct an uninterrupted current of 63 A . The module may be used for individual or group protection. Any feed direction may be used.

## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4

## Individual and group protection using

CL-PKZO


Use the BK25/3-PKZO for terminals $>6 / 4 \mathrm{~mm}^{2}$

For grouped connection use B3...PKZ0 three-phase commoning links B3...PKZO. Note utilization factors to IEC/EN 60947.

## Examples:

| PKZM0-16, PKZM4-16 or | PKZM0-16/20, PKZM4-16/20 or | PKZM0-20, PKZM4-20 or | PKZM0-25, PKZM4-25 |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 4 \times 16 \mathrm{~A} \times 0.8 \\ & =51.2 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 2 \times(16 A+20 A) \\ & \times 0.8=57.6 A \end{aligned}$ | $\begin{aligned} & 3 \times 20 \mathrm{~A} \times 0.8 \\ & =50 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 3 \times 25 \mathrm{~A} \times 0.8 \\ & =60 \mathrm{~A} \end{aligned}$ |

## Auxiliary contacts and standard auxiliary contacts NHI for PKZM01, PKZM0 and PKZM4

They switch at the same time as the main contacts. They are used for remote indication of the operating state, and interlocking of switches
against one another. They are available with screw terminals or springloaded terminals.

Side mounted:


Integrated:


Only for (high-performance) compact circuit-breakers PKZMO-.../S...


## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4 - auxiliary contacts

## Trip-indicating auxiliary contact AGM for PKZM01, PKZM0 and PKZM4

These provide information about the reason for the PKZMO having tripped. In the event of a voltage/overload release (contact 4.43-4.44 or 4.31-4.32) or short-circuit release (contact


## Voltage releases

These operate according to the electromagnetic principle and act on the switch mechanism of the circuit-breaker.

## Undervoltage release

These switch the circuit-breaker off when no voltage is present. They are used for safety tasks. The undervoltage release U-PKZO, which is connected to voltage via the early-make auxiliary contacts VHI20-PKZO, allows the circuit-breaker to be switched on. In the event of power failure, the undervoltage release switches the circuit-breaker off via the switch mechanism. Uncontrolled restarting of machines is thus reliably prevented. The safety circuits are proof against wire breaks.
The VHI-PKZO can be used together with the PKZM4!


D2

## Shunt releases

These switch the circuit-breaker off when they are connected to voltage. Shunt releases can be provided in interlock circuits or for remote releases where voltage dips or interruptions are not to lead to unintentional switch off.


## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4 - operating principle schematics
Motor-protective circuit-breakers PKZM01, PKZM0 and PKZM4
Manually operated motor-starter


Compact starter and high-capacity compact starter with maximum number of auxiliary contacts fitted

Compact starters consist of:
Compact starter

- PKZMO motor-protective circuit-breaker and PKZMO-.../SEOO-... + NHI2-11S-PKZO
- Contact module (contactor) SE00-...-PKZO



## Motor-protective circuit-breaker <br> PKZM01, PKZM0 and PKZM4 - operating principle schematics

High-capacity compact starter consisting High-capacity compact starters
of:
PKZMO-.../S00-... + NHI2-11S-PKZO

- PKZMO motor-protective circuit-breaker and
- High-capacity contact module (contactor)

SEOO-...-PKZO


## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4 - operating principle schematics
Motor-protective circuit-breaker with auxiliary contact and trip-indicating auxiliary contact

PKZM01(PKZM0-...)(PKZM4...) + NHI11-PKZ0 +
AGM2-10-PKZ0


For differential fault indication
(Overload or short-circuit)


E1: circuit-breaker ON
E2: circuit-breaker OFF

E3: general fault, overload release
E4: short-circuit release

## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4 - operating principle schematics

## Remote switch off via shunt release

High-capacity compact starter with auxiliary contact and shunt release
PKZM0-.../S00-.. + A-PKZO


Q11: Contact module


## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4 - operating principle schematics

## Direct switch-on, reversible

(High-capacity) compact reversing starter PKZM0-.., $2 \times(\mathrm{S}) 00-$-../EZ-PKZO
(with mechanical interlock MV-PKZO if required)

(1) Fuseless

## Motor-protective circuit-breaker

PKZM01, PKZM0 and PKZM4 - operating principle schematics

For standard applications contact modules SEO0-...-.PKZO
may be used instead of high-capacity contact modules $\mathrm{SOO}-\ldots-\mathrm{PKZO}$.

(1) With position switches remove the links

## Motor-protective circuit-breaker

PKZ2 - overview

## Motor and system protection

The PKZ2 achieves its modularity by combining the motor or system-protective circuit-breaker with various accessories. This results in numerous application options and adaptation to widely differing requirements.

## The circuit-breaker

The circuit-breakers PKZ2/ZM... consists of:

- Basic unit and
- Plug-in trip block.

There is a choice of trip blocks:

- Motor-protective trip blocks (11 versions for the range from 0.6 to 40 A )
- System-protective trip blocks (5 versions for the range from 10 to 40 A )
All trip blocks are equipped with adjustable overload and short-circuit releases.
Overload from ... to:
- Motor-protective trip-blocks: 8.5 to $14 \times I_{\mathrm{e}}$
- Trip block for distribution circuit protection: 5 to $8.5 \times I_{\text {e }}$


## Standards

The motor-protective circuit-breaker PKZ2 complies with the IEC 947 and EN 60947 standards. The circuit-breaker has a switching capacity of $30 \mathrm{kA} / 400 \mathrm{~V}$ outside the inherently-safe range. It is auto-protected up to a rated operational current of 16 A . In addition, the PKZ2 complies with the requirements stipulated in IEC/EN 60204 for disconnectors and main switches.

## Special motor-protective trip block ZMR-...-PKZ2

This trip block features an overload relay function which allows the following interesting application:
In the event of an overload, the circuit-breaker does not trip. Instead, a normally closed contact (95-96) is actuated which switches off the contactor in the control circuit (contactors up to $18.5 \mathrm{~kW}, \mathrm{AC}-3)$. At the same time, a normally open contact (97-98) is actuated, which ensures remote indication. The normally closed contact and normally open contact are suitable for carrying two different potentials.
The trip block has a manual and an automatic position:

- Automatic position: The normally closed contact and normally open contact automatically return to the original position after the bimetallic strips have cooled down. The contact can be actuated again by actuation, for example, of a pushbutton.
- Manual position: An acknowledgement locally, at the unit, moves the contacts back to the original position after tripping.


## Important note!

For an EEx e application, the normally closed contact 95-96 must be used to shed the contact module or contactor, to achieve disconnection.

## Motor-protective circuit-breaker

PKZ2 - overview

## (High-capacity) contact module

 S-...-PKZ2A compact starter combination is produced by combining a contact module S-...-PKZ2 (contactor) featuring the same contours with the PKZ2:

- Switch + standard contact module SE1A-...-PKZ2. The contact module features the same functions and properties of a standard contactor and can be used for operational switching of $1 \times 10^{6} \mathrm{AC}-3$ operations.

- Switch + S-PKZ2... high-capacity contact module. A high-capacity compact starter is obtained by using a motor-protective circuit-breaker (PKZ2/ZM...) as the switch, and a combination circuit-breaker is produced by using a circuit-breaker (PKZ2/ZM-...-8) as the switch.
The high-capacity contact module increases the switching capacity of the combination to $100 \mathrm{kA} / 400 \mathrm{~V}$, and is suitable for $1 \times 10^{6} \mathrm{AC}-3$ operations.



## (High-capacity) contact module for 24 V DC control voltage

An actuating voltage of 24 V DC can be used with the contact module SE1A-G-PKZ2 (24 V DC) and the high-capacity contact module S-G-PKZ2 (24 V DC). It is necessary to take account of:

- Pull-in capacity: 150 VA,
- Pull-in current: 6.3 A (16 to 22 ms ),
- Holding power: 2.7 W ,
- Holding current: 113 mA .



## Current limiter CL-PKZ2

A specially developed current-limiter module which can be attached and featuring the same contours is available to increase the switching capacity of the circuit-breaker to $100 \mathrm{kA} / 400 \mathrm{~V}$. In the event of a short-circuit the contacts of the PKZ2 and CL-PKZ2 will open. The PKZ2 trips via the magnetic release and remains in this position. The CL-PKZ2 returns to the rest position after the short circuit. Both units are ready for operation again after the fault.


## Motor-protective circuit-breaker <br> PKZ2 - remote operator

The remote operator allows the PKZ2 to be switched on and off remotely during operation. After tripping, it can be reset to 0 by the remote operator.
The PKZ2 system has two remote operators:

- In the RE-PKZ2 - the electronic remote operator for standard applications - both CONTROL and LINE are separate inputs, but with the same reference potential. This allows actuation using low current units, e.g. control circuit devices.
- The electronic remote operator RS-PKZ2 can be actuated directly, without any coupling elements, from the semiconductor outputs of a PLC (24 V DC).
Electrical isolation between the CONTROL and LINE allows it to take power for the switching process from a separate power supply
(e.g. 230 V 50 Hz ).

Both remote operators must be supplied with the mains supply of 700 W/VA for 30 ms at the terminals 72-74 during the switching operation (On/Off/Reset). Twelve voltage versions are available per remote operator. These cover a wide application range. The remote operators can optionally be set for manual or automatic operation.

- Manual position: remote switching on is reliably electrically interlocked.
- Automatic position: remote switching on is possible.
An integrated normally open contact (33-34) when closed indicates the automatic position of the remote operator.

Minimum command time for the remote operators RE-PKZ2 and RS-PKZ2


## Motor-protective circuit-breaker

PKZ2 - remote operator

## Remote operator RE-PKZ2

Off and Reset separate
Off equals Reset


Remote operator RS-PKZ2
Off equals Reset


Motor-protective circuit-breaker
PKZ2 - release

## Voltage releases

## Undervoltage release $\mathbf{U}$

Undervoltage releases trip the circuit-breaker in the event of a power failure and prevent restarting when the power returns. Three versions are available:

- Non-delayed,
- With/without early-make auxiliary contact,
- With 200 ms dropout delay.



## Shunt release A

Shunt releases trip the circuit-breaker when a voltage is applied. These are an economic option for switching off remotely.
Shunt releases are suitable for AC and DC, and one version covers a wide voltage range.

Undervoltage releases which switch off without delay are suitable for Emergency-Stop circuits. The undervoltage release can be energized early by an additional link (see circuit diagram). Undervoltage release with a 200 ms dropout delay.


## Motor-protective circuit-breaker

PKZ2 - auxiliary contact, trip-indicating auxiliary contact

## Standard auxiliary contact NHI

The NHI is available in 2 versions.
NHI for circuit-breakers, fitted and featuring the same contours, for indicating the position of the main contacts of the switch.

NHI ... S for the starter combination, featuring the same contours, for indication of the position of the main contacts of the contactor and/or those of the circuit-breaker.


## Trip-indicating auxiliary contact AGM

The trip-indicating auxiliary contact is of particular importance. Two separate contact pairs signal that the circuit-breaker is in the tripped position. One contact pair (normally open \& normally closed) signals general tripping and one pair signals tripping in the event of a short circuit. If the normally open contact 4.43/4.44 and the normally closed contact 4.21/4.22 are connected in series, then it is also possible to indicate overload tripping differentially.


## Motor-protective circuit-breaker

PKZ2 - operating principle schematics
Motor-protective circuit-breaker consisting of:

- PKZ2 basic unit
- Plug-in trip block Z


Compact starter, consisting of:

- Basic unit
- Trip block
- Contact module SE1A...-PKZ2, which can be attached and has the same contours, for operational switching


High-capacity compact starter, consisting of:

- Basic unit
- Trip block
- High-capacity contact module fitted with same contour profile


Circuit-breaker with current limiter fitted


## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## On-off switching with remote operator

Separate actuation of Off and Reset


Circuit-breaker with remote operator, standard version.
Example 1: PKZ2/ZM-.../RE(...)

(1)

(1) Separate actuation of OFF and Reset
(2) Reset
(3) OFF
(4) ON

Actuation by control circuit devices (e.g. pushbuttons NHI, AGM, VS3, EK...SPS with potential-free contacts).

Auxiliary contact for signalling the manual/automatic position of the remote operator. Indicates the automatic position when closed.

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Joint actuation of Off and Reset

Circuit-breaker with remote operator, standard version.

(1) Off $=$ Reset
(2) Off/Reset
(3) ON

Actuation by control circuit devices
(e.g. pushbuttons NHI, AGM, VS3, EK...SPS with potential-free contacts).

Example 2: PKZ2/ZM-.../RS(...)

(1)


Auxiliary contact for signalling the manual/automatic position of the remote operator. Indicates the automatic position when closed.

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Circuit-breaker with remote operator, 24 V DC version with electronic outputs

For direct actuation by a programmable logic controller (PLC).


Actuation by PLC with 24 V DC electronic outputs.
Auxiliary contact for signalling the manual/automatic position of the remote operator.

Example 3: PKZ2/ZM-.../RS(...)



Indicates the automatic position when closed.

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Circuit-breaker with remote operator

Actuation by control circuit devices.


Example 4: PKZ2/ZM-.../RS(...)


S22: On
S23: Off/Reset
Actuation by control circuit devices via 24 V AC/DC.
Auxiliary contact for signalling the manual/automatic position of the remote operator. Indicates the automatic position when closed.

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Indication by auxiliary contacts

Circuit-breaker with auxiliary contact and trip-indicating auxiliary contact.


Example: PKZ2/ZM-... + NHI11-PKZ2 + AGM2-11-PKZ2

For differential fault indication.
L1


E1: Circuit-breaker On
E2: Circuit-breaker Off
E3: General fault, Overload tripping
E4: Short-circuit tripping

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Use of the undervoltage release in the Emergency-Stop circuit

Motor-protective circuit-breaker with auxiliary contact and undervoltage release.


S1: Emergency-Stop
S2: Emergency-Stop

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Remote switch off via shunt release

High-capacity compact starter with auxiliary contact and shunt release

Example: PKZ2/ZM-.../S-PKZ2 + A-PKZ2


Q11: High-capacity contact module


S1: Off
S2: On
S3: Circuit-breaker Off

Motor-protective circuit-breaker
PKZ2 - operating principle schematics
High-capacity compact starter with maximum number of auxiliary contacts fitted
Example: PKZ2/ZM.../S-PKZ2 +
NHI2-11S-PKZ2


K1: Circuit-breaker On
K2: Circuit-breaker Off
K3: Contact module Off

K4: Contact module On
K5: Contact module On
K6: Contact module Off

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Remotely actuated circuit-breaker with switch status indication

Motor-protective circuit-breaker with remote operator + auxiliary contact (1 NO, 1 NC) + trip indicating auxiliary contact

Example: PKZ2/ZM.../RE + NHI11-PKZ2 + AGM2-11-PKZ2



S1: On
S2: Off
S5: Reset
Q1: Auxiliary contact, indication: manual-auto
K1: Circuit-breaker On
K2: Circuit-breaker Off
K3: Overload indication
K4: Short-circuit indication

Motor-protective circuit-breaker
PKZ2 - operating principle schematics
Circuit-breaker with current limiter in separate mounting
Example: PKZ2/ZM... + NHI11-PKZ2 with CL/EZ-PKZ2


K1: Circuit-breaker On
K2: Circuit-breaker Off
Q2: Current limiter, separate mounting

## Motor-protective circuit-breaker

PKZ2 - operating principle schematics

## Special trip block ZMR-...-PKZ2 with overload relay function

For switching off a contactor in the control circuit in the event of an overload by means of a trip block ZMR-...PKZ2 with an overload relay function and with simultaneous indication. The circuit-breaker thumb-grip remains in the "On" position. Circuit-breaker with trip block ZMR, high-capacity contact module S and NHI11-PKZ2.



Q11: Shutdown
E1: Overload indication

Q11: High-capacity contact module

Notes

|  | Page |
| :---: | :---: |
| Overview | 7-2 |
| Overview, shunt releases | 7-3 |
| Undervoltage releases | 7-4 |
| Contact sequence of the auxiliary contacts | 7-5 |
| Internal circuit diagrams | 7-7 |
| Remote switch-off with voltage releases | 7-9 |
| Application of the undervoltage release | 7-11 |
| Shutdown of the undervoltage release | 7-12 |
| Indication of the switch position | 7-13 |
| Short-time delayed circuit-breakers internal circuit diagrams | 7-14 |
| Mesh network circuit-breaker | 7-15 |
| Remote operation with motor operator | 7-16 |
| as a transformer switch | 7-17 |
| with residual-current release | 7-18 |
| IZM circuit-breaker | 7-22 |

## Circuit-breakers

## Overview

## NZM circuit-breakers

These circuit-breakers protect electrical equipment against thermal overloading and in the event of a short circuit. They cover the rated current range from 20 to 1600 A .
Depending on the version, they have additional protective functions such as fault-current protection, earth-fault protection or the capability for energy management by recognition of load peaks, and deliberate load shedding.
Circuit-breakers NZM are distinguished by their compact shape and their current-limiting characteristics.
Switch-disconnectors without tripping units are available in the same sizes as the circuit-breakers and can be fitted with additional shunt or undervoltage releases to suit on the versions concerned.


## Circuit-breakers

## Overview, shunt releases

## IZM circuit-breakers

These circuit-breakers protect electrical equipment in the rated current range from 630 to 6300 A . They have digital tripping electronics, which are available in four different versions.
The tripping units offer extensive protection and signalling functions, extending from standard short-circuit and overload protection to energy management with data transmission.

Circuit-breakers IZM are built and tested to the specifications in IEC/EN 60947.
They feature isolating characteristics. In conjunction with a locking device, they are suitable for use as main switches to IEC/EN 60204.
The circuit-breakers in the IZM range are also available as IN switch-disconnectors without tripping units.

IZM1
IZM2


IZM3


Shunt releases A (Q1)


An electromagnet which, when a voltage is applied, actuates a tripping mechanism. When de-energized, the system is in the rest position. A normally open contact actuates the system. If the shunt release is rated for intermittent duty, the intermittent operation must be ensured by positioning appropriate auxiliary contacts (usually HIN/S1) upstream of the circuit-breaker. Shunt releases are used for remote tripping when an interruption in the voltage is not intended to lead to automatic disconnection. Tripping does not occur in the event of wire breakage, loose contacts or undervoltage.

## Circuit-breakers

## Undervoltage releases

## Undervoltage release U(Q1)



An electromagnet which actuates a tripping mechanism upon interruption of the voltage. The system is in the rest position when energized. Actuation is produced by a normally closed contact. Undervoltage releases are always designed for uninterrupted operation. These are the ideal tripping elements for totally reliable interlocking tasks (e.g. Emergency-Stop).
Undervoltage releases trip the circuit-breaker when the power fails in order, for example, to prevent motors from restarting automatically. They are also suitable for very reliable interlocking and remote switching off since disconnection always occurs in the event of a fault (e.g. wire breakage in the control circuit). The circuit-breakers cannot be closed when the undervoltage releases are de-energized.

Off-delayed undervoltage release UV (Q1)


The off-delayed undervoltage release is a combination of a separate delay unit (UVU) and the respective release. This release is used to prevent brief interruptions in power leading to disconnection of the circuit-breaker. The delay time is adjustable between 0.06 and 16 s .

## Circuit-breakers

## Contact sequence of the auxiliary contacts

## Standard auxiliary contact HIN



Used to provide command or signal outputs from processes which are governed by the position of the contacts. They can be used for interlocking with other switches, and for the remote indication of the switching state.

- Standard auxiliary contacts behave like main switch contacts
- Switch position indication
- Interlocking
- Disconnection of the shunt release

Trip-indicating auxiliary contact RHI, new designation: trip-indicating auxiliary contact HIA


Switch on
$0 \leftarrow 1$
Switch off
$+\leftarrow 1$
Trip

- contacts closed
$\square$ contacts opened

Used to provide command and signal output relating to electrical tripping of the circuit-breaker (trip position +) as is required, for example, for mesh network switches. No pulse is produced when the switch is opened or closed manually, or by a motor operator.

- Indication that the switch is in the tripped position
- Switch position indication only if tripping is caused by, for example, overcurrent, short-circuit, test or voltage release. No fleeting contact when switched on or off manually or switched off with the motor (exception: manual switch off with motor operator NZM2, 3, 4).


## Circuit-breakers

## Contact sequence of the auxiliary contacts

## Early-make auxiliary contact HIV

NZM 1, 2, 3


Used to provide command or signal outputs from processes which are initiated before the closure or opening of the main contact system. Because they close early, they can be used for interlocks with other switches. Furthermore, they allow a switch position indication.
The HIV has the same position in the tripped position of the circuit-breaker and the off position of the circuit-breaker. Because of their early-make feature, they can be used for energizing the undervoltage release $(\rightarrow$ section "Undervoltage releases", page 7-4).
$0 \rightarrow 1$
Switched on
$0 \leftarrow 1$
Switch off
$+\leftarrow 1$
Trip

- contacts closed
$\square$ contacts opened


## Circuit-breakers

## Internal circuit diagrams

## NZM1



Contact elements M22-K10 (K01) from the RMQ-Titan range from Moeller are used for the auxiliary contacts. Two early-make auxiliary contacts (2 NO) are also available.
Maximum component fitting:

|  | NZM |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| HIN, 1 NO or 1 NC | 1 | 2 | 3 | 3 |
| HIA, 1 NO or 1 NC | 1 | 1 | 1 | 2 |
| HIV, 2 NO | 1 | 1 | 1 | 1 |

NZM2


Details about the auxiliary
contacts: $\rightarrow$ section
"Maximum component
fitting:", page 7-7

Circuit-breakers
Internal circuit diagrams

## NZM3



NZM4

7


## Circuit-breakers

Remote switch-off with voltage releases
Remote switch-off with undervoltage releases


Remote switch-off with shunt release


## Circuit-breakers

Remote switch-off with voltage releases
Main switch application in processing machines with Emergency-Stop function conform to the IEC/EN 60204-1 standard


In the OFF position of the main switch all control elements and control cables which exit the control panel are voltage free. The only live components are the control-voltage tap-offs with the control lines to the early-make auxiliary contact.

## Circuit-breakers

Application of the undervoltage release

## Shut off of the undervoltage release



The early-make auxiliary contact HIV (Q1) can as shown above - disconnect the undervoltage release from the control voltage when the circuit-breaker is in the Off position. If the undervoltage release is to be disconnected in 2 poles, then a further normally open contact of Q1 must be connected between terminals D 2 and N . The early-make auxiliary contact HIV (Q1) will always apply voltage to the undervoltage release in time to permit closure.

Starting interlock of the undervoltage release



Circuit-breakers with undervoltage release produce a positive Off position in conjunction with interlocking auxiliary contacts on the starter (S5), ancillary devices on the motor (e.g. brush lifting, S6) or on all switches in multi-motor drives.

The circuit-breaker cannot be closed unless the starter or switch is in the zero or Off position.

## Circuit-breakers

Shutdown of the undervoltage release
Interlocking of several circuit-breakers using an undervoltage release



When interlocking 3 or more circuit-breakers, each circuit-breaker must be interlocked with the series-connected normally closed contacts of the auxiliary contacts on the other circuit-breakers using one contactor relay - for contact duplication - per auxiliary contact. If one of the circuit-breakers is closed, the others cannot be closed.

## Circuit-breakers

Indication of the switch position
On and Off indication using standard auxiliary contacts HIN (Q1)


P1: On
P2: Off

## Tripped indication using trip-indicating auxiliary contact HIA (Q1)

Trip-indicating auxiliary contacts for mesh network switches


P1: Tripped

## Circuit-breakers

Short-time delayed circuit-breaker - internal circuit diagrams

## Time-discriminating network topology

Short-time delayed circuit-breakers NZM2(3)(4)/VE enable a time-discriminating network design with variable stagger times.
Where the prospective short-circuit currents are extremely high, additional installation protection is achieved by instantaneous releases, which respond without any delay.


## Circuit-breakers

## Mesh network circuit-breaker

## NZM1, NZM2, NZM3, NZM4

Circuit with capacitor unit and shunt release $230 \mathrm{~V}, 50 \mathrm{~Hz}$.
The configuration of the capacitor unit which provides the energy for the shunt release of the
mesh network circuit-breaker can be undertaken independently of the circuit-breaker.
Connect the NZM-XCM to the power feed side!

(1) Mesh network relay
(2) Mesh network relay with low-capacity contacts

## Circuit-breakers

Remote operation with motor operator

| Two-wire control | Three-wire control | Three-wire control with <br> automatic return to the Off <br> position after tripping |
| :--- | :--- | :--- |

NZM2, 3, 4


## Circuit-breakers

## as a transformer switch

Faults upstream of the low-voltage circuit-breaker, e.g. in the transformer itself, are disconnected by suitable protective devices (e.g. a Buchholz relay) on the high-voltage side. The S7 auxiliary contact of the high-voltage circuit-breaker trips out the NZM transformer switch on the low-voltage side in order to prevent feedback to the high-voltage network. S7 thus isolates the transformer from the network on both
sides. This interlocking with the high-voltage circuit-breaker must always be provided when transformers are being operated in parallel. If only one normally open contact is available as the auxiliary contact, an undervoltage release must be used instead of the shunt release. At the same time, this provides protection against undervoltage.

## Circuit-breaker with undervoltage release Q1



## Circuit-breakers

with residual-current release

## NZM2-4-XFI, XFI30

These circuit-breakers with integrated residual current protection offer:

- Overload protection
- Short-circuit protection
- Fault-current protection

In addition to the protective functions, this circuit-breaker can perform the functions of a main switch with isolating characteristics. Like RCCB's built conform to VDE 0664, the residual current release recognises AC and DC fault currents. The residual-current release NZM74-... and NZM2-4-FI(30) are "pulse current sensitive". The NZM2-4-FIA(30) is sensitive to AC and DC. In the event of a fault the circuit-breaker disconnects the fault circuitry. The residual-current protective switches for the NZM2-4 and NZM74 are built and tested to IEC/EN 60947 and VDE 0664 Part 3.
The residual-current release requires no external auxiliary voltage for tripping. For the switch rated current range 30-250 A at rated voltages 200-690 V (NZM2-4) and 380-690 V (NZM74), rated fault currents $I_{\Delta \mathrm{n}}=0.1-0.5^{*}-1-3 \mathrm{~A}$ and delay times $t_{\mathrm{V}}-60-150-300-450 \mathrm{~ms}$ can be set in steps. The XFI30 or FIP30 trips at a rated fault current of 30 mA .

[^2]
(1) Test button

## Circuit-breakers <br> with residual-current release

## Residual-current relay PFR with ring-type transformer

The area of application for the relay/transformer combination ranges - depending on the standards involved - from personnel protection to fire prevention to general protection of systems for 1 to 4 -pole electrical power networks.
There are three different relay types and seven different transformer types available. They cover operating currents ranging from 1 to 1800 A . The three relay types are:

- Rated fault current 30 mA , permanently set
- Rated fault current 300 mA , permanently set
- Rated fault current from 30 mA to 5 A and a delay time from 20 ms to 5 s which is variable in stages.

The fault current relay indicates when a fault current has exceeded the predefined fault current by using a changeover contact. The contact signal can be processed further as a signal in programmable logic controllers or can initiate a trip via the undervoltage release of a circuit-breaker/switch-disconnector. The compact ring-type transformer is placed without any particular space requirement at a suitable position in the power chain.


## Circuit-breakers

with residual-current release
Trip of circuit-breakers with shunt release and possible external reset of the relay by a pushbutton (NC contact)


## Circuit-breakers

with residual-current release

Trip of circuit-breakers with undervoltage release and possible external reset of the relay by a pushbutton (NC contact)


Control circuit plugs $\mathrm{X} 8, \mathrm{X} 7, \mathrm{X} 6, \mathrm{X} 5$ are identical

## X8: optional control circuit plug

(Connections X8:1 to X8:8 only with IZM...-U... and IZM...-D...)
(1) Electronic overload release

XFR remote reset
G-converter S2
G-converter S1 IZM-XW(C) N-converter S2 IZM-XW(C) N-converter S1 External voltage transformer star External voltage transformer L3 External voltage transformer L2 External voltage transformer L1 0 V DC 24 V DC Internal system bus + Internal system bus -

## X7: optional control circuit plug

## Not available with

communication
function IZM-
XCOM-DP.
At the position of
X7 a communications module
is located.
Tripped signalling switch XHIA
Signal state Spring-operated stored energy XEE electrically "ON"

XHIS signalling switch on first voltage release

XHIS signalling switch on second voltage release


Convertor in transformer star point or summation current convertor 1200 A/1 A

## X6: standard control circuit plug

XE/A first shunt release

Standard auxiliary switch XHI: S1 "NO"
Standard auxiliary switch XHI: S1 "NC"
Closing release XE/A
"Ready to close" auxiliary switch XHIB
Standard auxiliary switch XHI: S2 "NO"
Standard auxiliary switch XHI: S2 "NC"

## X5: optional control circuit plug

Only XUV "non-delayed trip" XA1, XU, XUV second voltage release

Standard auxiliary contact XHI11/XHI22/XHI31: S3 "NO", XHI40: S7 Standard auxiliary contact XHI11/XHI22/XHI31: S3 "NC", XHI40: S7 Standard auxiliary contact XHI22: S4 "NO", XHI31/XHI40: S8 "NO" Standard auxiliary contact XHI22: S4 "NC", XHI31/XH40: S8 "NO"

Motor operators
Optional motor cut-off switch XMS


Circuit-breakers

## IZM circuit-breakers



Circuit-breakers
IZM circuit-breakers


Circuit-breakers
IZM circuit-breakers

Voltage release/electrical manual reset


Circuit-breakers
IZM circuit-breakers


Circuit-breakers
IZM circuit-breakers



Protective circuits for overcurrent release with breaker status sensor and metering module



Protective circuits for overcurrent release, breaker status sensor only


Notes
Motor protection 8-3
Engineering notes 8-13
Circuit documentation ..... 8-17
Power supply ..... 8-19
Control current supply ..... 8-22
Contactor markings ..... 8-23
Direct-on-line start of three-phase motors ..... 8-24
Direct-on-line start with motor-protective circuit-breaker PKZ2 ..... 8-32
Control circuit device for direct-on-line start ..... 8-36
Star-delta starting of ..... 8-37
Star-delta starting with motor-protective circuit-breaker PKZ2 ..... 8-46
Control circuit devices for star-delta starting ..... 8-49
Pole-changing motors ..... 8-51
Motor windings ..... 8-54
Multi-speed contactors ..... 8-57
Multi speed switch for three-phase motors ..... 8-59
Control circuit devices for multi-speed contactors UPDIUL ..... 8-67
Multi speed switch for three-phase motors ..... 8-72
Multi speed switch with motor-protective circuit-breaker PKZ2 ..... 8-87
Three-phase automatic stator starters 8-89
Three-phase automatic rotor starters 8-94

| Switching of capacitors 8-98 |
| :--- | :--- |

Duplex pump control ..... 8-102
Fully automatic pump control ..... 8-104
Off position interlock of the loads ..... 8-108
Fully automatic main transfer switch with automatic reset ..... 8-109

## All about Motors

Motor protection

## Overload relay with manual reset

They should always be used where continuous contact devices (two-wire control) are concerned (e.g. pressure and position switches), to prevent automatic restarting. The reset button can be fitted as an external feature in order to make it accessible to all personnel. Moeller overload relays are always supplied with manual reset but can be converted to automatic reset by the user.

## Overload relays with automatic reset

They can be used only with pulsed contact devices (three-wire control) such as pushbuttons etc., because on these, the cooling of the bimetal strips cannot lead to automatic reconnection.

## Special circuitry

Special circuitry such as is found in star-delta starters, individually compensated motors, current transformer-operated relays etc. may require that the relay setting deviates from the rated motor current.

## Frequently recurring operating cycles

It makes motor protection difficult. The relay should be set to higher than rated motor current in view of its shorter time constant. Motors which are rated for a high frequency of operation will stand this setting to a certain degree. Although this will not ensure complete protection against overload, it will nevertheless provide adequate protection against non-starting.

## Back-up fuses and instantaneous releases

They are needed to protect not only the motor, but also the relay, against the effects of short circuits. Their maximum rating is shown clearly on every relay and must be adhered to without fail. Higher ratings - chosen for instance according to the cable cross-section - would lead to the destruction of the motor and relay.
The following important questions and answers give a further guide to the behaviour of an installation with motor protection.

## To what current must the overload relay properly be set?

To the rated motor current - no higher, no lower. A relay set to too low a figure will prevent the full utilization of the motor; set too high, it will not guarantee full overload protection. If a correctly set relay trips too frequently, then either the load on the motor should be reduced or the motor should be exchanged for a larger one.

## When is it right for the overload relay to trip?

Only when the current consumption of the motor increases due to mechanical overloading of the motor, undervoltage or phase failure when the motor is under full load or thereabout, or when the motor fails to start due to a stalled rotor.

## All about Motors

Motor protection

When does the overload relay fail to trip in good time although the motor is endangered?

With changes in the motor which do not cause an increase in current consumption: Effects of humidity, reduced cooling due to a reduction in speed or motor dirt, temporary additional external heating of the motor or bearing wear.

## What causes destruction of the overload relay?

Destruction will take place only in the event of a short circuit on the load side of the relay when the back-up fuse is rated too high. In most cases, this will also endanger the contactor and motor. Therefore, always adhere to the maximum fuse rating specified on every relay.

3-pole overload relays should be so connected in the case of single-phase and DC motors so that all three poles of the overload relay carry the current, whether in single-pole or 2-pole circuits.


An important characteristic feature of overload relays conforming to IEC/EN 947-4-1 are the tripping classes (10 A, 10, 20, 30). They determine different tripping characteristics for the various starting conditions of motors (normal starting to heavy starting).

## All about Motors

## Motor protection

## Response values

Response limits of time-delayed overload relays at all-pole load.

|  | Multiple of current setting |  |  |  |  |  | Reference ambient temperature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A $t>2$ h starting from cold state of relay | $\begin{aligned} & \mathrm{B} \\ & t \leqq 2 \mathrm{~h} \end{aligned}$ | C <br> Tripping class $10 \mathrm{~A}$ <br> 10 <br> 20 <br> 30 | Tripping time in minutes $\leqq 2$ <br> $\leqq 4$ <br> $\leqq 8$ <br> $\leqq 12$ | D <br> Tripping class $10 \mathrm{~A}$ <br> 10 <br> 20 <br> 30 | Tripping time in seconds $\begin{aligned} & 2<\mathrm{T} \leqq 10 \\ & 4<\mathrm{T} \leqq 10 \\ & 6<\mathrm{T} \leqq 20 \\ & 9<\mathrm{T} \leqq 30 \end{aligned}$ |  |
| Non-ambient temperature compensated thermal relays and magnetic relays | 1.0 | 1.2 | 1.5 |  | 7.2 |  | $+40^{\circ} \mathrm{C}$ |
| Ambient temperature compensated thermal relays | 1.05 | 1.2 | 1.5 |  | 7.2 |  | $+20^{\circ} \mathrm{C}$ |

In the case of thermal overload relays with a current setting range, the response limits must apply equally to the highest and the lowest setting of the associated current.

## All about Motors

Motor protection
Response limits of 3-pole thermal overload relays at 2-pole load

| Type of thermal overload | Multiple of current setting |  |  |  | Reference ambient temperature |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A $t>2 \mathrm{~h}$, starting from cold state of relay |  | $\begin{aligned} & \mathrm{B} \\ & t \leqq 2 \mathrm{~h} \end{aligned}$ |  |  |
| Ambient temperature compensated, without phase-failure sensitivity | 3 poles | 1.0 | $\begin{aligned} & 2 \text { poles } \\ & 1 \text { pole } \end{aligned}$ | $\begin{aligned} & 1.32 \\ & 0 \end{aligned}$ | $+20^{\circ} \mathrm{C}$ |
| Non-ambient temperature compensated, without phase-failure sensitivity | 3 poles | 1.0 | 2 poles <br> 1 pole | $\begin{aligned} & 1.25 \\ & 0 \end{aligned}$ | $+40^{\circ} \mathrm{C}$ |
| Ambient temperature compensated, with phase-failure sensitivity | 2 poles 1 pole | $\begin{aligned} & \hline 1.0 \\ & 0.9 \end{aligned}$ | $\begin{aligned} & 2 \text { poles } \\ & 1 \text { pole } \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0 \end{aligned}$ | $+20^{\circ} \mathrm{C}$ |

In the case of thermal overload relays with a current setting range, the response limits must apply equally to the highest and the lowest setting of the associated current.

## Overload capacity

Overload relays and releases have heating coils which can be thermally destroyed by overheating. The making and breaking currents of the motor flow in thermal overload relays which are used for motor protection. These currents are between 6 and $12 \times I_{e}$ (rated operational current), depending on the utilization category and the size of the motor. The point of destruction depends on the frame size and design and is usually approximately 12 to $20 \times I_{\mathrm{e}}$.

The point of destruction is the point of intersection between the projected tripping curves and the multiple of the current.

## Short-circuit rating of the main circuit

With currents that exceed the breaking capacity of the motor starter in relation to the utilization category (EN 60947-1), it is permissible for the current flowing during the operating time of the protective device to damage the motor starter.
The permissible behaviour of starters under short-circuit conditions is defined in the so-called types of co-ordination (1 and 2). It is common practice to state in the details of protective devices which type of co-ordination is ensured by them.

## All about Motors

## Motor protection

## Type "1" co-ordination

In the event of a short circuit the starter must not endanger persons and installations. It does not have to be fit for renewed operation without repair.

## Type "2" co-ordination

In the event of a short circuit the starter must not endanger persons and installations. It must be fit for renewed operation. There is a risk of contact welding for which the manufacturer must give maintenance instructions.

The tripping characteristic of the overload relay must not differ from the given tripping curve after a short circuit.

## Short-circuit withstand strength of the auxiliary contact

The manufacturer details the required overcurrent protective device. The combination is subjected to three test disconnection's at 1000 A prospective current with a power factor between 0.5 and 0.7 at rated operational voltage. Welding of the contacts may not occur (EN 60947-5-1).

## Motor protection in special applications

## Heavy starting duty

An adequate tripping delay is essential in order to allow a motor to start up smoothly. In the majority of cases, overload relays ZB, motor-protective circuit-breakers PKZ(M) or circuit-breakers NZM can be used. The tripping delays can be taken from the tripping characteristics in the Moeller Main Catalogue, Industrial Switchgear.
In the case of especially high-inertia motors, whose run-up time exceeds the tripping delay of the above devices, it would be completely wrong to adjust an overload relay which tripped out before the run-up time expired, to a current level higher than the rated motor current. This would, it is true, solve the starting problem, but the motor would no longer be adequately protected during normal operation. However, there are other solutions to the problem:

Current transformer-operated relay ZW7 The ZW7 consists of three special saturable core current transformers, supplying an
overload relay Z00. It is used principally for medium and large motors.

Up to two times rated current $I_{\mathrm{e}}$, the transformation ratio $I_{1} / I_{2}$ of the saturable core current transformers is practically linear. Within this range it does not differ from the normal overload relay, i.e. it provides normal overload protection during normal operation. However, within the transformer characteristic range ( $I>2 \times I_{\mathrm{e}}$ ), the secondary current no longer increases proportionally to the primary current.
This non-linear increase in the secondary current produces an extended tripping delay if overcurrents greater than twice rated current occur, and hence permits longer starting times.

Adjusting the current transformer-operated relay ZW7 for lower motor ratings
The setting ranges quoted in the Moeller Main Catalogue, Industrial Switchgear apply when the incoming cable is looped once through the transformer relay.

## All about Motors

Motor protection

If the current transformer-operated overload relay ZW7 is required to provide protection to a motor of below 42 A rating (minimum value in the setting range of 42 A to 63 A ), the necessary range adjustment is achieved by looping the incomer several times through the aperture in the relay. The change in the rated motor current quoted on the rating plate is inversely proportional to the number of loops.

## Example:

With the ZW7-63 relay, which has a setting range from 42 A to 63 A , a motor rating of 21 A to 31.5 A can be accommodated by looping the leads twice through the relay.

## Bridging of motor protection during starting

For small motors the bridging of the motor protection during starting is more economical.
Because of the additional parallel contactor, the overload relay does not carry the full current during starting. Only when the motor has reached full speed is the bridging contactor switched off and the full motor
current is then carried by the overload relay. Provided it has been set correctly to the rated motor current, this will ensure full motor protection during operation. Starting must be monitored.
The motor is a limiting factor with regard to the tripping delay of the current transformer-operated relay and the bridging period. One must ensure that the motor is able to tolerate the high temperature generated by direct starting, for the prescribed starting time. Motor and starting procedure have to be selected carefully when dealing with machines having a very large rotating mass, which are practically the only ones subject to this problem when direct starting is used.
Depending on the operating conditions adequate protection of the motor winding may no longer be given by an overload relay. In that case it must be weighed up whether an electronic motor-protective relay ZEV or a thermistor overload relay EMT 6 in conjunction with an overload relay $Z$ meets the requirements.

## Star-delta starter (Y $\Delta$ )

Non-reversing
Changeover time with overload relay in position

A: < 15 s

$\mathrm{B}:>15<40 \mathrm{~s}$

$\mathrm{C}:>40 \mathrm{~s}$


## Setting of the overload relay

$0.58 \times I_{\mathrm{e}}$
Full motor protection in $Y$ (star) position
$1 \times I_{e}$
Only partial motor protection in Y position
$0.58 \times I_{e}$
Motor not protected in $Y$
(star) position

## All about Motors

## Motor protection

## Multi-speed switch

2 speeds One tapped windin
2 separate windings
3 speeds
$1 \times$ tapped winding +1 winding


Attention must be paid to short-circuit protection of the overload relays.
Separate supply leads should be provided if required.

## Heavy starting duty

Current transformer-operated relay ZW7


For medium and large motors

Bridging of motor protection during starting


Bridging during starting using bridging relay


For small motors; no protection Automatic cut out during starting

## All about Motors

## Motor protection

## Individually compensated motor

$I_{\mathrm{e}}=$ Rated motor operational current $[\mathrm{A}] \quad I_{\mathrm{w}}=I_{\mathrm{e}} \times \cos \varphi[\mathrm{A}]$
$I_{\mathrm{w}} \quad=$ Active cur. $\}$ Proportion of motor
$I_{\mathrm{b}} \quad=$ Reactive cur. rated operational current $[\mathrm{A}] I_{\mathrm{b}}=\sqrt{I_{\mathrm{e}}^{2}-I_{\mathrm{w}}^{2}}[\mathrm{~A}]$
$I_{c} \quad=$ Rated capacitor current [A]
$I_{c}=\quad U_{e} \times \sqrt{3} \times 2 \pi f \times C \times 10^{-6}[A]$
$I_{\mathrm{EM}}=$ Setting current of overload relay [A]
$I_{c}=\frac{P_{c} \times 10^{3}}{\sqrt{3} \times U_{e}}$
$\cos \varphi=$ Motor power factor
$U_{\mathrm{e}} \quad=$ Rated operational voltage [V]
$P_{\mathrm{c}} \quad=$ Rated capacitor output [kvar]
C = Capacitance of capacitor [ $\mu \mathrm{F}]$

## Capacitor connected

to contactor terminals
to motor terminals


Setting $I_{E M}$ of overload relay

$$
I_{\mathrm{EM}}=1 \times I_{\mathrm{e}}
$$

Capacitor does not relieve loading of cable between contactor and motor.

$$
I_{\mathrm{EM}}=\sqrt{I_{\mathrm{W}}^{2}+\left(I_{\mathrm{b}}-I_{\mathrm{c}}\right)^{2}}
$$

Capacitor relieves loading of cable between contactor and motor; normal arrangement.

## All about Motors

## Motor protection

## Thermistor relay for machine protection relays

Thermistor overload relays are used in conjunction with temperature-dependent semiconductor resistors (thermistors) for monitoring the temperature of motors, transformers, heaters, gases, oils, bearings etc.

Depending on the application, thermistors have positive (PTC thermistors) or negative (NTC thermistors) temperature coefficients. With PTC thermistors the resistance at low temperature is small. From a certain temperature it rises steeply. On the other hand, NTC thermistors have a falling resistance-temperature characteristic, which does not exhibit the pronounced change behaviour of the PTC thermistor characteristic.

## Temperature monitoring of electric motors

Thermistor overload relays EMT6 comply with the characteristics for the combination of protective devices and PTC sensors to VDE 0660 Part 303. They are therefore suitable for monitoring the temperature of series motors.
When designing motor protection, it is necessary to differentiate between stator-critical and rotor-critical motors:

## - Stator-critical

Motors whose stator winding reaches the permissible temperature limit quicker than the rotor. The PTC sensor fitted in the stator winding ensures that the stator winding and rotor are adequately protected even with a stalled rotor.

## - Rotor-critical

Squirrel-cage motors whose rotor in the event of stalling reaches the permissible temperature limit earlier than the stator winding. The delayed temperature rise in the stator can lead to a delayed tripping of the thermistor overload relay. It is therefore advisable to supplement the protection of rotor-critical motors by a conventional overload relay. Three-phase motors above 15 kW are usually rotor-critical.
Overload protection for motors in accordance with IEC/EN 60204. These standards specify that motors above 2 kW used for frequent starting and stopping should be adequately protected for this type of duty. This can be achieved by fitting temperature sensors. If the temperature sensor is not able to ensure adequate protection with stalled rotors, an overcurrent relay must also be provided.
Generally, where there is frequent starting and stopping of motors, intermittent operation and excessive frequency of operation, the use of overload relays in conjunction with thermistor overload relays is to be recommended. In order to avoid premature tripping out of the overload relay in these operating conditions, it is set higher than the predefined operational current. The overload relay then assumes stalling protection; the thermistor protection monitors the motor winding.
Thermistor overload relays can be used in conjunction with up to six PTC sensors to DIN 44081 for direct monitoring of temperatures in EEx e motors compliant to the ATEX directive ( $94 / 9 \mathrm{EC}$ ). Copies of PTB certification are available on request.

## All about Motors

Motor protection

## Protection of current and temperature-dependent motor-protective devices

| Protection of the motor under the following conditions | Using bimetal | Using thermistor | Using bimetal and thermistor |
| :---: | :---: | :---: | :---: |
| Overload in continuous operation | + | + | + |
| Extended starting and stopping | (+) | + | + |
| Switching to stalled rotor (stator-critical motor) | + | + | + |
| Switching on stalled rotor (rotor-critical motor) | (+) | (+) | (+) |
| Single-phasing | + | + | $+$ |
| Intermittent operation | - | + | + |
| Excessive frequency of operation | - | + | + |
| Voltage and frequency fluctuations | + | + | + |
| Increased coolant temperature | - | + | + |
| Impaired cooling | - | + | + |

+ Full protection
(+) Partial protection
- No protection


## All about Motors

Notes on engineering

## Three-phase automatic starters





I: line current
$M_{d}$ : torque
$n$ : speed
(1) Reduction of the line current
(2) Reduction of the torque

## Three-phase automatic stator resistance starters with starting resistors

Single or multi-step resistors are connected upstream of the three-phase squirrel-cage motors to reduce the starting current and torque.
With single-step starters, the starting current is approximately three times the motor full-load current. With multi-step starters, the resistors can be so designed that the starting current is only 1.5 to 2 times the motor full-load current, with a very low level of starting torque.

## Three-phase automatic stator resistance starters with starting transformers

This type of starting is preferable where the same starting torque is to be obtained as with the primary resistance starters but the starting current taken from the mains is to be further reduced. A reduced voltage $U_{\mathrm{a}}$ (approximately $70 \%$ of the rated operational voltage) is supplied to the motor when starting via the starting transformer. Thus, the current taken from the mains is reduced to approximately half the direct starting current.

## Three-phase automatic rotor starters with starting resistors

Resistors are connected in the rotor circuit of the motor to reduce the starting current of motors with slip-ring rotors. The current taken from the mains is thus reduced. In contrast to stator resistance starters, the torque of the motor is practically proportional to the current taken from the mains. The number of steps of the automatic starter is determined by the maximum permissible starting current and by the type of the motor.

## All about Motors <br> Notes on engineering

## Important data and features of three-phase automatic starters

| 1) Style of starter | Stator resistance starter (for squirrel-cage motors) |  |  | Rotor starter (for |
| :---: | :---: | :---: | :---: | :---: |
| 2) Type of starter | Star-delta switches | With starting resistors | With starting transformers | Rotor resistance starter |
| 3) Number of starting stages | 1 only | Normally 1 | Normally 1 | Selectable (no longer selectable when current or torque have been determined) |
| 4) Voltage reduction at the motor | $0.58 \times$ rated operational voltage | Selectable: <br> a $\times$ rated operational voltage ( $a<1$ ) e.g. 0.58 as with $Y \triangle$ starter | $\begin{aligned} & \hline \text { Selectable: } \\ & 0.6 / 0.7 / 0.75 \times U_{\mathrm{a}} \\ & \text { (transformer } \\ & \text { tappings) } \end{aligned}$ | None |
| 5) Starting current taken from mains | $0.33 \times$ inrush current at rated operational voltage | a $\times$ inrush current at rated operational voltage | Selectable (see 4) 0.36/0.49/0.56 $\times$ inrush current at rated operational voltage | Selectable: from 0.5 to about $2.5 \times$ rated current |
| 5a) Starting current at the motor | As above | As above | $\begin{aligned} & \text { Selectable (see 4) } \\ & 0.6 / 0.7 / 0.75 \times I_{\mathrm{e}} \end{aligned}$ | As above |
| 6) Starting torque | $0.33 \times$ tightening torque at rated operational voltage | $\mathrm{a}^{2} \times$ tightening torque at rated operational voltage | Selectable (see 4) 0.36/0.49/0.56 $\times$ tightening torque at rated operational voltage | Selectable (see 5) from 0.5 to pull-out torque |
| 7) Current and torque reduction | Proportional | Current reduction less than torque reduction | Proportional | Current reduction much greater than torque reduction. From pull-out torque to rated speed almost proportional |
| 8) Approximate price (for similar data). <br> DOL starting $=$ 100 (with overload relay, enclosed) | 150-300 | 350-500 | 500-1500 | 500-1500 |

## All about Motors

Notes on engineering

## Switching of capacitors

## DIL contactors for capacitors - individual switching

## Individual compensation



When capacitors are switched on, contactors are heavily stressed by transient current peaks. When a single capacitor is switched on, currents up to 30 times the rated current can occur; these can, however, be reliably switched by Moeller DIL contactors.
When installing capacitors, the VDE specification 0560 part 4 (Germany) and the standards which apply to each country should be observed. According to these, capacitors not directly connected to an electrical device which forms a discharge circuit, should be equipped with a rigidly connected discharge device. Capacitors connected in parallel to the motor do not require a discharge device, since discharging is performed via the motor winding. No switch-disconnectors or fuses must be installed between the discharge circuit and the capacitor.

## Group compensation



A discharge circuit or discharge device must reduce the residual voltage of the capacitor to less than 50 V within a minute of the capacitor being switched off.

## All about Motors <br> Notes on engineering

## Contactor for capacitor DIL...K - Individual and group compensation

## Group compensation

L1...

(1) Additional inductance with standard contactor

In the case of group compensation where capacitors are connected in parallel, it must be noted that the charging current is taken not only from the mains but also from the capacitors connected in parallel. This produces inrush current peaks which can exceed 150 times the rated current. A further reason for these peak currents is the use of low-loss capacitors as well as the compact construction, with short connecting elements between contactor and capacitor.
Where standard contactors are used, there is danger of welding. Special contactors for capacitors such as those available from Moeller in the DILMK... range, which can control inrush current peaks of up to 180 times the rated current, should be used here.

If no special contactors are available, the inrush currents can be damped by additional inductance's. This is achieved either by longer incoming leads to the capacitors or by inserting an air-cored coil with a minimum inductance of approximately $6 \mu \mathrm{H}$ ( 5 windings, diameter of the coil approximately 14 cm ) between contactor and capacitor. The use of series resistors is another way of reducing high inrush currents.

## Use of reactors

Frequently the capacitors in group compensation are provided with reactors to avoid harmonics. The reactors also act to limit the inrush current and normal contactor can be used.

## All about Motors

## Circuit documents

## General

Circuit documents serve to explain the function of circuits or electrical connections. They provide information for the construction, installation and maintenance of electrical installations.
The supplier and the operator must agree on the form in which the circuit documents are to be produced: paper, film, diskette, etc. They must also agree on the language or languages in which the documentation is to be produced. In the case of machines, user information must be written in the official language of the country of use to comply with EN 292-2. The circuit documents are divided into two groups:

## Classification according to the purpose

Explanation of the mode of operation, the connections or the physical position of the components. These include:

- Explanatory circuit diagrams,
- Block diagrams,
- Equivalent circuit diagrams,
- Explanatory tables or diagrams,
- Flow diagrams, tables
- Time flow diagrams, tables
- Wiring diagrams,
- Device wiring diagrams,
- Interconnection diagrams,
- Terminal diagrams,
- Assignment diagrams.


## Classification according to the type of representation

Simplified or detailed

- Single-line or multi-line representation
- Connected, semi-connected or separate representation
- Topographical representation In addition to this, there is the process-orientated representation with the function chart (see previous pages).
Examples for drawing up circuit documents are given in IEC/EN 61082-1.


## Circuit diagrams

Diagrams indicate the voltage-free or current-free status of the electrical installation. A distinction is drawn between:

- Block diagram: simplified representation of a circuit with its main parts, which shows how the electrical installation works and how it is subdivided.
- Circuit diagram: detailed representation of a circuit with its individual components, which shows how the electrical installation works.
- Equivalent circuit diagram: special version of an explanatory circuit diagram for the analysis and calculation of circuit characteristics.


## All about Motors

## Circuit documents



Circuit diagram: 1-pole and 3-pole representation

## Wiring diagrams

Wiring diagrams show the conductive connections between electrical components. They show the internal and/or external connections but, in general, do not give any information on the mode of operation. Instead of wiring diagrams, wiring tables can also be used.

- Unit wiring diagram: representation of all the connections within the device or combination of devices.
- Interconnection diagram: representation of the connections between the device or combination of devices within an installation.
- Terminal diagram: representation of the connection points of an electrical installation and the internal and external conductive connections connected to them.
- Assignment diagram (location diagram). representation of the physical position of the electrical equipment, which does not have to be to scale.
You will find notes on the marking of electrical equipment in the diagram as well as further diagram details in the section "Specifications, Formulae, Tables".


## All about Motors

Power supply

## 4-conductor system, TN-C-S


(1) Protective earth conductor Protective earth terminal in enclosure (not totally insulated)

Overcurrent protective device is required in the supply for compliance to IEC/EN 60204-1

5-conductor system, TN-S supply system
(1) Protective earth conductor

Protective earth terminal in enclosure (not totally insulated)


Overcurrent protective device is required in the supply for compliance to IEC/EN 60204-1

## All about Motors

Power supply
3-conductor system, IT supply system


Overcurrent protective device is required in the supply for compliance to IEC/EN 60204-1 For all systems: use the N conductor only with
the agreement of the user


Separate primary and secondary protection
Earthed control circuit. In non-earthed control circuit, remove link and provide insulation monitoring.

## All about Motors

Power supply


## Combined primary and secondary protection

Earthed control circuit. In non-earthed control circuit, remove link and provide insulation monitoring.
Maximum ratio of U1/U2 $=1 / 1.73$
Circuit not to be used with STI/STZ (safety and isolating transformers).

## All about Motors

## Control circuit supply



Separate primary and secondary protection, with insulation monitoring on the secondary side
(1) Clear button
(2) Test button

DC power supply with

three-phase bridge rectifier

## All about Motors

Contactor markings

The contactors in contactor combinations have, in accordance with EN 61346-2 for equipment and function, the code letter $Q$, as well as numerical identification, which shows the function of the component (e.g. Q22 =
mains contactor with anticlockwise rotation for high speed).
The following table shows the marking used in this Wiring Manual and in Moeller circuit documentation.

| Type of component | Mains contactors |  |  |  |  |  | Step contactors |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Standard motor <br> 3 speed <br> One speed |  | 2 speed/4 speed |  |  |  |  |  |  |  |
|  | For- ward Up Hoist | Reve- rse Down Lower | Forward Up Hoist | $\begin{aligned} & \hline \text { Reve- } \\ & \text { rse } \\ & \text { Down } \\ & \text { Lower } \end{aligned}$ | Forward Up Hoist | Reve- <br> rse <br> Down <br> Lower | Star | Deta | $\begin{aligned} & \text { Starting } \\ & \text { stage } \end{aligned}$ | Remarks |
| DIL (IZ) | Q11 |  |  |  |  |  |  |  |  |  |
| DIUL (IZ) | Q11 | Q12 |  |  |  |  |  |  |  |  |
| SDAINL (IZ) | Q11 |  |  |  |  |  | Q13 | Q15 |  |  |
| SDAIUL (IZ) | Q11 | Q12 |  |  |  |  | Q13 | Q15 |  |  |
| UPIL (IZIZ) |  |  | Q17 |  | Q21 |  | Q23 |  |  |  |
| UPIUL (IZIZ) |  |  | Q17 | Q18 | Q21 | Q22 | Q23 |  |  |  |
| UPSDAINL (IZ) |  |  | Q17 |  | Q21 |  | Q23 | Q19 |  |  |
| U3PIL (IZIZIZ) | Q11 |  | Q17 |  | Q21 |  | Q23 |  |  |  |
| UPDIUL (IZ) |  |  | Q17 |  | Q21 |  |  |  |  |  |
| $\overline{\text { ATAINL (/Z) }}$ | Q11 |  |  |  |  |  | Q13 |  | Q16 to |  |
| DAINL | Q11 |  |  |  |  |  |  |  | Qn | start- |
| DDAINL | Q11 |  |  |  |  |  |  |  |  |  |
| DIL + discharge resistors | Q11 |  |  |  |  |  |  |  | Q14 |  |
| $\overline{\text { DIGL + dis- }}$ charge resistors | Q11 |  |  |  |  |  |  |  |  |  |

With contactor combinations which are made up of several basic types, the basic type is always maintained. Thus, the circuit diagram for a reversing star-delta starter, for example, is formed by combining the basic circuit of the reversing contactor and that of the standard star-delta starter.

## All about Motors

Direct-on-line start of three-phase motors

## Typical circuits with DIL contactors

## Fuseless without overload relay

Short-circuit protection1) and overload protection by means of PKZM
motor-protective circuit-breaker or NZM circuit-breaker

## Fuses with overload relay

Short-circuit protection ${ }^{2)}$ for contactor and overload relay by means of fuses F1.
Short-circuit protection ${ }^{3)}$ for contactor by means of fuses F1.


1) Protective device in the supply line in accordance with Moeller Main Catalogue, Industrial Switchgear or AWA installation instructions
2) Fuse size in accordance with data on the rating plate of the overload relay
${ }^{3)}$ Fuse size in accordance with Moeller Main Catalogue, Industrial Switchgear (Technical data for contactors)

## All about Motors <br> Direct-on-line start of three-phase motors

## Typical circuit with bridging of overload relay during starting

## Without overload relay



Control circuit device
I: ON
0: OFF
For connection of further control circuit devices $\rightarrow$ section "Three-wire control", page 8-36
Method of operation: Actuation of pushbutton I energizes the coil of contactor Q11. The contactor switches on the motor and

With overload relay


The short-circuit capacity of the contacts in the circuit has to be considered when selecting FO .
Two-way pushbutton

## All about Motors

Direct-on-line start of three-phase motors

Application on drive motors with severe starting duty


For connection when used with motor-protective circuit-breakers PKZM... and circuit-breakers NZM(H)... $\rightarrow$ section "Fuses with overload relay", page 8-28

## All about Motors <br> Direct-on-line start of three-phase motors



## Control circuit device

I: ON
0: OFF
For connection of further control circuit devices $\rightarrow$ section "Three-wire
control", page 8-36

Q14: Bridging contactor
K1: Timing relay
Q11: Mains contactor


## Method of operation

Actuation of pushbutton I energizes the bridging contactor Q14 which then maintains itself via Q14/13-14. At the same time, voltage is applied to the timing relay K1. The mains contactor Q11 is closed by Q14/44-43 and maintains itself via Q11/14-13. When the set time - which corresponds to the starting time of the motor - has elapsed, the bridging contactor Q14 is disconnected by K1/16-15. K1 is likewise disconnected and, exactly as Q14, can only be energized again after the
motor has been switched off by pressing pushbutton 0 . The normally closed contact Q11/22-21 prevents Q14 and K1 closing whilst the motor is running. In the event of an overload, normally closed contact 95-96 on the overload relay F2 effects de-energization.

## All about Motors

Direct-on-line start of three-phase motors

## Two directions of rotation, DIUL reversing contactor

## Fuseless without overload relay

Short-circuit protection and overload protection by means of motor-protective circuit-breaker PKZM or circuit-breaker NZM. Fuse size in the supply line in accordance with Moeller Main Catalogue, Industrial Switchgear or AWA installation instructions.

## Fuses with overload relay

Short-circuit protection ${ }^{1)}$ for contactor and overload relay by means of fuses F1.
Short-circuit protection ${ }^{1)}$ for contactor by means of fuses F1.


1) Fuse size in accordance with data on the rating plate of the overload relay F2

## All about Motors

Direct-on-line start of three-phase motors

Reversing after actuation of pushbutton 0


Q11: Mains contactor, clockwise
Q12: Mains contactor, anticlockwise


Control circuit
device
(three-way pushbutton)
I = Clockwise
0 = Stop
II = Anticlockwise

Reversing without actuation of pushbutton 0


## All about Motors

## Direct-on-line start of three-phase motors

Method of operation: Actuation of pushbutton I energizes the coil of contactor Q11. It switches on the motor running clockwise and maintains itself after button I is enabled via its own auxiliary contact Q11/14-13 and pushbutton 0 (three-wire control contact). The normally closed contact Q11/22-21 electrically inhibits switch on of contactor Q12. When pushbutton II is pressed, contactor Q12 closes (the motor runs in the
anticlockwise direction). Depending on the circuit, direction can be changed from clockwise to anticlockwise either after pressing pushbutton 0 , or by directly pressing the pushbutton for the reverse direction. In the event of an overload, normally closed contact 95-96 of the overload relay F2 or normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker will switch.

## Reversing and two speeds (reversing contactor)

Special circuit (tapped winding) for feed drives, etc.

FORWARD: feed or high speed
RETRACT: high speed only
STOP: tapped winding


## All about Motors

## Direct-on-line start of three-phase motors



Method of operation: Forward travel is initiated by pressing pushbutton I or II according to the speed required. Pushbutton I switches on the feed motion via Q17. Q17 maintains itself via its normally open contact 13-14. If the feed movement is to occur at high speed star contactor Q23 is energized via pushbutton II which energizes the high speed contactor Q21 via its normally open contact Q23/13-14. Both of the contactors are maintained via Q21/13-14. A direct switch over from feed to high-speed during the process is possible.

High speed reverse is initiated by pushbutton III: Contactor relay K1 picks up and energizes star contactor Q23 via K1/14-13. High-speed contactor Q22 is energized via the normally open contacts, K1/43-44 and Q23/44-43, and are maintained via Q22/14-13. The reverse action can only be stopped via pushbutton 0 . Direct changeover/reversal is not possible.

## All about Motors

Direct-on-line start with motor-protective circuit-breaker PKZ2

## Reversing



Instead of the high-capacity contact modules
S-PKZ2, contact module SE1A...-PKZ2 can
also be used provided a switching capacity of
the circuit-breaker of $30 \mathrm{kA} / 400 \mathrm{~V}$ is sufficient.

## All about Motors

Direct-on-line start with motor-protective circuit-breaker PKZ2

(1) Stop

| S11 | RMQ-Titan, M22-... |
| :---: | :---: |
| Q1 | PKZ2/ZM-... |
| Q12 | S/EZ-PKZ2 |
| Q11 | S/EZ-PKZ2 |
| F0 | FAZ |


(1) remove links with position switches

## All about Motors

Direct-on-line start with motor-protective circuit-breaker PKZ2
Two speeds


Instead of the high-capacity contact modules S-PKZ2, contact module SE1A...-PKZ2 can also be used provided a switching capacity of the circuit-breaker of $30 \mathrm{kA} / 400 \mathrm{~V}$ is sufficient.

$\mathrm{n}<$

n >

## All about Motors

Direct-on-line start with motor-protective circuit-breaker PKZ2
Version 1


| S11 | RMQ-Titan, M22-... | - |
| :---: | :---: | :---: |
| Q1, Q2 | PKZ2/ZM-.../S | - |
| Q21 | S-PKZ2 | n > |
| Q17 | S-PKZ2 | $\mathrm{n}<$ |
| S11 | RMQ-Titan, M22-... | - |

## All about Motors

Control circuit device for direct-on-line start

## Typical example of circuits with contactor DILM...

## Three-wire control



Illuminated pushbutton


8 Two-way pushbutton with indicator light

Two-wire control


Changeover switch
T0-1-15521 with fleeting contact in the intermediate position


Pressure switch MCS

T0-1-15511 spring-return switch with automatic return to position 1


Two two-way pushbuttons


T0-1-15366 spring-return switch with automatic return to position of rest



Float switch SW

## All about Motors <br> Star-delta switching of three-phase motors

Star-delta starters with overload relay


## Arrangement in the motor line

The star-delta starter with overload relay, including a thermally delayed overcurrent relay are situated in a standard circuit configuration in the leads leading to the motor terminals U1, V1, W1 or V2, W2, U2. The overload relay is also operational in the star connection as it is in series with the motor winding and the relay current flowing through it $=$ rated motor current $\times 0.58$.
The complete circuit diagram $\rightarrow$ section "Automatic star-delta starters SDAINL", page 8-39.

## Arrangement in the mains supply line



Instead of the arrangement in the motor line, the overload relay can be placed in the mains

## All about Motors

Star-delta switching of three-phase motors

## Configuration in the delta circuit



Instead of the arrangement in the motor line or mains supply line, the overload relay can be placed in the delta circuit. The section shown here indicates the modified circuit diagram from $\rightarrow$ section "Automatic star-delta starters SDAINL", page 8-39. When heavy, long-starting procedures are involved (e.g. for centrifuges) the F2 relay, rated for relay current $=$ rated motor current $\times 0.58$, can also be connected in the connecting lines between the delta contactor Q15 and the star contactor Q13. In the star circuit no current then flows through the F2 relay. The motor is therefore not protected when starting. This circuit is always used when exceptionally heavy and long starting procedures are involved and when saturable core current transformer-operated relays react too quickly.

## All about Motors

Star-delta switching of three-phase motors
Automatic star-delta starters SDAINL


## Arrangement and rating of protective devices

| Position A |  | Position B |
| :--- | :--- | :--- |
| $\mathrm{F} 2=0.58 \times I_{\mathrm{e}}$ <br> with F1 in position $\mathrm{B} t_{\mathrm{a}} \leqq 15 \mathrm{~s}$ | Q1 $=I_{\mathrm{e}}$ <br> $t_{\mathrm{a}}>15-40 \mathrm{~s}$ |  |
| Motor protection in Y and $\triangle$ configuration | Only partial motor protection in Y <br> configuration |  |
| Rating of switchgear <br> Q11, Q15 $=0.58 \times I_{\mathrm{e}}$ | $\mathrm{Q} 13=0.33 \times I_{\mathrm{e}}$ |  |

## All about Motors

Star-delta switching of three-phase motors
Further notes on the configuration of the overload relay $\rightarrow$ section "Automatic star-delta starters SDAINL", page 8-39.

## Automatic star-delta starters SDAINLOOAM to 4AM250

Pushbutton
L1
(Q11/1)


Q11: Mains contactor
K1: Timing relay approx. 10 s
Q13: Star contactor
Q15: Delta contactor

Two-wire control


Two-way pushbutton
Control circuit device
$\mathrm{I}=\mathrm{ON}$
$0=0$ FF

For connection of further control circuit devices $\rightarrow$ section "Control circuit devices for star-delta starting", page 8-49

## Method of operation

Pushbutton I energizes timing relay K1, the normally open contact K1/17-18 (instantaneous contact) which applies voltage
to star contactor Q13. Q13 closes and applies voltage to mains contactor Q11 via normally open contact Q13/14-13.
Q11 and Q13 maintain themselves via the normally open contacts Q11/14-13 and Q11/44-43. Q11 applies voltage to motor M1 in star connection.

## All about Motors

Star-delta switching of three-phase motors

When the set changeover time has elapsed, K1/17-18 opens the circuit of Q13 and after 50 ms closes the circuit via $\mathrm{K} 1 / 17-28$ of Q15 . Star contactor Q13 drops out. Delta contactor Q15 closes and switches motor M1 to full mains voltage. At the same time, normally closed contact Q15/22-21 interrupts the circuit of Q13, thus interlocking against
renewed switching on while the motor is running. The motor cannot start up again unless it has previously been disconnected by pushbutton 0 , or in the event of an overload by the normally closed contact 95-96 of the overload relay F2, or via the normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker.

## Automatic star-delta starters SDAINL EM

Pushbutton
Two-wire control


# All about Motors <br> Star-delta switching of three-phase motors 

For connection of further control circuit
devices $\rightarrow$ section "Control circuit devices
for star-delta starting", page 8-49

## Method of operation

Pushbutton I energizes star contactor Q13, the normally open contact Q13/14-13 applies voltage to mains contactor Q11: Q11 closes and applies mains voltage to motor M1 in star connection. Q11 and Q13 maintain themselves via normally open contact Q11/14-13 and Q11 additionally via Q11/44-43 and pushbutton 0 . Timing relay Q11 is energized at the same time as mains contactor K1. When the set changeover time has elapsed, K1 opens the circuit of Q13 via the changeover contact 15-16 and closes the circuit of Q15 via 15-18. Star contactor Q13 drops out.

Delta contactor Q15 closes and switches motor M1 to full mains voltage. At the same time, normally closed contact Q15/22-21 interrupts the circuit of Q13, thus interlocking against renewed switching on while the motor is running.
The motor cannot be started up again unless it has previously been disconnected by pushbutton 0 , or in the event of an overload, by the normally closed contact 95-96 of the overload relay F2, or via the normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker.

## All about Motors

Star-delta switching of three-phase motors

## Automatic reversing star-delta starter SDAIUL

Reversing


## Rating of switchgear

Q11, Q12 $=I_{\text {e }}$
F2, Q15 $=0.58 \times I_{\text {e }}$
Q13 $=0.33 \times I_{\mathrm{e}}$
The maximum motor output is limited by the upstream reversing contactor, and is lower than with automatic star-delta starters for only one direction of operation

Standard version: relay current = motor rated current $\times 0.58$

For other arrangements of overload relay
$\rightarrow$ section "Star-delta starters with overload relay", page 8-37

## All about Motors

Star-delta switching of three-phase motors

Three-way pushbutton

## Control circuit devices

I = Clockwise
0 = Stop
II = Anticlockwise


## All about Motors

Star-delta switching of three-phase motors

Reversing without actuation of pushbutton 0


For connection of further control circuit devices $\rightarrow$ section "Control circuit devices for star-delta starting", page 8-49

## Method of operation

Pushbutton I energizes contactor Q11 (e.g. clockwise), pushbutton II energizes contactor Q12 (e.g. anticlockwise). The contactor first energized applies voltage to the motor winding and maintains itself via its own auxiliary contact $14-13$ and pushbutton 0 . The normally open contact 44-43 fitted to each mains contactor energizes the star contactor Q13. Q13 energizes and switches on motor M1 in the star connection. At the same time, timing relay K1 starts. When the set changeover time has elapsed, K1/17-18 opens the circuit of Q13. Q13 drops out. K1/17-28 closes the circuit of delta contactor Q15.

Delta contactor Q15 energizes and switches motor M1 to the delta configuration, i.e. full mains voltage. At the same time, normally closed contact Q15/22-21 interrupts the circuit of Q13, thus interlocking against renewed switching on while the motor is running. Motor direction can be changed, either after pressing pushbutton 0 , or by direct actuation of the reverse button, depending upon the circuit. In the event of an overload, disconnection is effected by the normally closed contact 95-96 of the overload relay F2.

## All about Motors

Star-delta starting with motor-protective circuit-breaker PKZ2


With $I_{\mathrm{cc}}>I_{\mathrm{cn}}$ short-circuit proof installation required.

Star-delta starting with motor-protective circuit-breaker PKZ2

$2 \times$ RMQ-Titan, M22-... with indicator light M22-L...T0-1-8 rotary switch


## All about Motors

Star-delta starting with motor-protective circuit-breaker PKZ2

| S11 | RMQ-Titan, M22-... |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Q1 | PKZ2/ZM-... |  |  |  |
| $\triangle$ Q15 | S/EZ-PKZ2 |  |  |  |
| YQ13 | DILOM $U_{\mathrm{e}} \leqq 500 \mathrm{~V} \mathrm{AC}$ |  |  |  |
| YQ13 | S/EZ-PKZ2 $\mathrm{U}_{\mathrm{e}} \leqq 660 \mathrm{~V}$ AC |  |  |  |
| K1 | ETR4-11-A | $t$ | $t$ Y (s) | 15-40 |
| Q11 | S/EZ-PKZ2 | N | Motor protection | (Y) + $\triangle$ |
| F0 | FAZ |  | Setting | $l$ |

## All about Motors

Control circuit devices for star-delta starting

## Automatic star-delta starters SDAINL

## Three-wire control



Illuminated pushbutton


Two-way pushbutton with indicator light


Two two-way pushbuttons


Spring-return switch T0-1-15511 with automatic return to position 1 .

## Two-wire control



Changeover switch T0-1-15521 with fleeting contact in the intermediate position

e.g. selector switch

Rotary switch T
Position switch AT
Float switch SW
Pressure switch MCS

Spring-return switch
T0-1-15366 with automatic
 return to position of rest.

## All about Motors

Control circuit devices for star-delta starting

## Three-phase reversing contactor DIUL reversing star-delta starter SDAIUL



Two-way pushbutton ${ }^{1)}$ without self-maintaining circuit (inching) for use only with reversing contactors


FS 140660
Spring-return switch
T0-2-8177 with automatic return to position 1 or 2

## Position switch

Connected by removing the links between the contactor terminals Q11/13 and Q12/22 and between Q12/13 and Q12/22 and interposing
 the position switches.

1) Overload relay always with manual reset

## All about Motors <br> Pole-changing motors

The speed is determined by the number of be obtained by altering the number of poles. poles on induction motors. Several speeds can The usual types are:

| 2 speeds 1:2 | 1 reversible tapped winding |
| :---: | :---: |
| 2 speeds | 2 separate windings |
| 3 speeds | 1 reversible tapped winding 1:2, 1 separate winding |
| 4 speeds | 2 reversible tapped windings 1:2 |
| 2 speeds | Tapped winding |

The various tapped winding configurations give differential output ratios for the two speeds

$$
\begin{array}{lll}
\text { Type of connection } & \triangle / Y Y & Y / Y Y \\
\text { Output ratio } & 1 / 1.5-1.8 & 0.3 / 1
\end{array}
$$

The $\Delta / Y Y$ configuration comes nearest to satisfying the most usual requirement for constant torque. It has the additional advantage that, because nine terminals are available, $Y / \Delta$ starting can be used to provide smooth starting or to reduce the starting current for the low speed condition ( $\rightarrow$ section "Motor windings", page 8-54).

The $Y / Y$ Y is preferred for better matching of the motor to machines in which the torque increases by a quadratic factor (pumps, fans, rotary compressors). Moeller multi-speed starters can be used for both types of connection.

## 2 speeds - separate windings

In theory, motors with separate windings allow any combination of speed and any output ratio. Both windings are arranged in $Y$ connection and are completely independent of one another.
Preferred speed combinations are:

| Motors with tapped winding | 1500/3000 | - | 750/1500 | 500/1000 |
| :---: | :---: | :---: | :---: | :---: |
| Motors with separate windings | - | 1000/1500 | - | - |
| No. of poles | 4/2 | 6/4 | 8/4 | 12/6 |
| Code no. low/high | 1/2 | 1/2 | 1/2 | 1/2 |

The code numbers are prefixed to the main notations to denote increasing speed.
Example: 1U, 1V, 1W, 2U, 2V, 2 W .
Comparable to EN 60034-8.

## All about Motors <br> Pole-changing motors

## Motor circuit

## Circuit A

Selection of low and high speed only from zero. No return to low speed, only to zero.

High speed


## Circuit B

Selection of either speed from zero. Switching from low to high speed possible. Return only to zero.


## Circuit C

Selection of either speed from zero. Switching back and forward between low and high speed (high braking torque).
Return also to zero.

$\uparrow$ Switch-on and further switching
iswitch-off

## 3 speeds

The 1:2 speeds - tapped windings - are winding. This speed can be below, between or
above the two tapped winding speeds. The circuit must consider it ( $\rightarrow$ page 8-82).
Preferred speed combinations are:

| Speeds | 1000/1500/3000 | 750/1000/1500 | 750/1500/3000 | = separate |
| :---: | :---: | :---: | :---: | :---: |
| No. of poles | 6/4/2 | 8/6/4 | 8/4/2 | winding (in the circuit |
| Circuit | X | Y | Z |  |

## All about Motors <br> Pole-changing motors

## Motor circuit

## Circuit A

Selection of any speed only from zero. Return only to zero.

## Circuit B

Selection of any speed from zero and from low speed. Return only to zero.

## Circuit C

Selection of any speed from zero and from low speed. Return to low speed (high braking torque) or to zero.


4 Switch-on and $i$ Switch-off $\int_{\downarrow}$ further switching


## 4 speeds

The 1:2 speeds - tapped windings - can follow
in sequence or overlap, as the following
examples show:

| 1st winding <br> or 1st <br> winding |  | $500 / 1000$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $500 / 1000$ |  | 2nd winding |  |
| 2nd winding |  | $1500 / 3000=500 / 1000 / 1500 / 3000$ |  |  |

For motors having 3 or 4 speeds the non-connected winding has to be opened at certain pole ratios to avoid inductive circulating currents. This is achieved via additional motor terminals. A range of rotary switches is equipped with this connection $(\rightarrow$ section "Multi-Speed Switches", page 4-7).

## All about Motors

Motor windings

## Tapped winding

2 speeds

| Motor circuit | Tapped winding |
| :--- | :--- |
| 2 speeds | with $Y \triangle$ starting at |
| 2 separate windings | low speed |

Low speed $\triangle$ Low speed $Y$ Low speed Low speed $Y$






Low speed $\triangle$


High speed $Y$ Y


## All about Motors

Motor windings

## Tapped winding

3 speeds

## Motor circuit X

2 windings, medium and high speed - tapped winding

## 2


or 2


Low speed
Separate winding 1

$\rightarrow$ page 8-81

## Motor circuit $Y$

2 windings, low and high speed - tapped winding

2

or 2


Medium speed
Separate winding 1

$\rightarrow$ page 8-83

## Motor circuit Z

2 windings, low and medium speed - tapped winding

2

or 2


High speed
Separate winding
1


$\rightarrow$ page 8-85

Notes

## All about Motors

Multi-speed contactor

Certain operating sequences for multi-speed motors may be necessary, or undesirable, depending on the nature of the drive. If, for example, the starting temperature rise is to be reduced or high inertia loads are to be accelerated, it is advisable to switch to low speed first and then to high speed.
It may be necessary to prevent switching from high to low speed in order to avoid oversynchronous braking. In other cases, it should be possible to switch each speed on and off directly. The operating sequence and indexing facilities of rotary switches allow for
these possibilities. Multi-speed contactor starters can achieve these circuits by interlocking with suitable control circuit devices.

## Fuse protection of the overload relay

When a common fuse is used in the supply line, it must not be larger than the back-up fuses specified on the rating plate of either overload relay, otherwise each relay must be protected by its own back-up fuse, as shown in the diagram.


## All about Motors

Multi-speed contactor

## Fuseless arrangement

Multi-speed motors can be protected against short circuits and overloads by motor-protective circuit-breakers PKZ or circuit-breakers NZM, which provide all the
advantages of a fuseless circuit. Normally, the fuse in the supply line protects the switches from welding.


## All about Motors

Multi speed switch for three-phase motors
Tapped winding, non-reversing, 2 speeds

## Multi-speed contactors UPIL

Fuseless, without overload relay, with
motor-protective circuit-breaker or
circuit-breaker.

$\rightarrow$ section "Motor windings", page 8-54
Synchronous speeds
One multi-speed winding

## All about Motors

Multi speed switch for three-phase motors

| Motor terminals | 1U, 1V, 1W | 2U, 2V, 2W |
| :---: | :---: | :---: |
| No. of poles | 12 | 6 |
| rpm | 500 | 1000 |
| No. of poles | 8 | 4 |
| rpm | 750 | 1500 |
| No. of poles | 4 | 2 |
| rpm | 1500 | 3000 |
| Contactors | Q17 | Q21, Q23 |

Rating of switchgear
Q2, Q17 $=I_{1}$ (low speed)
Q1, Q21 $=I_{2}$ (high speed)
Q23 $=0.5 \times I_{2}$

## All about Motors

Multi speed switch for three-phase motors

## Circuit A ( $\rightarrow$ page 8-53)

1 three-way pushbutton



Three-way pushbutton
I: Low speed (Q17)
0: Stop
II: High speed (Q21 + Q23)
Q17: Mains contactor, low speed
Q23: Star contactor
Q21: Mains contactor, high speed

For connection of further control circuit devices $\rightarrow$ page 8-67, $\rightarrow$ page 8-68, $\rightarrow$ page 8-69

## Method of operation

Pushbutton I energizes mains contactor Q17 (low speed). Q17 maintains itself via its normally open contact $13-14$. Pushbutton II energizes star contactor Q23 and via its normally open contact 13-14 mains contactor Q21. Q21 and Q23 maintain themselves via normally open contact $13-14$ of Q21.

Speed can be changed either after pressing pushbutton 0 (circuit A) or directly by pressing the appropriate pushbutton (circuit C), depending upon the circuit. The motor can be switched off either by pressing pushbutton 0 , or in the event of an overload, by normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker.

## All about Motors

Multi speed switch for three-phase motors

## Circuit C ( $\rightarrow$ page 8-53)

1 three-way pushbutton


## All about Motors

Multi speed switch for three-phase motors

## 2 separate windings, non-reversing, 2 speeds

Multi-speed contactor UPDIUL, fuseless
without overload relay


Rating of switchgear
Q1, Q17 = $I_{1}$ (low speed)
Q2, Q21 $=I_{2}$ (high speed)

## All about Motors

Multi speed switch for three-phase motors

## 2 separate windings, non-reversing, 2 speeds

Multi-speed contactor UPDIUL, with fuses and overload relay


Fuse size in accordance with data on the rating plate of the overload relays F2 and F21. If overload relays F2 and F21 cannot be protected by a common fuse, then use circuit as in $\rightarrow$ page 8-57. $\rightarrow$ section "Motor windings", page 8-54.

## All about Motors

Multi speed switch for three-phase motors

Circuit A $\rightarrow$ page 8-53)
1 three-way pushbutton


Q17: Mains contactor, low speed
Q21: Mains contactor, high speed


Three-way pushbutton
I: Low speed (Q17)
0 : Stop
II: $\quad$ High speed (Q21 + Q23)

Circuit C ( $\rightarrow$ page 8-53)
1 three-way pushbutton



For connection of further control circuit devices, see $\rightarrow$ page 8-71.

## All about Motors <br> Multi speed switch for three-phase motors

## Method of operation

Actuation of pushbutton I energizes the coil of contactor Q17. Q17 brings in the motor at low speed, and after pushbutton I is released, maintains itself via its auxiliary contact 13-14 and pushbutton 0 .

Speed can be changed either after pressing pushbutton 0 , or directly by pressing the appropriate pushbutton, depending upon the circuit. The motor is switched off either by pressing pushbutton 0 , or in the event of an overload, by normally closed contact 95-96 of overload relays F2 and F21.

## All about Motors

Control circuit devices for multi-speed contactors UPDIUL
2 separate windings, non-reversing, 2 speeds
Circuit A $\rightarrow$ page 8-53)
One three-way pushbutton with indicator
lights



Control circuit devices
I = Low speed (Q17)
0 = Stop
II = High speed (Q21)

## All about Motors

Control circuit devices for multi-speed contactors UPDIUL
Circuit A $(\rightarrow$ page 8-53)
2 three-way pushbuttons


Control circuit devices
$\mathrm{I}: \quad$ Low speed (Q17)
0: Stop
II: High speed (Q21)
Remove existing links and rewire

## All about Motors

Control circuit devices for multi-speed contactors UPDIUL

Circuit A $\rightarrow$ page 8-53)


Circuit B $\rightarrow$ page 8-53)
1 three-way pushbutton


T0-1-8210 changeover switch
Always set overload relay to manual reset
Q21 F2 Q17
139613


## All about Motors

Control circuit devices for multi-speed contactors UPDIUL

## Circuit B $(\rightarrow$ page 8-53)

2 three-way pushbuttons


Control circuit device for circuit B


## All about Motors

Control circuit devices for multi-speed contactors UPDIUL
Circuit C $(\rightarrow$ page 8-53)
2 three-way pushbuttons


Control circuit device for circuit C


## All about Motors

Multi speed switch for three-phase motors
Tapped winding, non-reversing, 2 speeds

## Multi-speed contactors UPSDAINL

Star-delta starting at low speed

## Fuseless

Without overload relay


Rating of switchgear
Q1, Q17 $=I_{1}$
(low speed)
Q2, Q21 $=I_{2}$
(high speed)
Q19, Q23 $=0,5 \times I_{2}$

## All about Motors

Multi speed switch for three-phase motors
With fuses and overload relay


Rating of switchgear
F2, Q17 $=I_{1}$
(low speed)
F21, Q21 $=I_{2}$
(high speed)
Q19, Q23 $=0,5 \times I_{2}$
F1 $=I_{2}$
Overload relays F2 and F21 are not used on
multi-speed contactors without motor protec-
tion. If F2 and F21 cannot be protected by a
common fuse, then use circuit on
$\rightarrow$ page 8-57.
$\rightarrow$ section "Motor windings", page 8-54.

## All about Motors

Multi speed switch for three-phase motors


## Circuit

Low speed selected only from zero, high speed only via low speed without actuation of the Stop button.
Three-way pushbutton
I: Low speed (Q17, Q19)
0: Stop
II: High speed (Q21, Q19, Q23)

Q17: Mains contactor, low speed
K3: Timing relay

## Method of operation

Actuation of pushbutton I energizes the coil of star contactor Q23, and its normally open contact 13-14 energizes the coil of contactor Q17. The motor runs in star at low speed. The contactors are maintained via auxiliary contact Q17/13-14. At the same time, timing relay K3 cuts in. When the set time has elapsed, K3/15-16 opens the circuit of Q23. Q23 drops out, the coil of delta contactor Q19 is energized and maintains itself via Q19/13-14. energized and maintains itself via Q19/13-14.
The timing relay is de-energized via normally closed contact Q19/32-31.

Q19: Delta contactor
Q21: Mains contactor, high speed

## Q23: Star contactor

The motor runs in delta at low speed. Actuation of pushbutton II de-energizes the coil of Q17 and via Q17/22-21 energizes the coil of Q21. This state is maintained by Q21/43-44: The coil of star contactor Q23 is re-energized by normally open contact Q21/14-13. The motor runs at high speed. Pushbutton 0 (= Stop) effects disconnection.

## All about Motors

Multi speed switch for three-phase motors
Tapped winding, reversing, 2 speeds (direction preselected)

## Multi-speed contactors UPIUL

Overload relays F2 and F21 are not used on multi-speed contactors without motor protection.

Rating of switchgear Q11, Q12 = $I_{2}$ (low and high speed)
F2, Q17 = $I_{1}$ (low speed)
$\mathrm{F} 1, \mathrm{Q} 21=I_{2}$
Q23 $=0.5 \times I_{2}$ (high speed)


## All about Motors

Multi speed switch for three-phase motors


## Method of operation

Contactor Q11 is energized by pressing pushbutton I. Contactor Q11 selects the direction, and maintains itself after release of pushbutton I via its auxiliary contact 14-13 and pushbutton 0 . Speed-selection buttons III and IV are made operative by Q11/44-43.
Pushbutton III energizes Q17, which maintains itself via its contact 14-13. Pushbutton IV
energizes high-speed contactors Q23 and Q21. Auxiliary contact Q21/21-22 makes low-speed pushbutton III inoperative.
Pushbutton 0 must be pressed before any change in speed or direction.

## All about Motors

Multi speed switch for three-phase motors
Tapped winding, reversing, 2 speeds
(Direction and speed selected simultaneously)
Multi-speed contactor UPIUL
Fuseless without overload relay


Rating of switchgear
Q1, Q17, Q18 = $I_{1}$
(low speed)
Q2, Q21, Q22 $=I_{2}$
Q23 $=0.5 \times I_{2}$
(high speed)

## All about Motors

Multi speed switch for three-phase motors

## Multi-speed contactor UPIUL

With fuses and overload relay


Rating of switchgear
F2, Q17, Q18 = $I_{1}$
(low speed)
$\mathrm{F} 21, \mathrm{Q} 21, \mathrm{Q} 22=I_{2}$
Q23 $=0.5 \times I_{2}$
(high speed)

## All about Motors

Multi speed switch for three-phase motors

## Circuit

Simultaneous selection of direction and speed via one pushbutton. Always operate Stop button before changeover.


Q17: Slow forward
Q18: Slow back
Q21: Fast forward
Q23: Star contactor
K1: Contactor relay
Q22: Fast back

## All about Motors

Multi speed switch for three-phase motors


## Method of operation

Desired speed and direction can be selected by actuation of the appropriate pushbutton.
Contactors Q17, Q18, Q21 and Q23 maintain themselves by their contact 14-13 and can be de-energized only by actuation of pushbutton 0 . Contactors Q21 and Q22 can maintain themselves only when Q23 has picked up and contact Q23/13/13-14 or 44-43 is closed.

Five-way pushbutton
Control circuit device
0: Stop
I: Slow forward (Q17)
II: Slow back (Q18)
III: Fast forward (Q21 + Q23)
IV: Fast back (Q22 + Q23)

## All about Motors

Multi speed switch for three-phase motors
Tapped winding, medium and high speed, non reversing, 3 speeds, 2 windings

Multi-speed contactor U3PIL

Multi-speed contactor U3PIL with overload relay $\rightarrow$ page 8-83

$\rightarrow$ section "Motor circuit X", page 8-55
Synchronous speed

| Winding | 1 | 2 | 2 |
| :---: | :---: | :---: | :---: |
| Motor terminals | $\begin{aligned} & 1 \mathrm{U}, 1 \mathrm{~V}, \\ & 1 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 2 \mathrm{U}, 2 \mathrm{~V}, \\ & 2 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 3 U, 3 V, \\ & 3 W \end{aligned}$ |
| No. of poles | 12 | 8 | 4 |
| Rpm | 500 | 750 | 1500 |
| No. of poles | 8 | 4 | 2 |
| Rpm | 750 | 1500 | 3000 |


| No. of poles | 6 | 4 | 2 |
| :---: | :---: | :---: | :---: |
| Rpm | 1000 | 1500 | 3000 |
| Contactors | Q11 | Q17 | $\begin{aligned} & \text { Q21, } \\ & \text { Q23 } \end{aligned}$ |

Rating of switchgear

$$
\begin{array}{ll}
\text { Q2, Q11 } & =I_{1} \text { (low speed) } \\
\text { Q1, Q17 } & =I_{2} \text { (medium speed) } \\
\text { Q3, Q21 } & =I_{3} \text { (high speed) } \\
\text { Q23 } & =0.5 \times I_{3}
\end{array}
$$

## All about Motors

Multi speed switch for three-phase motors

Circuit of motor winding: $X$
Circuit A


Q11: Low speed winding 1
Q17: Medium speed winding 2
Q23: High speed winding 2
Q21: High speed winding 2

## Method of operation

Pushbutton I energizes mains contactor Q11 (low speed), pushbutton II mains contactor Q17 (medium speed), pushbutton III star contactor Q23 and via its normally open contact Q23/14-13 mains contactor Q21 (high speed). All contactors maintain themselves by their auxiliary contact 13-14. Speed sequence from low to high is optional. Switching in steps from high to medium or low speed is not possible. The motor is always switched off by pressing pushbutton 0 . In the event of an

## Circuit A

Selection of any speed only from zero. No return to low speed, only to zero.


## Circuit B

Selection of any speed from zero or from low speed. Return only to zero.


Four-way pushbutton
0 : Stop
I: Low speed (Q11)
II: $\quad$ Medium speed (Q17)
III: High speed (Q21 + Q23)
overload, normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker can also switch off.

## All about Motors

Multi speed switch for three-phase motors
Tapped winding, low and high speed, non-reversing, 3 speeds, 2 windings

Multi-speed contactor U3PIL

Multi-speed contactor U3PIL without overload relay $\rightarrow$ page 8-81

$\rightarrow$ section "Motor circuit Y", page 8-55
Synchronous speed

| Winding | 2 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| Motor terminals | $\begin{aligned} & 1 \mathrm{U}, 1 \mathrm{~V}, \\ & 1 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 2 \mathrm{U}, 2 \mathrm{~V}, \\ & 2 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 3 \mathrm{U}, 3 \mathrm{~V}, \\ & 3 \mathrm{~W} \end{aligned}$ |
| No. of poles | 12 | 8 | 6 |
| Rpm | 500 | 750 | 1000 |
| No. of poles | 8 | 6 | 4 |


| Rpm | 750 | 1000 | 1500 |
| :---: | :---: | :---: | :---: |
| Contactors | Q17 | Q11 | $\begin{aligned} & \text { Q21, } \\ & \text { Q23 } \end{aligned}$ |

Rating of switchgear
F2, Q17 $=I_{1}$ (low speed)
F3, Q11 $=I_{2}$ (medium speed)
F4, Q21 $=I_{3}$ (high speed)
Q23 $=0.5 \times I_{3}$

## All about Motors

Multi speed switch for three-phase motors

Circuit of motor winding: $Y$
Circuit A

Q17: Low speed winding 1
Q11: Medium speed winding 1
Q23: High speed winding 2
Q21: High speed winding 2

## Circuit A

Selection of any speed only from zero.
No return to low speed, only to zero.


## Circuit B

Selection of any speed from zero or from low speed. Return only to zero. Four-way pushbutton
0: Stop
I: Low speed (Q17)
II: Medium speed (Q11)
III: High speed (Q21 + Q22)


## Method of operation

Pushbutton I energizes mains contactor Q17 (low speed), pushbutton II mains contactor Q11 (medium speed), pushbutton III star contactor Q23 and via its normally open contact Q23/14-13 mains contactor Q21 (high speed). All contactors maintain themselves by their auxiliary contact 13-14.

Speed sequence from low to high is optional. Switching in steps from high to medium or low speed is not possible. The motor is always switched off by pressing pushbutton 0 . In the event of an overload, normally closed contact 95-96 of overload relays F2, F21 and F22 can also switch off.

## All about Motors

Multi speed switch for three-phase motors
Tapped winding, low and medium speed, non-reversing, 3 speeds, 2 windings

Multi-speed contactor U3PIL
Multi-speed contactor U3PIL without overload relay $\rightarrow$ page 8-57


## All about Motors

Multi speed switch for three-phase motors

Circuit of motor winding: $Z$
Circuit A


Q17: Low speed winding 1
Q23: Medium speed winding 2
Q21: Medium speed winding 2
Q11: High speed winding 1

## Method of operation

Pushbutton I energizes mains contactor Q17 (low speed), pushbutton II mains contactor Q23 and via its normally open contact Q23/14-13 mains contactor Q21 (high speed/ medium speed), pushbutton III mains contactor Q11. All contactors maintain themselves by their auxiliary contact 13-14.

## Circuit A

Selection of any speed from zero. No return to low speed, only to zero.


## Circuit B

Selection of any speed from zero or from low speed. Return only to zero.


Four-way pushbutton
0: Stop
I: Low speed (Q17)
II: $\quad$ Medium speed $(Q 21+$ Q23)
III: High speed (Q11)
Speed sequence from low to high is optional. Switching in steps from high to medium or low speed is not possible. The motor is always switched off by pressing pushbutton 0 . In the event of an overload, normally closed contact 95-96 of overload relays F2, F21 and F22 can also switch off.

## All about Motors

Multi speed switch with motor-protective circuit-breaker PKZ2


| No. of poles | 12 | 6 |
| :---: | :---: | :---: |
| Rpm | 500 | 1000 |
| No. of poles | 8 | 4 |
| Rpm | 750 | 1500 |
| No. of poles | 4 | 2 |
| Rpm | 1500 | 3000 |

## All about Motors

Multi speed switch with motor-protective circuit-breaker PKZ2


Circuit $\mathrm{A} \rightarrow$ page 8-53



Circuit $C \rightarrow$ page 8-53

| S11 | RMQ-Titan, M22-... | - | - | - |
| :---: | :---: | :---: | :---: | :---: |
| Q1, Q21 | PKZ2/ZM-.../S | $n>$ | - | - |
| Q2, Q17 | PKZ2/ZM-.../S | $n<$ | - | - |
| Q23 | DILOM | Yn $>U_{\text {e }} \leqq 500 \mathrm{~V}$ | - | - |
| Q23 | S/EZ-PKZ | Yn $>U_{\text {e }} \leqq 660 \mathrm{~V}$ | F0 | FAZ |

## All about Motors

Three-phase automatic stator starters
Three-phase automatic stator resistance starter DDAINL with mains contactor and resistors, 2-stage, 3-phase version


Use F2 when using F1 instead of Q1.
Rating of switchgear:

| Starting voltage | $=0.6 \times U_{\mathrm{e}}$ |
| :--- | :--- |
| Starting current | $=0.6 \times$ motor full-load current |
| Starting torque | $=0.36 \times$ motor full-load current |
| Q1, Q11 | $=I_{\mathrm{e}}$ |
| Q16, Q17 | $=0.6 \times I_{\mathrm{e}}$ |
| Starting voltage | $=0.6 \times U_{\mathrm{e}}$ |

## All about Motors

Three-phase automatic stator starters
DDAINL three-phase automatic stator resistance starter with mains contactor and resistors, 2 -stage, 3 -phase version


Q16: Step contactor
K1: Timing relay
Q17: Step contactor

## Two-wire control

Always set overload relay to manual reset

K2: Timing relay
Q11: Mains contactor

L1


## All about Motors

Three-phase automatic stator starters

Three-wire control
Two-way pushbutton
$\mathrm{I}=\mathrm{ON}$
$0=0$ FF


Two-wire control

## Method of operation

Pushbutton I energizes step contactor Q16 and timing relay K1. Q16/14-13 - maintain themselves via Q11, Q11/32-31 and pushbutton 0 . The motor is connected to the supply with rotor resistors R1 + R2. When the set starting time has elapsed, normally open contact K1/15-18 energizes Q17. Step contactor Q17 bypasses starting stage R1. At the same time, normally open contact Q17/14-13 energizes $K 2$. When the set starting time has elapsed, K2/15-18 energizes mains contactor Q11, which bypasses the second starting stage R2, and the motor runs at rated speed. Q11 maintains itself via Q11/14-13. Q16, Q17, K1 and K2 are
de-energized by normally closed contacts Q11/22-21 and Q11/32-31. The motor is switched off either after actuation of pushbutton 0 , or in the event of an overload, by normally closed contact 95-96 of the overload relay F2 or normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker.
Step contactor Q17, resistor R2 and timing relay K1 are omitted in single-stage starting circuits. Timing relay K2 is connected directly
means of its terminals $\mathrm{U} 1, \mathrm{~V} 1$ and W 1 to Q11/2, 4, 6.

## All about Motors

Three-phase automatic stator starters
Three-phase automatic stator resistance starter ATAINL with mains contactor and starting transformer, 1 -stage, 3 -phase


Use F2 when using F1 instead of Q1. Rating of switchgear

| Starting voltage | $=0.7 \times U_{\text {e }}$ (typical value) | Tightening torque | $=0.49 \times$ motor full-load current |
| :---: | :---: | :---: | :---: |
| Starting current | $=0.49 \times$ motor full-load current | Q1, Q11 | $=I_{\text {e }}$ |
| $I_{\text {A }} / I_{\text {e }}$ | $=6$ | Q16 | $=0.6 \times I_{\text {e }}$ |
| $t_{\text {A }}$ | $=10 \mathrm{~s}$ | Q13 | $=0.25 \times I_{\text {e }}$ |
| S/h | $=30$ |  |  |

## All about Motors

Three-phase automatic stator starters


Three-wire control

## I: ON

0: OFF


## Two-wire control

Always set overload relay to manual reset (automatic reset)


Two-wire


## Method of operation

Actuation of pushbutton I simultaneously energizes star contactor Q13, timing relay K1 and, via normally open contact Q13/13-14, step contactor K16, and are maintained via K1/13-14. When K1 has elapsed, normally closed contact K1/55-56 de-energizes star contactor Q13 and - via normally open contact Q13/13-14 - Q16 de-energizes: The starting transformer is disconnected, and the motor runs at rated speed.

The motor cannot start up again unless previously switched off by actuation of pushbutton 0 , or in the event of an overload, by normally closed contact 95-96 of the overload relay F2. With two-wire control, overload relay F2 must always be set to manual reset. If the motor has been switched off by F2, the motor cannot start up again unless the manual reset is released.

## All about Motors

Three-phase automatic rotor starters
Three-phase automatic rotor resistance starters DAINL
3-stage, rotor 3-phase


Use F2 when using F1 instead of Q1.

## All about Motors

Three-phase automatic rotor starters
2-stage, rotor 2-phase


Use F2 when using F1 instead of Q1.
Rating of switchgear

| Starting current |  | $=0.5-2.5 \times I_{\mathrm{e}}$ |
| :--- | :--- | :--- |
| Starting torque | $=0.5$ to pull-out torque |  |
| Q1, Q11 | $=I_{\mathrm{e}}$ |  |
| Step contactors | $=0.35 \times I_{\text {rotor }}$ |  |
| Final step contactors | $=0.58 \times I_{\text {rotor }}$ |  |

## All about Motors

Three-phase automatic rotor starters
With mains contactor, style 3-stage, rotor 3-phase


Q11: Mains contactor
K1: Timing relay
Q14: Step contactor
K2: Timing relay

Two-way pushbutton
I: ON
0: OFF


Q12: Step contactor
Q13: Final step contactor
K3: Timing relay

For connection of further control circuit devices: $\rightarrow$ section "Control circuit devices for star-delta starting", page 8-49

## All about Motors <br> Three-phase automatic rotor starters

## Method of operation

Pushbutton I energizes mains contactor Q11: normally open contact Q11/14-13 transfers the voltage, Q11/44-43 energizes timing relay K 1 . The motor is connected to the supply with rotor resistors R1 + R2 + R3 in series. When the set starting time has elapsed, normally open contact K1/15-18 energizes Q14. Step contactor Q14 short-circuits starting stage R1 and via Q14/14-13 energizes timing relay K2. When the set starting time has elapsed, K2/15-18 energizes step contactor Q12, which short-circuits starting stage R2 and via Q12/14-13 energizes timing relay K3. When the set starting time has elapsed, K3/15-18 energizes final step contactor Q13, which is maintained via Q13/14-13. Step contactors Q14 and Q13 as well as timing relays K1, K2 and K3 are de-energized via Q13. Final step contactor Q13 short-circuits the rotor slip rings: the motor operates with rated speed.

The motor is switched off either by pushbutton 0 , or in the event of an overload, by normally closed contact 95-96 of the overload relay F2 or normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker.

Step contactors Q13 and/or Q12 with their resistors R3, R2 and timing relays $\mathrm{K} 3, \mathrm{~K} 2$ are omitted in single-stage or two-stage starting circuits. The rotor is then connected to the resistance terminals U, V, W2 or U, V, W1. The references for step contactors and timing relays in the wiring diagrams are then changed from Q13, Q12, to Q12, Q11 or to Q13, Q11 as appropriate.
When there are more than three stages, the additional step contactors, timing relays and resistors have appropriate increasing designations.

## All about Motors

Switching of capacitors

## Contactors for capacitors DIL

Individual circuit without
quick-discharge resistors


R1 discharge resistors fitted in capacitor

Individual circuit with quick-discharge resistors


R1 discharge resistors fitted to contactor

## All about Motors

Switching of capacitors


## Two-wire control

In the case of actuation by means of power factor correction relay, check that this has sufficient power to actuate the contactor coil. Interpose a contactor relay if necessary.

## Method of operation

Pushbutton I energizes contactor Q11. Q11 energizes and maintains itself via its own auxiliary contact 14-13 and pushbutton 0 . Capacitor C 1 is now energized. Discharge resistors R1 are not operative when contactor Q11 is energized. Actuation of pushbutton 0 effects de-energization. Normally closed contacts Q11/21-22 then switch discharge resistors R1 to capacitor C1.


Two-way pushbutton
For connection of further control circuit devices: $\rightarrow$ section "Control circuit devices for star-delta starting", page 8-49


## All about Motors

Switching of capacitors

## Capacitor contactor combination

Capacitor contactor with pilot contactor and series resistors. Individual and parallel circuit
with and without discharge resistors and with series resistors.


On the version without discharge resistors, resistors R1 and the connections to the auxiliary contacts 21-22 and 31-32 are omitted.

## All about Motors

Switching of capacitors


Q11: Mains contactor
Q14: Pilot contactor

Actuation by two-way pushbutton S11

## Method of operation

Actuation by two-way pushbutton S11:
Pushbutton I energizes pilot contactor Q14. Q14 switches capacitor C1 in with bridged series resistors R2. Normally open contact Q14/14-13 energizes mains contactor Q11. Capacitor C 1 is then switched in with bridged series resistors R2. Q14 is maintained via Q11/14-13 when Q11 has closed.


Actuation by selector switch S13, two-wire control S12 (power factor correction relay) and two-way pushbutton S11

Discharge resistors R 1 are not operative when Q11 and Q14 are energized. Pushbutton 0 effects de-energization. Normally closed contacts Q11/21-22 and 31-32 then switch discharge resistors R1 to capacitor C1.

## All about Motors

Duplex pump control

## Fully automatic control for two pumps

Starting sequence of pumps 1 and 2 can be selected by control switch S12
Control circuit wiring with two float switches for basic and peak loads (operation is also possible with two pressure switches)

P1 Auto = Pump 1 constant load, Pump 2 peak load
P2 Auto = Pump 2 constant load, Pump 1 peak load
P1 + P2 = Direct operation independent of float switches (or pressure switches)

(1) Cable with float, counterweight, pulleys
(6) Centrifugal or reciprocating pump and clamps
(7) Pump 1
(2) Storage tank
(8) Pump 2
(3) Inlet
(9) Suction pipe with filter
(4) Pressure pipe
(10) Well
(5) Outlet


## Float switch F7 closes before F8

## Method of operation

The duplex pump control is designed for operation of two pump motors M1 and M2. Control is via float switches F7 and F8.
Operating mode selector switch S12 in position P1 auto: The system operates as follows:
When the water level in the storage tank falls or rises, F7 switches pump 1 on or off (basic load). If the water level drops below

## Q11: Pump 1 mains contactor

the range of $\mathrm{F7}$ (discharge is greater than intake), F8 starts pump 2 (peak load). When the water level rises again, F is deactivated. Pump 2 continues running until F7 stops both pumps.
The operating sequence of pumps 1 and 2 can be determined using operating mode selector switch S12: Position P1 auto or P2 auto.

Q12: Pump 2 mains contactor
In position P1 + P2, both pumps are in operation, independent of the float switches (Caution! Tank may possibly overflow).
On the version of duplex pump control with automatic load sharing (TO(3)-4-15915), S12 has a further position: the sequence of operations is automatically reversed after each cycle.

## All about Motors

Fully automatic pump control

With pressure switch for air tank and domestic water supply without water failure (run dry) safety device

With 3-pole pressure switch MCSN (main circuit)

F1: Fuses (if required)
Q1: Motor-protective switch, manual (z. B. PKZ)

F7: Pressure switch MCSN, 3-pole
M1: Pump motor
(1) Air or pressure tank
(2) Non-return valve
(3) Pressure pipe
(4) Centrifugal (or reciprocating) pump
(5) Suction pipe with filter
(6) Well

## All about Motors

Fully automatic pump control
With single-pole pressure switch MCS (control circuit)


F1: Fuses
Q11: Contactor or automatic star-delta starter
F2: Overload relay with automatic reset
F7: Pressure switch MCS, 1-pole
M1: Pump motor
(1) Air or pressure tank
(2) Non-return valve
(3) Centrifugal (or reciprocating) pump
(4) Pressure pipe
(5) Suction pipe with filter
(6) Well

## All about Motors

Fully automatic pump control
With 3-pole float switch SW (main circuit)


F1: Fuses (if required)
Q1: Motor-protective switch, manual (z. B. PKZ)

F7: Float switch 3-pole (circuit: pump full)
M1: Pump motor
HW: Highest level
NW: Lowest value
(1) Cable with float, counterweight, pulleys and clamps
(2) Storage tank
(3) Pressure pipe
(4) Centrifugal (or reciprocating) pump
(5) Outlet
(6) Suction pipe with filter
(7) Well

## All about Motors

Fully automatic pump control
With single-pole float switch SW (control circuit)


F1: Fuses
Q11: Contactor or automatic star-delta starter
F2: Overload relay with automatic reset
F8: Float switch 1-pole (circuit: pump full)
S1: Changeover switch MANUAL-OFF-AUTO
F9: Float switch 1-pole (circuit: pump full)
M1: Pump motor
(1) Cable with float, counterweight, pulleys and clamps
(2) Storage tank
(3) Pressure pipe
(4) Centrifugal (or reciprocating) pump
(5) Outlet
(6) Suction pipe with filter
(7) Water-failure monitoring by means of a float switch
(8) Well

## All about Motors

Off position interlock of the loads

## Solution using NZM circuit-breakers

Off position interlock for control switches
(Hamburg circuit) with auxiliary contact VHI
(S3) and undervoltage release. Cannot be used with motor operator.


## All about Motors

Fully automatic main transfer switch with automatic reset

Off position interlock for control or master switches by means of auxiliary contacts VHI
(S3), NHI (S1) and undervoltage release.
Cannot be used with motor operator.
(1) Emergency-Stop
(2) Off position interlock contacts on the control or master switches

## All about Motors

Fully automatic main transfer switch with automatic reset
Changeover device to DIN VDE 0108 - Power systems and safety power supply in buildings for public gatherings:

Automatic resetting, the phase-monitor is set to:

Pick-up voltage $\quad U_{\text {on }}=0.95 \times U_{n}$
Drop-out voltage $\quad U_{b}=0.85 \times U_{\text {on }}$


## Method of operation

Main switch Q1 is closed first, followed by main switch Q1.1 (auxiliary supply).
Phase monitor K1 is energized via the main supply and immediately energizes contactor relay K2. Normally closed contact K2/21-22 blocks the circuit of Contactor Q12 (auxiliary supply) and normally open contact K2/13-14 closes the circuit of contactor Q11. Contactor

Q11 energizes and switches the mains supply on the loads. Contactor Q12 is also interlocked against main supply contactor Q11 via normally closed contact Q11/22-21.

## Page

| Marking of electrical <br> equipment | $9-2$ |
| :--- | :---: |
| Circuit symbols, European - North America | $9-14$ |
| Circuit diagram example to <br> North American specifications | $9-27$ |
| Approval authorities worldwide | $9-28$ |
| Test authorities and approval stamps | $9-32$ |
| Protective measures | $9-34$ |
| Overcurrent protection of cables and <br> conductors | $9-43$ |
| Electrical equipment of machines | $9-51$ |
| Measures for risk reduction | $9-56$ |
| Measures for risk avoidance | $9-57$ |
| Degrees of protection for electrical equipment | $9-58$ |
| North American classifications for <br> control switches | $9-68$ |
| Utilisation categories for contactors | $9-70$ |
| Utilisation categories for <br> switch-disconnectors | $9-74$ |
| Rated motor currents | $9-77$ |
| Conductors | $9-81$ |
| Formulae | $9-90$ |
| International unit system | $9-94$ |

# Specifications, Formulae, Tables <br> Marking of electrical equipment 

## General

Extracts from the DIN Standards with VDE Classification are quoted with the permission of the DIN (Deutsches Institut für Normung e.V.) and the VDE (Verband der Elektrotechnik Elektronik Informationstechnik e.V.) It is imperative for the use of the standards that the issue with the latest date is used. These are available from VDE-VERLAG GMBH, Bismarckstr. 33, 10625 Berlin and Beuth Verlag GmbH, Burggrafenstr. 6, 10787 Berlin.

## Marking to DIN EN 61346-2:2000-12 <br> (IEC 61346-2:2000)

Moeller has decided, with a transitional period, to use the above mentioned standards.
Deviation from the, up to now, normal marking determines now in the first place the function of the electrical equipment in the respective circuit of the code letter. The outcome is that there is a lot of freedom in the selection of the code letters.
Example for a resistance

- Normal current limiter: R
- Heater resistor: E
- Measurement resistor: B

As well as that, Moeller specific decisions have been made with regard to the interpretation of the standard that sometimes deviate from the standard.

- The marking of connection terminals are not readable from the right.
- A second code letter for the marking of the use of the equipment is not given,
e. g.: timer relay K1T becomes K1.
- Circuit-breakers with the main function of protection are still marked with Q.
They are numbered from 1 to 10 from the top left.
- Contactors are newly marked with Q and numbered from 11 to nn .
e. g.: K91M becomes Q21.
- Relays remain K and are numbered from 1 to n .

The marking appears in a suitable position as close as possible to the circuit symbol. The marking forms the link between the equipment in the installations and the various circuit documents (wiring diagrams, parts lists, circuit diagrams, instructions). For simpler maintenance, the complete marking or part of it, can be affixed on or near to the equipment.

Selected equipment with a comparison of the Moeller used code letters old - new $\rightarrow$ Table, Page 9-3.

## Specifications, Formulae, Tables

Marking of electrical equipment

| Code letter old | Example for electrical equipment | Code letter new |
| :---: | :---: | :---: |
| B | Measuring transducer | T |
| C | Capacitors | C |
| D | Memory device | C |
| E | Electro filter | V |
| F | Bimetal release | F |
| F | Pressure monitor | B |
| F | Fuses (fine, HH, signal fuse ) | F |
| G | Frequency inverters | T |
| G | Generators | G |
| G | Soft starter | T |
| G | UPS | G |
| H | Lamps | E |
| H | Optical and acoustic indicators | P |
| H | Signal lamps | P |
| K | Relays | K |
| K | Contactor relays | K |
| K | Semiconductor contactor | T |
| K | Contactor | Q |
| K | Time-delay relay | K |
| L | Reactor coil | R |
| N | Buffer amplifier, inverting amplifier | T |
| Q | Switch disconnector | Q |
| Q | Circuit-breaker for protection | Q |
| Q | Motor-protective circuit-breaker | Q |

## Specifications, Formulae, Tables

Marking of electrical equipment

| Code letter old | Example for electrical equipment | Code letter new |
| :---: | :---: | :---: |
| Q | Star-delta switches | Q |
| Q | Disconnect switch | Q |
| R | Variable resistor | R |
| R | Measurement resistor | B |
| R | Heating resistor | E |
| S | Control circuit devices | S |
| S | Push-button | S |
| S | Position switch | B |
| T | Potential transformer | T |
| T | Current transformer | T |
| T | Transformers | T |
| U | Frequency converter | T |
| V | Diodes | R |
| V | Rectifier | T |
| V | Transistors | K |
| Z | EMC filter | K |
| Z | Suppressors and arc quenching devices | F |

## Specifications, Formulae, Tables Marking of electrical equipment

## Component marking in the USA and Canada to NEMA ICS 1-2001, ICS 1.1-1984, ICS 1.3-1986

In order to differentiate between devices with similar functions, 3 figures and/or letters can be added to the marking. When using two or more of these markings, the function marking is usually put first.

## Example:

The relay which introduces the first jog function is marked with " 1 JCR". That means here:
1 = numerical specification
$J=$ jog function of the equipment
$C R=$ control relay (contactor relay) - type of equipment

## Specifications, Formulae, Tables

Marking of electrical equipment
Component or function code letters to NEMA ICS 1-2001, ICS 1.1-1984, ICS 1.3-1986

| Code letter | Device or Function |
| :---: | :---: |
| A | Accelerating |
| AM | Ammeter |
| B | Braking |
| C or CAP | Capacitor, capacitance |
| CB | Circuit-breaker |
| CR | Control relay |
| CT | Current transformer |
| DM | Demand meter |
| D | Diode |
| DS or DISC | Disconnect switch |
| DB | Dynamic braking |
| FA | Field accelerating |
| FC | Field contactor |
| FD | Field decelerating |
| FL | Field-loss |
| F or FWD | Forward |
| FM | Frequency meter |
| FU | Fuse |
| GP | Ground protective |
| H | Hoist |
| J | Jog |
| LS | Limit switch |
| L | Lower |
| M | Main contactor |
| MCR | Master control relay |
| MS | Master switch |

## Specifications, Formulae, Tables <br> Marking of electrical equipment

| Code letter | Device or Function |
| :---: | :---: |
| OC | Overcurrent |
| OL | Overload |
| P | Plugging, potentiometer |
| PFM | Power factor meter |
| PB | Pushbutton |
| PS | Pressure switch |
| REC | Rectifier |
| R or RES | Resistor, resistance |
| REV | Reverse |
| RH | Rheostat |
| SS | Selector switch |
| SCR | Silicon controlled rectifier |
| SV | Solenoid valve |
| SC | Squirrel cage |
| S | Starting contactor |
| SU | Suppressor |
| TACH | Tachometer generator |
| TB | Terminal block, board |
| TR | Time-delay relay |
| Q | Transistor |
| UV | Undervoltage |
| VM | Voltmeter |
| WHM | Watthour meter |
| WM | Wattmeter |
| X | Reactor, reactance |

## Specifications, Formulae, Tables Marking of electrical equipment

As an alternative to device designation with code letter to NEMA ICS 1-2001, ICS 1.1-1984,
ICS 1.3-1986 the designation to class designation is permissible. Class designation marking should
simplify harmonization with international standards. The code letters used here are, in part, similar to those of IEC 61346-1 (1996-03).

## Class designation code letter to NEMA ICS 19-2002

| Code letter | Device or function |
| :---: | :---: |
| A | Separate Assembly |
| B | Induction Machine, Squirrel Cage Induction Motor Synchro, General <br> - Control transformer <br> - Control transmitter <br> - Control Receiver <br> - Differential Receiver <br> - Differential Transmitter <br> - Receiver <br> - Torque Receiver <br> - Torque Transmitter <br> Synchronous Motor <br> Wound-Rotor Induction Motor or Induction Frequency Convertor |
| BT | Battery |
| C | Capacitor <br> - Capacitor, General <br> - Polarized Capacitor <br> Shielded Capacitor |
| CB | Circuit-Breaker (all) |

## Specifications, Formulae, Tables

Marking of electrical equipment

| Code letter | Device or function |
| :---: | :---: |
| D, CR | Diode <br> - Bidirectional Breakdown Diode <br> - Full Wave Bridge Rectifier <br> - Metallic Rectifier <br> - Semiconductor Photosensitive <br> - Cell <br> - Semiconductor Rectifier <br> - Tunnel Diode <br> - Unidirectional Breakdown Diode |
| D, VR | Zener Diode |
| DS | Annunciator Light Emitting Diode Lamp <br> - Fluorescent Lamp <br> - Incandescent Lamp <br> - Indicating Lamp |
| E | Armature (Commutor and Brushes) <br> Lightning Arrester <br> Contact <br> - Electrical Contact <br> - Fixed Contact <br> - Momentary Contact <br> Core <br> - Magnetic Core <br> Horn Gap <br> Permanent Magnet <br> Terminal <br> Not Connected Conductor |

- Electrical Contact
- Fixed Contact
- Momentary Contact

Core

- Magnetic Core

Horn Gap
Permanent Magnet
Terminal
Not Connected Conductor

## Specifications, Formulae, Tables <br> Marking of electrical equipment

| Code letter | Device or function |
| :---: | :---: |
| F | Fuse |
| G | Rotary Amplifier (all) <br> A.C. Generator Induction Machine, Squirrel Cage Induction Generator |
| HR | Thermal Element Actuating Device |
| J | Female Disconnecting Device Female Receptacle |
| K | Contactor, Relay |
| L | Coil <br> - Blowout Coil <br> - Brake Coil <br> - Operating Coil <br> Field <br> - Commutating Field <br> - Compensating Field <br> - Generator or Motor Field <br> - Separately Excited Field <br> - Series Field <br> - Shunt Field <br> Inductor <br> Saturable Core Reactor <br> Winding, General |
| LS | Audible Signal Device <br> - Bell <br> - Buzzer <br> - Horn |
| M | Meter, Instrument |

## Specifications, Formulae, Tables

Marking of electrical equipment

| Code letter | Device or function |
| :---: | :---: |
| P | - Male Disconnecting Device <br> - Male Receptable |
| Q | Thyristor <br> - NPN Transistor <br> - PNP Transistor |
| R | Resistor <br> - Adjustable Resistor <br> - Heating Resistor <br> - Tapped Resistor <br> - Rheostat <br> Shunt <br> - Instrumental Shunt <br> - Relay Shunt |
| S | Contact <br> - Time Closing Contact <br> - Time Opening Contact <br> - Time Sequence Contact <br> - Transfer Contact <br> - Basic Contact Assembly <br> - Flasher |

## Specifications, Formulae, Tables <br> Marking of electrical equipment

| Code letter | Device or function |
| :---: | :---: |
| S | Switch <br> - Combination Locking and Nonlocking Switch <br> - Disconnect Switch <br> - Double Throw Switch <br> - Drum Switch <br> - Flow-Actuated Switch <br> - Foot Operated Switch <br> - Key-Type Switch <br> - Knife Switch <br> - Limit Switch <br> - Liquid-Level Actuated Switch <br> - Locking Switch <br> - Master Switch <br> - Mushroom Head <br> - Operated Switch <br> - Pressure or Vacuum <br> - Operated Switch <br> - Pushbutton Switch <br> - Pushbutton Illuminated Switch, Rotary Switch <br> - Selector Switch <br> - Single-Throw Switch <br> - Speed Switch Stepping Switch <br> - Temperature-Actuated Switch <br> - Time Delay Switch <br> - Toggle Switch <br> - Transfer Switch <br> - Wobble Stick Switch <br> Thermostat |

## Specifications, Formulae, Tables

Marking of electrical equipment

| Code letter | Device or function |
| :---: | :---: |
| T | Transformer <br> - Current Transformer <br> - Transformer, General <br> - Polyphase Transformer <br> - Potential Transformer |
| TB | Terminal Board |
| TC | Thermocouple |
| U | Inseparable Assembly |
| V | Pentode, Equipotential Cathode <br> Phototube, Single Unit, <br> Vacuum Type <br> Triode <br> Tube, Mercury Pool |
| W | Conductor <br> - Associated <br> - Multiconductor <br> - Shielded <br> Conductor, General |
| X | Tube Socket |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

## Circuit symbols to DIN EN, NEMA ICS

The following comparison of circuit symbols is based upon the following international/national specifications:

- DIN EN 60617-2 to DIN EN 60617-12
- NEMA ICS 19-2002



## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN | NEMA ICS |
| :---: | :---: | :---: |
| Conductor (for later expansion) | $\overline{103-01-01}$ |  |
| Line of application, general symbol | $\overline{-02-12-01}-----$ | ------- |
| Line of application, optional, denoting small interval | $\overline{\overline{02-12-04}}$ |  |
| Separation between two fields | $\overline{02 \cdot 01 \cdot 06} \cdot-$ | -. - - |
| Line of separation between functional units |  | T-- - |
| Screen |  |  |
| Earth, general symbol Ground, general symbol | $\frac{1}{\overline{-1}}$ | $\frac{1}{\underline{-G}_{G R D}}$ |
| Protective earth Protective ground |  | $\pm$ |
| Connector with plug and socket |  | $\downarrow$ |
| Isolating point, lug, closed | $\frac{\perp}{\frac{1}{1}}$ | $\frac{1}{1}$ |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN |
| :--- | :--- |

## Passive components

| Resistor, general symbol | $-W \text { or } \underset{04-01-02}{\square}$ | W- or RES |
| :---: | :---: | :---: |
| Resistor with fixed tappings |  | $-W \text { or } \sqrt{1,}$ |
| Variable resistor, general symbol |  |  |
| Adjustable resistor | $\rightarrow$ | $\frac{- \text { RES }}{4}$ |
| Resistor with sliding contact, potentiometer |  |  |
| Winding, inductance, general symbol | $\mathrm{mm}_{0403.01}$ or - | $m^{x}$ |
| Winding with fixed tapping | $m$ | $m{ }^{x}$ |
| Capacitor, general symbol | $\underset{04-02-01}{H-} \text { or } \underset{04 \cdot 02 \cdot 02}{f}$ | $+1 \text { or }$ |
| Variable capacitor | $+11-$ <br> 104-02-01 |  |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN | NEMA ICS |
| :---: | :---: | :---: |
| Signalling units |  |  |
| Visual indicator, general symbol | $\bigcirc$ | *with colour stated |
| Indicator light, general symbol | $\bigotimes_{08-10 \cdot 01}$ | or or <br> *with colour stated |
| Buzzer |  | $\prod_{T} A B U$ |
| Horn, claxon |  | $=\square \mathrm{HN}$ |

## Operating devices

| Manual operation, general use |  | ト--- |
| :---: | :---: | :---: |
| Operated by pushing | $\underset{02 \cdot 13-05}{E--}$ | E--- |
| Operated by pulling | $\underset{02-1303}{7---}$ | J--- |
| Operated by turning | $\underset{02 \cdot 13.04}{F---}$ |  |
| Operated by key | $8_{02-13-13}^{8^{---}}$ |  |
| Operated by rollers, sensors | $\underset{02 \cdot 13 \cdot 15}{\Theta---}$ |  |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN | NEMA ICS |
| :---: | :---: | :---: |
| Stored energy mechanism, general symbol | $\square_{02 \cdot 13.20}^{--}$ |  |
| Switch mechanism with mechanical release |  |  |
| Operated by motor | $\underset{02-13 \cdot 26}{(1)--}$ | (NOT)-- |
| Emergency switch | $\underset{02 \cdot 13 \cdot 08}{(---}$ |  |
| Operated by electromagnetic overcurrent protection | $p_{02 \cdot 13 \cdot 24}^{b--}$ |  |
| Operated by thermal overcurrent protection | $\begin{aligned} & 4-- \\ & r_{02-13-25} \end{aligned}$ | $\perp_{\top}^{\circ}$ |
| Electromagnetic operation | $\underset{02 \cdot 13 \cdot 23}{1}-$ | $\bigcirc$ |
| Control by fluid level | $\underset{02-14 \cdot 01}{b_{0}}$ | $\bigcirc$ |
| Electromechanical, electromagnetic operating devices |  |  |
| Electromechanical operating device, general symbol, relay coil, general symbol |  | $\begin{aligned} & -{ }^{\text {or }} \\ & \times \text { device co } \end{aligned}$ |
| Operating device with special features, general symbol | $\frac{1}{\square}$ | $\frac{1}{\square_{1}}$ |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description |  |  |
| :--- | :--- | :--- |
| Electromechanical operating device <br> with On-delay |  |  |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN |
| :--- | :--- |

## Control devices

| Push-button (not stay-put) |  |
| :--- | :--- |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN |
| :--- | :--- | :--- |
| Spring-return switch with break <br> contact, mechanically operated, <br> break contact open |  |
| Proximity switch (break contact), <br> actuated by the proximity of iron |  |
| Proximity switch, inductive, make <br> contact |  |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN | NEMA ICS |
| :--- | :--- | :--- |

Switchgear

| Contactor (make contact) |
| :--- |
| 3 pole contactor with bimetal relay <br> (3 thermal elements) |
| 3 pole circuit-breaker switch-disconnector |
| 3 pole breaker with switch <br> mechanism with three <br> thermoelectric overcurrent releases, <br> three electromagnetic overcurrent <br> releases, motor-protective <br> circuit-breaker |
| Fuse, general symbol |

Transformers, current transformers
Transformers with two windings

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN |
| :--- | :--- | :--- |
| Autotransformer | NEMA ICS |
| Current transformer |  |

## Machines

| Generator |
| :--- |
| Motor, general symbol |
| Three-phase asynchronous motor |
| with squirrel-cage rotor |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN |
| :--- | :--- |
| Semiconductor components |  |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN |
| :--- | :--- |
| OR with negated output, NOR |  |

## Specifications, Formulae, Tables

Circuit symbols, European - North America

| Description | DIN EN | NEMA ICS |
| :---: | :---: | :---: |
| PNP transistor | $1 /$ <br> 05-05-01 | (A) ${ }^{(K) \text { or }(E)}$ <br> (B) |
| NPN transistor, in which the collector is connected to the enclosure | $\geqslant$ <br> 05-05-02 |  |

## Specifications, Formulae, Tables

Circuit diagram example to North American specifications

## Direct-on-Line Motor-Starters

Fuseless with circuit-breakers


## Specifications, Formulae, Tables

Approval authorities worldwide

| Abbreviation | Full title | Country |
| :---: | :---: | :---: |
| ABS | American Bureau of Shipping | USA |
| AEI | Associazione Elettrotechnica ed Elettronica Italiana Italian electrotechnical industry organisation | Italy |
| AENOR | Asociacion Española de Normalización y Certificación Spanish organisation for standards and certification | Spain |
| ALPHA | Gesellschaft zur Prüfung und Zertifizierung von Niederspannungsgeräten German test laboratories association | Germany |
| ANSI | American National Standards Institute | USA |
| AS | Australian Standard | Australia |
| ASA | American Standards Association | USA |
| ASTA | Association of Short-Circuit Testing Authorities | Great Britain |
| BS | British Standard | Great Britain |
| BV | Bureau Veritas <br> Ship's classification association | France |
| CEBEC | Comité Electrotechnique Belge <br> Belgian electrotechnical product quality mark | Belgium |
| CEC | Canadian Electrical Code | Canada |
| CEI | Comitato Elettrotecnico Italiano Italian standards organisation | Italy |
| CEI | Commission Electrotechnique Internationale International electrotechnical commission | Switzerland |
| CEMA | Canadian Electrical Manufacturer's Association | Canada |
| CEN | Comité Européen de Normalisation European standards committee | Europe |
| CENELEC | Comité Européen de Normalisation Électrotechnique European committee for electrotechnical standards | Europe |

## Specifications, Formulae, Tables

Approval authorities worldwide

| Abbreviation | Full title | Country |
| :---: | :---: | :---: |
| CSA | Canadian Standards Association | Canada |
| DEMKO | Danmarks Elektriske Materielkontrol Danish material control for electrotechnical products | Denmark |
| DIN | Deutsches Institut für Normung German institute for standardisation | Germany |
| DNA | Deutscher Normenausschuss German standards committee | Germany |
| DNV | Det Norsk Veritas <br> Ship classification association | Norway |
| EN | European standard | Europe |
| ECQAC | Electronic Components Quality Assurance Committee | Europe |
| ELOT | Hellenic Organization for Standardization Greek organization for standardization | Greece |
| EOTC | European Organization for Testing and Certification | Europe |
| ETCl | Electrotechnical Council of Ireland | Ireland |
| GL | Germanischer Lloyd Ship classification association | Germany |
| HD | Harmonization document | Europe |
| IEC | International Electrotechnical Commission | - |
| IEEE | Institute of Electrical and Electronics Engineers | USA |
| IPQ | Instituto Portoguês da Qualidade Portuguese quality institute | Portugal |
| ISO | International Organization for Standardization | - |

## Specifications, Formulae, Tables

Approval authorities worldwide


## Specifications, Formulae, Tables

Approval authorities worldwide

| Abbreviation | Full title | Country |
| :---: | :---: | :---: |
| PRS | Polski Rejestr Statków <br> Ship classification association | Poland |
| PTB | Physikalisch-Technische Bundesanstalt German physical/technical federal agency | Germany |
| RINA | Registro Italiano Navale Italian ship classification association | Italy |
| SAA | Standards Association of Australia | Australia |
| SABS | South African Bureau of Standards | South Africa |
| SEE | Service de l'Energie de l'Etat Luxemburg authority for standardisation, testing and certification | Luxemburg |
| SEMKO | Svenska Elektriska Materielkontrollanstalten Swedish test institute for electrotechnical products | Sweden |
| SEV | Schweizerischer Elektrotechnischer Verein Swiss electrotechnical association | Switzerland |
| SFS | Suomen Standardisoimisliito r.y. <br> Finnish standardisation association, Finnish standard | Finland |
| STRI | The Icelandic Council for Standardization | Iceland |
| SUVA | Schweizerische Unfallversicherungs-Anstalt Swiss accident insurance federal agency | Switzerland |
| TÜV | Technischer Überwachungsverein Technical inspection association | Germany |
| UL | Underwriters' Laboratories Inc. | USA |
| UTE | Union Technique de l'Electricité Electrotechnical federation | France |
| VDE | Verband der Elektrotechnik, Elektronik, Informationstechnik (Verband Deutscher Elektrotechniker) Association of electrical, electronics and information technology | Germany |
| ZVEI | Zentralverband Elektrotechnik- und Elektronikindustrie Central association of the electrical and electronic industry | Germany |

## Specifications, Formulae, Tables

## Test authorities and approval stamps

## Test authorities and approval stamps in Europe and North America

Moeller devices have in their basic design all worldwide necessary approvals including those for the USA.
Some devices, such as circuit-breakers, are in their basic design usable worldwide with the exception of USA and Canada. For export to North America devices are available with a special UL and CSA approval.
In all cases special country specific installation and operating specifications, installation ,materials and types must be taken into account as well as special circumstances such as difficult climatic conditions.
Since January 1997 all devices that conform to the European low-voltage guidelines and are for sale
in the European Union must be marked with the CE mark.
The CE mark shows that the marked device corresponds with all relevant requirements and standards. This marking duty allows unlimited use of this device within the European economic area. Approval and marking for their own country is no longer necessary when a device is marked with the CE mark that corresponds to the harmonised standards. ( $\rightarrow$ Table, Page 9-32).
An exception is the instalation material. The device group of circuit-breakers and earth-fault protection switches are in certain areas still to be labelled and are therefore marked with the relevant label.

| Country | Test authority | Stamp | included in CE mark |
| :---: | :---: | :---: | :---: |
| Belgium | Comité Electrotechnique Belge Belgisch Elektrotechnisch Comité (CEBEC) | $\stackrel{C}{C E B E C}$ | yes, except installation material |
| Denmark | Danmarks Elektriske Materielkontrol (DEMKO) | (D) | Yes |
| Germany | Verband Deutscher Elektrotechniker (VDE) | $00$ | yes, except installation material |
| Finland | FIMKO | (FI) | Yes |
| France | Union Technique de l'Electricité (UTE) | $38$ | yes, except installation material |

## Specifications, Formulae, Tables

Test authorities and approval stamps

| Country | Test authority | Stamp | included in CE mark |
| :---: | :---: | :---: | :---: |
| Canada | Canadian Standards Association (CSA) | (s) | no, extra or seperate the UL an CSA approval mark |
| Netherlands | Naamloze Vennootschap tot Keuring van Electrotechnische Materialen (KEMA) | KEUMA | Yes |
| Norway | Norges Elektriske Materiellkontrol (NEMKO) | (N) | Yes |
| Russia | Goststandart(GOST-)R | PG | No |
| Sweden | Svenska Elektriska Materielkontrollanstalten (SEMKO) | S | Yes |
| Switzerland | Schweizerischer Elektrotechnischer Verein (SEV) | ( | yes, except installation material |
| Czech Republic | - | - | no, manufacture declaration is enough |
| Hungary | - | - | no, manufacture declaration is enough |
| USA | Underwriters Laboratories Listing Recognition |  | no, extra or seperate the UL an CSA approval mark |

## Specifications, Formulae, Tables

Protective measures

## Protection against electrical shock to IEC 364-4-41

A distinction is drawn here between protection against direct contact, protection against indirect contact and protection against both direct and indirect contact.

## - Protection against direct contact

These are all the measures for the protection of personnel and working animals from dangers
which may arise from contact with live parts of electrical equipment.

- Protection against indirect contact

This is the protection of personnel and working animals from dangers which may arise from accidental contact with components or extraneous conductive parts.


Protection must be ensured by either a) the equipment itself or b) the use of protective measures when erecting the installation or $c$ ) a combination of $a$ ) and $b$ ).

## Specifications, Formulae, Tables

Protective measures

## Protection against indirect contact by means of disconnection or indication

The conditions for disconnection are determined by the type of system in use and the protective device selected.

## Systems to IEC 364-3/VDE 0100 Part 310



Meaning of designation

T: direct earthing of a point (system earth)
N : chassis directly connected to the system earth

## TT system



## IT system



T : direct earthing of a point (system earth)
T: chassis directly earthed, independent of the earthing of the power supply (system earth)

I: All live parts isolated from earth or one point connected to earth via an impedance.
T: chassis directly earthed, independent of the earthing of the power supply (system earth)
(1) System earth
(2) Chassis
(3) Impedance

## Specifications, Formulae, Tables

Protective measures
Protective devices and conditions for disconnection to IEC 364-4-1/VDE 0100 Part 410

| Type of <br> distribution <br> system | TN system |  | Description <br> so far |
| :--- | :--- | :--- | :--- |
| Protection with | System circuit | Condition for <br> disconnection |  |
| Overcurrent <br> protective <br> device | TN-S system <br> separated neutral and earth <br> conductors throughout the system | $Z_{5} \times I_{\mathrm{a}} \leqq U_{0}$ <br> $Z_{s}=$ Impedance of <br> the fault circuit <br> $I_{a}=$ current, which <br> causes disconnection <br> in: |  |

## Specifications, Formulae, Tables

Protective measures
Protective devices and conditions for disconnection to IEC 364-4-1/VDE 0100 Part 410

| Type of <br> distribution <br> system | TN system |  | Description <br> so far | Condition for <br> disconnection |
| :--- | :--- | :--- | :--- | :--- |
| Protection with | System circuit | Neutral conductor and protection <br> functions are in a part of the system <br> combined in a single PEN conductor <br> protective <br> device |  |  |

[^3]
## Specifications, Formulae, Tables

Protective measures
Protective devices and conditions for disconnection to IEC 364-4-1/VDE 0100 Part 410

| Type of <br> distribution | TT system |
| :--- | :--- |
| system |  |


| Protection with | System circuit | Description so far | Conditions for indication/disconnection |
| :---: | :---: | :---: | :---: |
| Overcurrent protective device <br> Fuses Miniature circuit-breakers Circuit-breakers |  | Protective earth | $R_{\mathrm{A}} \times I_{\mathrm{a}} \leqq U_{\mathrm{L}}$ <br> $R_{A}=$ Earthing <br> resistance of <br> conductive parts of the <br> chassis <br> $I_{\mathrm{a}}=$ Current which <br> causes automatic <br> disconnection in $\leqq 5 \mathrm{~s}$ <br> $U_{L}=$ Maximum per- <br> missible touch volt- <br> age*: <br> $(\leqq 50 \mathrm{VAC}$, <br> $\leqq 120 \mathrm{VCC}$ ) |
| Residual-current protective device |  | Residualcurrent protective circuit | $R_{\mathrm{A}} \times I_{\Delta \mathrm{n}} \leqq U_{\mathrm{L}}$ $I_{\Delta n}=$ rated fault current |
| Residual-voltage protective device (for special cases) |  | Residualvoltage protective circuit | $R_{\mathrm{A}}: \max .200 \Omega$ |

[^4]
## Specifications, Formulae, Tables <br> Protective measures

Protective devices and conditions for disconnection to IEC 364-4-1/VDE 0100 Part 410

| Type of <br> distribution <br> system | TT system |
| :--- | :--- |


| Protection with | System circuit | Description up to now | Conditions for indication/disconnection |
| :---: | :---: | :---: | :---: |
| Insulation monitoring device | - |  |  |
| Overcurrent protection device |  | Feed back to protective multiple earthing | $\begin{aligned} & R_{\mathrm{A}} \times I_{\mathrm{d}} \leqq U_{\mathrm{L}}(1) \\ & Z_{\mathrm{S}} \times I_{\mathrm{a}} \leqq U_{0}(2) \\ & R_{A}=\text { Earthing } \end{aligned}$ <br> resistance of all conductive parts connected to an earth $I_{\mathrm{d}}=$ Fault current in the event of the first fault with a negligible impedance between a phase conductor and the protective conductor or element connected to it $U_{\mathrm{L}}=$ Maximum permissible touch voltage*: $\leqq 50 \mathrm{VAC}$ $\leqq 120 \vee D C$ |

[^5]
## Specifications, Formulae, Tables

Protective measures
Protective devices and conditions for disconnection to IEC 364-4-1/VDE 0100 Part 410

| Type of <br> distribution <br> system | IT system |
| :--- | :--- |


| Protection with |
| :--- |
| Residual-current <br> protective <br> device |
| Residual <br> voltage <br> protective <br> device (for <br> special cases) |

[^6]
## Specifications, Formulae, Tables

Protective measures

The protective device must automatically disconnect the faulty part of the installation. At no part of the installation may there be a touch voltage or an effective duration greater than that
specified in the table below. The internationally agreed limit voltage with a maximum disconnect time of 5 s is 50 VAC or 120 VDC .

Maximum permissible effective duration dependent on touch voltage to IEC 364-4-41


| Anticipated touch voltage |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{AC} \text { rms } \\ & {[\mathrm{V}]} \end{aligned}$ | $\begin{aligned} & \mathrm{DC}_{\mathrm{rms}} \\ & {[\mathrm{~V}]} \end{aligned}$ | [s] |
| $<50$ | < 120 | - |
| 50 | 120 | 5.0 |
| 75 | 140 | 1.0 |
| 90 | 160 | 0.5 |
| 110 | 175 | 0.2 |
| 150 | 200 | 0.1 |
| 220 | 250 | 0.05 |
| 280 | 310 | 0.03 |

9

Notes

## 9

## Specifications, Formulae, Tables

 Overcurrent protection of cables and conductorsCables and conductors must be protected by means of overcurrent protective devices against
excessive warming, which may result both from operational overloading and from short-circuit.

## Overload protection

Overload protection means providing protective devices which will interrupt overload currents in the conductors of a circuit before they can cause temperature rises which may damage the conductor insulation, the terminals and connections or the area around the conductors.
For the protection of conductors against overload the following conditions must be fulfilled (source: DIN VDE 0100-430)

$$
\begin{aligned}
& I_{B} \leqq I_{n} \leqq I_{Z} \\
& I_{2} \leqq 1,45 I_{Z}
\end{aligned}
$$

$I_{B}$ anticipated operating current of the circuit
$I_{Z}$ current-carrying capacity of the cable or conductor
$I_{\mathrm{n}}$ rated current of protection device

## Note:

For adjustable protective devices, In corresponds to the value set.
$I_{2}$ The current which causes tripping of the protective device under the conditions specified in the equipment regulations (high test current).

## Arrangement of protection devices for overload protection

Protection devices for overload protection must be fitted at the start of every circuit and at every point where the current-carrying capacity is reduced unless an upstream protection device can ensure protection.

## Specifications, Formulae, Tables

## Overcurrent protection of cables and conductors

## Note:

Reasons for the current-carrying capacity being reduced:
Reduction of the conductor cross-section, a different installation method, different conductor insulation, a different number of conductors. Protective devices for overload protection must not be fitted if interruption of the circuit could

## Short-circuit protection

Short-circuit protection means providing protective devices which will interrupt short-circuit currents in the conductors of a circuit before they can cause a temperature rise which may damage the conductor insulation, the terminals and connections, or the area around the cables and conductors.
In general, the permissible disconnection time $t$ for short circuits of up to 5 s duration can be specified approximately using the following equation:
$t=\left(k \times \frac{S}{T}\right)^{2}$ or $\quad I^{2} \times t=k^{2} \times S^{2}$
The meaning of the symbols is as follows:
$t$ : permissible disconnection time in the event of short-circuit in s
$S$ : conductor cross-section in $\mathrm{mm}^{2}$
I: current in the cast of short-circuit in A
$k$ : constants with the values

- 115 for PVC-insulated copper conductors
- 74 for PVC-insulated aluminium conductors
- 135 for rubber-insulated copper conductors
- 87 for rubber-insulated aluminium conductors
- 115 for soft-solder connections in copper conductors

With very short permissible disconnection times $(<0,1 \mathrm{~s})$ the product from the equation $\mathrm{k}^{2} \times S^{2}$ must be greater than the $I^{2} \times t$ value of the current-limiting device stated by manufacturer.
prove hazardous. The circuits must be laid out in such a way that no possibility of overload currents occurring need be considered.
Examples:

- Energizing circuits for rotating machines
- Feeder circuits of solenoids
- Secondary circuits of current transformers
- Circuits for safety purposes


## Note:

This condition is met provided that there is a cable protective fuse up to 63 A rated current present and the smallest cable cross-section to be protected is at least $1.5 \mathrm{~mm}^{2} \mathrm{Cu}$.

## Arrangement of protective devices for protection in the event of a short-circuit.

Protective devices for protection in the event of a short-circuit must be fitted at the start of every circuit and at every point at which the short-circuit current-carrying capacity is reduced unless a protective device fitted upstream can ensure the necessary protection in the event of a short circuit.

## Specifications, Formulae, Tables

## Overcurrent protection of cables and conductors

## Note:

Causes for the reduction in the short-circuit current-carrying capacity can be: Reduction of the conductor cross-section, other conductor insulation.

Short-circuit protection must not be provided where an interruption of the circuit could prove hazardous.

## Protection of the phase conductors and the neutral conductor

## Protection of the phase conductors

Overcurrent protection devices must be provided in every phase conductor: they must disconnect the conductor in which the overcurrent occurs, but not necessarily also disconnect the other live conductors.

## Note:

Where the disconnection of an individual phase conductor could prove hazardous, as for example, with three-phase motors, suitable precautions must be taken. Motor-protective circuit-breakers and circuit-breakers disconnect in three poles as standard.

## Protection of the neutral conductor:

1. In installations with directly earthed neutral point (TN or TT systems)
Where the cross-section of the neutral conductor is less than that of the phase conductors, an overcurrent monitoring device appropriate to its cross-section is to be provided in the neutral conductor; this overcurrent monitoring device must result in the disconnection of the phase conductors but not necessarily that of the neutral conductor.
An overcurrent monitoring device is not necessary where:

- the neutral conductor is protected in the event of a short circuit by the protective device for the phase conductors
- the largest current which can flow through the neutral conductor is, in normal operation, considerably less than the current-carrying capacity of this conductor.


## Note:

This second condition is met provided that the power transferred is divided as evenly as possible among the phase conductors, for example where the total power consumption of the load connected between phase and neutral conductors, lamps and sockets is much less than the total power transferred via the circuit. The cross-section of the neutral conductor must not be less than the values in the table on the next page.
2. In installations without a directly earthed neutral point (IT system)
Where it is necessary for the neutral conductor to be included, an overcurrent monitoring device must be provided in the neutral conductor of each circuit, to cause disconnection of all live conductors in the relevant circuit (including the neutral conductor).
The overcurrent monitoring device may however be omitted where the neutral conductor in question is protected against short circuit by an upstream protective device, such as in the incoming section of the installation.

## Disconnection of the neutral conductor

 Where disconnection of the neutral conductor is specified, the protective device used must be designed in such a way that the neutral conductor cannot under any circumstances be disconnected before the phase conductors and reconnected again after them. 4-pole NZM circuit-breakers always meet these conditions.
(continued)

| Type of installation | A1 |  |  |  | B1 |  |  |  | B2 |  |  |  | C |  |  |  | E |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of cores | 2 |  | 3 |  | 2 |  | 3 |  | 2 |  | 3 |  | 2 |  | 3 |  | 2 |  | 3 |  |
| Cross sectionCu conductor in $\mathrm{mm}^{2}$ | $I_{z}$ | $I_{\text {n }}$ | $I_{z}$ | $I_{n}$ | $I_{z}$ | $I_{\text {n }}$ | $I_{z}$ | $I_{\text {n }}$ | $I_{z}$ | $I_{\text {n }}$ |
| 1.5 | 16.5 | 16 | 14 | 13 | 18.5 | 16 | 16.5 | 16 | 16.5 | 16 | 15 | 13 | 21 | 20 | 18.5 | 16 | 21 | 20 | 19.5 | 16 |
| 2.5 | 21 | 20 | 19 | 16 | 25 | 25 | 22 | 20 | 22 | 20 | 20 | 20 | 28 | 25 | 25 | 25 | 29 | 25 | 27 | 25 |
| 4 | 28 | 25 | 25 | 25 | 34 | 32 | 30 | 25 | 30 | 25 | 28 | 25 | 37 | 35 | 35 | 35 | 39 | 35 | 36 | 35 |
| 6 | 36 | 35 | 33 | 32 | 43 | 40 | 38 | 35 | 39 | 35 | 35 | 35 | 49 | 40 | 43 | 40 | 51 | 50 | 46 | 40 |
| 10 | 49 | 40 | 45 | 40 | 60 | 50 | 53 | 50 | 53 | 50 | 50 | 50 | 67 | 63 | 63 | 63 | 70 | 63 | 64 | 63 |
| 16 | 65 | 63 | 59 | 50 | 81 | 80 | 72 | 63 | 72 | 63 | 65 | 63 | 90 | 80 | 81 | 80 | 94 | 80 | 85 | 80 |
| 25 | 85 | 80 | 77 | 63 | 107 | 100 | 94 | 80 | 95 | 80 | 82 | 80 | 119 | 100 | 102 | 100 | 125 | 125 | 107 | 100 |
| 35 | 105 | 100 | 94 | 80 | 133 | 125 | 118 | 100 | 117 | 100 | 101 | 100 | 146 | 125 | 126 | 125 | 154 | 125 | 134 | 125 |
| 50 | 126 | 125 | 114 | 100 | 160 | 160 | 142 | 125 | - | - | - | - | - | - | - | - | - | - | - | - |
| 70 | 160 | 160 | 144 | 125 | 204 | 200 | 181 | 160 | - | - | - | - | - | - | - | - | - | - | - | - |
| 95 | 193 | 160 | 174 | 160 | 246 | 200 | 219 | 200 | - | - | - | - | - | - | - | - | - | - | - | - |
| 120 | 223 | 200 | 199 | 160 | 285 | 250 | 253 | 250 | - | - | - | - | - | - | - | - | - | - | - | - |

## Specifications, Formulae, Tables

Overcurrent protection of cables and conductors
Minimum cross section for protective conductors to DIN VDE 0100-510 (1987-06, t), DIN VDE 0100-540 (1991-11)

|  | Protective conductor or PEN conductor ${ }^{1)}$ |  | Protective conductor ${ }^{3)}$ laid seperately |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Phase conductor | Insulated power cables | 0.6/1-kV cable with 4 conductors | Prote |  | Unprotected ${ }^{2)}$ |
| $\mathrm{mm}^{2}$ | $\mathrm{mm}^{2}$ | $\mathrm{mm}^{2}$ | $\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{Cu} \end{aligned}$ | Al | $\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{Cu} \end{aligned}$ |
| to 0.5 | 0.5 | - | 2.5 | 4 | 4 |
| 0.75 | 0.75 | - | 2.5 | 4 | 4 |
| 1 | 1 | - | 2.5 | 4 | 4 |
| 1.5 | 1.5 | 1.5 | 2.5 | 4 | 4 |
| 2.5 | 2.5 | 2.5 | 2.5 | 4 | 4 |
| 4 | 4 | 4 | 4 | 4 | 4 |
| 6 | 6 | 6 | 6 | 6 | 6 |
| 10 | 10 | 10 | 10 | 10 | 10 |
| 16 | 16 | 16 | 16 | 16 | 16 |
| 25 | 16 | 16 | 16 | 16 | 16 |
| 35 | 16 | 16 | 16 | 16 | 16 |
| 50 | 25 | 25 | 25 | 25 | 25 |
| 70 | 35 | 35 | 35 | 35 | 35 |
| 95 | 50 | 50 | 50 | 50 | 50 |
| 120 | 70 | 70 | 70 | 70 | 70 |
| 150 | 70 | 70 | 70 | 70 | 70 |
| 185 | 95 | 95 | 95 | 95 | 95 |
| 240 | - | 120 | 120 | 120 | 120 |
| 300 | - | 150 | 150 | 150 | 150 |
| 400 | - | 185 | 185 | 185 | 185 |

[^7]
## Specifications, Formulae, Tables

Overcurrent protection of cables and conductors

## Conversion factors

When the ambient temperature is not $30^{\circ} \mathrm{C}$; to be used for the current-carrying capacity of wiring or cables in air to VDE 0298 Part 4

| Insulation material*) | NR/SR | PVC | EPR |
| :---: | :---: | :---: | :---: |
| Permissible operational temperature | $60^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| Ambient temperature ${ }^{\circ} \mathrm{C}$ | Conversion factors |  |  |
| 10 | 1.29 | 1.22 | 1.18 |
| 15 | 1.22 | 1.17 | 1.14 |
| 20 | 1.15 | 1.12 | 1.10 |
| 25 | 1.08 | 1.06 | 1.05 |
| 30 | 1.00 | 1.00 | 1.00 |
| 35 | 0.91 | 0.94 | 0.95 |
| 40 | 0.82 | 0.87 | 0.89 |
| 45 | 0.71 | 0.79 | 0.84 |
| 50 | 0.58 | 0.71 | 0.77 |
| 55 | 0.41 | 0.61 | 0.71 |
| 60 | - | 0.50 | 0.63 |
| 65 | - | - | 0.55 |
| 70 | - | - | 0.45 |

*) Higher ambient temperatures in accordance with information given by the manufacturer

## Specifications, Formulae, Tables

Overcurrent protection of cables and conductors

## Converstion factors to VDE 0298 part 4

Grouping of several circuits

|  | Arrangement | Number of circuits |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 6 | 9 | 12 | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | 20 |
| 1 | Embedded or enclosed | 1.00 | 0.80 | 0.70 | $\begin{aligned} & 0.70 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.57 \end{aligned}$ | 0.50 | 0.45 | $\begin{aligned} & 0.40 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 0.38 \end{aligned}$ |
| 2 | Fixed to walls or floors | 1.00 | 0.85 | $\begin{aligned} & 0.80 \\ & 0.79 \end{aligned}$ | 0.75 | $\begin{aligned} & 0.70 \\ & 0.72 \end{aligned}$ | 0.70 | - | - | - |
| 3 | Fixed to ceilings | 0.95 | $\begin{aligned} & 0.80 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.61 \end{aligned}$ | - | - | - |
| 4 | Fixed to cable trays arranged horizontally or vertically | 1.00 | $\begin{aligned} & 0.97 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.70 \end{aligned}$ | - | - | - |
| 5 | Fixed to cable trays or consoles | 1.00 | $\begin{aligned} & 0.84 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.80 \end{aligned}$ | - | - | - |

## Specifications, Formulae, Tables

Electrically critical equipment of machines

## Extract from IEC/EN 60204-1: (VDE 0113 part 1)

This world wide binding standard is used for the electrical equipment of machines, provided that for the type of machine to be equipped there is no product standard (Type C).
Safety requirements regarding the protection of personnel, machines and material according to the European Machinery Directive are stressed under the heading "Safety of machines". The degree of possible danger is to estimated by risk assessment (EN 1050). The Standard also includes requirements for equipment, engineering and construction, as well as tests to ensure faultless function and the effectiveness of protective measures.
The following paragraphs are an extract from the Standard.

## Mains isolating device (main switches)

Every machine must be equipped with a manually-operated main switch, henceforth referred to as a mains isolating device. It must be possible to isolate the entire electrical equipment of the machine from the mains using the mains isolating device. The breaking capacity
must be sufficient to simultaneously disconnect the stalled current of the largest motor in the machine and the total current drawn by all the other loads in normal operation.
Its Off position must be lockable and must not be indicated until the specified clearances and creepage distances between all contacts have been achieved. It must have only one On and one Off position with associated stops. Star-delta, reversing and multi-speed switches are not permissible for use as mains isolating devices. The tripped position of circuit-breakers is not regarded as a switch position, therefore there is no restriction on their use as mains isolating devices.
Where there are several incomers, each one must have a mains isolating device. Mutual interlocking must be provided where a hazard may result from only one mains isolating device being switched off. Only circuit-breakers may be used as remotely-operated switches. They must be provided with an additional handle and be lockable in the Off position.

## Protection against electric shock

The following measures must be taken to protect personnel against electric shock:

## Protection against direct contact

This is understood as meaning protection by means of an enclosure which can only be opened by qualified personnel using a key or special tool. Such personnel is not obliged to disable the mains isolating device before opening the enclosure, Live parts must be protected against direct contact in accordance with IEC 50274 or VDE 0660 part 514. Where the mains isolating device is interlocked with the door, the restrictions mentioned in the previous paragraph cease to apply because the door can only be opened when the mains isolating device is switched off. It is permissible for an interlock to be removable by an electrician using a tool, e.g. in order to search for a fault. Where an
interlock has been removed, it must still be possible to switch off the mains isolating device. Where it is possible for an enclosure to be opened without using a key and without disconnection of the mains isolating device, all live parts must at the very least comply with IP 2 X or IP XXB degree of protection in accordance with IEC/EN 60529.

## Protection against indirect contact

This involves prevention of a dangerous touch voltage resulting from faulty insulation. To meet this requirement, protective measures in accordance with IEC 60364 or VDE 0100 must be used. An additional measure is the use of protective insulation (protection class II) to IEC/EN 60439-1 or VDE 0660 Part 500.

# Specifications, Formulae, Tables <br> Electrically critical equipment of machines 

## Protection of equipment

## Protection in the event of power failure

When the power returns following a failure in the supply, machines or parts of machines must not start automatically where this would result in a dangerous situation or damage to property. With contactor controls this requirement can easily be met via self-maintaining circuits.
For circuits with two-wire control, an additional contactor relay with three-wire control in the supply to the control circuit can carry out this function. Mains isolating devices and motor-protective circuit-breakers with undervoltage releases also reliably prevent automatic restarting on return of voltage.

## Overcurrent protection

No overcurrent protective device is normally required for the mains supply cable. Overcurrent protection is provided by the protective device at the head of the incoming supply. All other circuits must be protected by means of fuses or circuit-breakers.
The stipulation for fuses is that replacement must be freely obtainable in the country in which the fuses are used. This difficulty can be avoided by using circuit-breakers, with the added benefits of disconnection in all poles, rapid operational readiness and prevention of single-phasing.

## Overload protection of motors

Continously operating motors above 0.5 kW must be protected against overload. Overload protection is recommended for all other motors. Motors which are frequently starting and braking are difficult to protect and often require a special protective device. Built-in thermal sensors are particularly suitable for motors with restricted cooling. In addition, the fitting of overload relays is always recommended, particularly as protection by stalled rotor.

## Specifications, Formulae, Tables

## Electrically critical equipment of machines

## Control functions in the event of a fault

A fault in the electrical equipment must not result in a dangerous situation or in damage. Suitable measures must be taken to prevent danger from arising. The expense of using appropriate measures can be extremely high if applied generally. To permit a better assessment of the magnitude of the risk in conjunction with the respective application, the Standard EN 954-1 has been published:
"Safety-related parts of control systems Part 1: General rules for design".
The use of risk assessment to EN 954-1 is dealt with in the Moeller manual "Safety Specifications for Machines and Plant" (Order No. TB 0-009).

## Emergency-Stop device

Every machine which could potentially cause danger must be equipped with an
Emergency-Stop device which, in a main circuit may be an Emergency-Stop switch, and in a control circuit an Emergency-Stop control circuit device.
Actuation of the Emergency-Stop device must result in all current loads which could directly result in danger, being disconnected by de-energization via another device or circuit, i.e. electromechanical devices such as contactors, contactor relays or the undervoltage release of the mains isolating device.
For direct manual operation, Emergency-Stop control circuit devices must have a mushroom-head push-button and positively opening contacts. Once the Emergency-Stop control circuit device has been actuated, it must only be possible to restart the machine after local resetting. Resetting alone must not allow restarting.

Furthermore, the following apply for both Emergency-Stop switch and Emergency control circuit device:

- The handle must be red with a yellow background
- Emergency-Stop devices must be quickly and easily accessible in the event of danger
- The Emergency-Stop function must take precedence over all other functions and operations
- It must be possible to determine functional capability by means of tests, especially in severe environmental conditions
- Where there is separation into several Emergency-Stop areas, it must be clearly discernible to which area an Emergency-Stop device applies


## Emergency operations

The term Emergency-Stop is short and concise, and should continue to be used for general usage.
It is not clear however from the term
Emergency-Stop which functions are carried out with this. In order to be able to give a more precise definition here, IEC/EN 60204-1 describes under the generic term "Emergency operations" two specific functions:

1. Emergency-Stop

This involves the possibility of stopping dangerous motions as quickly as possible.
2. Emergency-Off

Where there is a risk of an electric shock by direct contact, e.g. with live parts in electrical operating areas, then an Emergency-Off device shall be provided.

## Specifications, Formulae, Tables <br> Electrically critical equipment of machines

## Colours of push-buttons and their meanings

To IEC/EN 60073, VDE 0199, IEC/EN 60204-1
(VDE 0113 Part 1)

| Colour | Meaning | Typical application |
| :---: | :---: | :---: |
| RED | Emergency | - Emergency-Stop <br> - Fire fighting |
| YELLOW | Abnormal condition | Intervention, to suppress abnormal conditions or to avoid unwanted changes |
| GREEN | Safe condition | Start from safe conditon |
| BLUE | Enforced action | Resetting function |
| WHITE | No specific meaning assigned | - Start/ON (preferred) <br> - Stop/OFF |
| GREY |  | - Start/ON <br> - Stop/OFF |
| BLACK |  | - Start/ON <br> - Stop/Off (preferred) |

## Specifications, Formulae, Tables

Electrically critical equipment of machines

## Colours of indicator lights and their meanings

To IEC/EN 60073, VDE 0199, IEC/EN 60204-1
(VDE 0113 Part 1)

| Colour | Meaning | Explanation | Typical application |
| :---: | :---: | :---: | :---: |
| RED | Emergency | Warning of potential danger or a situation which requires immediate action | - Failure of pressure in the lubricating system <br> - Temperature outside specified (safe) limits <br> - Essential equipment stopped by action of a protective device |
| YELLOW | Abnormal condition | Impending critical condition | - Temperature (or pressure) different from normal level <br> - Overload, which is permissible for a limited time <br> - Resetting |
| GREEN | Safe condition | Indication of safe operating conditions or authorization to proceed, clear way | - Cooling liquid circulating <br> - Automatic tank control switched on <br> - Machine ready to be started |
| BLUE | Enforced action | Operator action essential | - Remove obstacle <br> - Switch over to Advance |
| WHITE | No specific meaning assigned (neutral) | Every meaning: may be used whenever doubt exists about the applicability of the colours RED, YELLOW or GREEN; or as confirmation | - Motor running <br> - Indication of operating modes |

## Colours of illuminated push-buttons and their meanings

Both tables are valid for illuminated push-buttons,
Table 1 relating to the function of the actuators.

## Specifications, Formulae, Tables <br> Measures for risk reduction

## Risk reduction in the case of a fault

A fault in the electrical equipment must not result in a dangerous situation or in damage. Suitable measures must be taken to prevent danger from arising.

The IEC/EN 60204-1 specifies a range of measures which can be taken to reduce danger in the event of a fault.

## Use of proven circuit engineering and components


(1) All switching functions on the non-earthed side
(2) Use of break devices with positively opening contacts (not to be confused with interlocked opposing contacts)
(3) Shut-down by de-excitation (fail-safe in the event of wire breakage)
(4) Circuit engineering measures which make undesirable operational states in the event of a fault unlikely (in this instance, simultaneous interruption via contactor and position switch)
(5) Switching of all live conductors to the device to be controlled
(6) Chassis earth connection of the control circuit for operational purposes (not used as a protective measure)

## Redundancy

This means the existence of an additional device or system which takes over the function in the event of a fault.

## Specifications, Formulae, Tables <br> Measures for risk avoidance

## Diversity

The construction of control circuits according to a range of function principles or using various types of device.

(1) Functional diversity by combination of normally open and normally break contacts
(2) Diversity of devices due to use of various types of device (here, various types of contactor relay)
(3) Safety barrier open
(4) Feedback circuit
(5) Safety barrier closed

## Function tests

The correct functioning of the equipment can be tested either manually or automatically.

## Specifications, Formulae, Tables

Degrees of protection for electrical equipment
Degrees of protection for electrical equipment by enclosures, covers and similar to IEC/EN 60529 (VDE 0470 part 1)

The designation to indicate degrees of enclosure protection consists of the characteristic letters IP (Ingress Protection) followed by two characteristic numerals. The first numeral indicates the degree
of protection of persons against contact with live parts and of equipment against ingress of solid foreign bodies and dust, the second numeral the degree of protection against the ingress of water.

## Protection against contact and foreign bodies

| First numeral | Degree of protection |  |
| :---: | :---: | :---: |
|  | Description | Explanation |
| 0 | Not protected | No special protection of persons against accidental contact with live or moving parts. <br> No protection of the equipment against ingress of solid foreign bodies. |
| 1 | Protection against solid objects $\geqq 50 \mathrm{~mm}$ | Protection against contact with live parts with back of hand. The access probe, sphere 50 mm diameter, must have enough distance from dangerous parts. <br> The probe, sphere 50 mm diameter, must not fully penetrate. |
| 2 | Protection against solid objects $\geqq 12,5 \mathrm{~mm}$ | Protection against contact with live parts with a finger. The articulated test finger, 12 mm diameter and 80 mm length, must have suffient distance from dangerous parts. The probe, sphere $12,5 \mathrm{~mm}$ diameter, must not fully penetrate. |

## Specifications, Formulae, Tables

Degrees of protection for electrical equipment

## Protection against contact and foreign bodies

| First numeral | Degree of protection |  |
| :---: | :---: | :---: |
|  | Description | Explanation |
| 3 | Protection against solid objects $\geqq 2.5 \mathrm{~mm}$ | Protection against contact with live parts with a tool. The entry probe, $2,5 \mathrm{~mm}$ diameter, must not penetrate. The probe, $2,5 \mathrm{~mm}$ diameter, must not penetrate. |
| 4 | Protection against solid objects $\geqq 1 \mathrm{~mm}$ | Protection against contact with live parts with a wire. The entry probe, $1,0 \mathrm{~mm}$ diameter, must not fully penetrate. The probe, $1,0 \mathrm{~mm}$ diameter, must not penetrate. |
| 5 | Protection against accumulation of dust | Protection against contact with live parts with a wire. The entry probe, $1,0 \mathrm{~mm}$ diameter, must not penetrate. The ingress of dust is not totally prevented, but dust does not enter in sufficient quantity to interfere with satisfactory operation of the equipment or with safety. |
| 6 | Protection against the ingress of dust | Protection against contact with live parts with a wire. The entry probe, $1,0 \mathrm{~mm}$ diameter, must not penetrate. No entry of dust. |
|  | Dust-tight |  |

Example for stating degree of protection:

Characteristic letter
First numeral
Second numeral


## Specifications, Formulae, Tables

## Degrees of protection for electrical equipment

## Protection against water

| Second numeral | Degree of protection |  |
| :---: | :---: | :---: |
|  | Description | Explanation |
| 0 | Not protected | No special protection |
| 1 | Protected against vertically dripping water | Dripping water (vertically falling drops) shall have no harmful effect. |
| 2 | Protected against dripping water, when enclosure tilted up to $15^{\circ}$ | Dripping water shall have no harmful effect when the enclosure is tilted at any angle up to $15^{\circ}$ from the vertical. |
| 3 | Protected against sprayed water | Water falling as a spray at any angle up to $60^{\circ}$ from the vertical shall have no harmful effect. |
| 4 | Protected against splashing water | Water splashed against the enclosure from any direction shall have no harmful effect. |
| 5 | Protected against water jets | Water projected by a nozzle against the equipment from any direction shall have no harmful effect. |
| 6 | Protected against powerful water jets | Water projected in powerful jets against the enclosure from any direction shall have no harmful effect. |
| 7 | Protected against the effects of occasional submersion | Ingress of water in harmful quantities shall not be possible when the enclosure is immersed in water under defined conditions of pressure and time. |

## Specifications, Formulae, Tables

Degrees of protection for electrical equipment

| Second <br> numeral | Degree of protection |  |
| :--- | :--- | :--- |
|  | Description | Explanation |
| 8 | Protected against <br> the effects of <br> submersion | Ingress of water in harmful quantities must not be possible when <br> the equipment is continuously submerged in water under <br> conditions which are subject to agreement between <br> manufacturer and user. <br> These conditions must be more stringent than those for <br> characteristic numeral 7. |
| $9 \mathrm{KK}^{*}$ | Protected during <br> cleaning using <br> high-pressure <br> ssteam jets | Water which is directed against the enclosure under extremely <br> high pressure from any direction must not have any harmful <br> effects. <br> Water pressure of 100 bar <br> Water temperature of $80{ }^{\circ} \mathrm{C}$ |

* This characteristic numeral originates from DIN 40050-9.


## Specifications, Formulae, Tables

Degrees of protection for electrical equipment

## Degree of protection for electrical equipment for USA and Canada to IEC/EN 60529 (VDE 0470 part 1)

The IP ratings quoted in the table represent a rough comparison only. A precise comparison is
not possible since the degree of protection tests and the evaluation criteria differ.

| Designation of the enclosure and the degree of protection |  | Designation of the enclosure and the | Comparable IP degree of |
| :---: | :---: | :---: | :---: |
| to NEC NFPA 70 <br> (National Electrical <br> Code) to UL 50 to <br> NEMA 250-1997 | to NEMA ICS 6-1993 (R2001) ${ }^{1)}$ <br> to EEMAC E 14-2-1993²) | $\begin{aligned} & \text { to CSA-C22.1, } \\ & \text { CSA-C22.2 NO. } \\ & 0.1-M 1985 \\ & \text { (R1999)3) } \end{aligned}$ | IEC/EN 60529 <br> DIN 40050 |
| Enclosure type 1 | Enclosure type 1 General purpose | Enclosure 1 Enclosure for general purpose | IP20 |
| Enclosure type 2 Drip-tight | Enclosure type 2 Drip-proof | Enclosure 2 <br> Drip-proof enclosure | IP22 |
| Enclosure type 3 Dust-tight, rain-tight | Enclosure type 3 Dust-tight, rain-tight, resistant to sleet and ice | Enclosure 3 <br> Weather-proof enclosure | IP54 |
| Enclosure type 3 R Rain-proof | Enclosure type 3 R Rain-proof, resistant to sleet and ice |  |  |
| Enclosure type 3 S Dust-tight, rain-tight | Enclosure type 3 S Dust-tight, rain-tight, resistant to sleet and ice |  |  |
| Enclosure type 4 Rain-tight, water-tight | Enclosure type 4 Dust-tight, water-tight | Enclosure 4 Water-tight enclosure | IP65 |

Specifications, Formulae, Tables
Degrees of protection for electrical equipment

| Designation of the enclosure and the degree of protection |  | Designation of the enclosure and the | Comparable IP degree of |
| :---: | :---: | :---: | :---: |
| to NEC NFPA 70 <br> (National Electrical Code) to UL 50 to NEMA 250-1997 | to NEMA ICS 6-1993 (R2001) ${ }^{1)}$ <br> to EEMAC E 14-2-19932) | $\begin{aligned} & \text { to CSA-C22.1, } \\ & \text { CSA-C22.2 NO. } \\ & \text { 0.1-M1985 } \\ & \text { (R1999)3) } \end{aligned}$ | IEC/EN 60529 <br> DIN 40050 |
| Enclosure type 4 X <br> Rain-tight, <br> water-tight, corrosion-resistant | Enclosure type 4 X Dust-tight, water-tight, corrosion-resistant |  | IP65 |
| Enclosure type 6 Rain-tight | Enclosure type 6 Dust-tight, water-tight, immersible, resistant to sleet and ice |  |  |
| Enclosure type 6 P Rain-tight, corrosion-resistant |  |  |  |
| Enclosure type 11 Drip-tight, corrosion-resistant | Enclosure type 11 Drip-tight, corrosion-resistant, oil-immersed |  |  |
| Enclosure type 12 Dust-tight, drip-tight | Enclosure type 12 <br> For use in industry, drip-tight, dust-tight | Enclosure 5 <br> Dust-tight enclosure | IP54 |
| Enclosure type 12 K (As for type 12) |  |  |  |
| Enclosure type 13 Dust-tight, drip-tight | Enclosure type 13 Dust-tight, oil-tight |  |  |

1) NEMA = National Electrical Manufacturers Association
2) EEMAC = Electrical and Electronic Manufacturers Association of Canada
3) $\operatorname{CSA}=$ Canadian Electrical Code, Part I (19th Edition), Safety Standard for Electrical Installations

## Specifications, Formulae, Tables

 Degrees of protection for electrical equipment
## Specifications, Formulae, Tables

Degrees of protection for electrical equipment

| Type of current | Utilisation catorgory | Typical examples of application | Normal conditions of use |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $I$ = switch-on current, $I_{\mathrm{C}}=$ switch-off current, <br> $I_{\mathrm{e}}=$ rated operational current, $U=$ voltage, <br> $U_{\mathrm{e}}=$ rated operational voltage <br> $\mathrm{U}_{\mathrm{r}}=$ recovery voltage, <br> $t_{0.95}=$ time in ms to reach $95 \%$ of the steady state curent. $P=U_{\mathrm{e}} \times I_{\mathrm{e}}=\text { rated power in Watts }$ | Make $\frac{I}{I_{\mathrm{e}}}$ | $\frac{U}{U_{e}}$ |
| AC | AC-12 | Control of resistive and solid state loads as in optocoupler input circuits | 1 | 1 |
|  | AC-13 | Control of solid state loads with transformer isolation | 2 | 1 |
|  | AC-14 | Control of small electromagnetic loads (max. 72 VA) | 6 | 1 |
|  | AC-15 | Control of electromagnetic loads (above 72 VA ) | 10 | 1 |
|  |  |  | $\frac{I}{I_{\mathrm{e}}}$ | $\frac{U}{U_{e}}$ |
| DC | DC-12 | Control of resistive and solid state loads as in optocoupler input circuits | 1 | 1 |
|  | DC-13 | Control of electromagnets | 1 | 1 |
|  | DC-14 | Control of electromagnetic loads with economy resistors in the circuit | 10 | 1 |

to IEC 60947-5-1, EN 60947-5-1 (VDE 0600 part 200)

## Specifications, Formulae, Tables

Degrees of protection for electrical equipment


1) The value " $6 \times P$ " results from an empirical relationship that represents most $D C$ magnetic loads to an upper limit of $P=50 \mathrm{~W}$, i.e. $6[\mathrm{~ms}] /[\mathrm{W}]=300[\mathrm{~ms}]$. Loads having a power consumption greater than 50 W are assumed to consist of smaller loads in parallel. Therefore, 300 ms is to be an upper limit, irrespective of the power consumption.

## Specifications, Formulae, Tables

North American classification for control switches

| Classification | Designation <br> At maximum rated voltage of | Thermal <br> uninterrupted <br> current |  |  |
| :--- | :--- | :--- | :--- | :--- |
| AC | 600 V | 300 V | 150 V | A |
| Heavy Duty | A600 | A300 | A150 | 10 |
|  | A600 | A300 | - | 10 |
|  | A600 | - | - | 10 |
|  | A600 | - | - | 10 |
| Standard Duty | B600 | B300 | B150 | 5 |
|  | B600 | B300 | - | 5 |
|  | B600 | - | - | 5 |
|  | B600 | - | - | 5 |
|  | C600 | C300 | C150 | 2.5 |
|  | C600 | C300 | - | 2.5 |
|  | C600 | - | - | 2.5 |
|  | C600 | - | - | 2.5 |
|  | - | D300 | D150 | 1 |
|  | - | D300 | - | 1 |

9

to UL 508, CSA C 22.2-14 and NEMA ICS 5

## Specifications, Formulae, Tables

North American classification for control switches

| Switching capacity |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage V | Make A | Break A | Make VA | Break VA |
| $\begin{aligned} & 120 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$ | $\begin{aligned} & 60 \\ & 30 \\ & 15 \\ & 12 \end{aligned}$ | $\begin{aligned} & 6 \\ & 3 \\ & 1.5 \\ & 1.2 \end{aligned}$ | $\begin{aligned} & 7200 \\ & 7200 \\ & 7200 \\ & 7200 \end{aligned}$ | $\begin{aligned} & 720 \\ & 720 \\ & 720 \\ & 720 \end{aligned}$ |
| $\begin{aligned} & \hline 120 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$ | $\begin{aligned} & 30 \\ & 15 \\ & 7.5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 3 \\ & 1.5 \\ & 0.75 \\ & 0.6 \end{aligned}$ | $\begin{aligned} & 3600 \\ & 3600 \\ & 3600 \\ & 3600 \end{aligned}$ | $\begin{aligned} & \hline 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$ |
| $\begin{aligned} & 120 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$ | $\begin{aligned} & \hline 15 \\ & 7.5 \\ & 3.75 \\ & 3 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 0.75 \\ & 0.375 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 1800 \\ & 1800 \\ & 1800 \\ & 1800 \end{aligned}$ | $\begin{aligned} & 180 \\ & 180 \\ & 180 \\ & 180 \end{aligned}$ |
| $\begin{aligned} & 120 \\ & 240 \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & \hline 432 \\ & 432 \end{aligned}$ | $\begin{aligned} & 72 \\ & 72 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 250 \\ & 301 \text { to } 600 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 1.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 1.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 275 \\ & 275 \\ & 275 \end{aligned}$ | $\begin{aligned} & \hline 275 \\ & 275 \\ & 275 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 250 \\ & 301 \text { to } 600 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 0.55 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 0.55 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 138 \\ & 138 \\ & 138 \end{aligned}$ | $\begin{aligned} & 138 \\ & 138 \\ & 138 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 250 \\ & 301 \text { to } 600 \end{aligned}$ | $\begin{aligned} & \hline 0.55 \\ & 0.27 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & \hline 0.55 \\ & 0.27 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & \hline 69 \\ & 69 \\ & 69 \end{aligned}$ | $\begin{aligned} & \hline 69 \\ & 69 \\ & 69 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 250 \\ & 301 \text { to } 600 \end{aligned}$ | $\begin{aligned} & \hline 0.22 \\ & 0.11 \\ & - \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.11 \\ & - \end{aligned}$ | $\begin{aligned} & 28 \\ & 28 \\ & - \end{aligned}$ | $\begin{aligned} & 28 \\ & 28 \\ & - \end{aligned}$ |

## Specifications, Formulae, Tables

## Utilisation categories for contactors

| Type of current | Utilisation category | Typical examples of application <br> $I=$ switch-on current, <br> $I_{\mathrm{C}}=$ switch-off current, <br> $I_{\mathrm{e}}=$ rated operational current, <br> $U=$ voltage, <br> $U_{\mathrm{e}}=$ rated operational voltage <br> $U_{\mathrm{r}}=$ recovery voltage | Verification of electrical lifespan |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Make |  |  |
|  |  |  | $\frac{I_{\mathrm{e}}}{A}$ | $\frac{I}{I_{\mathrm{e}}}$ | $\frac{U}{U}$ |
| AC | AC-1 | Non-inductive or slightly inductive loads, resistance furnaces | All values | 1 | 1 |
|  | AC-2 | Slip-ring motors: starting, switch-off | All values | 2.5 | 1 |
|  | AC-3 | Squirrel-cage motors: stating, switch-off, switch-off during running ${ }^{4)}$ | $\begin{aligned} & I_{\mathrm{e}} \leqq 17 \\ & I_{\mathrm{e}}>17 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ | $1$ |
|  | AC-4 | Sqirrel-cage motors: starting, plugging, reversing, inching | $\begin{aligned} & I_{\mathrm{e}} \leqq 17 \\ & I_{\mathrm{e}}>17 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
|  | AC-5A | Switching of electric discharge lamp controls |  |  |  |
|  | AC-5B | Switching of incandescent lamps |  |  |  |
|  | AC-6A ${ }^{3}$ | Switching of transformers |  |  |  |
|  | $A C-6 B^{3}$ | Switching of capacitor banks |  |  |  |
|  | AC-7A | Slightly inductive loads in household appliances and similar applications | Data as supplied the manufac |  |  |
|  | AC-7B | Motor load for household appliances |  |  |  |
|  | AC-8A | Switching of hermetically enclosed refrigerant compressor motors with manual reset of overload releases ${ }^{5}$ ) |  |  |  |
|  | AC-8B | Switching of hermetically enclosed refrigerant compressor motors with automatic reset of overload releases ${ }^{5}$ ) |  |  |  |
|  | AC-53a | Switching of squirrel-cage motor with semi-conductor contactors |  |  |  |

## Specifications, Formulae, Tables

Utilisation categories for contactors

| Verification of switching capacity |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Break |  |  | Make |  |  |  | Break |  |  |
| $\cos \varphi$ | $\frac{I_{\text {c }}}{I_{\text {e }}}$ | $\frac{U_{\mathrm{r}}}{U_{\mathrm{e}}}$ | $\cos \varphi$ | $\frac{I_{\mathrm{e}}}{\text { A }}$ | $\frac{I}{I_{\mathrm{e}}}$ | $\frac{U}{U_{e}}$ | $\cos \varphi$ | $\frac{I_{\text {c }}}{I_{\text {e }}}$ | $\frac{U_{\mathrm{r}}}{U_{\mathrm{e}}}$ | $\cos \varphi$ |
| 0.95 | 1 | 1 | 0.95 | All values | 1.5 | 1.05 | 0.8 | 1.5 | 1.05 | 0.8 |
| 0.65 | 2.5 | 1 | 0.65 | All values | 4 | 1.05 | 0.65 | 4 | 1.05 | 0.8 |
| 0.65 | 1 | 0.17 | 0.65 | $I_{\mathrm{e}} \leqq 100$ | 8 | 1.05 | 0.45 | 8 | 1.05 | 0.45 |
| 0.35 | 1 | 0.17 | 0.35 | $I_{\text {e }}>100$ | 8 | 1.05 | 0.35 | 8 | 1.05 | 0.35 |
| $\begin{aligned} & 0.65 \\ & 0.35 \end{aligned}$ | 6 | 1 | 0.65 | $I_{\mathrm{e}} \leqq 100$ | 10 | 1.05 | 0.45 | 10 | 1.05 | 0.45 |
|  | 6 | 1 | 0.35 | $I_{\text {e }}>100$ | 10 | 1.05 | 0.35 | 10 | 1.05 | 0.35 |
|  |  |  |  |  | 3.0 | 1.05 | 0.45 | 3.0 | 1.05 | 0.45 |
|  |  |  |  |  | $1.52$ | 1.052) |  | $1.52$ | 1.052) |  |
|  |  |  |  |  | 1.5 | 1.05 | 0.8 | 1.5 | 1.05 | 0.8 |
|  |  |  |  |  | 8.0 | 1.051) |  | 8.0 | 1.051) |  |
|  |  |  |  |  | 6.0 | 1.051) |  | 6.0 | 1.051) |  |
|  |  |  |  |  | 6.0 | 1.051) |  | 6.0 | 1.051) |  |
|  |  |  |  |  | 8.0 | 1.05 | 0.35 | 8.0 | 1.05 | 0.35 |

## Specifications, Formulae, Tables

 Utilisation categories for contactors| Type of current | Utilization category | Typical examples of application <br> $I=$ switch-on current, <br> $I_{\mathrm{C}}=$ switch-off current, <br> $I_{\mathrm{e}}=$ rated operational current, <br> $U=$ voltage, <br> $U_{\mathrm{e}}=$ rated operational voltage, <br> $U_{\mathrm{r}}=$ recovery voltage | Verification of electrical endurance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Make |  |  |
|  |  |  | $\underline{I_{\text {e }}}$ | $I$ | $U$ |
| DC | DC-1 | Non-inductive or slightly inductive loads, | All values | 1 | 1 |
|  | DC-3 | Shunt motors: starting, plugging, reversing, inching, dynamic braking | All values | 2.5 | 1 |
|  | DC-5 | Series motors: starting, plugging, reversing, inching, dynamic braking | All values | 2.5 | 1 |
|  | DC-6 | Switching of incandescent lamps |  |  |  |

To IEC/EN 60 947-4-1, VDE 0660 Part 102
${ }^{1)} \cos \varphi=0.45$ for $I_{\mathrm{e}} \leqq 100 \mathrm{~A} ; \cos \varphi=0.35$ for $I_{\mathrm{e}}>100 \mathrm{~A}$.
2) Tests must be carried out with an incandescent lamp load connected.
3) Here, the test data are to be derived from the AC-3 or AC-4 test values in accordance with TableVIIb, IEC/EN 60 947-4-1.

## Specifications, Formulae, Tables

 Utilisation categories for contactors
## Verification of switching capacity

|  | Break |  |  | Make |  |  |  | Break |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$ | $\frac{I_{c}}{I_{e}}$ | $\frac{U_{r}}{U_{\text {e }}}$ | $\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$ | $\frac{I_{\mathrm{e}}}{\text { A }}$ | $\frac{I}{I_{e}}$ | $\frac{U}{U_{e}}$ | L/R ms | $\frac{I_{c}}{I_{e}}$ | $\frac{U_{r}}{U_{e}}$ | $L / R$ ms |
| 1 | 1 | 1 | 1 | All values | 1.5 | 1.05 | 1 | 1.5 | 1.05 | 1 |
| 2 | 2.5 | 1 | 2 | All values | 4 | 1.05 | 2.5 | 4 | 1.05 | 2.5 |
| 7.5 | 2.5 | 1 | 7.5 | All values | $\begin{aligned} & 4 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 1.05 \end{aligned}$ | 15 | $\begin{aligned} & 4 \\ & 1.52) \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 1.052 \end{aligned}$ | 15 |
|  |  |  |  |  | 2) | 2) |  |  |  |  |

4) Devices for utilization category AC-3 may be used for occasional inching or plugging during a limited period such as for setting up a machine; during this limited time period, the number of operations must not exceed a total of five per minute or more than ten in a ten minute period.
5) Hermetically enclosed refrigerant compressor motor means a combination of a compressor and a motor both of which are housed in the same enclosure with no external shaft or shaft seals, the motor running in the refrigerant.

## Specifications, Formulae, Tables

Utilisation categories for switch-disconnectors

| Type of <br> current | Utilisation <br> category | Typical examples of application <br> $I=$ switch-on current, <br> $I_{\mathrm{c}}=$ switch-off current, | $I_{\mathrm{e}}=$ rated operational current, <br> $U=$ voltage, <br> $U_{\mathrm{e}}=$ rated operational voltage, <br> $U_{\mathrm{r}}=$ recovery voltage | Verification of <br> electrical <br> endurance |
| :--- | :--- | :--- | :--- | :--- | :--- |

For load-break switches, switch-disconnectors and switch-fuse units to IEC/EN 60947-3 (VDE 0660 part 107)

1) If the switching device has a making and/or breaking capacity, the figures for the current and the power factor (time constants) must be stated by the manufacturer.
2) A: frequent operation, B: occasional operation.

## Specifications, Formulae, Tables

Utilisation categories for switch-disconnectors

|  |  |  |  |  | Verification of switching capacity |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Brea |  |  | Make |  |  |  | Break |  |  |
| $\frac{U}{U_{e}}$ | $\cos \varphi$ | $\frac{I_{c}}{I_{e}}$ | $\frac{U_{\text {r }}}{U_{\text {e }}}$ | $\cos \varphi$ | $\frac{I_{\mathrm{e}}}{\text { A }}$ | $\frac{I}{I_{\mathrm{e}}}$ | $\frac{U}{U_{e}}$ | $\cos \varphi$ | $\frac{I_{\mathrm{c}}}{I_{\mathrm{e}}}$ | $\frac{U_{r}}{U_{\text {e }}}$ | $\cos \varphi$ |
| 1) | 1) | 1) | 1) | 1) | All values | 1) |  | 1) | 1) |  | 1) |
| 1 | 0.95 | 1 | 1 | 0.95 | All values | 1.5 | 1.05 | 0.95 | 1.5 | 1.05 | 0.95 |
| 1 | 0.8 | 1 | 1 | 0.8 | All values | 3 | 1.05 | 0.65 | 3 | 1.05 | 0.65 |
| 1 | 0.65 | 1 | 1 | 0.65 | $\begin{aligned} & I_{\mathrm{e}} \leqq 100 \\ & I_{\mathrm{e}}>100 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.35 \end{aligned}$ |
| $\frac{U}{U_{e}}$ | $\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$ | $\frac{I_{\text {c }}}{I_{\text {e }}}$ | $\frac{U_{\text {r }}}{U_{\text {e }}}$ | $\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$ | $\frac{I_{\text {e }}}{A}$ | $\frac{I}{I_{\mathrm{e}}}$ | $\frac{U}{U_{e}}$ | L/R | $\frac{I_{C}}{I_{e}}$ | $\frac{U_{r}}{U_{e}}$ | $\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$ |
| 1) | 1) | 1) | 1) | 1) | All values | 1) | 1) | 1) | 1) | 1) | 1) |
| 1 | 1 | 1 | 1 | 1 | All values | 1.5 | 1.05 | 1 | 1.5 | 1.05 | 1 |
| 1 | 2 | 1 | 1 | 2 | All values | 4 | 1.05 | 2.5 | 4 | 1.05 | 2.5 |
| 1 | 7.5 | 1 | 1 | 7.5 | All values | 4 | 1.05 | 15 | 4 | 1.05 | 15 |

Notes

## 9

## Specifications, Formulae, Tables Rated operational currents

## Motor operational currents for three-phase motors (standard values for squirrel cage motors)

Minimum fuse size for short-circuit protec-
tion of three-phase motors
The maximum size is determined by the requirements of the switchgear or overload relay. The rated motor currents are for standard 1500 r.p.m. motors with normal inner and outer surface cooling.
D.O.L. starting: Maximum starting current: $6 \times$ rated current Maximum starting time: 5 sec .

Y/ $\Delta$ starting: Maximum starting current: $2 \times$ rated current Maximum starting time: 15 sec . Motor overload relay in phase current: set to $0.58 \times$ rated current.

Rated fuse currents for $\mathrm{Y} / \Delta$ starting also apply to three-phase motors with slip-ring rotors.
For higher rated currents, starting currents and/or longer starting times, larger fuses will be required. This table applies to "slow" or "gL" fuses (VDE 0636).

In the case of low-voltage h.b.c. fuses (NH type) with aM characteristics, fuses are to be selected according to their current rating.

## Moeller Wiring Manual 02/05

Specifications, Formulae, Tables
Rated operational currents

| Motor rating |  |  | 230 V |  |  | 400 V |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Motor operation rated current | Fuse <br> Direct <br> starting | YID | Motor operation rated current | Fuse <br> Direct <br> starting | YID |
| kW | $\cos \varphi$ | $\eta$ [\%] | A | A | A | A | A | A |
| 0.06 | 0.7 | 58 | 0.37 | 2 | - | 0.21 | 2 | - |
| 0.09 | 0.7 | 60 | 0.54 | 2 | - | 0.31 | 2 | - |
| 0.12 | 0.7 | 60 | 0.72 | 4 | 2 | 0.41 | 2 | - |
| 0.18 | 0.7 | 62 | 1.04 | 4 | 2 | 0.6 | 2 | - |
| 0.25 | 0.7 | 62 | 1.4 | 4 | 2 | 0.8 | 4 | 2 |
| 0.37 | 0.72 | 66 | 2 | 6 | 4 | 1.1 | 4 | 2 |
| 0.55 | 0.75 | 69 | 2.7 | 10 | 4 | 1.5 | 4 | 2 |
| 0.75 | 0.79 | 74 | 3.2 | 10 | 4 | 1.9 | 6 | 4 |
| 1.1 | 0.81 | 74 | 4.6 | 10 | 6 | 2.6 | 6 | 4 |
| 1.5 | 0.81 | 74 | 6.3 | 16 | 10 | 3.6 | 6 | 4 |
| 2.2 | 0.81 | 78 | 8.7 | 20 | 10 | 5 | 10 | 6 |
| 3 | 0.82 | 80 | 11.5 | 25 | 16 | 6.6 | 16 | 10 |
| 4 | 0.82 | 83 | 14.8 | 32 | 16 | 8.5 | 20 | 10 |
| 5.5 | 0.82 | 86 | 19.6 | 32 | 25 | 11.3 | 25 | 16 |
| 7.5 | 0.82 | 87 | 26.4 | 50 | 32 | 15.2 | 32 | 16 |
| 11 | 0.84 | 87 | 38 | 80 | 40 | 21.7 | 40 | 25 |
| 15 | 0.84 | 88 | 51 | 100 | 63 | 29.3 | 63 | 32 |
| 18.5 | 0.84 | 88 | 63 | 125 | 80 | 36 | 63 | 40 |
| 22 | 0.84 | 92 | 71 | 125 | 80 | 41 | 80 | 50 |
| 30 | 0.85 | 92 | 96 | 200 | 100 | 55 | 100 | 63 |
| 37 | 0.86 | 92 | 117 | 200 | 125 | 68 | 125 | 80 |
| 45 | 0.86 | 93 | 141 | 250 | 160 | 81 | 160 | 100 |
| 55 | 0.86 | 93 | 173 | 250 | 200 | 99 | 200 | 125 |
| 75 | 0.86 | 94 | 233 | 315 | 250 | 134 | 200 | 160 |
| 90 | 0.86 | 94 | 279 | 400 | 315 | 161 | 250 | 200 |
| 110 | 0.86 | 94 | 342 | 500 | 400 | 196 | 315 | 200 |
| 132 | 0.87 | 95 | 401 | 630 | 500 | 231 | 400 | 250 |
| 160 | 0.87 | 95 | 486 | 630 | 630 | 279 | 400 | 315 |
| 200 | 0.87 | 95 | 607 | 800 | 630 | 349 | 500 | 400 |
| 250 | 0.87 | 95 | - | - | - | 437 | 630 | 500 |
| 315 | 0.87 | 96 | - | - | - | 544 | 800 | 630 |
| 400 | 0.88 | 96 | - | - | - | 683 | 1000 | 800 |
| 450 | 0.88 | 96 | - | - | - | 769 | 1000 | 800 |
| 500 | 0.88 | 97 | - | - | - | - | - | - |
| 560 | 0.88 | 97 | - | - | - | - | - | - |
| 630 | 0.88 | 97 | - | - | - | - | - | - |

## Moeller Wiring Manual 02/05

Specifications, Formulae, Tables
Rated operational currents

| Motor rating |  | 500 V |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Specifications, Formulae, Tables

Rated operational currents

## Motor rated currents for North American three-phase motors ${ }^{1)}$


2) The motor full-load current values given are approximate values. For exact values consult the data stated by the manufacturer or the motor rating plates.
3) For motor full-load currents of 208 V motors $/ 200 \mathrm{~V}$ motors, use the appropriate values for 230 V motors, increased by 10-15 \%.

## Specifications, Formulae, Tables

Conductors

## Wiring and cable entries with grommets

Cable entry into closed devices is considerably simplified and improved by using cable grommets.

## Cable grommets

For direct and quick cable entry into an enclosure and as a plug.

| Membrane- <br> grommit <br> metric | Conductor <br> entry | Hole <br> diameter | Cable <br> external <br> diameter | Using cable NYM/NYY, <br> 4 core | Cable <br> grommit <br> part no |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | mm |  | $\mathbf{m m}$ | $\mathbf{m m}^{2}$ |  |

## Specifications, Formulae, Tables

## Conductors

## Wiring and cable entries with cable glands

Cable glands, metric to EN 50262
with $9,10,12,14$ or 15 mm long thread.

| Cable glands | Conductor entry | Hole diameter mm | Cable <br> external <br> diameter <br> mm | Using cable NYM/NYY, 4 core $\mathrm{mm}^{2}$ | Cable gland part no |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - with locknut and integrated strain relief <br> - IP68 up to 5 bar, polyamid, halogen free | M12 | 12.5 | 3-7 | H03VV-F3 $\times 0.75$ <br> NYM $1 \times 2.5$ | V-M12 |
|  | M16 | 16.5 | 4.5-10 | $\begin{aligned} & \text { H05VV-F3 } \times 1.5 \\ & \text { NYM } 1 \times 16 / 3 \times 1.5 \end{aligned}$ | V-M16 |
|  | M20 | 20.5 | 6-13 | $\begin{aligned} & \text { H05VV-F4 } \times 2.5 / 3 \times 4 \\ & \text { NYM } 5 \times 1.5 / 5 \times 2.5 \end{aligned}$ | V-M20 |
|  | M25 | 25.5 | 9-17 | $\begin{aligned} & \text { H05VV-F5 } \times 2.5 / 5 \times 4 \\ & \text { NYM } 5 \times 2.5 / 5 \times 6 \end{aligned}$ | V-M25 |
|  | M32 | 32.5 | 13-21 | NYM $5 \times 10$ | V-M32 |
|  | M32 | 32.5 | 18-25 | NYM $5 \times 16$ | V-M32G1) |
|  | M40 | 40.5 | 16-28 | NYM $5 \times 16$ | V-M40 |
|  | M50 | 50.5 | 21-35 | NYM $4 \times 35 / 5 \times 25$ | V-M50 |
|  | M63 | 63.5 | 34-48 | NYM $4 \times 35$ | V-M63 |

1) Does not correspond to EN 50262 .

## Specifications, Formulae, Tables

## Conductors

## External diameter of conductors and cables

| Number of conductors | Approximate external diameter (average of various makes) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | NYM | NYY | H05 | H07 | NYCY |
|  |  |  | RR-F | RN-F | NYCWY |
| Cross-section $\mathrm{mm}^{2}$ | mm | mm | mm | mm | mm |
|  | max. |  | max. | max. |  |
| $2 \times 1.5$ | 10 | 11 | 9 | 10 | 12 |
| $2 \times 2.5$ | 11 | 13 | 13 | 11 | 14 |
| $3 \times 1.5$ | 10 | 12 | 10 | 10 | 13 |
| $3 \times 2.5$ | 11 | 13 | 11 | 12 | 14 |
| $3 \times 4$ | 13 | 17 | - | 14 | 15 |
| $3 \times 6$ | 15 | 18 | - | 16 | 16 |
| $3 \times 10$ | 18 | 20 | - | 23 | 18 |
| $3 \times 16$ | 20 | 22 | - | 25 | 22 |
| $4 \times 1.5$ | 11 | 13 | 9 | 11 | 13 |
| $4 \times 2.5$ | 12 | 14 | 11 | 13 | 15 |
| $4 \times 4$ | 14 | 16 | - | 15 | 16 |
| $4 \times 6$ | 16 | 17 | - | 17 | 18 |
| $4 \times 10$ | 18 | 19 | - | 23 | 21 |
| $4 \times 16$ | 22 | 23 | - | 27 | 24 |
| $4 \times 25$ | 27 | 27 | - | 32 | 30 |
| $4 \times 35$ | 30 | 28 | - | 36 | 31 |
| $4 \times 50$ | - | 30 | - | 42 | 34 |
| $4 \times 70$ | - | 34 | - | 47 | 38 |
| $4 \times 95$ | - | 39 | - | 53 | 43 |
| $4 \times 120$ | - | 42 | - | - | 46 |
| $4 \times 150$ | - | 47 | - | - | 52 |
| $4 \times 185$ | - | 55 | - | - | 60 |
| $4 \times 240$ | - | 62 | - | - | 70 |
| $5 \times 1.5$ | 11 | 14 | 12 | 14 | 15 |
| $5 \times 2.5$ | 13 | 15 | 14 | 17 | 17 |
| $5 \times 4$ | 15 | 17 | - | 19 | 18 |
| $5 \times 6$ | 17 | 19 | - | 21 | 20 |
| $5 \times 10$ | 20 | 21 | - | 26 | - |
| $5 \times 16$ | 25 | 23 | - | 30 | - |
| $8 \times 1.5$ | - | 15 | - | - | - |
| $10 \times 1.5$ | - | 18 | - | - | - |
| $16 \times 1.5$ | - | 20 | - | - | - |
| $24 \times 1.5$ | - | 25 | - | - | - |

NYM: sheathed conductor
NYY: plastic-sheathed cable
H05RR-F: light rubber-sheathed flexible cable (NLH + NSH)

NYCY: cable with concentric conductor and plastic sheath
NYCWY: cable with concentric wave-form conductor and plastic sheath

## Specifications, Formulae, Tables

## Conductors

## Cables and wiring, type abbreviation

## Identification of specification

Harmonized specification $\qquad$
Recognized national type
A


Rated voltage $U_{0} I U$
300/300V
03
300/500 V
05
450/750 V
07
Insulating material
PVC $\qquad$ V
Natural- and/or synthetic rubber _-_
Silicon rubber R .
$\qquad$


## Sheathing material

PVC $\qquad$ V
Natural- and/or synthetic rubber $\quad$ _
Polychloroprene rubber R

Fibre-glass braid $\qquad$
Textile braid J T $\qquad$

## 9 Special construction feature

Flat, separable conductor H $\qquad$
Flat, non-separable conductor Hz $\qquad$
Type of cable
Solid -U
Stranded
Flexible with cables for fixed installation $\quad-K$
Flexible with flexible cables
-F
Highly flexible with flexible cables $\quad-\mathrm{H}$
Tinsel cord
-Y
Number of cores
Protective conductor
Without protective conductors $\quad X$
With protective conductors
G

## Rated conductor cross-section

Examples for complete cable designation
PVC-sheathed wire, $0.75 \mathrm{~mm}^{2}$ flexible, H05V-K 0.75 black

Heavy rubber-sheathed cable, 3 -core, $2.5 \mathrm{~mm}^{2}$ without green/yellow protective conductor A07RN-F3 $\times 2.5$

## Specifications, Formulae, Tables

## Conductors

Conversion of North American cable cross sections into mm²


## Specifications, Formulae, Tables

Conductors

| USA/Canada | Europe |  |
| :---: | :---: | :---: |
| AWG/circular mills | mm ${ }^{2}$ <br> (exact) | $\begin{aligned} & \mathrm{mm}^{2} \\ & \text { (next standard size) } \end{aligned}$ |
| circular mills |  |  |
| 250.000 | 127 | 120 |
| 300.000 | 152 | 150 |
| 350.000 | 177 | 185 |
| 400.000 | 203 |  |
| 450.000 | 228 |  |
| 500.000 | 253 | 240 |
| 550.000 | 279 |  |
| 600.000 | 304 | 300 |
| 650.000 | 329 |  |
| 700.000 | 355 |  |
| 750.000 | 380 |  |
| 800.000 | 405 |  |
| 850.000 | 431 |  |
| 12900.000 | 456 |  |
| 950.000 | 481 |  |
| 1.000.000 | 507 | 500 |
| 1.300 .000 | 659 | 625 |

In addition to "circular mills", cable sizes are often given in "MCM": 250000 circular mills = 250 MCM

## Specifications, Formulae, Tables

Conductors

## Rated currents and short-circuit currents for standard transformers

| Rated voltage |  |  |  | 525 V |
| :---: | :---: | :---: | :---: | :---: |
|  | 400/230 V |  |  |  |
| $U_{\text {n }}$ |  |  |  |  |
| Short-circuit voltage $U_{\mathrm{K}}$ |  | 4 \% | 6 \% |  |
| Rated capacity | Rated current | Short-circuit current |  | Rated current |
|  | $I_{n}$ | $I_{K}^{\prime \prime}$ |  | $I_{\text {n }}$ |
| kVA | A | A | A | A |
| 50 | 72 | 1805 | - | 55 |
| 100 | 144 | 3610 | 2406 | 110 |
| 160 | 230 | 5776 | 3850 | 176 |
| 200 | 288 | 7220 | 4812 | 220 |
| 250 | 360 | 9025 | 6015 | 275 |
| 315 | 455 | 11375 | 7583 | 346 |
| 400 | 578 | 14450 | 9630 | 440 |
| 500 | 722 | 18050 | 12030 | 550 |
| 630 | 909 | 22750 | 15166 | 693 |
| 800 | 1156 | - | 19260 | 880 |
| 1000 | 1444 | - | 24060 | 1100 |
| 1250 | 1805 | - | 30080 | 1375 |
| 1600 | 2312 | - | 38530 | 1760 |
| 2000 | 2888 | - | 48120 | 2200 |

## Specifications, Formulae, Tables

## Conductors

$\qquad$

|  |  | 690/400 V |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 \% | 6 \% |  | 4 \% | 6 \% |
| Short-circuit current |  | Rated current | Short-circuit current |  |
| $I_{\text {K }}{ }^{\prime \prime}$ |  | $I_{\text {n }}$ | $I_{\text {K }}^{\prime \prime}$ |  |
| A | A | A | A | A |
| 1375 | - | 42 | 1042 | - |
| 2750 | 1833 | 84 | 2084 | 1392 |
| 4400 | 2933 | 133 | 3325 | 2230 |
| 5500 | 3667 | 168 | 4168 | 2784 |
| 6875 | 4580 | 210 | 5220 | 3560 |
| 8660 | 5775 | 263 | 6650 | 4380 |
| 11000 | 7333 | 363 | 8336 | 5568 |
| 13750 | 9166 | 420 | 10440 | 7120 |
| 17320 | 11550 | 526 | 13300 | 8760 |
| - | 14666 | 672 | - | 11136 |
| - | 18333 | 840 | - | 13920 |
| - | 22916 | 1050 | - | 17480 |
| - | 29333 | 1330 | - | 22300 |
| - | 36666 | 1680 | - | 27840 |

## Specifications, Formulae, Tables

## Formulea

## Ohm's Law

$\mathrm{U}=\mathrm{I} \times \mathrm{R}[\mathrm{V}]$

$$
I=\frac{U}{R}[A] \quad R=\frac{U}{I}[\Omega]
$$

## Resistance of a piece of wire

$R=\frac{1}{\chi \times \mathrm{A}}[\Omega] \quad$ Copper: $\quad \chi=57 \frac{\mathrm{~m}}{\Omega \mathrm{~mm}^{2}}$
$l=$ Length of conductor [m]
Aluminium:

$$
\chi=33 \frac{\mathrm{~m}}{\Omega \mathrm{~mm}^{2}}
$$

$\chi=$ Conductivity $\left[\mathrm{m} / \Omega \mathrm{mm}^{2}\right.$ ]
Iron:

$$
\chi=8.3 \frac{\mathrm{~m}}{\Omega \mathrm{~mm}^{2}}
$$

$\mathrm{A}=$ Conductor cross section [mm²] Zinc:

$$
\chi=15.5 \frac{\mathrm{~m}}{\Omega \mathrm{~mm}^{2}}
$$

| Resistances |  |
| :--- | :--- |
| Transformer | $X_{L}=2 \times \pi \times \mathrm{f} \times \mathrm{L}[\Omega]$ |
| Capacitors | $\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \times \pi \times \mathrm{f} \times \mathrm{C}}[\Omega]$ |

$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
$Z=\frac{R}{\cos \varphi}[\Omega]$
$L=$ Inductance $[\mathrm{H}]$
$\mathrm{f}=$ Frequency $[\mathrm{Hz}]$
C = Capacitance [F]
$\varphi=$ Phase angle
$X_{\mathrm{L}}=$ Inductive impedance $[\Omega]$
$X_{\mathrm{C}}=$ Capacitive impedance $[\Omega]$

## Parallel connection of resistances

With 2 parallel resistances:
$R_{g}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}[\Omega]$

With 3 parallel resistances:

$$
R_{g}=\frac{R_{1} \times R_{2} \times R_{3}}{R_{1} \times R_{2}+R_{2} \times R_{3}+R_{1} \times R_{3}}[\Omega]
$$

General calculation of resistances:

$$
\begin{array}{ll}
\frac{1}{R}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots[1 / \Omega] & \frac{1}{Z}=\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}+\ldots[1 / \Omega] \\
\frac{1}{X}=\frac{1}{\mathrm{X}_{1}}+\frac{1}{\mathrm{X}_{2}}+\frac{1}{\mathrm{X}_{3}}+\ldots[1 / \Omega] &
\end{array}
$$

## Specifications, Formulae, Tables

Formulea

## Electric power

|  | Power | Current consumption |
| :--- | :--- | :--- |
| DC | $P=U \times I[W]$ | $I=\frac{P}{U}[\mathrm{~A}]$ |
| Single-phase $A C$ | $P=U \times I \times \cos \varphi[\mathrm{W}]$ | $I=\frac{P}{U \times \cos \varphi}[\mathrm{A}]$ |
| Three-phase $A C$ | $P=\sqrt{3} \times U \times I \times \cos \varphi[\mathrm{W}]$ | $I=\frac{P}{\sqrt{3} \times U \times \cos \varphi}[\mathrm{A}]$ |

## Mechanical force between 2 parallel conductors

2 conductors with currents $I_{1}$ and $I_{2}$
$F_{2}=\frac{0.2 \times I_{1} \times I_{2} \times s}{a}[\mathrm{~N}]$
$\mathbf{s}=$ Support spacing clearance [cm]
a = Support spacing clearance
[cm]
Mechanical force between 3 parallel conductors
3 conductors with current $I$


## Specifications, Formulae, Tables

Formulea

## Voltage drop

|  | Known power | Known current |
| :---: | :---: | :---: |
| DC | $\Delta U=\frac{2 \times l \times P}{\chi \times A \times U}[V]$ | $\Delta U=\frac{2 \times l \times l}{\chi \times A}[V]$ |
| Single-phase AC | $\Delta U=\frac{2 \times l \times P}{\chi \times A \times U}[V]$ | $\Delta U=\frac{2 \times l \times 1}{\chi \times \mathrm{A}} \times \cos \varphi[\mathrm{V}]$ |
| Three-phase AC | $\Delta U=\frac{l \times P}{\chi \times \mathrm{A} \times U}[\mathrm{~V}]$ | $\Delta U=\sqrt{3} \times \frac{l \times 1}{\chi \times \mathrm{A}} \times \cos \varphi[\mathrm{V}]$ |

## Calculation of cross-section from voltage drop

DC
Single-phase AC
Three-phase AC
Known power
$A=\frac{2 \times l \times \mathrm{P}}{\chi \times \mathrm{U} \times \mathrm{U}}\left[\mathrm{mm}^{2}\right]$
$A=\frac{2 \times l \times \mathrm{P}}{\chi \times \mathrm{U} \times \mathrm{U}}\left[\mathrm{mm}^{2}\right]$
$A=\frac{l \times \mathrm{P}}{\chi \times \mathrm{U} \times \mathrm{U}}\left[\mathrm{mm}^{2}\right]$

Known current
$9 \quad A=\frac{2 \times l \times 1}{\chi \times \mathrm{u}}\left[\mathrm{mm}^{2}\right] \quad A=\frac{2 \times l \times 1}{\chi \times \mathrm{u}} \times \cos \varphi\left[\mathrm{mm}^{2}\right] \quad A=\sqrt{3} \times \frac{l \times 1}{\chi \times \mathrm{u}} \times \cos \varphi\left[\mathrm{mm}^{2}\right]$

## Power loss

Single-phase AC

$$
\mathrm{P}_{\text {Verl }}=\frac{2 \times l \times P \times P}{\chi \times A \times U \times U}[W] \quad P_{\text {Verl }}=\frac{2 \times l \times P \times P}{\chi \times A \times U \times U \times \cos \varphi \times \cos \varphi}[W]
$$

Three-phase AC

$$
P_{\text {Verl }}=\frac{l \times P \times P}{\chi \times A \times U \times U \times \cos \varphi \times \cos \varphi}[W]
$$

$l=$ Single length of conductor [m];
A = Conductor cross section [mm²];
$\chi=$ Conductivity (copper: $\chi=57$; aluminium: $\chi=33$; iron: $\chi=8.3 \frac{\mathrm{~m}}{\Omega \mathrm{~mm}^{2}}$ )

## Specifications, Formulae, Tables

## Formulea

## Power of electric motors

|  | Output | Current consumption |
| :---: | :---: | :---: |
| DC | $P_{1}=U \times I \times \eta[W]$ | $I=\frac{P_{1}}{U \times \eta}[A]$ |
| Single-phase $A C^{-}$ | $P_{1}=U \times I \times \cos \varphi \times \eta$ [W] | $I=\frac{P_{1}}{U \times \cos \varphi \times \eta}[A]$ |
| Three-phase AC | $P_{1}=(1.73) \times U \times I \times \cos \varphi \times \eta$ [W] | $I=\frac{P_{1}}{(1.73) \times U \times \cos \varphi \times \eta}[A]$ |
| $P_{1}=$ Rated mechanical power at the motor shaft $P_{2}=$ Electrical power consumption |  |  |
| Efficiency | $\eta=\frac{P_{1}}{P_{2}} \times(100 \%)$ | $P_{2}=\frac{P_{1}}{\eta}[W]$ |
| No. of poles | Synchronous speed | Full-load speed |
| 2 | 3000 | 2800-2950 |
| 4 | 1500 | 1400-1470 |
| 6 | 1000 | 900-985 |
| 8 | 750 | 690-735 |
| 10 | 600 | 550-585 |

Synchronous speed $=$ approx. no-load speed

## Specifications, Formulae, Tables

International Unit System

## International Unit System (SI)

| Basic parameters Physical parameters | Symbol | SI basic unit | Further related SI units |
| :---: | :---: | :---: | :---: |
| Length | 1 | m (Metre) | $\mathrm{km}, \mathrm{dm}, \mathrm{cm}, \mathrm{mm}, \mu \mathrm{m}$, $\mathrm{nm}, \mathrm{pm}$ |
| Mass | m | kg (Kilogram) | Mg, g, mg, $\mu \mathrm{g}$ |
| Time | t | $s$ (Second) | $\mathrm{ks}, \mathrm{ms}, \mu \mathrm{s}, \mathrm{ns}$ |
| Electrical current | 1 | A (Ampere) | kA, mA, $\mu \mathrm{A}, \mathrm{nA}, \mathrm{pA}$ |
| Thermo-dynamic temperature | T | K (Kelvin) | - |
| Amount of substance | n | mole (Mol) | Gmol, Mmol, kmol, $\mathrm{mmol}, \mu \mathrm{mol}$ |
| Luminous intensity | $\mathrm{I}_{\mathrm{v}}$ | cd (Candela) | Mcd, kcd, mcd |

## Factors for conversion of old units into SI units

## Conversion factors

| Parameter | Old unit | SI unit exact | Approximate |
| :---: | :---: | :---: | :---: |
| Force | $\begin{aligned} & 1 \mathrm{kp} \\ & 1 \mathrm{dyn} \end{aligned}$ | $\begin{aligned} & 9.80665 \mathrm{~N} \\ & 1 \cdot 10^{-5} \mathrm{~N} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{~N} \\ & 1 \cdot 10^{-5} \mathrm{~N} \end{aligned}$ |
| Momentum of force | 1 mkp | 9.80665 Nm | 10 Nm |
| Pressure | $\begin{aligned} & 1 \mathrm{at} \\ & 1 \text { Atm = } 760 \text { Torr } \\ & 1 \text { Torr } \\ & 1 \mathrm{mWS} \\ & 1 \mathrm{mmWS} \\ & 1 \mathrm{mmWS} \end{aligned}$ | 0.980665 bar 1.01325 bar 1.3332 mbar 0.0980665 bar 0.0980665 mbar 9.80665 Pa | 1 bar 1.01 bar 1.33 bar 0.1 bar 0.1 mbar 10 Pa |
| Tension | $1 \frac{\mathrm{kp}}{\mathrm{~mm}^{2}}$ | $9.80665 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$ | $10 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$ |
| Energy | 1 mkp <br> 1 kcal <br> 1 erg | $\begin{aligned} & \hline 9.80665 \mathrm{~J} \\ & 4.1868 \mathrm{~kJ} \\ & 1 \cdot 10^{-7} \mathrm{~J} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{~J} \\ & 4.2 \mathrm{~kJ} \\ & 1 \cdot 10^{-7} \mathrm{~J} \end{aligned}$ |

## Specifications, Formulae, Tables

International Unit System

| Conversion factors |  | SI unit exact | Approximate |
| :---: | :---: | :---: | :---: |
| Parameter | Old unit |  |  |
| Power | $1 \frac{\mathrm{kcal}}{\mathrm{~h}}$ | $4.1868 \frac{\mathrm{~kJ}}{\mathrm{~h}}$ | $4.2 \frac{\mathrm{~kJ}}{\mathrm{~h}}$ |
|  | $1 \frac{\mathrm{kcal}}{\mathrm{h}}$ | 1.163 W | 1.16 W |
|  | 1 PS | 0.73549 kW | 0.740 kW |
| Heat transfer coefficient | $1 \frac{\mathrm{kcal}}{\mathrm{~m}^{2} \mathrm{~h}^{\circ} \mathrm{C}}$ | $4.1868 \frac{\mathrm{~kJ}}{\mathrm{~m}^{2} \mathrm{hK}}$ | $4.2 \frac{\mathrm{~kJ}}{\mathrm{~m}^{2} \mathrm{hK}}$ |
|  | $1 \frac{\mathrm{kcal}}{\mathrm{~m}^{2} \mathrm{~h}^{\circ} \mathrm{C}}$ | $1.163 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$ | $1.16 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$ |
| dynamic viscosity | $1 \cdot 10^{-6} \frac{\mathrm{kps}}{\mathrm{m}^{2}}$ | $0,980665 \cdot 10^{-5} \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$ | $1 \cdot 10^{-5} \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$ |
|  | 1 Poise | $0.1 \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$ | $0.1 \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$ |
|  | 1 Poise 0.1 | $\mathrm{Pa} \cdot \mathrm{s}$ |  |
| Kinetic viscosity | 1 Stokes | $1 \cdot 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$ | $1 \cdot 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$ |
| Angle (flat) | 1 | $\frac{1}{360}$ pla | $2,78 \cdot 10^{-3} \mathrm{pla}$ |
|  | 1 gon | $\frac{1}{400}$ pla | $2,5 \cdot 10^{-3} \mathrm{pla}$ |
|  | 1 | $\frac{\pi}{180} \mathrm{rad}$ | $17,5 \cdot 10^{-3} \mathrm{rad}$ |
|  | 1 gon | $\frac{\pi}{200} \mathrm{rad}$ | $15,7 \cdot 10^{-3}$ pla |
|  | 57.296 |  | 1 rad |
|  | 63.662 gon |  | 1 rad |

## Specifications, Formulae, Tables

International Unit System
Conversion of SI units, coherences
Conversion of SI units and coherences

| Parameter | SI units name | Symbol | Basic unit | Conversion of SI units |
| :---: | :---: | :---: | :---: | :---: |
| Force | Newton | N | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$ |  |
| Force momentum | Newtonmetre | Nm | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$ |  |
| Pressure | Bar | bar | $10^{5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}}$ | $1 \text { bar }=10^{5} \mathrm{~Pa}=10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ |
|  | Pascal | Pa | $1 \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}}$ | $1 \mathrm{~Pa}=10^{-5} \mathrm{bar}$ |
| Energy, heat | Joule | J | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$ | $1 \mathrm{~J}=1 \mathrm{Ws}=1 \mathrm{Nm}$ |
| Power | Watt | W | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{3}}$ | $W=1 \frac{\mathrm{~J}}{\mathrm{~s}}=1 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~s}}$ |
| Tension |  | $\frac{\mathrm{N}}{\mathrm{mm}^{2}}$ | $10^{6} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}}$ | $1 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}=10^{2} \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}$ |
| Angle (flat) | Grad Gon | $\begin{aligned} & \hline 1 \\ & \text { gon } \end{aligned}$ |  | $\begin{aligned} & 360^{\circ}=1 \text { pla }=2 \pi \mathrm{rad} \\ & 400 \text { gon }=360^{\circ} \end{aligned}$ |
|  | Radian | rad | $1 \frac{\mathrm{~m}}{\mathrm{~m}}$ |  |
|  | Full circle | pla |  | $1 \mathrm{pla}=2 \pi \mathrm{rad}=360^{\circ}$ |
| Voltage | Volt | V | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{3} \cdot \mathrm{~A}}$ | $1 \mathrm{~V}=1 \cdot \frac{\mathrm{~W}}{\mathrm{~A}}$ |
| Resistor | Ohm | $\Omega$ | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{3} \cdot \mathrm{~A}^{2}}$ | $1 \Omega=1 \cdot \frac{V}{A}=1 \cdot \frac{W}{A^{2}}$ |
| Conductivity | Siemens | S | $1 \cdot \frac{\mathrm{~s}^{3} \cdot \mathrm{~A}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}$ | $1 M=1 \cdot \frac{A}{V}=1 \cdot \frac{A^{2}}{W}$ |
| Electric charge | Coulomb | C | 1. A $\cdot \mathrm{s}$ |  |

## Specifications, Formulae, Tables

International Unit System

| Conversion of SI units and coherences |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | SI units name | Symbol | Basic unit | Conversion of SI units |
| Capacitance | Farad | F | $1 \cdot \frac{\mathrm{~s}^{4} \cdot \mathrm{~A}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}$ | $1 F=1 \cdot \frac{C}{V}=1 \cdot \frac{s \cdot A^{2}}{W}$ |
| Field strength |  | $\frac{\mathrm{V}}{\mathrm{~m}}$ | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{3} \cdot \mathrm{~A}}$ | $1 \frac{\mathrm{~V}}{\mathrm{~m}}=1 \cdot \frac{\mathrm{~W}}{\mathrm{~A} \cdot \mathrm{~m}}$ |
| Flux | Weber | Wb | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~A}}$ | $1 W_{b}=1 \cdot V \cdot s=1 \cdot \frac{W \cdot s}{A}$ |
| Flux density | Tesla | T | $1 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}^{2} \cdot \mathrm{~A}}$ | $1 \mathrm{~T}=\frac{\mathrm{W}_{\mathrm{b}}}{\mathrm{~m}^{2}}=1 \cdot \frac{\mathrm{~V} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}=1 \cdot \frac{\mathrm{~W} \cdot \mathrm{~s}}{\mathrm{~m}^{2} \mathrm{~A}}$ |
| Inductance | Henry | H | $1 \cdot \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~A}^{2}}$ | $1 H=\frac{W_{b}}{A}=1 \cdot \frac{V \cdot s}{A}=1 \cdot \frac{W \cdot s}{A^{2}}$ |

Decimal powers (parts and multiples of units)

| Power | Prefix | Symbol | Power | Prefix | Symbol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{-18}$ | Atto | a | 10-1 | Deci | d |
| 10-15 | Femto | f | 10 | Deca | da |
| $10^{-12}$ | Pico | p | $10^{2}$ | Hecto | h |
| $10^{-9}$ | Nano | n | $10^{3}$ | Kilo | k |
| 10-6 | Micro | m | $10^{6}$ | Mega | M |
| $10^{-3}$ | Milli | m | $10^{9}$ | Giga | G |
| $10^{-2}$ | Centi | c | $10^{12}$ | Tera | T |

## Specifications, Formulae, Tables

International Unit System

## Physical units

## Obsolete units

Mechanical force

| SI unit: |  | N (Newton) $\mathrm{J} / \mathrm{m}$ (Joule/m) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Previous unit: |  | kp (kilopond) dyn (Dyn) |  |  |
| 1 N | $=1 \mathrm{~J} / \mathrm{m}$ | $=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ | $=0.102 \mathrm{kp}$ | $=10^{5} \mathrm{dyn}$ |
| $1 \mathrm{~J} / \mathrm{m}$ | $=1 \mathrm{~N}$ | $=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ | $=0.102 \mathrm{kp}$ | $=10^{5} \mathrm{dyn}$ |
| $1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ | $=1 \mathrm{~N}$ | $=1 \mathrm{~J} / \mathrm{m}$ | $=0.102 \mathrm{kp}$ | $=10^{5} \mathrm{dyn}$ |
| 1 kp | $=9.81 \mathrm{~N}$ | $=9.81 \mathrm{~J} / \mathrm{m}$ | $=9.81 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ | $=0.98110^{6} \mathrm{dyn}$ |
| 1 dyn | $=10^{-5} \mathrm{~N}$ | $=10^{-5} \mathrm{~J} / \mathrm{m}$ | $=10^{-5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ | $=1.0210^{-5} \mathrm{kp}$ |

## Pressure

Pa (Pascal) bar (Bar)

| SI unit: |  | Pa (Pascal) bar (Bar) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Previous unit: |  | $\begin{aligned} & \text { at }=\mathrm{kp} / \mathrm{cm}^{2}=10 \mathrm{mWs} \\ & \text { Torr }=\mathrm{mm} \mathrm{Hg} \\ & \text { atm } \end{aligned}$ |  |  |
| 1 Pa | $=1 \mathrm{~N} / \mathrm{m}^{2}$ | $=10^{-5} \mathrm{bar}$ |  |  |
| 1 Pa | $=10^{-5} \mathrm{bar}$ | $=10.2 \cdot 10^{-6}$ at | $=9.87 \cdot 10^{-6}$ at | $=7.5 \cdot 10^{-3}$ Torr |
| 1 bar | $=10^{5} \mathrm{~Pa}$ | $=1.02$ at | $=0.987$ at | $=750$ Torr |
| 1 at | $=98.1 \cdot 10^{3} \mathrm{~Pa}$ | $=0.981 \mathrm{bar}$ | $=0.968$ at | $=736$ Torr |
| 1 atm | $=101.3 \cdot 10^{3} \mathrm{~Pa}$ | $=1.013 \mathrm{bar}$ | $=1.033$ at | $=760$ Torr |
| 1 Torr | $=133.3 \mathrm{~Pa}$ | $=1.333 \cdot 10^{-3} \mathrm{bar}$ | $=1.359 \cdot 10^{-3}$ at | $=1.316 \cdot 10^{-3} \mathrm{~atm}$ |

## Specifications, Formulae, Tables

International Unit System

## Work

| SI unit: |  |  | J (Joule) <br> Nm (Newtonmeter) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SI unit: (as bef |  |  | Ws (Wattsecond) kWh (Kilowatthour) |  |  |
| Previous unit: |  |  | kcal (Kilocalorie) $=$ cal $\cdot 10^{-3}$ |  |  |
| 1 Ws | $=1 \mathrm{~J}$ | $=1 \mathrm{Nm}$ | $10^{7} \mathrm{erg}$ |  |  |
| 1 Ws | $=278 \cdot 10^{-9} \mathrm{kWh}$ | $=1 \mathrm{Nm}$ | $=1 \mathrm{~J}$ | $=0.102 \mathrm{kpm}$ | $=0.239 \mathrm{cal}$ |
| 1 kWh | $=3.6 \cdot 10^{6} \mathrm{Ws}$ | $=3.6 \cdot 10^{6} \mathrm{Nm}$ | $=3.6 \cdot 10^{6} \mathrm{~J}$ | $=367 \cdot 10^{6} \mathrm{kpm}$ | $=860 \mathrm{kcal}$ |
| 1 Nm | $=1 \mathrm{Ws}$ | $=278 \cdot 10^{-9} \mathrm{kWh}$ | $=1 \mathrm{~J}$ | $=0.102 \mathrm{kpm}$ | $=0.239 \mathrm{cal}$ |
| 1 J | $=1 \mathrm{Ws}$ | $=278 \cdot 10^{-9} \mathrm{kWh}$ | $=1 \mathrm{Nm}$ | $=0.102 \mathrm{kpm}$ | $=0.239 \mathrm{cal}$ |
| 1 kpm | $=9.81 \mathrm{Ws}$ | $=272 \cdot 10^{-6} \mathrm{kWh}$ | $=9.81 \mathrm{Nm}$ | $=9.81 \mathrm{~J}$ | $=2.34 \mathrm{cal}$ |
| 1 kcal | $=4.19 \cdot 10^{3} \mathrm{Ws}$ | $=1.16 \cdot 10^{-3} \mathrm{kWh}$ | $=4.19 \cdot 10^{3} \mathrm{Nm}$ | $=4.19 \cdot 10^{3} \mathrm{~J}$ | $=427 \mathrm{kpm}$ |

## Power

| SI unit: |  |  | Nm/s (Newtonmetre/s) $\mathrm{J} / \mathrm{s}$ (Joule/s) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SI unit: (as before) |  |  | W (Watt) kW (Kilowatt) |  |  |
| Previous |  |  | kcal/s (Kilocalorie/s kcal/h (Kilocalorie/h kpm/s (Kilopondme PS (metric horsepo | $\begin{aligned} & \mathrm{c} .)=\mathrm{cal} / \mathrm{s} \cdot 10^{3} \\ & \text { our.) }=\mathrm{cal} / \mathrm{h} \cdot 10^{6} \\ & \text { re/Sec.) } \\ & \text { (er) } \end{aligned}$ |  |
| 1 W | $=1 \mathrm{~J} / \mathrm{s}$ | $=1 \mathrm{Nm} / \mathrm{s}$ |  |  |  |
| 1 W | $=10^{-3} \mathrm{~kW}$ | $=0.102 \mathrm{kpm} / \mathrm{s}$ | $=1.36 \cdot 10^{-3} \mathrm{PS}$ | $=860 \mathrm{cal} / \mathrm{h}$ | $=0.239 \mathrm{cal} / \mathrm{s}$ |
| 1 kW | $=10^{3} \mathrm{~W}$ | $=102 \mathrm{kpm} / \mathrm{s}$ | $=1.36 \mathrm{PS}$ | $=860 \cdot 10^{3} \mathrm{cal} / \mathrm{h}$ | $=239 \mathrm{cal} / \mathrm{s}$ |
| $1 \mathrm{kpm} / \mathrm{s}$ | $=9.81 \mathrm{~W}$ | $=9.81 \cdot 10^{-3} \mathrm{~kW}$ | $=13.3 \cdot 10^{-3} \mathrm{PS}$ | $=8.43 \cdot 10^{3} \mathrm{cal} / \mathrm{h}$ | $=2.34 \mathrm{cal} / \mathrm{s}$ |
| 1 PS | $=736 \mathrm{~W}$ | $=0.736 \mathrm{~kW}$ | $=75 \mathrm{kpm} / \mathrm{s}$ | $=632 \cdot 10^{3} \mathrm{cal} / \mathrm{h}$ | $=176 \mathrm{cal} / \mathrm{s}$ |
| $1 \mathrm{kcal} / \mathrm{h}$ | $=1.16 \mathrm{~W}$ | $=1.16 \cdot 10^{-3} \mathrm{~kW}$ | $=119 \cdot 10^{-3} \mathrm{kpm} / \mathrm{s}$ | $=1.58 \cdot 10^{-3} \mathrm{PS}$ | $=277.8 \cdot 10^{-3} \mathrm{cal} / \mathrm{s}$ |
| $1 \mathrm{cal} / \mathrm{s}$ | $=4.19 \mathrm{~W}$ | $=4.19 \cdot 10^{-3} \mathrm{~kW}$ | $=0.427 \mathrm{kpm} / \mathrm{s}$ | $=5.69 \cdot 10^{-3} \mathrm{PS}$ | $=3.6 \mathrm{kcal} / \mathrm{h}$ |

## Specifications, Formulae, Tables

International Unit System

## Magnetic field strength

| SI unit: | $\frac{A}{\mathrm{~m}}$ | $\frac{\text { Ampere }}{\text { Metre }}$ |
| :--- | :--- | :--- |
| Previous unit: | $=0,001 \frac{\mathrm{kA}}{\mathrm{m}}$ | $=0.012560 \mathrm{e}$ |
| $1 \frac{\mathrm{~A}}{\mathrm{~m}}$ | $=1000 \frac{\mathrm{~A}}{\mathrm{~m}}$ | $=12.560 \mathrm{e}$ |
| $1 \frac{\mathrm{kA}}{\mathrm{m}}$ | $=79,6 \frac{\mathrm{~A}}{\mathrm{~m}}$ | $=0,0796 \frac{\mathrm{kA}}{\mathrm{m}}$ |

## Magnetic field strength

9

| SI unit |  | Wb (Weber) $\mu \mathrm{Wb}$ (Microweber) |
| :---: | :---: | :---: |
| Previous unit: |  | M = Maxwell |
| 1 Wb | $=1 \mathrm{Tm}^{2}$ |  |
| 1 Wb | $=10^{6} \mu \mathrm{~Wb}$ | $=10^{8} \mathrm{M}$ |
| $1 \mu \mathrm{~Wb}$ | $=10^{-6} \mathrm{~Wb}$ | $=100 \mathrm{M}$ |
| 1 M | $=10^{-8} \mathrm{~Wb}$ | $=0.01 \mu \mathrm{~Wb}$ |
| Magnetic flux density |  |  |
| SI unit: |  | $\begin{aligned} & \text { T (Tesla) } \\ & \mathrm{mT} \text { (Millitesla) } \end{aligned}$ |
| Previous unit: |  | $\mathrm{G}=$ Gauss |
| 1 T | $=1 \mathrm{~Wb} / \mathrm{m}^{2}$ |  |
| 1 T | $=10^{3} \mathrm{mT}$ | $=10^{4} \mathrm{G}$ |
| 1 mT | $=10^{-3} \mathrm{~T}$ | $=10 \mathrm{G}$ |
| 1 G | $=0.1^{-3} \mathrm{~T}$ | $=0.1 \mathrm{mT}$ |

## Specifications, Formulae, Tables

International Unit System

## Conversion of Imperial/American units into SI units

| Length | 1 in | 1 ft | 1 yd | 1 mile Land mile | 1 mile Sea mile |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | $25.4 \cdot 10^{-3}$ | 0.3048 | 0.9144 | $1.609 \cdot 10^{3}$ | $1.852 \cdot 10^{3}$ |  |
| Weight | 1 lb | $1 \text { ton (UK) }$ long ton | 1 cwt (UK) long cwt | $\begin{aligned} & 1 \text { ton (US) } \\ & \text { short ton } \end{aligned}$ | 1 ounce | 1 grain |
| kg | 0.4536 | 1016 | 50.80 | 907.2 | $28.35 \cdot 10^{-3}$ | $64.80 \cdot 10^{-6}$ |
| Area | 1 sq.in | 1 sq.ft | 1 sq.yd | 1 acre | 1 sq.mile |  |
| $\mathrm{m}^{2}$ | $0.6452 \cdot 10^{-3}$ | $92.90 \cdot 10^{-3}$ | 0.8361 | $4.047 \cdot 10^{3}$ | $2.590 \cdot 10^{3}$ |  |
| Volume | 1 cu.in | 1 cu.ft | 1 cu.yd | 1 gal (US) | 1 gal (UK) |  |
| $\mathrm{m}^{3}$ | $16.39 \cdot 10^{-6}$ | $28.32 \cdot 10^{-3}$ | 0.7646 | $3.785 \cdot 10^{-3}$ | $4.546 \cdot 10^{-3}$ |  |
| Force | 1 lb | $1 \text { ton (UK) }$ long ton | $\begin{aligned} & 1 \text { ton (US) } \\ & \text { short ton } \end{aligned}$ | 1 pdl (poundal) |  |  |
| N | 4.448 | $9.964 \cdot 10^{3}$ | $8.897 \cdot 10^{3}$ | 0.1383 |  |  |
| Speed | $1 \frac{\text { mile }}{\mathrm{h}}$ | 1 Knot | $1 \frac{\mathrm{ft}}{\mathrm{~s}}$ | $1 \frac{\mathrm{ft}}{\mathrm{~min}}$ |  |  |
| $\frac{\mathrm{m}}{\mathrm{~s}}$ | 0.4470 | 0.5144 | 0.3048 | $5.080 \cdot 10^{-3}$ |  |  |
| Pressure | $1 \frac{\mathrm{lb}}{\mathrm{sq} \cdot \mathrm{in}} 1 \mathrm{psi}$ | 1 in Hg | 1 ft H 2 O | 1 in $\mathrm{H}_{2} \mathrm{O}$ |  |  |
| bar | $65.95 \cdot 10^{-3}$ | $33.86 \cdot 10^{-3}$ | $29.89 \cdot 10^{-3}$ | $2.491 \cdot 10^{-3}$ |  |  |
| Energy, Work | 1 HPh | 1 BTU | 1 PCU |  |  |  |
| J | $2.684 \cdot 10^{6}$ | $1.055 \cdot 10^{3}$ | $1.90 \cdot 10^{3}$ |  |  |  |

## Specifications, Formulae, Tables

International Unit System
Conversion of Imperial/American units into SI units

| Length | 1 cm | 1 m | 1 m | 1 km | 1 km |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.3937 in | 3.2808 ft | 1.0936 yd | 0.6214 mile Surface mile | 0.5399 mile Nautical mile |
| Weight | 1 g | 1 kg | 1 kg | 1 t | 1 t |
|  | 15.43 grain | 35.27 ounce | 2.2046 lb . | $\begin{aligned} & 0.9842 \text { long } \\ & \text { ton } \end{aligned}$ | 1.1023 short ton |
| Area | $1 \mathrm{~cm}^{2}$ | $1 \mathrm{~m}^{2}$ | $1 \mathrm{~m}^{2}$ | $1 \mathrm{~m}^{2}$ | $1 \mathrm{~km}^{2}$ |
|  | 0.1550 sq.in | 10.7639 sq.ft | 1.1960 sq.yd | $\begin{aligned} & 0.2471 \cdot 10^{-3} \\ & \text { acre } \end{aligned}$ | 0.3861 <br> sq.mile |
| Volume | $1 \mathrm{~cm}^{3}$ | 11 | $1 \mathrm{~m}^{3}$ | $1 \mathrm{~m}^{3}$ | $1 \mathrm{~m}^{3}$ |
|  | 0.06102 cu.in | 0.03531 cu.ft | 1.308 cu.yd | 264.2 gal (US) | $\begin{aligned} & 219.97 \mathrm{gal} \\ & \text { (UK) } \end{aligned}$ |
| Force | 1 N | 1 N | 1 N |  | 1 N |
|  | 0.2248 lb | $\begin{aligned} & 0.1003 \cdot 10^{-3} \text { long ton } \\ & \text { (UK) } \end{aligned}$ |  | $0.1123 \cdot 10^{-3}$ short ton (US) | 7.2306 pdl (poundal) |
| Speed | $1 \mathrm{~m} / \mathrm{s}$ |  |
|  | $3.2808 \mathrm{ft} / \mathrm{s}$ | $196.08 \mathrm{ft} / \mathrm{min}$ | 1.944 knots | 2.237 mph |  |
| Pressure | 1 bar | 1 bar | 1 bar | 1 bar |  |
|  | 14.50 psi | 29.53 in Hg | $33.45 \mathrm{ft} \mathrm{H}_{2} \mathrm{O}$ | 401.44 in $\mathrm{H}_{2} \mathrm{O}$ |  |
| Energy, Work | 1 J | 1 J |  | 1 J |  |
|  | $0.3725 \cdot 10^{-6} \mathrm{HPh}$ | - $0.9478 \cdot 10^{-3} \mathrm{BTU}$ |  | $0.5263 \cdot 10^{-3} \mathrm{PCU}$ |  |

Notes

## 9

## Alphabetical index

Alphabetical index 10-2

## Alphabetical index

## Numerics

1-pole, 2-pole circuit ..... 8-4

## A

ACB ..................................................................................7-3
Accessories contactors ......................................................5-60
Actuation, positive ..........................................................3-10
Adjustable roller lever .......................................................3-10
AGM ...............................................................................6-21
Air circuit-breakers .............................................................7-3
All about Motors ................................................................8-1
AND circuit ......................................................................5-45
Angled roller lever ..........................................................3-10
Approval authorities worldwide .......................................9-28
AS-Interface® data bus ..................................................2-87
Asynchronous motors .......................................................2-2
ATEX accreditation
Motor protection system ZEV .....................................5-68
Overload relay ............................................................5-64
Thermistor machine protection device EMT6 ..............5-74
ATEX approval
EMT6
8-11
PKZM0, PKZM4 .............................................................6-4
Rotary switches ...........................................................4-17
Switch-disconnectors ...................................................4-17

Automatic stator starters
Engineering starting resistor ........................................8-13
Engineering starting transformer ...............................8-13
Example resistors ......................................................8-89
Example starting transformers ....................................8-92
Properties squirrel cage rotor ......................................8-14
Automation systems ..........................................................1-1
Auxiliary contact
Contact sequence .........................................................7-5
Early-make auxiliary contact HIV .................................7-6
PKZ2 ..........................................................................6-21
PKZM01, PKZM0, PKZM4 .............................................6-7
Standard auxiliary contact ............................................7-5
Trip-indicating auxiliary contact ....................................7-5
BBasic circuitChangeover circuit5-46
Hold-on circuit ..... 5-46
Impulse changeover relay ..... 5-47
Negation ..... 5-44
Parallel switching ..... 5-45
Permanent contact ..... 5-44
Series circuit ..... 5-45
Star/delta starting easy ..... 5-48
Basics of drives engineering ..... 2-7
Bimetal
Motor protection ..... 8-12
Motor-protective circuit-breaker ..... 6-4
Overload relay ..... 5-64
Block diagramsPKZ26-22-6-33
PKZM01, PKZM0, PKZM4 ..... 6-10-6-15
Braking oversynchronous ..... 8-57
Braking resistor ..... 2-82
Bridging during starting
Contactor ..... 8-8
Heavy starting duty ..... 8-9
Overload relays ..... 8-25
Busbar, flexible ..... 2-87
Bus-enabled motor starters
$\rightarrow$ Networkable motor starters ..... 1-8
Bypass connection ..... 2-46
C
Cage Clamp ..... 5-61
CAN cable ..... 1-15
CANopen ..... 1-6
Capacitor
Group compensation ..... 8-15, 8-16
Individual compensation ..... 8-15
Use of reactors ..... 8-16
Capacitor group compensation ..... 8-16
Capacitor unit ..... 7-15
Cascaded control ..... 2-50
Changeover switch
Voltage meters ..... 4-12

## Alphabetical index

Changeover switches ..... 4-5
Ammeters ..... 4-12
Wattmeters ..... 4-13
Circuit diagram
Circuit-breaker internal circuit diagrams ..... 7-7
General ..... 8-17
Circuit diagram auxiliary protection ..... 5-6
Circuit documents
Circuit diagram ..... 8-17
General ..... 8-17
Wiring diagram ..... 8-18
Circuit examples
Bridging during starting ..... 8-25
Contactors ..... 8-24
Circuit-breaker remote switching ..... 7-9
Circuit-breakers
Internal circuit diagrams ..... 7-7
IZM ..... 7-3
Mesh network circuit-breaker ..... 7-15
NZM ..... 7-2
Remote operation ..... 7-16
Residual-current release ..... 7-18
Switch position ..... 7-13
Transformer switch ..... 7-17
Classification types of soft starters ..... 2-18
10 Coil functions ..... 5-41
Combicon connector ..... 1-15
COM-LINK connection ..... 5-38
Compact circuit-breakers ..... 7-2
Compact PLC ..... 1-2
compact starter ..... 6-3
Compensated motor ..... 8-10
Conductors ..... 9-81
Conductors, characteristic impedance ..... 5-34
Connection
RA-MO to AS-Interface ${ }^{\circledR}$ ..... 2-90
RA-SP to AS-Interface® ..... 2-93
Sensors (RA-MO) ..... 2-90
Connection examples
DF5, DV5 ..... 2-69-2-75
DF6 ..... 2-77-2-79
DM4 ..... 2-54-2-67
DS4 ..... 2-38-2-53
DV6 ..... 2-80-2-85
Connection examples, DF5 ..... 2-69-2-75
Connection examples, DF6 ..... 2-77-2-79
Connection examples, DM4 ..... 2-54-2-67
Connection examples, DS4 ..... 2-38-2-53
Connection examples, DV5 ..... 2-69-2-75
Connection examples, DV6 ..... 2-80-2-85
Connection type
Delta connection ..... 2-4
Star connection ..... 2-4
Contact module PKZ2 ..... 6-17
Contact module PKZMO ..... 6-4
Contact protection relay ..... 5-75
Contact sequence of the auxiliary contacts ..... 7-5
Contactor DILM ..... 5-58
Contactor for capacitor ..... 8-100
Contactor relay modules ..... 5-2
Contactor relays ..... 5-2
Characteristic letter ..... 5-3
Circuit diagram ..... 5-6
Contactor, marking ..... 8-23
Contactors ..... 5-58
DIL ..... 5-58
DILM ..... 5-61
DILP ..... 5-63
Contacts, positively opening ..... 3-12
Control circuit devices
For direct-on-line start ..... 8-36
For star-delta ..... 8-49
RMQ ..... 3-2
Control circuit devices for multi-speed contactors ..... 8-67-8-71
Control circuit supply motor ..... 8-22

## Alphabetical index

## Control relay

Basic circuits
5-44-5-49

Circuit operation ........................................................5-49
Coil functions ..............................................................5-41
COM-LINK connection ................................................5-38
Contacts ......................................................................5-40
Display text ..............................................................5-55
easy500 and easy700 ................................................5-17
Fast counter, .............................................................5-24
Field bus connection ....................................................5-39
Frequency generator ...................................................5-24
Function blocks ...........................................................5-40
Incremental encoder ....................................................5-24
Overview .....................................................................5-12
Parameter sets for times .............................................5-42
Power supply ............................................................5-18
Relay outputs .............................................................5-25
Remote display .........................................................5-37
Remote display, text display ......................................5-16
Shift register ...............................................................5-53
Stairwell lighting ......................................................5-50
Star/delta starting ........................................................5-48
Transistor outputs .....................................................5-26
Co-ordination type motor protection .................................8-7
Current limiter ......................................................... 6-5, 6-17
10 Current limiter PKZ2 .....................................................6-32
Current monitor ................................................................5-78
Current transformer-operated relay ZW7 ...........................8-7

## D

DC motors ..........................................................................8-4
Degrees of protection for electrical equipment ..................9-58
Delta circuit ......................................................................2-24
Delta circuit, motor ...........................................................2-74
Delta connection ...................................................... 2-4, 2-62
Device arrangement, XC100/XC200 .................................1-14
DeviceNet ..........................................................................1-6
DF5, DF6 .........................................................................2-26
Diagnosis tripping cause ..................................................5-68
Differential current ...........................................................7-19
DIL .................................................................................5-59
DIL...K ............................................................................8-16
DILA ..................................................................................5-2

## Alphabetical index

DILER ..... 5-2
DILM ..... 5-61
DILP ..... 5-63
Diode suppressor ..... 5-4
Direct-on-line starter, motor-protective circuit-breaker ..... 6-3
Display and operator units, HMI ..... 1-12
Display PLC
$\rightarrow$ Embedded HMI-PLC ..... 1-13
DIUL ..... 8-28
DM4 ..... 2-22
DOL starters with bypass ..... 2-21
DOL starting
Features ..... 2-10
General ..... 2-5
Double break ..... 5-2
Double-frame terminal ..... 5-61
Drives ..... 2-1, 2-7
DS4 ..... 2-19
DV5, DV6 ..... 2-26
E
Early-make auxiliary contact HIV ..... 7-6
Earth fault current ..... 5-67
Earth-fault monitoring ..... 5-70
Earth-leakage circuit-breaker ..... 7-19
EEx e motors
Overload relay ..... 5-64
PKZM0, PKZM4 ..... 6-4
Electr. motor starters, drives general ..... 2-2
Electrical connector ..... 6-5
Electronic safety relay ESR ..... 5-77
Electronic timing relays ..... 5-8
EM4 ..... 1-19
Embedded HMI-PLC ..... 1-13
EMC measures ..... 2-32
EMC-compliant connection ..... 2-31
Emergency-Stop function ..... 7-10
EMR4 ..... 5-78
EMT6 ..... 5-74
Encoder ..... 2-82

## Alphabetical index

EngineeringEM4 and LE41-19
Motor ..... 8-13-8-16
PS4 ..... 1-16
Switching of capacitors ..... 8-15
Three-phase automatic starters ..... 8-13
Wiring example, XC100/XC200 ..... 1-14
XC100/XC200 ..... 1-14
ESR ..... 5-77
Evaluation device ZEV ..... 5-68
Expansion easy, MFD-Titan
Central and decentral ..... 5-30
Network connection ..... 5-33
Network connection EASY-NET ..... 5-31
Overview ..... 5-29
Explosive atmospheres ..... 4-17
F
Fast counter, ..... 5-24
Fault indication, differential ..... 6-12
Field bus connection ..... 5-39
Flat cable ..... 2-87
Flexible busbar ..... 2-87
Four pole contactor $\rightarrow$ Contactor DILP ..... 5-63
Frequency generator ..... 5-24
10 Frequency inverters, design ..... 2-26
Frequency inverters, general ..... 2-7
FU $\rightarrow$ Frequency inverters ..... 2-7
Function blocks ..... 5-40
Fuseless
Contactor DIL ..... 8-24
Reversing contactor DIUL ..... 8-28
Fuses contactor DIL ..... 8-24
G
Galvanic separation ..... 5-2
German Trade Association ..... 3-10
Graphic operator panel ..... 1-12
Group compensation ..... 8-15
Group protection ..... 6-6
H
Hamburg circuit, off position interlock ..... 8-108
Heater switches ..... 4-14
Heavy starting duty
Bridging during starting ..... 8-9
Example ..... 8-26
Motor protection ..... 8-7
HIA example ..... 7-13
HIA, contact sequence ..... 7-5
High-capacity compact starters ..... 6-22
HIN example ..... 7-13
HIN, contact sequence ..... 7-5
HIV ..... 7-6
HMI ..... 1-12
HMI-PLC
Embedded ..... 1-13
Hold-on circuit ..... 5-46
I
I/O system ..... 1-6
I/Oassistant ..... 1-7
I/Oassistant diagnostics software ..... 1-7
I/Oassistant engineering software ..... 1-7
Impulse changeover relay ..... 5-47
Indication of tripping circuit-breaker ..... 7-13
Individual compensation ..... 8-15
Infra-red touch panel
$\rightarrow$ Embedded HMI-PLC ..... 1-13
Infra-red touch panels
$\rightarrow$ Touch operator panels ..... 1-12
In-line circuit ..... 2-24
Inputs
Analog ..... 5-21-5-23
Digital, AC devices ..... 5-19
Digital, DC devices ..... 5-20
Insulation monitoring relay ..... 5-80
Interface assignment, XC100/XC200 CANopen ..... 1-15
Interlock circuits, rotary switches ..... 4-11
Interlocking ..... 5-2
IT ..... 8-20
IZM ..... 7-3

## Alphabetical index

## L

LE4 .................................................................................. 1-19
Let-through energy .........................................................2-89
Level monitoring relay .....................................................5-79
Limiter, current
$\rightarrow$ Current limiter PKZ2 ............................................6-32
$\rightarrow$ Current limiter PKZM0, PKZM4 ...............................6-5
Load-shedding contact .....................................................4-4
Local expansion $\rightarrow$ PS40 Series networking ...................1-10
Logic table ........................................................... 5-44-5-46
LSI ....................................................................................3-17
LSO .................................................................................3-19
LS-Titan ............................................................................3-12

## M

Main switch ......................................................................7-10
Main transfer switch .......................................................8-109
Maintenance switches, rotary switches ..............................4-4
Markings, contactor .........................................................8-23
Master switch, off position interlock ..............................8-109
MCCB ................................................................................7-2
Measurement and monitoring relay EMR4 .......................5-78
Mechanical interlock .......................................................5-61
Mesh network circuit-breaker ..........................................7-15
Mirror contact ..................................................................5-62

Modular PLCs ....................................................................1-2
Moeller
Motor-protective circuit-breaker PKZ ............................6-2
Motor-protective circuit-breakers PKZ2 .......................6-16
Monitoring relay .............................................................5-78
Motor
Circuit documents ..... 8-17
Control circuit device direct-on-line start ..... 8-36
Control circuit supply ..... 8-22
Engineering ..... 8-13-8-16
Motor windings ..... 8-54
Multi speed switch PKZ2 ..... 8-87
Multi-speed contactor ..... 8-57
No. of poles ..... 8-51
Pole changing ..... 8-51-8-53
Power supply ..... 8-19
Separate windings ..... 8-51
Star-delta of three-phase motors ..... 8-37-8-45
Star-delta with PKZ2 ..... 8-46-8-48
Starting with PKZ2 ..... 8-32-8-35
Switching of capacitors ..... 8-98-8-101
Switching on three-phase motors ..... 8-24-8-31
System transfer ..... 8-109
Tapped winding ..... 8-51
Motor connection ..... 2-93
Motor control unit ..... 2-90
Motor full-load current ..... 9-77
Motor operator circuit-breaker ..... 7-16
Motor overload relay, motor protection ..... 5-64
Motor overload relays Z, overview ..... 5-58
Motor power supply ..... 8-19
Motor protection ..... 8-3-8-12
Motor protection system ZEV ..... 5-67-5-73
Motor protection system ZEV, overview ..... 5-58
Motor rating ..... 5-61
Motor starter combination $\rightarrow$ Networkable motor starters ..... 1-8
Motor starter combinations ..... 6-5
Motor starters, electronic ..... 2-1
Motor windings ..... 8-54
Motor-protective circuit-breaker, overview ..... 6-1
Motor-protective circuit-breakers
Operating principle schematic PKZ2 ..... 6-22-6-33
Operating principle schematics PKZM01, PKZM0, PKZM4 ..... 6-10-6-15
Motor-protective circuit-breakers PKZ2 ..... 6-16
Motor-starter combination MSC ..... 6-5
Mounting ..... 5-73
xStart ..... 1-8

## Alphabetical index

MSC ..... 6-3
Multi Function Display
COM-LINK connection ..... 5-38
Contacts ..... 5-40
Fast counter ..... 5-24
Field bus connection ..... 5-39
Frequency generator ..... 5-24
Function blocks ..... 5-40
Incremental encoder ..... 5-24
MFD-Titan and easy800 ..... 5-17
Overview ..... 5-12
Power supply ..... 5-18
Relay outputs ..... 5-25
Remote display ..... 5-37
Remote display, text display ..... 5-16
Transistor outputs ..... 5-26
Visualisation ..... 5-56
Multi speed switch for three-phase motors ..... 8-59-8-66
Star-delta ..... 8-72-8-86
Multi speed switch with PKZ2 ..... 8-87
Multi-speed contactor ..... 8-57
Control circuit devices ..... 8-67-8-71
Star-delta ..... 8-72
Multi-speed switch
Bridging during starting ..... 8-9
10 Multi-speed switches Rotary switches ..... 4-7
Multi-speed switching, marking ..... 8-23
N
NAND circuit ..... 5-45
Network connection
Bus terminal resistor ..... 5-33
Conductors ..... 5-34
Interface element ..... 5-36
Network cable ..... 5-33
Sockets, plugs ..... 5-33
Networking
Display and operator units ..... 1-12
Embedded HMI-PLC ..... 1-13
PS40 Series ..... 1-10
xSystem ..... 1-11
NHI example ..... 7-13

## Alphabetical index

NHI , contact sequence ..... 7-5
NHI, PKZ2 ..... 6-21
NOR circuit ..... 5-45
NOT gate ..... 5-44
NZM ..... 7-2
NZM-XCM ..... 7-15
0
Off-delayed undervoltage release ..... 7-4
Off-postion interlock
Hamburg circuit ..... 8-108
Load ..... 8-108
Master switch ..... 8-109
Ohm's Law ..... 9-90
On-delayed timing relay ..... 5-47
Operands ..... 5-40
Operating frequency ..... 8-3
OR circuit ..... 5-45
Output easy, MFD analogue ..... 5-28
Overload motor ..... 5-67
Overload motor-protective circuit-breaker ..... 6-2
Overload protection contactor ..... 8-24
Overload protection, Rapid Link ..... 2-88
Overload relay ..... 2-55
Overload relay $\rightarrow$ Motor protection overload relay ..... 5-64
Overload relay function ..... 6-16
Overload relay function PKZ2 ..... 6-33
Overload relay time-delayed ..... 8-5
Overload relays In delta circuit ..... 8-38
In motor winding ..... 8-37
In the mains line ..... 8-37
Tripping ..... 8-3
Oversynchronous braking ..... 8-57
Overvoltage ..... 2-55
P
Personnel protection
AT ..... 3-13
ATR ..... 3-16
Enhanced ..... 3-14
PFR ..... 7-19
Phase failure ..... 5-67

## Alphabetical index

Phase imbalance relay ..... 5-79
Phase monitoring relay ..... 5-78
Phase sequence relay ..... 5-79
Phase-failure sensitivity ..... 5-64
PKMO ..... 6-5
PKZ ..... 6-2
PKZ2 ..... 6-2
PKZMO ..... 6-2
PKZM01 ..... 6-2
PKZMO-T ..... 6-5
PKZM4 ..... 6-2
PLC ..... 1-2
Pole-changing motors ..... 8-51-8-53
Power bus ..... 2-87
Power electronics ..... 2-7
Power feed ..... 2-88
Power supply easy ..... 5-18
MFD-Titan ..... 5-18
Process protection ..... 3-15
PROFIBUS-DP ..... 1-6
Programmable contacts ..... 5-68
Programmable logic controllers, PLCs ..... 1-2
Programming software ..... 1-2
Protective measures ..... 9-34
10 PS4 ..... 1-16
PS4 compact PLC $\rightarrow$ PS40 Series networking ..... 1-10
PS4 wiring examples ..... 1-16-1-18
PS40 Series ..... 1-2
PTC Thermistor, Thermistor machine protection relay ..... 5-74
PTC-thermistor, motor protection ..... 8-11
Pump connection ..... 2-48
Pump control
Liquid-level actuated switch ..... 8-106
Pressure switch ..... 8-104
Two pumps ..... 8-102
Pushbutton control circuit devices ..... 8-67
Push-through sensor ZEV ..... 5-68
Q
Quick-discharge resistor ..... 8-98
R
Rapid Link ..... 2-86
RC suppressor ..... 5-4
Reference letter contactor relays ..... 5-3
Reflected-light barrier ..... 3-19
Reflected-light beam ..... 3-19
Relay ..... 5-74
Remote display ..... 5-37
Remote expansion $\rightarrow$ PS40 Series networking ..... 1-10
Remote I/O $\rightarrow$ XI/ON ..... 1-6
Remote operator circuit-breaker ..... 7-16
Remote operator PKZ2 ..... 6-18
Remote switch off PKZ2 ..... 6-29
Remote switch off PKZM01, PKZM0, PKZM4 ..... 6-13
RE-PKZ2 ..... 6-18
Residual current protection ..... 7-18
Residual current release ..... 7-18
Residual-current relay ..... 7-19
Residual-current release circuit-breaker ..... 7-18
Resistive touch panel
$\rightarrow$ Embedded HMI-PLC ..... 1-13
$\rightarrow$ Touch operator panel ..... 1-12
Reversing combination $\rightarrow$ reversing contactor ..... 8-28
Reversing contactor ..... 8-28
Reversing soft starter ..... 2-43
Reversing star-delta
Rotary switches ..... 4-6
Reversing start delta
Changing direction or rotation ..... 8-44
Reversing ..... 8-43
Reversing starter, motor-protective circuit-breaker ..... 6-3
Reversing starters, soft starters ..... 2-21
Reversing switches ..... 4-5
RHI example ..... 7-13
RHI, contact sequence ..... 7-5
Risk reduction ..... 9-56
RMQ16 ..... 3-2
RMQ-Titan® ..... 3-4
Rogowski principle ..... 5-67
Rogowski sensor ..... 5-73
Roller lever ..... 3-10
Roller plunger ..... 3-10

## Alphabetical index

Rotary switches
ATEX approval ..... 4-18
Changeover switches ..... 4-5
Heater switches ..... 4-14
Interlock circuits ..... 4-11
Main switches ..... 4-3
Maintenance switches ..... 4-3
Meter selector switches ..... 4-12
Mounting forms ..... 4-2
Multi-speed switches ..... 4-7
ON-OFF switches ..... 4-3
Reversing star-delta ..... 4-6
Reversing switches ..... 4-5
Speed switching ..... 8-57
Star-delta ..... 4-6
Step switches ..... 4-15
Use ..... 4-2
Rotor automatic starter
Engineering starting resistor ..... 8-13
Properties slipring rotor ..... 8-14
Slipring rotor ..... 8-94
Rotor-critical ..... 8-11
Round cable feeder ..... 2-87
RS-PKZ2 ..... 6-18
10 ..... S
Safety position switches ..... 3-12
Safety relay ..... 5-77
Screening ..... 2-35
Screening measures ..... 2-33
Sealing power ..... 5-61
Selectivity $\rightarrow$ time selectivity ..... 7-14
Semiconductor contactors ..... 2-7
Sensitive to AC/DC ..... 7-18
Sensor belt ZEV ..... 5-68
Separate windings
Multi speed switch ..... 8-63-8-66
Speeds ..... 8-51
Separation galvanic ..... 5-2
Series resistor ..... 8-100
Shift register ..... 5-53
Short-circuit ..... 6-2
Short-circuit current, maximum ..... 2-89
Short-circuit monitoring ..... 5-72, 5-74
Short-circuit protection ..... 8-24
Short-circuit protection, RA-MO ..... 2-88
Short-circuit rating ..... 8-6
Short-circuit release ..... 6-4
Shunt release
Operating principle schematic PKZ2 ..... 6-29
PKZM01, PKZM0, PKZM4 ..... 6-9
Remote switch off PKZ2 ..... 6-20
Shunt releases
Circuit-breaker remote tripping ..... 7-3
Circuit-breakers ..... 7-17
Remote switch off ..... 7-9
Signal Towers SL ..... 3-8
Single phase motors ..... 8-4
Single-phasing sensitive ..... 6-4
Slipring rotor $\rightarrow$ Rotor automatic starter ..... 8-94
Soft starters ..... 2-7
Classification types ..... 2-18
Examples ..... 2-13
Features ..... 2-12
Soft starters DM4 ..... 2-22
Soft starters DS4 ..... 2-19
Soft starting $\rightarrow$ Soft starters ..... 2-7
Special purpose relays ..... 5-8
Speed control unit ..... 2-93
Speeds, separate windings ..... 8-51
Spring rod actuator ..... 3-10
Spring terminals ..... 5-61
Stairwell lighting ..... 5-50
Standard auxiliary contact ..... 7-5
On-Off annunciation ..... 7-13
PKZ2 ..... 6-21
Star connection ..... 2-4
Star connection, motor ..... 2-75

## Alphabetical index

Star-delta
Bridging during starting ..... 8-8
General ..... 2-5
Marking ..... 8-23
Motor start ..... 2-11
Multi-speed contactor ..... 8-72
Of three-phase motors ..... 8-37-8-45
Rotary switches ..... 4-6
SDAINL ..... 8-39-8-42
With overload relay ..... 8-37
With PKZ2 ..... 8-46-8-48
Starting with PKZ2 ..... 8-32-8-35
Step switches
Changeover switches ..... 4-16
ON-OFF switches, ..... 4-16
Stay-put switches ..... 4-16
Sucosoft ..... 1-2
Summation current transformer ..... 5-67
Suppressor
Diodes ..... 5-4
RC ..... 5-4
Varistor ..... 5-4
Suppressor circuits ..... 5-4
integrated ..... 5-61
Plug-in ..... 5-61
10 Swiss accident prevention authority (SUVA) ..... 3-10
Switch position indication ..... 4-4
Switch position indication circuit-breaker ..... 7-13
Switch-disconnectors
ATEX approval ..... 4-18
Mounting forms ..... 4-2
Use ..... 4-2
Switching of capacitors ..... 8-98-8-101
Switching on three-phase motors ..... 8-24-8-31
System-protective circuit-breakers ..... 6-2
T
Tapped winding ..... 8-9
3 speeds ..... 8-52
4 speeds ..... 8-53
Feed drive ..... 8-30
Marking ..... 8-23
Multi speed switch ..... 8-59-8-62
Multi speed switch star-delta ..... 8-72-8-86
Pole-changing motors ..... 8-51
Tapped winding arrangement Rotary switches ..... 4-7-4-10
Temperature compensated ..... 6-4
Temperature monitoring ..... 8-11
Terminal assignment ..... 7-22
Terminal assignment, XC100/XC200 ..... 1-14
Test authorities and approval stamps ..... 9-32
Text display $\rightarrow$ xSystem networking ..... 1-11
Text operator panel ..... 1-12
Thermal overload relays ..... 5-64
Thermistor ..... 8-11
Thermistor machine protection device ..... 5-74
Thermistor monitored ..... 5-70
Thermistor motor protection ..... 5-71
Thermistor protection ..... 5-71
Three-phase asynchronous motors ..... 2-3
Three-phase automatic rotor starters ..... 8-94-8-97
Three-phase automatic starters ..... 8-13
Engineering ..... 8-13
Features ..... 8-14
Rotor automatic starter ..... 8-13
Three-phase automatic stator starters ..... 8-89-8-93
Three-phase motors ..... 2-3
Multi speed switch ..... 8-59-8-66
Three-phase motors star-delta Multi speed switch ..... 8-72-8-86
Three-wire control ..... 7-16
Time selectivity circuit-breaker ..... 7-14
Timing relays, functions ..... 5-8
Tool-less ..... 6-5
Touch panel
$\rightarrow$ Embedded HMI-PLC ..... 1-13
$\rightarrow$ Touch operator panel ..... 1-12

## Alphabetical index

Transformer switch circuit-breaker ..... 7-17
Transformer-protective circuit-breaker ..... 6-5
Trip-indicating auxiliary contact ..... 7-5
PKZ2 ..... 6-21
PKZM01, PKZM0, PKZM4 ..... 6-8
Trip-indicating auxiliary contact circuit-breaker ..... 7-5
Tripping characteristics
Motors protection system ..... 5-69
Overload relay ..... 5-65
Tripping CLASS ..... 5-67
Two-wire control ..... 7-16
U
U coil ..... 6-9
U/f inverters $\rightarrow$ Frequency inverters ..... 2-7
Unbalanced current consumtion ..... 5-67
Undervoltage release
Circuit-breakers ..... 7-17
Interlocking of several circuit-breakers ..... 7-12
Off-delayed ..... 7-4
PKZ2 ..... 6-20
PKZM01, PKZM0, PKZM4 ..... 6-9
Remote switch off ..... 7-9
Shut off ..... 7-11
Starting interlock ..... 7-11
10 UPIL ..... 8-59
Use or reactor capacitor ..... 8-16
Utilisation categories for contactors ..... 9-70
Utilisation categories for switch-disconnectors ..... 9-74, 9-75
V
Varistor suppressor ..... 5-4
Vector control ..... 2-29
Vector frequency inverters ..... 2-7
Version E contactor relays ..... 5-3
VHI ..... 7-6
Visualisation with MFD Titan ..... 5-56
Voltage releasesInterlock with undervoltage release7-12
Off-delayed undervoltage release ..... 7-4
PKZ2 ..... 6-20
PKZM01, PKZM0, PKZM4 ..... 6-9
Remote switch-off with shunt release ..... 7-9
Shunt releases ..... 7-3
Shut off, undervoltage release ..... 7-11
Starting interlock of the undervoltage release ..... 7-11
Undervoltage release ..... 7-4
Undervoltage release with remote switch off ..... 7-9
w
Wiring diagram ..... 8-18
easy ..... 5-41
Functions easy ..... 5-49
Stairwell lighting ..... 5-50
X
XC modular PLC $\rightarrow$ Networking xSystem ..... 1-11
XC100/XC200 ..... 1-14
XC100/XC200 interface assignment RS 232 ..... 1-15
XI/ON ..... 1-6
$\mathrm{XI} / \mathrm{ON} \rightarrow$ I/Oassistant engineering software ..... 1-7
XI/ON modular I/O system ..... 1-6
XOR circuit ..... 5-46
XSoft ..... 1-5
xStart motor starters ..... 1-8
xStart networkable motor starters ..... 1-8
xStart-XS1 network motor starters ..... 1-8
xSystem, system components ..... 1-4
ZZEV5-67-5-73

Notes


[^0]:    Moeller Wiring Manual 02/05

[^1]:    Moeller Wiring Manual 02/05

[^2]:    * 0.3 at NZM74

[^3]:    $\star \rightarrow$ Table, Page 9-41

[^4]:    * $\rightarrow$ Table, Page 9-41

[^5]:    ${ }^{*} \rightarrow$ Table, Page 9-41

[^6]:    $\star \rightarrow$ Table, Page 9-41

[^7]:    1) PEN conductor $\geqq 10 \mathrm{~mm}^{2} \mathrm{Cu}$ or $18 \mathrm{~mm}^{2} \mathrm{Al}$.
    ${ }^{2)}$ It is not permissible to lay aluminium conductors without protection.
    2) With phase conductors of $\geqq 95 \mathrm{~mm}^{2}$ or more, it is advisable to use non-insulted conductors
