

Ceramic Paste #182-6352 (AU) RS Components

Chemwatch: 5588-07 Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **13/01/2023** Print Date: **12/01/2023** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Ceramic Paste #182-6352 (AU)
Chemical Name	Not Applicable
Synonyms	Product Code: 182-6352
Proper shipping name	CORROSIVE LIQUID, N.O.S. (contains calcium hydroxide)
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Lubricants.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	RS Components	
Address	25 Pavesi Street Smithfield NSW 2164 Australia	
Telephone	+1 300 656 636	
Fax	+1 300 656 696	
Website	www.au.rs-online.com	
Email	Not Available	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Chemwatch Hazard Ratings

	Min	Max	
Flammability	1	IVIGA I	
Toxicity	2		0 = Minimum
Body Contact	3	- :	1 = Low
Reactivity	1		2 = Moderate
Chronic	3	i	3 = High 4 = Extreme

Poisons Schedule	Not Applicable	
Classification [1]	Corrosive to Metals Category 1, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Germ Cell Mutagenicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Issue Date: **13/01/2023**Print Date: **12/01/2023**

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H290	May be corrosive to metals.	
H314	Causes severe skin burns and eye damage.	
H335	May cause respiratory irritation.	
H336	May cause drowsiness or dizziness.	
H341	Suspected of causing genetic defects.	
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P234	Keep only in original packaging.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P310	Immediately call a POISON CENTER/doctor/physician/first aider.	
P363	Wash contaminated clothing before reuse.	
P390	Absorb spillage to prevent material damage.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1305-62-0	25-50	calcium hydroxide
64742-54-7.	25-50	paraffinic distillate, heavy, hydrotreated (severe)
13463-67-7	10-25	titanium dioxide
64741-88-4.	5-15	paraffinic distillate, heavy, solvent-refined (severe)
Not Available	<1	molybdenum dialkyldithiophosphate complex
Legend:	Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes:

Eye Contact

Immediately hold eyelids apart and flush the eye continuously with running water.

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.

Chemwatch: 5588-07 Page 3 of 17 Issue Date: 13/01/2023 Version No: 2.1 Print Date: 12/01/2023

Ceramic Paste #182-6352 (AU)

	 Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. ((CSC13719)
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- · After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

- Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product.
- In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases
- High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.

NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used. Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- ▶ Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Chemwatch: 5588-07 Page 4 of 17 Issue Date: 13/01/2023 Version No: 2.1 Print Date: 12/01/2023

Ceramic Paste #182-6352 (AU)

Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. ▶ Prevent, by any means available, spillage from entering drains or water course. ▶ Use fire fighting procedures suitable for surrounding area. Fire Fighting

Do not approach containers suspected to be hot.

- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- ▶ Equipment should be thoroughly decontaminated after use
- Combustible.
- ▶ Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Fire/Explosion Hazard

Combustion products include: carbon dioxide (CO2) phosphorus oxides (POx) sulfur oxides (SOx) metal oxides

other pyrolysis products typical of burning organic material.

May emit corrosive fumes

CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

HAZCHEM

2X

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Slippery when spilt. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Slippery when spilt. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

Containers, even those that have been emptied, may contain explosive vapours. ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Avoid contact with moisture.
 - Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke.
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Chemwatch: 5588-07 Page 5 of 17 Issue Date: 13/01/2023 Version No: 2.1 Print Date: 12/01/2023

Ceramic Paste #182-6352 (AU)

- Store in original containers.
- Keep containers securely sealed.
- ▶ No smoking, naked lights or ignition sources.
- Other information Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.

 - Protect containers against physical damage and check regularly for leaks.
 Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- ▶ DO NOT use aluminium or galvanised containers
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
- ► low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.
- ▶ Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	calcium hydroxide	Calcium hydroxide	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	paraffinic distillate, heavy, hydrotreated (severe)	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	titanium dioxide	Titanium dioxide	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	paraffinic distillate, heavy, solvent-refined (severe)	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
calcium hydroxide	15 mg/m3	240 mg/m3	1,500 mg/m3
paraffinic distillate, heavy, hydrotreated (severe)	140 mg/m3	1,500 mg/m3	8,900 mg/m3
titanium dioxide	30 mg/m3	330 mg/m3	2,000 mg/m3
paraffinic distillate, heavy, solvent-refined (severe)	140 mg/m3	1,500 mg/m3	8,900 mg/m3

Ingredient	Original IDLH	Revised IDLH
calcium hydroxide	Not Available	Not Available
paraffinic distillate, heavy, hydrotreated (severe)	2,500 mg/m3	Not Available
titanium dioxide	5,000 mg/m3	Not Available
paraffinic distillate, heavy, solvent-refined (severe)	2,500 mg/m3	Not Available
molybdenum dialkyldithiophosphate complex	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
molybdenum dialkyldithiophosphate complex	Е	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

NOTE L: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 3% DMSO extract as measured by IP 346.

Chemwatch: 5588-07 Version No: 2.1

Page 6 of 17

Ceramic Paste #182-6352 (AU)

Issue Date: **13/01/2023**Print Date: **12/01/2023**

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- ▶ Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- ▶ Alternatively a gas mask may replace splash goggles and face shields.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Eye and face protection

See Hand protection below

- ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- ▶ Elbow length PVC gloves

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

Hands/feet protection

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Chemwatch: **5588-07** Page **7** of **17** Issue Date: **13/01/2023**Version No: **2.1** Print Date: **12/01/2023**

Ceramic Paste #182-6352 (AU)

· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended. · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: · Excellent when breakthrough time > 480 min · Good when breakthrough time > 20 min · Fair when breakthrough time < 20 min · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Body protection

See Other protection below

- Overalls.
- PVC Apron.
- Other protection
- ▶ PVC protective suit may be required if exposure severe.
- Eyewash unit.
- ▶ Ensure there is ready access to a safety shower.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Ceramic Paste #182-6352 (AU)

Material	СРІ
NATURAL RUBBER	Α
NATURAL+NEOPRENE	Α

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- · The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required.

Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates.

Chemwatch: 5588-07 Issue Date: 13/01/2023 Page 8 of 17 Print Date: 12/01/2023 Version No: 2.1

Ceramic Paste #182-6352 (AU)

Filtration rate: Filters at least 99.95% of airborne particles

Suitable for:

- \cdot Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- \cdot Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- \cdot Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS
- $\cdot \ \text{Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos}$ Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating. 76ak-p()

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Appearance White paste with characteristic odour; does not mix with water.			
Think pasts that states of the trink that the states.				
Physical state	Liquid	Relative density (Water = 1)	1.42	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	>200	
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	>200	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	<110 @20C	Gas group	Not Available	
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Minor exposures / slow dissolution of calcium hydroxide, in body fluids in the upper respiratory tract and lungs may produce delayed severe irritation or burning sensation. Severe acute dust inhalation may produce laryngitis and pulmonary oedema. Inhalation hazard is increased at higher temperatures.

Inhaled

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations.

Chemwatch: **5588-07** Page **9** of **17** Issue Date: **13/01/2023**Version No: **2.1** Print Date: **12/01/2023**

Ceramic Paste #182-6352 (AU)

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual

Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales.

Ingestion

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

Skin Contact

The material can produce chemical burns following direct contact with the skin.

In the presence of moisture calcium hydroxide (slaked lime) is a caustic irritant and can be damaging to human tissue. Skin contact may result in severe burns and blistering, depending on duration of contact.

Reactions may not occur on exposure but response may be delayed with symptoms only appearing many hours later

Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eve

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Eye contact with calcium hydroxide may result in severe irritation and pain. The material may induce ulcerations of the corneal epithelium

Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin absorption.

Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipoid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis.

Many studies have linked cancers of the skin and scrotum with mineral oil exposure. Contaminants in the form of additives and the polycyclic aromatic hydrocarbons (PAHs - as in the crude base stock) are probably responsible. PAH levels are higher in aromatic process oils/used /reclaimed motor oils. Subchronic 90-day feeding studies conducted on male and female rats on highly refined white mineral oils and waxes found that higher molecular-weight hydrocarbons (microcrystalline waxes and the higher viscosity oils) were without biological effects. Paraffin waxes and low- to mid viscosity oils produced biological effects that were inversely proportional to molecular weight, viscosity and melting point: oil-type and processing did not appear to be determinants. Biological effects were more pronounced in females than in males. Effects occurred mainly in the liver and mesenteric lymph nodes and included increased organ weights, microscopic inflammatory changes, and evidence for the presence of saturated mineral hydrocarbons in affected tissues. Inflammation of the cardiac mitral valve was also observed at high doses in rats treated with paraffin waxes.

Smith J.H., et al: Toxicologic Pathology: 24, 2, 214-230, 1996

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Chronic

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Chronic exposure to calcium hydroxide may result in narrowing of the esophagus, with difficulty in swallowing. This may happen after weeks, months or years of exposure.

Long term exposure to the dusts of titanium and several of its compounds produces chronic lung disease (fibrosis) in animals. Radiological evidence exists amongst titanium dioxide workers suggesting chronic lung changes which resemble a slight form of silicosis. Workers chronically exposed to titanium or titanium dioxide dusts show a high incidence of chronic bronchitis (endobronchitis and peribronchitis). Early stages of this disease are characterised by impaired pulmonary respiration and ventilatory capacity and by reduced blood alkalinity. Cardiac changes characteristic of pulmonary disease (with hypertrophy of the right auricle) have also been observed amongst workers.

Titanium employed in implants has provoked immune responses which occur locally as metallosis and systemically as raised serum levels of activated T-lymphocytes. Some concern has been expressed about the potential for generating bone-resorbing mediators associated with titanium wear-debris.

The largest of the cohort studies was among white male production workers in the titanium dioxide industry in six European countries. The study indicated a slightly increased risk for lung cancer compared with the general population. However, there was no evidence of an exposure-response relationship within the cohort. No increase in the mortality rates for kidney cancer was found when the cohort was compared with the

Chemwatch: 5588-07 Page 10 of 17 Issue Date: 13/01/2023 Version No: 2.1

Ceramic Paste #182-6352 (AU)

Print Date: 12/01/2023

general population, but there was a suggestion of an exposure-response relationship in internal analyses. The other cohort studies, both of which were conducted in the USA, did not report an increased risk for lung cancer or cancer at any other site; no results for kidney cancer were reported, presumably because there were few cases.

One population-based case-control study conducted in Montreal did not indicate an increased risk for lung or kidney cancer.

In summary, the studies do not suggest an association between occupational exposure to titanium dioxide as it occurred in recent decades in western Europe and North America and risk for cancer.

All the studies had methodological limitations; misclassification of exposure could not be ruled out. None of the studies was designed to assess the impact of particle size (fine or ultrafine) or the potential effect of the coating compounds on the risk for lung cancer.

An increased incidence of lung adenomas in rats of both sexes and of cystic keratinising lesions, diagnosed as squamous cell carcinomas in female rats, was seen in animals subject to high doses of inhaled titanium dioxide. Intratracheal delivery of titanium dioxide in combination with benz[a]pyrene produced an increase in benign and malignant tumours of the larynx, trachea and lungs in hamsters.

Squamous cell carcinomas developed after exposure to 250 mg/m3 for 6 hours/day, 5 days/week for 2 years in rats; the type of carcinoma that developed was considered to be a unique experimentally induced tumour and to be of questionable relevance for extrapolation of the results to humans. Given the extremely high level of dust in the lungs, the carcinomas were postulated to be the result of saturation of the normal pulmonary clearance mechanisms. At 50 mg/m3, massive accumulations of dust-laden macrophages, foamy dust cells and free particles were considered indicative of such overload.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

	TOXICITY	IRRITATION	
Ceramic Paste #182-6352 (AU)	Not Available	Not Available	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 10 mg - SEVERE	
calcium hydroxide	Inhalation(Rat) LC50: >3 mg/l4h ^[1]	Eye: adverse effect observed (irritating) ^[1]	
	Oral (Rat) LD50; >2000 mg/kg ^[1]	Skin: adverse effect observed (irritating) ^[1]	
	TOXICITY	IRRITATION	
paraffinic distillate, heavy,	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
hydrotreated (severe)	Inhalation(Rat) LC50: 2.18 mg/l4h ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; >5000 mg/kg ^[2]		
	TOXICITY	IRRITATION	
	dermal (hamster) LD50: >=10000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
titanium dioxide	Inhalation(Rat) LC50: >2.28 mg/l4h ^[1]	Skin (human): 0.3 mg /3D (int)-mild *	
	Oral (Rat) LD50; >=2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
paraffinic distillate, heavy,	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
solvent-refined (severe)	Inhalation(Rat) LC50: 2.18 mg/l4h ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; >5000 mg/kg ^[2]		
	TOXICITY	IRRITATION	
molybdenum dialkyldithiophosphate	Dermal (rabbit) LD50: 10000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
complex	Oral (Rat) LD50; 6810 mg/kg ^[1]	Skin: adverse effect observed (irritating) ^[1]	
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

CALCIUM HYDROXIDE

TITANIUM DIOXIDE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Humans can be exposed to titanium dioxide via inhalation, ingestion or dermal contact. In human lungs, the clearance kinetics of titanium dioxide is poorly characterized relative to that in experimental animals. (General particle characteristics and host factors that are considered to affect deposition and retention patterns of inhaled, poorly soluble particles such as titanium dioxide are summarized in the monograph on carbon black.) With regard to inhaled titanium dioxide, human data are mainly available from case reports that showed deposits of titanium dioxide in lung tissue as well as in lymph nodes. A single clinical study of oral ingestion of fine titanium dioxide showed particle size-dependent absorption by the gastrointestinal tract and large interindividual variations in blood levels of titanium dioxide. Studies on the application of sunscreens containing ultrafine titanium dioxide to healthy skin of human volunteers revealed that titanium dioxide particles only penetrate into the outermost layers of the stratum corneum, suggesting that healthy skin is an effective barrier to titanium dioxide. There are no studies on penetration of titanium dioxide in compromised skin.

Respiratory effects that have been observed among groups of titanium dioxide-exposed workers include decline in lung function, pleural disease with plaques and pleural thickening, and mild fibrotic changes. However, the workers in these studies were also exposed to asbestos and/or silica

No data were available on genotoxic effects in titanium dioxide-exposed humans.

Many data on deposition, retention and clearance of titanium dioxide in experimental animals are available for the inhalation route. Titanium dioxide inhalation studies showed differences — both for normalized pulmonary burden (deposited mass per dry lung, mass per body weight) and clearance kinetics — among rodent species including rats of different size, age and strain. Clearance of titanium dioxide is also affected by

Chemwatch: **5588-07** Page **11** of **17** Issue Date: **13/01/2023**Version No: **2.1** Print Date: **12/01/2023**

Ceramic Paste #182-6352 (AU)

pre-exposure to gaseous pollutants or co-exposure to cytotoxic aerosols. Differences in dose rate or clearance kinetics and the appearance of focal areas of high particle burden have been implicated in the higher toxic and inflammatory lung responses to intratracheally instilled vs inhaled titanium dioxide particles. Experimental studies with titanium dioxide have demonstrated that rodents experience dose-dependent impairment of alveolar macrophage-mediated clearance. Hamsters have the most efficient clearance of inhaled titanium dioxide. Ultrafine primary particles of titanium dioxide are more slowly cleared than their fine counterparts.

Titanium dioxide causes varying degrees of inflammation and associated pulmonary effects including lung epithelial cell injury, cholesterol granulomas and fibrosis. Rodents experience stronger pulmonary effects after exposure to ultrafine titanium dioxide particles compared with fine particles on a mass basis. These differences are related to lung burden in terms of particle surface area, and are considered to result from impaired phagocytosis and sequestration of ultrafine particles into the interstitium.

Fine titanium dioxide particles show minimal cytotoxicity to and inflammatory/pro-fibrotic mediator release from primary human alveolar macrophages in vitro compared with other particles. Ultrafine titanium dioxide particles inhibit phagocytosis of alveolar macrophages in vitro at mass dose concentrations at which this effect does not occur with fine titanium dioxide. In-vitro studies with fine and ultrafine titanium dioxide and purified DNA show induction of DNA damage that is suggestive of the generation of reactive oxygen species by both particle types. This effect is stronger for ultrafine than for fine titanium oxide, and is markedly enhanced by exposure to simulated sunlight/ultraviolet light.

Animal carcinogenicity data

Pigmentary and ultrafine titanium dioxide were tested for carcinogenicity by oral administration in mice and rats, by inhalation in rats and female mice, by intratracheal administration in hamsters and female rats and mice, by subcutaneous injection in rats and by intraperitoneal administration in male mice and female rats.

In one inhalation study, the incidence of benign and malignant lung tumours was increased in female rats. In another inhalation study, the incidences of lung adenomas were increased in the high-dose groups of male and female rats. Cystic keratinizing lesions that were diagnosed as squamous-cell carcinomas but re-evaluated as non-neoplastic pulmonary keratinizing cysts were also observed in the high-dose groups of female rats. Two inhalation studies in rats and one in female mice were negative.

Intratracheally instilled female rats showed an increased incidence of both benign and malignant lung tumours following treatment with two types of titanium dioxide. Tumour incidence was not increased in intratracheally instilled hamsters and female mice.

In-vivo studies have shown enhanced micronucleus formation in bone marrow and peripheral blood lymphocytes of intraperitoneally instilled mice. Increased Hprt mutations were seen in lung epithelial cells isolated from titanium dioxide-instilled rats. In another study, no enhanced oxidative DNA damage was observed in lung tissues of rats that were intratracheally instilled with titanium dioxide. The results of most in-vitro genotoxicity studies with titanium dioxide were negative.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. For dithiophosphate alkyl esters and their (zinc) salts:

Acute toxicity: Dithiophosphate alkyl esters consist of a phosphorodithioic acid structure with alkyl ester substituent groups. The alkyl groups are saturated hydrocarbon chains that vary in length and extent of branching. While corrosive to tissue the esters demonstrate a low concern for acute systemic toxicity. Data on acute mammalian toxicity of zinc dialkyldithiophosphates in highly refined lubricant base oil also indicate a low concern for acute toxicity. Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute oral toxicity. The acute oral LD50 for these studies in rats ranged from 2000-3500 mg/kg. Clinical signs observed following treatment included diarrhea, lethargy, reduced food consumption, and staining about the nose and eye. Ptosis, piloerection, ataxia and salivation were occasionally observed. The incidence and severity of these symptoms were proportional to the dose. In many cases the effects were found to be reversible during observation week 2. Necropsy findings were few in number. Lung congestion, gastrointestinal irritation and a reduction in body fat were observed in some animals.

Acute dermal toxicity and irritation studies using the ester on experimental animals resulted in severe dermal irritation and corrosivity. There is minimal opportunity of human exposure to the chemicals in this category. Dithiophosphate alkyl esters exhibit extreme corrosive properties on obtain

Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute dermal toxicity. The acute dermal LD50s for these studies in rabbits were greater than 2000 mg/kg (limit tests). No treatment-related mortality was observed at doses ranging from 2000-8000 mg/kg. Dermal application of the test materials to abraded skin for 24 hours typically produced moderate-to-severe erythema and edema, which in some cases persisted through the 14-day observation period. Clinical signs included varying degrees of reduced food consumption, weight loss, diarrhea, lethargy, ataxia, ptosis, motor incoordination and/or loss of righting reflex. There were no remarkable gross necropsy observations. Overall, the acute dermal LD50 for these substances were greater than 2000 mg/kg indicative of a relatively low order of lethal toxicity. Zinc dialkyldithiophosphates are high molecular weight components (average > 500 gm/mol), which generally accepted that the molecular weight limit for passive transport across biological membranes. Thus, upon exposure it is unlikely that significant amounts of these components will be absorbed for systemic distribution. In addition, these materials have a low water solubility that further inhibits absorption and distribution in the mammalian system.

The negligible vapor pressure and high viscosity at ambient temperature indicates that these materials are unlikely to represent an inhalation exposure under conditions of use

Repeat dose toxicity: Data from several repeated-dose toxicity studies using commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil has been reviewed. Repeated dermal exposure to experimental animals resulted in moderate-to-severe dermal irritation, behavioral distress, body weight loss and emaciation, reduction in hematological parameters and adverse effects on male reproductive organs. These effects were observed across several members of the category with carbon chain lengths ranging from C4-8. There was no evidence that the incremental increase in carbon chain length or molecular weight could be correlated with significant changes in toxicity

Oral administration caused significant gastric irritation and related gastrointestinal disturbances, signs of distress but with no evidence of adverse effects on male reproductive organs.

Reproductive toxicity: An epidemiological study on workers exposed to oil-based zinc dialkyldithiophosphates (range C4-8) in an additive manufacturing plant revealed no adverse effects on worker reproductive health. Review of the available information underscores the similarity of clinical and pathological findings in repeated-dose dermal toxicity studies with C4-10 zinc dialkyldithiophosphates, as well as the absence of reproduction and developmental toxicity and the lack of untoward findings in a human epidemiological investigation. Reproductive organ effects, following dermal application, have been observed in male rabbits; these are attributed to the stress associated with the severe dermal responses to the test material, rather than direct a systemic response to the test materials. Changes in male reproductive organs in the rabbit have been observed when other irritating substances are applied to the skin at dose levels that cause skin lesions. Thus, dermal irritation alone, or in combination with the accompanying weight loss and stress, is thought to play a role in the reproductive organ response to repeated cutaneous application of zinc dialkyldithiophosphates.

Mutagenicity: Findings indicate that commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil have a small potential for inducing genetic toxicity. In vitro bacterial gene mutation assays, in vitro mammalian gene mutation assays, or in vivo chromosomal aberration assays have been conducted. Frequencies of reverse mutations in bacteria were not significantly changed after exposure to the zinc dialkyldithiophosphates. In vitro mutation studies in mammalian cells indicate that the zinc dialkyldithiophosphates do not consistently display

MOLYBDENUM DIALKYLDITHIOPHOSPHATE COMPLEX Chemwatch: **5588-07** Page **12** of **17** Issue Date: **13/01/2023**Version No: **2.1** Print Date: **12/01/2023**

Ceramic Paste #182-6352 (AU)

mutagenic activity in the absence of metabolic activation, however, upon biotransformation, these materials showed mutagenic activity. The findings in bacterial and mammalian cells did not vary in proportion to the alkyl chain length or any other physicochemical parameter. The results of the studies performed in the absence of hepatic microsome activation were inconsistent, but in general indicating that zinc dialkyldithiophosphates have mutagenic potential (3 studies negative, 3 studies positive in the absence of metabolic activation). However, the weight of evidence (2 studies positive, 1 study negative) indicates that metabolic activation of zinc dialkyldithiophosphates by induced hepatic microsomal enzymes results in a significant increase in the mutagenic potential of this class of chemical substances.

Following application to the skin of rabbits under a closed patch, a single application of the test item produced no eschar formation, and minimal transient edema in one of six rabbits. Erythema could not be evaluated due to an intense green staining of the skin. A single application of the test item to the eyes of albino rabbits produced mild conjunctivitis in four animals and moderate conjunctivitis in the remaining two animals that did not meet GHS criteria for classification. No effects on the cornea or iris were noted. A study was performed to assess the skin sensitization potential of the test item in the CBA/Ca strain mouse following topical application to the dorsal surface of the ear. Under the conditions of the test, the test item was considered to be a moderate skin sensitizer with an EC3 of 8.5%. In a combined repeat dose toxicity study (OECD 422), under GLP conditions, the test substance did induce repeat dose toxicity, although reproductive and developmental toxicity was not affected in male and female rats. The repeat dose no adverse effect level (NOAEL) was considered to be 100 mg/kg/day due to adverse body weight changes, organ weight changes and microscopic findings of hepatocellular hypertrophy. The 700 mg/kg/day dose was the NOAEL for both the females and males for reproductive toxicity. The 700 mg/kg/day dose was the NOAEL for the development of the offspring. Bacterial gene mutation test: A study was conducted to the standardized OECD 471 guideline, under GLP conditions. The test item was negative for the ability to induce reverse mutations at selected loci of several strains of Salmonella typhimurium and at the tryptophan locus of Escherichia coli strain WP2 uvrA in the presence and absence of an exogenous metabolic activation system In vitro micronucleus test: A study was conducted to the standardized OECD 487 guideline, under GLP conditions. The test item was negative for the induction of micronuclei in the presence and absence of the exogenous metabolic activation system In vitro gene mutation in mammalian cells test: A study was conducted to the standardized OECD 490 guideline, under GLP conditions. The test item was negative for the ability to induce forward mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells, in the presence and absence of an exogenous metabolic activation system * REACh Dossier

CALCIUM HYDROXIDE & TITANIUM DIOXIDE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives;

The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- · The adverse effects of these materials are associated with undesirable components, and
- · The levels of the undesirable components are inversely related to the degree of processing;
- $\cdot \ \text{Distillate base oils receiving the same degree or extent of processing will have similar toxicities};\\$
- $\cdot \ \, \text{The potential toxicity of } \textit{residual base oils} \ \text{is independent of the degree of processing the oil receives}.$
- The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of lubricant base oils, hydrotreatment and / or solvent extraction methods can yield oils with no carcinogenic potential.

Unrefined and mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing

Skin irritating is not significant (CONCAWE) based on 14 tests on 10 CASs from the OLBO class (Other Lubricant Base Oils). Each study lasted for 24 hours, a period of time 6 times longer than the duration recommended by the OECD method).

Eye irritation is not significant according to experimental data (CONCAWE studies) based on 9 "in vivo" tests on 7 CASs from the OLBO

class (Other Lubricant Base Oils).

Sensitisation: The substance does not cause the sensitization of the respiratory tract or of the skin. (CONCAWE studies based on 14 tests on 11 CASs from the OLBO class(Other Lubricant Base Oils))

Germ cell mutagenicity: The tests performed within the 'in vivo" studies regarding gene mutation at mice micronuclei indicated negative results (CONCAWE studies. AMES tests had negative results in 7 studies performed on 4 CASs from the OLBO class(Other Lubricant Base Oils)). Reproduction toxicity: Reproduction / development toxicity monitoring according to OECD 421 or 422 methods. CONCAWE tests gave negative results in oral gavage studies. Pre-birth studies regarding toxicity in the unborn foetus development process showed a maternal LOAEL (Lowest Observed Adverse Effect Level) of 125 mg/kg body/day, based on dermal irritation and a NOAEL (No Observable Adverse Effect Level) of 2000 mg/kg body/day, which shows that the substance

is not toxic for reproduction.

STOT (toxicity on specific target organs) – repeated exposure: Studies with short term repeated doses (28-day test) on rabbit skin indicated the NOAEL value of 1000 mg/kg. NOAEL for inhalation, local effects > 280 mg/m3 and for systemic effects NOAEL > 980 mg/m3. Sub-chronic toxicity

90-day study Dermal: NOAEL > 2000 mg/kg (CONCAWE studies).

Repeat dose toxicity:

Oral

NOAEL for heavy paraffinic distillate aromatic extract could not be identified and is less than 125 mg/kg/day when administered orally. Inhalation

The NOAEL for lung changes associated with oil deposition in the lungs was 220 mg/m3. As no systemic toxicity was observed, the overall NOAEL for systemic effects was > 980 mg/m3.

Dermal

In a 90 day subchronic dermal study, the administration of Light paraffinic distillate solvent extract had an adverse effect on survivability, body weights, organ weights (particularly the liver and thymus), and variety of haematology and serum chemistry parameters in exposed animals. Histopathological changes which were treatment-related were most prominent in the adrenals, bone marrow, kidneys, liver, lymph nodes, skin, stomach, and thymus. Based on the results of this study, the NOAEL for the test material is less than 30 mg/kg/day. Toxicity to reproduction:

Mineral oil (a white mineral oil) caused no reproductive or developmental toxicity with 1 mL/kg/day (i.e., 1000 mg/kg/day) in an OECD 421 guideline study, but did cause mild to moderate skin irritation. Therefore, the reproductive/developmental NOAEL for this study is =1000 mg/kg/day and no LOAEL was determined.

Developmental toxicity, teratogenicity:

Heavy paraffinic distillate furtural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day and higher) and aberrant

PARAFFINIC DISTILLATE, HEAVY, HYDROTREATED (SEVERE) & PARAFFINIC DISTILLATE, HEAVY, SOLVENT-REFINED (SEVERE) Chemwatch: **5588-07** Page **13** of **17**Version No: **2.1**

Ceramic Paste #182-6352 (AU)

Issue Date: **13/01/2023**Print Date: **12/01/2023**

haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE.

The following Oil Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H361d (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic

Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and disposition profiles, the data indicate inherent strain differences in the total systemic exposure (~4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic and lymph node retention of C26H52, which may be associated with the different strain sensitivities to the formation of liver granulomas and MLN histiocytosis.

Highly and Severely Refined Distillate Base Oils

Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l.

When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative

Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil s toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of the study.

- The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive,
- The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and
- The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials.

Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study s authors. A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat.

Genotoxicity

In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices.

In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells.

Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

TITANIUM DIOXIDE & PARAFFINIC DISTILLATE, HEAVY, SOLVENT-REFINED (SEVERE)

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	✓	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

– Data available to make classification

SECTION 12 Ecological information

Toxicity

Toxicity					
Ceramic Paste #182-6352 (AU)	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
calcium hydroxide	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>14mg/l	2
	EC50	48h	Crustacea	49.1mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	14mg/l	2
	LC50	96h	Fish	33.9mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
paraffinic distillate, heavy, hydrotreated (severe)	ErC50	72h	Algae or other aquatic plants	>1000mg/l	1
	NOEC(ECx)	504h	Crustacea	>1mg/l	1
	NOEC(ECx)	504h	Crustacea	>1mg/l	

Chemwatch: **5588-07**Version No: **2.1**

Ceramic Paste #182-6352 (AU)

Issue Date: **13/01/2023**Print Date: **12/01/2023**

	EC50	48h	Crustacea	>1000mg/l	1
	EC50	96h	Algae or other aquatic plants	>1000mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1008h	Fish	<1.1-9.6	7
	EC50	72h	Algae or other aquatic plants	3.75-7.58mg/l	4
titanium dioxide	EC50	48h	Crustacea	1.9mg/l	2
	NOEC(ECx)	504h	Crustacea	0.02mg/l	4
	LC50	96h	Fish	1.85-3.06mg/l	4
	EC50	96h	Algae or other aquatic plants	179.05mg/l	2
paraffinic distillate, heavy, solvent-refined (severe)	Endpoint	Test Duration (hr)	Species	Value	Sourc
	ErC50	72h	Algae or other aquatic plants	>1000mg/l	1
	NOEC(ECx)	504h	Crustacea	>1mg/l	1
Solvent-Tenned (Severe)	EC50	48h	Crustacea	>1000mg/l	1
	EC50	96h	Algae or other aquatic plants	>1000mg/l	1
molybdenum dialkyldithiophosphate complex	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availab
	Available Extracted from	1. IUCLID Toxicity Data 2. Europe EC	Not Available HA Registered Substances - Ecotoxicological Inform Aquatic Hazard Assessment Data 6. NITE (Japan) -	Available ation - Aquatic Toxicity 4. U	A JS

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
titanium dioxide	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
titanium dioxide	LOW (BCF = 10)

Mobility in soil

Ingredient	Mobility
titanium dioxide	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

Recycle wherever possible.

- Product / Packaging disposal Cons
 - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
 - ► Treat and neutralise at an approved treatment plant.
 - Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
 - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

	· ·
Marine Pollutant	NO
HAZCHEM	2X

Land transport (ADG)

UN number

1760

Chemwatch: **5588-07** Page **15** of **17**

Ceramic Paste #182-6352 (AU)

Issue Date: **13/01/2023**Print Date: **12/01/2023**

UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains calcium hydroxide)		
Transport hazard class(es)	Class 8 Subrisk Not Applicable		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 223 274 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

Version No: 2.1

	i e			
UN number	1760			
UN proper shipping name	Corrosive liquid, n.o.s. *	(contains calcium hydroxide)		
	ICAO/IATA Class	8		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	8L		
Packing group	III			
Environmental hazard	Not Applicable			
	Special provisions	A3 A803		
	_ ' ' '			
	Cargo Only Packing Instructions		856	
Special precautions for user	Cargo Only Maximum	60 L		
	Passenger and Cargo	852		
	Passenger and Cargo	5 L		
	Passenger and Cargo Limited Quantity Packing Instructions		Y841	
	Passenger and Cargo Limited Maximum Qty / Pack		1 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1760		
UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains calcium hydroxide)		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-A, S-B Special provisions 223 274 Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
calcium hydroxide	Not Available
paraffinic distillate, heavy, hydrotreated (severe)	Not Available
titanium dioxide	Not Available
paraffinic distillate, heavy, solvent-refined (severe)	Not Available
molybdenum dialkyldithiophosphate complex	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
calcium hydroxide	Not Available
paraffinic distillate, heavy, hydrotreated (severe)	Not Available
titanium dioxide	Not Available
paraffinic distillate, heavy, solvent-refined (severe)	Not Available

Page 16 of 17 Issue Date: 13/01/2023

Ceramic Paste #182-6352 (AU)

Print Date: 12/01/2023

Product name	Ship Type
molybdenum dialkyldithiophosphate complex	Not Available

SECTION 15 Regulatory information

Version No: 2.1

Safety, health and environmental regulations / legislation specific for the substance or mixture

calcium hydroxide is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

paraffinic distillate, heavy, hydrotreated (severe) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

titanium dioxide is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)
Chemical Footprint Project - Chemicals of High Concern List
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

paraffinic distillate, heavy, solvent-refined (severe) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

molybdenum dialkyldithiophosphate complex is found on the following regulatory lists

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (calcium hydroxide; paraffinic distillate, heavy, hydrotreated (severe); paraffinic distillate, heavy, solvent-refined (severe))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	13/01/2023
Initial Date	13/01/2023

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC – STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit,

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

Continued...

Chemwatch: 5588-07 Page 17 of 17 Issue Date: 13/01/2023 Version No: 2.1 Print Date: 12/01/2023

Ceramic Paste #182-6352 (AU)

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.