## ZXMN6A11Z <br> 60V SOT89 N-channel enhancement mode MOSFET

## Summary

| $\mathbf{V}_{\text {(BR)DSS }}$ | $\mathbf{R}_{\mathrm{DS} \text { (on) }}(\Omega)$ | $\mathbf{I}_{\mathbf{D}}(\mathrm{A})$ |
| :---: | :---: | :---: |
| 60 | $0.120 @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | 3.6 |
|  | $0.180 @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ | 2.9 |



## Description

This new generation trench MOSFET from Zetex features a unique structure combining the benefits of low on-resistance and fast switching, making it ideal for high efficiency power management applications.

## Features

- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- SOT89 package


## Applications

- DC-DC converters
- Power management functions
- Disconnect switches
- Motor control


## Ordering information

| Device | Reel size <br> (inches) | Tape width <br> $(\mathbf{m m})$ | Quantity per <br> reel |
| :--- | :---: | :---: | :---: |
| ZXMN6A11ZTA | 7 | 12 | 1,000 |

## Device marking

11N6


Top view

## ZXMN6A11Z

## Absolute maximum ratings

| Parameter | Symbol | Limit | Unit |
| :---: | :---: | :---: | :---: |
| Drain-source voltage | $\mathrm{V}_{\text {DSS }}$ | 60 | V |
| Gate-source voltage | $\mathrm{V}_{\mathrm{GS}}$ | $\pm 20$ | V |
| Continuous drain current <br> $@ V_{G S}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{(b)}$ <br> $@ V_{G S}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}^{(\mathrm{b})}$ <br> @ $V_{G S}=10 V ; T_{a m b}=25^{\circ} C^{(a)}$ | $\mathrm{I}_{\mathrm{D}}$ | $\begin{aligned} & 3.6 \\ & 2.9 \\ & 2.7 \end{aligned}$ | A |
| Pulsed drain current ${ }^{(c)}$ | $\mathrm{I}_{\text {DM }}$ | 14.5 | A |
| Continuous source current (body diode) ${ }^{(b)}$ | $\mathrm{I}_{S}$ | 3.7 | A |
| Pulsed source current (body diode) ${ }^{(c)}$ | $\mathrm{I}_{\text {SM }}$ | 14.5 | A |
| Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{(a)}$ Linear derating factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 1.5 \\ & 12 \end{aligned}$ | W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ |
| Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (b) Linear derating factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 2.6 \\ 21 \end{gathered}$ | $\mathrm{W}$ $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ |
| Operating and storage temperature range | $\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

## Thermal resistance

| Parameter | Symbol | Limit | Unit |
| :--- | :---: | :---: | :---: |
| Junction to ambient ${ }^{(\mathrm{a})}$ | $\mathrm{R}_{\text {ӨJA }}$ | 83.3 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to ambient $^{(\mathrm{b})}$ | $\mathrm{R}_{\text {ӨJA }}$ | 47.4 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## NOTES:

(a) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
(b) For a device surface mounted on FR4 PCB measured at $t 10 \mathrm{sec}$.
(c) Repetitive rating - $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ FR4 PCB, $D=0.02$, pulse width $300 \mu \mathrm{~s}$ - pulse width limited by maximum junction temperature.

## ZXMN6A11Z

## Typical characteristics



## ZXMN6A11Z

## Electrical characteristics (@ $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}^{\circ} \mathrm{c}$ unless otherwise stated)

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Static |  |  |  |  |  |  |
| Drain-source breakdown voltage | $\mathrm{V}_{\text {(BR) }{ }^{\text {d }} \text { SS }}$ | 60 |  |  | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| Zero gate voltage drain current | $\mathrm{I}_{\text {DSS }}$ |  |  | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |
| Gate-body leakage | $\mathrm{I}_{\text {GSS }}$ |  |  | 100 | nA | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |
| Gate-source threshold voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | 1.0 |  |  | V | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ |
| Static drain-source on-state resistance ${ }^{(*)}$ | $\mathrm{R}_{\text {DS(on) }}$ |  |  | 0.120 | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
|  |  |  |  | 0.180 | $\Omega$ | $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$ |
| Forward transconductance ${ }^{(*)}(\ddagger)$ | $\mathrm{g}_{\mathrm{fs}}$ |  | 4.9 |  | S | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
| Dynamic ${ }^{(\ddagger)}$ |  |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\text {iss }}$ |  | 330 |  | pF | $\begin{aligned} & V_{D S}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |
| Output capacitance | $\mathrm{C}_{\text {oss }}$ |  | 35.2 |  | pF |  |
| Reverse transfer capacitance | $\mathrm{C}_{\text {rss }}$ |  | 17.1 |  | pF |  |
| Switching ${ }^{(\dagger)}$ (\#) |  |  |  |  |  |  |
| Turn-on-delay time | $\mathrm{t}_{\mathrm{d} \text { (on) }}$ |  | 1.95 |  | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}} \cong 6.0 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ |
| Rise time | $\mathrm{t}_{\mathrm{r}}$ |  | 3.5 |  | ns |  |
| Turn-off delay time | $\mathrm{t}_{\mathrm{d} \text { (off) }}$ |  | 8.2 |  | ns |  |
| Fall time | $\mathrm{t}_{\mathrm{f}}$ |  | 4.6 |  | ns |  |
| Gate charge | $\mathrm{Q}_{\mathrm{g}}$ |  | 3.0 |  | nC | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \end{aligned}$ |
| Total gate charge | $\mathrm{Q}_{\mathrm{g}}$ |  | 5.7 |  | nC | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ |
| Gate-source charge | $\mathrm{O}_{\mathrm{gs}}$ |  | 1.25 |  | nC | $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ |
| Gate drain charge | $\mathrm{O}_{\mathrm{gd}}$ |  | 0.86 |  | nC |  |
| Source-drain diode |  |  |  |  |  |  |
| Diode forward voltage ${ }^{(*)}$ | $\mathrm{V}_{\text {SD }}$ |  | 0.85 | 0.95 | V | $\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=2.8 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |
| Reverse recovery time ${ }^{(\ddagger)}$ | $\mathrm{t}_{\mathrm{rr}}$ |  | 21.5 |  | ns | $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=2.5 \mathrm{~A}$, |
| Reverse recovery charge ${ }^{(\ddagger)}$ | $\mathrm{Q}_{\text {rr }}$ |  | 20.5 |  | nC | $d i / d t=100 \mathrm{~A} / \mu \mathrm{s}$ |

## NOTES:

(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.
( $\dagger$ ) Switching characteristics are independent of operating junction temperature.
$\ddagger$ For design aid only, not subject to production testing.

## ZXMN6A11Z

## Typical characteristics



## ZXMN6A11Z

## Typical characteristics



Basic gate charge waveform


Switching time waveforms



Gate charge test circuit


Switching time test circuit

## ZXMN6A11Z

Intentionally left blank

## Package outline - SOT89



| DIM | Millimeters |  | Inches |  | DIM | Millimeters |  | Inches |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |  | Min | Max | Min | Max |
| A | 1.40 | 1.60 | 0.550 | 0.630 | E | 2.29 | 2.60 | 0.090 | 0.102 |
| B | 0.44 | 0.56 | 0.017 | 0.022 | E1 | 2.13 | 2.29 | 0.084 | 0.090 |
| B1 | 0.36 | 0.48 | 0.014 | 0.019 | e | 1.50 BSC |  | 0.059 BSC |  |
| C | 0.35 | 0.44 | 0.014 | 0.017 | e1 | 3.00 BSC |  | 0.118 BSC |  |
| D | 4.40 | 4.60 | 0.173 | 0.181 | H | 3.94 | 4.25 | 0.155 | 0.167 |
| D1 | 1.52 | 1.83 | 0.064 | 0.072 | L | 0.89 | 1.20 | 0.035 | 0.047 |

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

| Europe | Americas | Asia Pacific | Corporate Headquarters |
| :--- | :--- | :--- | :--- |
| Zetex GmbH | Zetex Inc | Zetex (Asia Ltd) | Zetex Semiconductors plc |
| Kustermann-park | 700 Veterans Memorial Highway | 3701-04 Metroplaza Tower 1 | Zetex Technology Park, Chadderton |
| Balanstraße 59 | Hauppauge, NY 11788 | Hing Fong Road, Kwai Fong | OIdham, OL9 9LL |
| D-81541 München | USA | Hong Kong | United Kingdom |
| Germany |  | Telephone: (852) 26100611 | Telephone: (44) 161622 4444 |
| Telefon: (49) 89 45 49 49 0 | Telephone: (1)631 360 2222 | Fax: (852) 24250 494 <br> Fax: (49) 89 45 49 49 49 <br> europe.sales@zetex.com | Fax: (1) 631 360 8222 <br> usa.sales@zetex.com |

## For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

