High-Performance dsPIC33A Core with Floating-Point
Unit, High-Speed ADCs and High-Speed PWM

Operating Conditions

+ 3.0Vto 3.6V:-40°C to +85°C, DC to 200 MHz
+ 3.0Vto 3.6V:-40°Cto +125°C, DC to 200 MHz Planned
+ 3.0Vto 3.6V:-40°C to +150°C, DC to 200 MHz Planned

High-Performance dsPIC33A DSP/CISC CPU

+ 32-bit Rich Instruction Set for Optimized Speed and Program Code Size
- 16-bit dsPIC33 core compatible

- Non-paged linear data/Flash 24-bit addressing space
- 16-bit/32-bit instructions for optimized code size and performance
+ 32-Bit Wide Data Paths
+ Single and Double Precision Floating-Point Unit (FPU) Coprocessor
+ 2-Kbyte Instruction Cache
+ Sixteen 32-Bit Working Registers
+ Dual 72-Bit Accumulators Supporting 32-Bit and 16-Bit Fixed-Point DSP Operations
+ Eight Level Deep Working Register Sets
+ Eight Level Deep Accumulator Register Sets
+ Eight Level Deep Floating-Point Register Sets

Memory Features

+ Upto 512 Kbytes of Program Flash Memory
- Ten thousand erase/write cycle endurance
- Twenty years minimum data retention
- Self-programmable under software control
- Programmable code protection
- Flash Error Correcting Code (ECC)
- Dual Flash panel
- Live update support
- Programmable OTP regions
- Entire Flash OTP by ICSP™ write inhibit
- Separate 64x128-bit OTP for secure key storage
- Flash Built-In Self-Test (NVMBIST)
+ Up to 64 Kbytes of Static RAM Memory
- 8-channel hardware Direct Memory Access (DMA) module

ls\ MICROCHIP

https://microchip.com

- RAM Error Correcting Code (ECC)
- RAM Memory Built-In Self-Test (MBIST)

Security Features

+ Flash OTP by ICSP Write Inhibit

+ On-Chip Secure Boot Flash Configurable as an Immutable Root-of-Trust
- Parts of the Flash memory can be configured as OTP
+ Capable of
- Secure boot support: Validation of host code image and host code signature validation
- Secure update support for host code: Secure encryption key storage and image decryption
- X.509 certification storage, parsing, validation and revocation, supporting both ECC and RSA
+ 128-bit Unique Device Serial Number for Identification (UUID)

+ Support for Secure Use Cases:
- Secure boot

- Key Storage in IRT/Immutable secure boot region for realizing:
+ Secure boot

+ Secure firmware update
+ Secure debug
- Secure debugging
* Flash Protection
Configuration of up to eight Flash protection regions across ranges of Flash addresses

Regions can be configured as
* Immutable Root-of-Trust (IRT)
+ OTP region
+ A combination of R/W/X protections.

Regions can be
+ Made permanent
* Locked until device Reset
+ Enabled/disabled during code execution

Flash protection regions can apply to
+ The active partition
+ The inactive partition
+ Both
+ Cryptographic Accelerator
- AES-128, AES-192 and AES-256: Fully compliant with NIST FIPS 197
+ ECB, CBC, CFB, OFB, CTR, GCM, CCM, XTS and CMAC Modes
- HASH/HMAC
+ SHA-1, SHA-256, SHA-224, SHA-384 and SHA-512 capability
- Public Key Cryptography: RSA, DSA and ECC
* RSA with/without Chinese Remainder Theorem (CRT); up to a 4096-bit key length
« DSA support up to a 2048-bit key length
+ ECDSA Sign/Verify with

@ MICROCHIP

- Prime field P-192, P-224, P-256, P-384, P-521
- Binary field K-163, K-233, K-283, K-409, K-571
- Binary field B-163, B-233, B-283, B-409, B-571
EdDSA with Edwards Curves
+ JPAKE and SRP-based password authenticated key exchange protocols

+ Rabin Miller primality test
* Elliptic Curve Diffie Hellman (ECDH/ECDHE) key agreement

- NIST-800-22 and NIST-800-90B compliant True Random Number Generator (TRNG)
- Key generation compliant with NIST-800-133 and NIST-186-4
- CAVP certification capable

High-Speed PWM

+ Multiple PWM Generators
- dsPIC33AK512MPS512 Family devices
« Eight pair (16 output) generators with Fine Edge Placement (FEP) resolution down to 78 ps
+ Four pair (eight output) generators with resolution down to 1.25 ns

- dsPIC33AK512MC510 Family devices
+ Twelve pair (24 output) generators with resolution down to 1.25 ns

« Dead Time for Rising and Falling Edges
+ Dead-Time Compensation Supports Lower Speed Operation

* PWM Support for
- BLDC, PMSM, ACIM, SRM and stepper motors

- Constant on-time, hysteretic, Burst-mode power applications
+ Fault and Current Limit Inputs
+ Flexible Trigger Configuration for ADC Triggering

High-Speed Analog-to-Digital Converters

+ Five 12-Bit Resolution ADCs
+ Up to 40 MSPS
+ Up to 26 Analog Input Pins

+ Sixteen Settings Channels. Each Channel:
- Can be assigned to any analog input (I/0O pin or internal signal).

- Can be set to a different sampling time.
- Can be configured as single-ended or differential.
- Conversion result can be formatted as unsigned or signed.
- Conversion result can be left-aligned (fraction format).
- Has a separate 32-bit conversion result register.
+ Supports Four Sampling modes
- Oversampling of multiple samples
- Integration of multiple samples
- Window (multiple samples accumulated when the gate signal is active)

@ MICROCHIP

- Single conversion

- All channels have a digital comparator to detect configurable thresholds.

- The last three settings channels have the second result accumulator to implement second order filters.
« Band Gap Reference and Temperature Sensor Diode Inputs

Peripheral Features

* Four 4-Wire SPI Modules
- 32-byte FIFO
- Variable data width
- 12S mode

* Three Protocol UARTs with 8-Character RX/TX FIFOs

+ Automated UART Handling Support for
- LIN2.2

- Digital Multiplex 512 (DMX)
- Smart Card (ISO 7816)
- IrDA
* Two SENT Modules
+ Three Dedicated 32-Bit Timers/Counters

+ Single (SCCP) and Multiple (MCCP) Output Capture/Compare/PWM/Timer Modules
- One MCCP module

- Eight SCCP modules

- Flexible configuration as PWM, input capture, output compare or timers

- Two 16-bit timers or one 32-bit timer in each module
* Four Quadrature Encoder Interface (QEI)

- Four inputs: Phase A, Phase B, Home, Index

- Ten Configurable Logic Cells (CLC) with internal connections to select peripherals and PPS
+ Serial Encoder Interface BiSS with up to Four Client Encoders Support

+ Peripheral Trigger Generator (PTG)
Fourteen input trigger sources from other peripheral modules

Five output triggers to other peripheral modules

Four individual interrupt request signals

CPU independent state machine-based instruction sequencer

+ Integrated Touch Controller (ITC) Module
- Advanced capacitive sensing, touch buttons, sliders and wheels

- Up to 32 self-capacitance channels and up to 256 mutual-capacitance channels

Analog Features

« Up to Eight 5 nS Analog Comparators with 12-Bit PDM DACs
- Input multiplexing

- Slope compensation
- Up to two DAC output buffers

@ MICROCHIP

+ Three Rail-to-Rail 100 MHz Operational Amplifiers with
- 40V/pS slew rate
- TmV offset (typical) with a calibration feature

+ UREF Output Available for Op Amp Input Biasing

* Four Constant-Current Sources

+ Integrated Touch Controller

Independent from ADC processing capability

Self and Mutual CVD Touch Modes support

18 to 32 Touch ADC RX inputs

8 to 32 Touch TX outputs

Safety Features

+ Windowed Watchdog Timer (WDT)

+ Deadman Timer (DMT)

+ Sixteen I/0 Integrity Monitors (I0IM)

+ Fail-Safe Clock Monitor (FSCM) with Automatic Switchover to Backup Clock Source
* Flash Error Correcting Code (ECC)

* RAM Error Correcting Code (ECC)

+ RAM Memory Built-In Self-Test (MBIST)

+ 32-Bit Cyclic Redundancy Check (CRC) Module

+ Entire Flash OTP by ICSP™ Write Inhibit

+ Capless Internal Voltage Regulators

+ Virtual PPS Pins for Redundancy and Monitoring
+ Temperature Sensor Diode

Functional Safety Support

* Targets
- 1SO 26262 - ASIL B
- IEC61508 SIL 2
- IEC 60730 Class B

+ 1SO 26262 and IEC 61508 Compliant Device Development

To learn about various functional safety standards and target safety levels that this device family supports, visit
www.microchip.com/en-us/products/microcontrollers-and-microprocessors/dspic-dscs/functional-safety.

Qualification

+ ACE-Q100 REV-H (Grade 2: -40°C to +85°C) Qualified
+ AEC-Q100 REV-H (Grade 1: -40°C to +125°C) Planned
+ AEC-Q100 REV-H (Grade 0: -40°C to +150°C) Planned
+ TFBGA packaged device is planned for Grade 1.

Programming and Debug Interfaces

@ MICROCHIP

https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/dspic-dscs/functional-safety

+ Three Programming and Debugging Interfaces:
- Two-wire ICSP™ interface with non-intrusive access and real-time data exchange with application

+ Five Program Addresses and Five Full-Featured Breakpoints
+ |EEE Standard 1149.2 Compatible (JTAG) Boundary Scan

dsPIC33AK512MPS512 Family Features

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The
following pages show their pinout diagrams.

@ MICROCHIP

dIHJ0d2IW @

Table 1. dsPIC33AK512MPS512 Family Device Features

Product Remappable Peripherals

Data Memory (Kbytes)

General Purpose |0s/PPS
SCCP/MCCP®™

ADC Modules (12-bit)

Comparators with DACs

CRC (32-bit)

Crypto Accelerator

Current Sources

DAC Outputs

DMA (Channels)

Integrity Monitors

Op Amplifiers

Touch ADC Inputs

Packages

P
w
]
]
B
)
¥
=
>
~
<)
£
]
=
£
©
—
)
o
bl
o

Dedicated 32-Bit Timers
ADC (External Analog Inputs)

PWM (with/without FEP) Outputs

dsPIC33AK256MPSXXX Families with CAN FD and Crypto Accelerator

dsPIC33AK256MPS505 48 256K 64K 31/31 1 10 3 81 4 3 5 18 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 18 VQFN/
TQFP
dsPIC33AK256MPS506 64 256K 64K 45/45 1 10 3 81 4 3 2 2 5 23 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 24 VQFN/
TQFP
dsPIC33AK256MPS508 80 256K 64K 5959 1 10 3 81 4 3 2 2 5 25 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK256MPS510 100 256K 64K 76/76 1 10 3 81 4 3 2 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK256MPS512 128/129 256K 64K 98/98 1 10 3 81 4 3 2 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP/
TFBGA
dsPIC33AK512MPSXXX Families with CAN FD and Crypto Accelerator
dsPIC33AK512MPS505 48 512K 64K 31/31 1 10 3 81 4 3 2 2 5 18 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 18 VQFN/
TQFP
dsPIC33AK512MPS506 64 512K 64K 45/45 1 10 3 81 4 3 2 2 5 23 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 24 VQFN/
TQFP
dsPIC33AK512MPS508 80 512K 64K 5959 1 10 3 81 4 3 2 2 5 25 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK512MPS510 100 512K 64K 76/76 1 10 3 81 4 3 2 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK512MPS512 128/129 512K 64K 98/98 1 10 3 81 4 3 2 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP/
TFBGA
dsPIC33AK256MPSXXX Families with Crypto Accelerator
dsPIC33AK256MPS205 48 256K 64K 3131 1 10 3 81 4 3 0 2 5 18 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 18 VQFN/
TQFP
dsPIC33AK256MPS206 64 256K 64K 45/45 1 10 3 81 4 3 0 2 5 23 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 24 VQFN/
TQFP
dsPIC33AK256MPS208 80 256K 64K 59/5%9 1 10 3 81 4 3 0 2 5 25 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK256MPS210 100 256K 64K 76/76 1 10 3 81 4 3 0 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK256MPS212 128/129 256K 64K 98/98 1 10 3 81 4 3 0 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP/
TFBGA
dsPIC33AK512MPSXXX Families with Crypto Accelerator
dsPIC33AK512MPS205 48 512K 64K 31/31 1 10 3 81 4 3 0 2 5 18 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 18 VQFN/
TQFP
dsPIC33AK512MPS206 64 512K 64K 45/45 1 10 3 81 4 3 0 2 5 23 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 24 VQFN/
TQFP
dsPIC33AK512MPS208 80 512K 64K 5959 1 10 3 81 4 3 0 2 5 25 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP
dsPIC33AK512MPS210 100 512K 64K 76/76 1 10 3 81 4 3 0 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP

dsPIC33AK512MPS212 128/129 512K 64K 98/98¢ 1 10 3 81 4 3 0 2 5 26 8 1 1 4 2 8 8x2/4x2 3 16 3 1 4 32 TQFP/
TFBGA

Note:

1. SCCP can be configured as a PWM with one output, input capture, output compare, two x 16-bit timers or
one 32-bit timer.

@ MICROCHIP

dIHJ0d2IW @

dsPIC33AK512MPS512 Family Features

Table 2. dsPIC33AK512MC510 Family Device Features

Product

—
w
]
S
)
2
=
>
<
S
£
[}
=
€
©
~
o0
o
2
o

Data Memory (Kbytes)

dsPIC33AK256MCXXX Families with CAN FD

dsPIC33AK256MC505 48 256K

dsPIC33AK256MC506 64 256K

dsPIC33AK256MC508 80 256K
dsPIC33AK256MC510 100 256K

64K

64K

64K
64K

dsPIC33AK512MCXXX Families with CAN FD

dsPIC33AK512MC505 48 512K

dsPIC33AK512MC506 64 512K

dsPIC33AK512MC508 80 512K
dsPIC33AK512MC510 100 512K
dsPIC33AK256MCXXX Families

dsPIC33AK256MC205 48 256K

dsPIC33AK256MC206 64 256K

dsPIC33AK256MC208 80 256K
dsPIC33AK256MC210 100 256K
dsPIC33AK512MCXXX Families

dsPIC33AK512MC205 48 512K

dsPIC33AK512MC206 64 512K

dsPIC33AK512MC208 80 512K
dsPIC33AK512MC210 100 512K

64K

64K

64K
64K

64K

64K

64K
64K

64K

64K

64K
64K

General Purpose 10s/PPS

31/31

45/45

59/59
76/76

31/31

45/45

59/59
76/76

31/31

45/45

59/59
76/76

31/31

45/45

59/59
76/76

Remappable Peripherals

SCCP/MCCP™

Dedicated 32-Bit Timers

1T 10 3 81 4 3 2 2

1T 10 3 81 4 3 2 2

1 10 3 &1 4 3 2 2
1T 10 3 81 4 3 2 2

1 10 3 81 4 3 2 2

1 10 3 81 4 3 2 2

1 10 3 81 4 3 2 2
1 10 3 81 4 3 2 2

1 10 3 81 4 3 0 2

1T 10 3 81 4 3 0 2

1T 10 3 &1 4 3 0 2
1 10 3 81 4 3 0 2

1 10 3 81 4 3 0 2

1 10 3 81 4 3 0 2

81 4 3 0 2
1 10 3 &1 4 3 0 2

ADC Modules (12-bit)

ADCs (External Analog Inputs)

23

25
26

23

25
26

23

25
26

23

25
26

Comparators with DACs

CRC (32-bit)

Crypto Accelerator

Current Sources

DAC Outputs

DMA (Channels)

PWM (without FEP) Outputs

12x2

12x2

12x2
12x2

12x2

12x2

12x2
12x2

12x2

12x2

12x2
12x2

12x2

12x2

12x2
12x2

Integrity Monitors

16
16

Touch ADC Inputs

24

32
32

24

32
32

24

32
32

24

32
32

Packages

VQFN/
TQFP
VQFN/
TQFP
TQFP
TQFP

VQFN/
TQFP
VQFN/
TQFP
TQFP
TQFP

VQFN/
TQFP
VQFN/
TQFP
TQFP
TQFP

VQFN/
TQFP
VQFN/
TQFP
TQFP
TQFP

Note:

1. SCCP can be configured as a PWM with one output, input capture, output compare, two x 16-bit timers or
one 32-bit timer.

Pin Diagrams

Figure 1. 48-Pin VQFN/TQFP

] =5V Tolerant

€ o o

5 © a § (>D g M N = O

SESLEF A 5ERRR

| B B A B | O B I

48 47 46 45 44 43 42 41 40 39 38 37
RAO [1 36 [| Voo
RA7 |] 2 35[| Vss
RA1[]3 34 |RC4
RA8| |4 33 |Rec3
RA9| |5 32[|RCs
AVss [] 6 dsPIC33AKXXXMPS505 31[|Rc2
AVop []7 dsPIC33AKXXXMPS205 301 RCA
rRa2| |8 29% Rco®
RA3 []9 28[| Vop
RA4 []10 27| Vss
RA5 [] 11 26 [|RC7
RA6 []12 25% RC6

13 14 15 16 17 18 19 20 21 22 23 24

CIO I I e e e e e

B3 EBomn P EBIDBD

¥ >>xroeeow=> >y X

Table 3. 48-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPSSOS/dsPIC33AKXXXMP5205) (1.2)

I . T

PGD2/AD3AN5/CVDANO/CMP6A/RP1/SCL2/IOMAF2/RA0 25 RP39/SCL3/RC6

2 AD5ANN1/AD5ANO/CVDAN7/CMP6B/RP8/SDA2/ 26 RP40/SDA3/IOMAF7/RC7
IOMAF1/RA7

3 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1 27 Vss

4 DACOUT2/AD5AN3/CVDAN8/CMP5A/IBIAS3/ISRC3/ 28 Vpp
RP9/RA8

5 UREF/AD1AN3/CVDAN9/CMP5B/CMP7A/IBIAS2/ISRC2/ 29 OSCO/CLKO/RP33/IOMAF5/RCOG)
RP10/RA9

6 AVss 30 OSCI/CLKI/RP34/IOMAF6/RC1

7 AVpp 31 PGC3/RP35/PWM4H/IOMAD7/RC2

8 OA1T0UT/AD1ANO/CVDAN2/CMP1A/RP3/RA2 32 PGD3/RP38/PWM4L/IOMAD6/RC5

9 OA1TIN-/ADTANNZ2/AD1AN2/CVDAN3/CMPCN/ 33 RP36/PWM3H/IOMADS5/RC3
CMP1C/RP4/RA3

10 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4 34 RP37/PWM3L/IOMAD4/RC4

11 OA30UT/AD3ANO/CVDANS5/CMP3A/RP6/INTO/RAS 35 Vss

12 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/ 36 Vpp
CMP3C/RP7/RA6

13 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/ 37 RP49/PWM2H/IOMAD3/RD0O
RP22/RB5

14 Vss 38 TCK/RP50/PWM2L/IOMAD2/RD1

15 Vbp 39 TDO/RP51/PWM1H/IOMAD1/RD2

16 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RB0O 40 TDI/RP52/PWM1L/IOMADO/RD3

10

@ MICROCHIP

Table 3. 48-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPSSOS/dsPIC33AKXXXMPSZOS) (1.2) (continued)

L . S
TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 41 SWVpp
CMP2C/RP18/RB1
18 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 42 Ly
19 Ve 43 SWves
20 Vpp 44 Vppcore

21 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 45 Vgg
22 PGC1/AD4ANO/CVDANZ20/CVDTX4/CMP4B/RP21/SCL1/RB4 46 Vpp

23 AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/CMP7D/ 47 RP55/PWM5L/IOMBDO/RD6
IBIASO/ISRCO/RP23/RB6

24 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/ 48 MCLR
ISRC1/RP24/I0MAFQ/RB7

Notes:

1. RPnrepresents remappable peripheral functions.
2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

@ MICROCHIP

Figure 2. 48-Pin VQFN/TQFP

] =5V Tolerant

. 3 1

= © = = o N - O

Sp8825,5888¢%

[) I O O | B O | B

48 47 46 45 44 43 42 41 40 39 38 37
RAO [] 1 36| Voo
RA7 []2 35[| Vss
RA1[]3 34 [|Rc4
RA8| |4 33[|Rc3
RA9| |5 32[|RC5
Avss|]6 dsPIC33AKXXXMC505 31[]RrRC2
Avpp []7 dsPIC33AKXXXMC205 30 [| RC1
RA2| |8 29[| RCO®
RA3[]9 28| Voo
RA4 []10 27| Vss
RAS5 [] 11 26 [|RC7
RA6 | |12 25| RCB

13 14 15 16 17 18 19 20 21 22 23 24

OO A e e

3 P800 5603383

¥ >>rece > > e

Table 4. 48-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC505/dsPIC33AKXXXMC205) (1:2)

R Rncion

Pin

W oo NOU B WN =

"
12

13

14
15
16
17

18
19
20
21
22
23

24

Function
PGD2/AD3AN5/CVDANO/RP1/SCL2/IOMAF2/RA0
AD5ANN1/AD5ANO/CVDAN7/RP8/SDA2/IOMAF1/RA7
PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1
DACOUT2/AD5AN3/CVDANS8/IBIAS3/ISRC3/RP9/RA8
UREF/AD1AN3/CVDAN9/IBIAS2/ISRC2/RP10/RA9
AVsg
AVpp
OA1T0OUT/AD1ANO/CVDAN2/CMP1A/RP3/RA2
OA1TIN-/ADTANNZ2/AD1AN2/CVDAN3/CMPCN/
CMP1C/RP4/RA3
OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4
OA30UT/AD3ANO/CVDAN5/CMP3A/RP6/INTO/RAS
OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/
CMP3C/RP7/RA6

OA3IN+/AD3AN1/AD4ANS5/CVDAN21/CVDTX5/CMP3B/
RP22/RB5

Vss
Vbp
OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RB0O

TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/
CMP2C/RP18/RB1

OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2

Vss

Vbp
PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3
PGC1/AD4ANO/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4
AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/IBIASO/ISRCO/
RP23/RB6
AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPA4C/IBIAS1/
ISRC1/RP24/I0MAFO/RB7

@ MICROCHIP

25
26
27
28
29
30
31
32
33

34
35
36

37

38
39
40
41

42
43
44
45
46
47

48

RP39/SCL3/RC6
RP40/SDA3/IOMAF7/RC7

Vss

Vbp
0SCO/CLKO/RP33/IOMAF5/RCO3)
OSCI/CLKI/RP34/I0MAF6/RC1
PGC3/RP35/PWM4H/IOMAD7/RC2
PGD3/RP38/PWM4L/IOMAD6/RC5
RP36/PWM3H/IOMAD5/RC3

RP37/PWM3L/IOMAD4/RC4
Vss
Vbp

RP49/PWM2H/IOMAD3/RD0O

TCK/RP50/PWM2L/IOMAD2/RD1
TDO/RP51/PWM1H/IOMAD1/RD2
TDI/RP52/PWM1L/IOMADO/RD3
SWVpp

Lx
SWVss

VbbcoRre
Vss

Vbp
RP55/PWM5L/IOMBDO0/RD6

MCLR

Table 4. 48-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC505/dsPIC33AKXXXMC205) (12) (continued)

[Pin | Funcon [Pn]| Fucton |
Notes:

1. RPnrepresents remappable peripheral functions.

2. Unless otherwise stated, pins are 4x drive strength.
3. This pin has 8x drive strength.

. 13
ﬁ\ MICROCHIP

Figure 3. 64-Pin VQFN/TQFP

RAOQ
RA7
RA1

Vop
RA11
RA8
RA9
RA10 [
Avss []
AVpp []
RA2 [|
RA3 []
RA4 []
RA5 []
RA6 [|

] = 5V Tolerant

~

O
50 | RD1
49]RDO

64] MCLR
63 [I] RD8
62 [I] RD7
61 [[] RD4
60 [RD6
59 [RD5
58 | 1 Vpp

57 [] Vss

56 |1 Vbpcore
55] SWVss
54 [JLx

53] SWVpp
52|]RD3

51 _]RD2

0 N O P ON =

dsPIC33AKXXXMPS506
dsPIC33AKXXXMPS206

. o A A A A ©
o g~ WN = O

-

RB5 [|17
Ves [] 18
Voo L] 19
RBO [_] 20
RB1[] 21
RB2[|22
RB8 [|23
RB9 [|24
Vs []25
Voo [26
RB3 [|27
RB4 [] 28
RB6 [_| 29
RB7 [] 30
RB10®) [31
RB11G) [] 32

Table 5. 64-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPS506/dsPIC33AKXXXMPS206(1-2)

Pin

N —

10
11
12
13

14
15
16

17

18
19

Function
PGD2/AD3AN5/CVDANO/CMP6A/RP1/SCL2/IOMAF2/RA0

AD5ANN1/AD5ANO/CVDAN7/CMP6B/RP8/SDA2/
IOMAF1/RA7

PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1

Vss

Vbp
AD5ANN2/AD5AN2/CVDAN11/CMPFN/CMP6C/RP12/RA11

DACOUT2/AD5AN3/CVDAN8/CMP5A/IBIAS3/ISRC3/
RP9/RA8

UREF/AD1AN3/CVDAN9/CMP5B/CMP7A/IBIAS2/ISRC2/
RP10/RA9

ADTANN1/AD1TAN4/CVDAN10/CMPEN/CMP5C/RP11/RA10
AVss

AVpp

OA1TOUT/AD1ANO/CVDAN2/CMP1A/RP3/RA2

OA1IN-/ADTANN2/AD1AN2/CVDAN3/CMPCN/
CMP1C/RP4/RA3

OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4
OA30UT/AD3ANO/CVDAN5/CMP3A/RP6/INTO/RAS

OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/
CMP3C/RP7/RA6

OA3IN+/AD3AN1/AD4ANS5/CVDAN21/CVDTX5/CMP3B/
RP22/RB5

Vss
Vbp

@ MICROCHIP

33
34

35
36
37
38
39

40

41
42
43
a4
45

46
47
48

49

50
51

Function
RP41/APWM1L/IOMAD8/IOMBF3/RC8
RP42/SD0O2/IOMBF2/RC9G)

RP39/SCL3/RC6
RP40/SDA3/I0OMAF7/RC7
Vss

Vbp
OSCO/CLKO/RP33/IOMAF5/RCO®)

OSCI/CLKI/RP34/IOMAF6/RC1

PGC3/RP35/PWM4H/IOMAD7/RC2
PGD3/RP38/PWM4L/IOMAD6/RC5
RP36/PWM3H/IOMAD5/RC3
RP37/PWM3L/IOMAD4/RC4
RP43/PWM7H/IOMBD5/IOMBF1/RC10

RP44/PWM7L/IOMBD4/IOMBFO/RC11
Vss
Vbp

RP49/PWM2H/IOMAD3/RDO

TCK/RP50/PWM2L/IOMAD2/RD1
TDO/RP51/PWM1H/IOMAD1/RD2

Table 5. 64-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPSSOG/dsPIC33AKXXXMP5206(1 2) (continued)

. . S

OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RBO 52 TDI/RP52/PWM1L/IOMADO/RD3

21 TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 53 SWVpp
CMP2C/RP18/RB1

22 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 54 Ly

23 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8 55 SWVss

24 AD2ANN1/AD2AN3/CVDAN25/CVDTX9/CMP8D/RP26/RB9 56 Vppcore

25 Vs 57 Vs

26 Vpp 58 Vpp

27 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 59 RP54/PWMS5H/ASCL1/IOMBD1/RD5
28 PGC1/AD4AN0/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4 60 RP55/PWM5L/ASDA1/IOMBDO/RD6

29 AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/CMP7D/ 61 CVDTX16/RP53/IOMBF6/RD4
IBIASO/ISRCO/RP23/RB6

30 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/ 62 CVDTX17/RP56/ASCL2/IOMAF4/RD7
ISRC1/RP24/IOMAF0/RB7

31 AD4AN4/CVDAN26/CVDTX10/CMP8A/RP27/SCK2/IOMAF11/ 63 CVDTX18/RP57/ASDA2/IOMAF3/RD8
IOMBF11/RB103)

32 CVDAN27/CVDTX11/CMP7B/RP28/I0MAF10/IOMBF10/ 64 MCLR
SDI2/RB113)

Notes:

1. RPnrepresents remappable peripheral functions.
2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

@ MICROCHIP

Figure 4. 64-Pin VQFN/TQFP

] = 5V Tolerant

w
o S8 8
0853888488 .23858
S reroccoeroe>>>n dn @ oeo
BEEEEECCICC I
(()%S%%S%%B&’%%%S%ES?
RAO[|1
RA7]2
RA1 3
Vgs [4
Vpp 15
RAM 6
Eﬁ: : dsPIC33AKXXXMC506
RA10 [0 dsPIC33AKXXXMC206
AVss [_| 10
AVpp [11
RA2 [|12
RA3 [|13
RA4 [|14
RA5 [15
RA6] 16
_ FT22RSQRIRERIIBSS
HiEEREEnEEnEEEE
B b RRannEe
nc>>mrxrxncnc>>mmncnc§g
¥ X

Table 6. 64-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC506/dsPIC33AKXXXMC206)(1-2)

Pin Function | Pin | Function
1 PGD2/AD3AN5/CVDANO/RP1/SCL2/IOMAF2/RA0 33 RP41/APWM1L/IOMAD8/IOMBF3/RC8
2 ADS5ANN1/AD5ANO/CVDAN7/RP8/SDA2/IOMAF1/RA7 34 RP42/SD0O2/I0OMBF2/RC9(3)
3 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1 35 RP39/SCL3/RC6
4 Vss 36 RP40/SDA3/IOMAF7/RC7
5 Vpp 37 Ve
6 AD5ANN2/AD5AN2/CVDAN11/CMPFN/RP12/RA11 38 Vpp
7 DACOUT2/AD5AN3/CVDANS/IBIAS3/ISRC3/RP9/RA8 39 OSCO/CLKO/RP33/I0MAF5/RCO(3)
8 UREF/AD1AN3/CVDANY9/IBIAS2/ISRC2/RP10/RA9 40 OSCI/CLKI/RP34/IOMAF6/RC1
9 AD1TANN1/AD1AN4/CVDAN10/CMPEN/RP11/RA10 41 PGC3/RP35/PWM4H/IOMAD7/RC2
10 AVss 42 PGD3/RP38/PWM4L/IOMAD6/RC5
11 AVpp 43 RP36/PWM3H/IOMADS5/RC3
12 OA1T0OUT/AD1ANO/CVDAN2/CMP1A/RP3/RA2 44 RP37/PWM3L/IOMAD4/RC4
13 OA1TIN-/ADTANNZ2/AD1AN2/CVDAN3/CMPCN/ 45 RP43/PWM7H/IOMBD5/IOMBF1/RC10
CMP1C/RP4/RA3
14 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4 46 RP44/PWM7L/IOMBD4/IOMBFO0/RC11
15 OA30UT/AD3ANO/CVDANS5/CMP3A/RP6/INTO/RAS 47 Veg
16 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/ 48 Vpp
CMP3C/RP7/RA6
17 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/ 49 RP49/PWM2H/IOMAD3/RD0O
RP22/RB5
18 Vss 50 TCK/RP50/PWM2L/IOMAD2/RD1
19 Vbp 51 TDO/RP51/PWM1TH/IOMAD1/RD2
20 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RB0O 52 TDI/RP52/PWM1L/IOMADO/RD3

@ MICROCHIP

Table 6. 64-Pin VQFN/TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC506/dsPIC33AKXXXMC206)(1 2) (continued)

I " S
TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 53 SWVpp
CMP2C/RP18/RB1
22 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 54 Ly
23 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8 55 SWVss
24 AD2ANN1/AD2AN3/CVDAN25/CVDTX9/RP26/RB9 56 Vppcore
25 Vs 57 Vs
26 Vpp 58 Vpp
27 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 59 RP54/PWM5H/ASCL1/I0OMBD1/RD5
28 PGC1/AD4ANO/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4 60 RP55/PWM5L/ASDA1/I0OMBDO0O/RD6
29 AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/IBIAS0/ISRCO/ 61 CVDTX16/RP53/I0MBF6/RD4
RP23/RB6
30 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMP4C/IBIAS1/ 62 CVDTX17/RP56/ASCL2/IOMAF4/RD7
ISRC1/RP24/I0MAFQO/RB7
31 AD4AN4/CVDAN26/CVDTX10/RP27/SCK2/IOMAF11/ 63 CVDTX18/RP57/ASDA2/IOMAF3/RD8
IOMBF11/RB103)
32 CVDAN27/CVDTX11/RP28/I0MAF10/I0MBF10/SDI2/RB11(3) 64 MCLR
Notes:

1. RPnrepresents remappable peripheral functions.

2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

@ MICROCHIP

Figure 5. 80-Pin TQFP

] = 5V Tolerant

w
MU))

14 N — Qw (=] o

TN CTTOW L 82 Z20NTOC O

(@)

298RRRR8855558RRER8

° S N O O O

COOMNMNOULTONTOODOMNOWUTMAN —

OMNNMMMMMMMMMNMOOOOOOOOO
RA12 [1 1 60 [
RAO [0 2 59
RA7 03 58 [
RA1 [0 4 57
Vss 15 56 []
Vop [16 55[]
RA13 [0 7 54 [
RA11 18 530
Eﬁg %?O dsPIC33AKXXXMPS508 g?E
RA10 A 11 dsPIC33AKXXXMPS208 50 O
RA15 [0 12 49 [
AVss [113 48 [
AVbp [1 14 47
RA14 [0 15 46 [
RA2 [116 45
RA3 [0 17 44
RA4 [118 43 [
RA5 [119 42 [
RA6 [120 41

TANNTOLOMNODOTTANMNMTWOLONOOOOO

ANANANANANANANANANOODOOOOOOOOO

Hinininininininininininininininininisin

R R R Lt R R

m§>>§mmmmm§>>§m1115§

s

VbD
Vss
RC13
RC12
RC11
RC10
RC4
RC3
RC5
RC2
RC1
RCo®
VpD
Vss
RC7
RC6
RC9®)
RC8
VpD
Vss

Table 7. 80-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPS508/dsPIC33AKXXXMPS208)(1-2)

I . A

CVDAN12/RP13/RA12

2 PGD2/AD3AN5/CVDANO/CMP6A/RP1/SCL2/IOMAF2/RA0 42 VDD

3 ADS5ANN1/AD5ANO/CVDAN7/CMP6B/RP8/SDA2/ 43 RP41/APWM1L/IOMAD8/IOMBF3/RC8
IOMAF1/RA7

4 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1 44 RP42/SDO2/IOMBF2/RC93)

5 Ve 45 RP39/SCL3/RC6

6 Vbp 46 RP40/SDA3/IOMAF7/RC7

7 CVDAN13/CMP5D/RP14/RA13 47 Vsg

8 AD5ANN2/AD5AN2/CVDAN11/CMPFN/CMP6C/RP12/RA11 48 Vpp

9 DACOUT2/AD5AN3/CVDAN8/CMP5A/IBIAS3/ISRC3/ 49 OSCO/CLKO/RP33/I0MAF5/RCOG)
RP9/RA8

10 UREF/AD1AN3/CVDAN9/CMP5B/CMP7A/IBIAS2/ISRC2/ 50 OSCI/CLKI/RP34/I0MAF6/RC1
RP10/RA9

11 AD1TANN1/AD1AN4/CVDAN10/CMPEN/CMP5C/RP11/RA10 51 PGC3/RP35/PWM4H/IOMAD7/RC2

12 CVDAN15/RP16/RA15 52 PGD3/RP38/PWM4L/IOMAD6/RC5

13 AVsg 53 RP36/PWM3H/IOMADS5/RC3

14 AVpp 54 RP37/PWM3L/IOMAD4/RC4

15 CVDAN14/CMP1D/RP15/RA14 55 RP43/PWM7H/IOMBD5/IOMBF1/RC10

16 OATOUT/AD1ANO/CVDAN2/CMP1A/RP3/RA2 56 RP44/PWM7L/IOMBD4/IOMBFO/RC11

17 OATIN-/ADTANN2/AD1AN2/CVDAN3/CMPCN/ 57 RP45/PWM8H/IOMBD7/RC12
CMP1C/RP4/RA3

18 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4 58 RP46/PWMS8L/IOMBD6/RC13

19 OA30UT/AD3ANO/CVDANS5/CMP3A/RP6/INTO/RAS 59 Vg

20 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/ 60 Vpp
CMP3C/RP7/RA6

21 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/ 61 RP58/PWM6H/IOMBD3/IOMBF7/RD9

RP22/RB5

@ MICROCHIP

Table 7. 80-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPSSOS/dsPIC33AKXXXMP5208)(1 2) (continued)

I T S

CVDAN28/CVDTX12/CMP3D/RP29/RB12

23 Vss 63

24 Vpp 64

25 AD3ANN1/AD3AN3/CVDAN29/CVDTX13/RP30/RB13 65

26 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RBO 66

27 TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 67
CMP2C/RP18/RB1

28 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 68

29 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8 69

30 AD2ANN1/AD2AN3/CVDAN25/CVDTX9/CMP8D/RP26/RB9 70

31 AD2AN5/CVDAN31/CVDTX15/RP32/RB15 71

32 Vs 72

33 Vpp 73

34 CVDAN30/CVDTX14/CMP8B/RP31/RB14 74

35 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 75

36 PGC1/AD4ANO/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4 76

37 AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/CMP7D/ 77
IBIASO/ISRCO/RP23/RB6

38 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/ 78
ISRC1/RP24/I0MAFQ/RB7

39 AD4AN4/CVDAN26/CVDTX10/CMP8A/RP27/SCK2/IOMAF11/ 79
IOMBF11/RB103)

40 CVDAN27/CVDTX11/CMP7B/RP28/IOMAF10/IOMBF10/ 80
SDI2/RB11(3)

Notes:

1. RPnrepresents remappable peripheral functions.

2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

@ MICROCHIP

RP59/PWM6L/IOMBD2/I0OMAF9/IOMBF9/RD10
RP49/PWM2H/IOMAD3/RDO
TCK/RP50/PWM2L/IOMAD2/RD1
TDO/RP51/PWM1H/IOMAD1/RD2
TDI/RP52/PWM1L/IOMADO/RD3

SWVpp

Lx

SWVss

VbbCoRE

Vss

Vbp

RP54/PWM5H/ASCL1/I0OMBD1/RD5
RP55/PWM5L/ASDA1/I0MBDO0/RD6
CVDTX16/RP53/ASCL3/IOMBF6/RD4
RP60/APWM1H/IOMADY9/IOMAF8/IOMBF8/RD11
RP61/ASDA3/RD12

CVDTX17/RP56/ASCL2/IOMAF4/RD7
CVDTX18/RP57/ASDA2/IOMAF3/RD8

MCLR

Figure 6. 80-Pin TQFP

] = 5V Tolerant

w
MU) [a)

14 N — Qw o o

TN CTTOWAa 82 Z20NTOT O

)

SPPRRRRRS2S85 53228828

PP | 5 5 B 5

COOMNMNOULTONTOODONOWUTMAN —

OMNNMMMMMMMMMNMNOOOOOOOOO
RA12 [11 60 [] Vbp
RAO [] 2 59] Vss
RA7 [13 58 [] RC13
RA1 [14 57 [] RC12
Vss [15 56 [] RC11
Vop [16 55[] RC10
RA13 17 54 [] RC4
RA11 [18 53 [] RC3
RAS %?O dsPIC33AKXXXMC508 ng Ree
RA15 []12 49] RCO®
AVss []13 48 [Vbp
AVbp [] 14 47 Vss
RA14 [115 46 0 RC7
RA2 [] 16 45 [[] RC6
RA3 [] 17 44 [] RCO®
RA4 18 43 [] RC8
RA5 %19 42 [] Vop
RA6 20 41 [Vss

TANNTOLDOMNODOT-TANNTUOLONOODO

ANANANANANANANANANOODOOOOOOOOOS

i e 0 e

8838035088288 038508

m§>>§mmmmm§>>§mm115§

(4

Table 8. 80-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC508/dsPIC33AKXXXMC208) (1.2)

I . T

1 CVDAN12/RP13/RA12

2 PGD2/AD3AN5/CVDANO/RP1/SCL2/IOMAF2/RAQ 42 VDD

3 AD5ANN1/AD5ANO/CVDAN7/RP8/SDA2/IOMAF1/RA7 43 RP41/APWM1L/IOMAD8/IOMBF3/RC8

4 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1(2) 44 RP42/SDO2/IOMBF2/RC93)

5 Vss 45 RP39/SCL3/RC6

6 Vbp 46 RP40/SDA3/IOMAF7/RC7

7 CVDAN13/RP14/RA13 47 Veg

8 AD5ANNZ2/AD5AN2/CVDAN11/CMPFN/RP12/RA11 48 Vpp

9 DACOUT2/AD5AN3/CVDANS/IBIAS3/ISRC3/RP9/RAS(2) 49 OSCO/CLKO/RP33/IOMAF5/RC0O®3)

10 UREF/AD1AN3/CVDANY9/IBIAS2/ISRC2/RP10/RA9 50 OSCI/CLKI/RP34/I0MAF6/RC1

11 ADTANN1/AD1AN4/CVDAN10/CMPEN/RP11/RA10 51 PGC3/RP35/PWM4H/IOMAD7/RC2

12 CVDAN15/RP16/RA15 52 PGD3/RP38/PWM4L/IOMAD6/RC5

13 AVsg 53 RP36/PWM3H/IOMADS5/RC3

14 AVpp 54 RP37/PWM3L/IOMAD4/RC4

15 CVDAN14/CMP1D/RP15/RA14 55 RP43/PWM7H/IOMBD5/IOMBF1/RC10

16 OA10UT/AD1ANO/CVDAN2/CMP1A/RP3/RA2(2) 56 RP44/PWM7L/IOMBD4/IOMBFO/RC11

17 OA1TIN-/ADTANNZ2/AD1AN2/CVDAN3/CMPCN/ 57 RP45/PWM8H/IOMBD7/RC12
CMP1C/RP4/RA3

18 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4 58 RP46/PWMS8L/IOMBD6/RC13

19 OA30UT/AD3ANO/CVDANS5/CMP3A/RP6/INTO/RA5(2) 59 Vgs

20 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/ 60 Vpp
CMP3C/RP7/RA6

21 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/ 61 RP58/PWM6H/IOMBD3/IOMBF7/RD9
RP22/RB5

22 CVDAN28/CVDTX12/CMP3D/RP29/RB12 62 RP59/PWM6L/IOMBD2/IOMAF9/I0OMBF9/RD10

23 Vss 63 RP49/PWM2H/IOMAD3/RD0O

24 Vpp 64 TCK/RP50/PWM2L/IOMAD2/RD1

20

@ MICROCHIP

Table 8. 80-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC508/dsPIC33AKXXXMC208) (1.2) (continued)

I S

AD3ANN1T/AD3AN3/CVDAN29/CVDTX13/RP30/RB13 TDO/RP51/PWM1H/IOMAD1/RD2

26 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RB0(2) 66 TDI/RP52/PWM1L/IOMADO/RD3

27 TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 67 SWVpp
CMP2C/RP18/RB1

28 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 68 Ly

29 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8 69 SWVss

30 AD2ANN1/AD2AN3/CVDAN25/CVDTX9/RP26/RB9 70 Vppcore

31 AD2AN5/CVDAN31/CVDTX15/RP32/RB15 71 Vss

32 Vs 72 Vpp

33 Vbop 73 RP54/PWM5H/ASCL1/I0MBD1/RD5

34 CVDAN30/CVDTX14/RP31/RB14 74 RP55/PWMS5L/ASDA1/I0MBDO0/RD6

35 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 75 CVDTX16/RP53/ASCL3/IOMBF6/RD4
36 PGC1/AD4ANO0/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4 76 RP60/APWM1H/IOMADS/IOMAF8/IOMBF8/RD11
37 AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/IBIASO/ISRCO/ 77 RP61/ASDA3/RD12

RP23/RB6

38 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/ 78 CVDTX17/RP56/ASCL2/IOMAF4/RD7
ISRC1/RP24/IOMAF0/RB7

39 AD4AN4/CVDAN26/CVDTX10/RP27/SCK2/IOMAF11/ 79 CVDTX18/RP57/ASDA2/IOMAF3/RD8
IOMBF11/RB106)

40 CVDAN27/CVDTX11/RP28/IOMAF10/IOMBF10/SDI2/RB11®) 80 MCLR

Notes:
1. RPnrepresents remappable peripheral functions.
2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

21

@ MICROCHIP

Figure 7. 100-Pin TQFP

o

— © S © v
[Cpalyalalyalalalalalalial
Srerrerreroeooo

] = 5V Tolerant

89 VbD
88 Vss
87 [VDDCORE

86 SWVss

85 Lx

83 1 RD3
82 [_1RD2
81] Vop
80 [_]Vss
79 1 RD1
78 1 RDO
77 1 RD10
76 1 RD9

84 SWVbD

©C 8238358838858

REO T 75 1 RC15
RE1 2 74 [RC14
RA12 3 73 1 Voo
RAO 4 72 [Vss
RA7 5 71 [RC13
RE3 6 70 [1 RC12
RA1 7 69 1 RC11
Vss 8 68 [__1 RC10
VDD 9 67 [_1RC4
RE2 10 66 1 RC3
RA13 1 65 1 RC5
RA11 12 dsPIC33AKXXXMPS510 64 _1RC2
RA8 13 dsPIC33AKXXXMPS210 63 |1 RC1
RA9 14 62 [1 Rco®
RA10 15 61 1 Voo
RE4 16 60 [Vss
RA15 17 59 RC7
AVss 18 58 = RC6
AVDD 19 57 1 Rco®
RA14 20 56] RC8
RA2 21 55 1 Vob
RA3 22 54 [Vss
RA4 23 53 [__] RG2
RAS 24 52 |1 RG1
RA6 25 51] RGO

-

RB5 |26
RB12 |27
Vss |28
Vop [_]29
RB13 |30
RBO 31
RB1[]32
RB2 33
RB8 |34
RB9 []35
RB15 (|36
RFO 37

RF1 [38
RF2 39
Vss |40
Voo [_|41
RB14 |42
RB3 []43
RB4 |44
RB6 []45
RB7 []46
RB10®) |47
RB114) |48

RF3 49
NC 50

Table 9. 100-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPSSlO/dsPIC33AKXXXMPSZlO) (1.2)

I =

1 CVDTX19/CMP7C/RP65/REQ RP97/RGO

2 CVDTX20/CMP8C/RP66/RE1 52 RP98/APWM4H/IOMBD11/RG1

3 CVDAN12/RP13/RA12 53 RP99/APWM4L/IOMBD10/RG2

4 PGD2/AD3AN5/CVDANO/CMP6A/RP1/SCL2/IOMAF2/RA0 54 Vsg

5 ADS5ANN1/AD5ANO/CVDAN7/CMP6B/RP8/SDA2/ 55 Vpp
IOMAF1/RA7

6 CVDTX22/RP68/RE3 56 RP41/APWM1L/IOMAD8/IOMBF3/RC8

7 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1 57 RP42/SD0O2/IOMBF2/RC9B)

8 Vs 58 RP39/SCL3/RC6

9 Vbp 59 RP40/SDA3/IOMAF7/RC7

10 CVDTX21/RP67/RE2 60 Vss

11 CVDAN13/CMP5D/RP14/RA13 61 Vbp

12 AD5ANN2/AD5AN2/CVDAN11/CMPFN/CMP6C/RP12/RA11 62 0OSCO/CLKO/RP33/IOMAF5/RCOG)

13 DACOUT2/AD5AN3/CVDAN8/CMP5A/IBIAS3/ISRC3/ 63 OSCI/CLKI/RP34/I0MAF6/RC1
RP9/RA8

14 UREF/AD1AN3/CVDAN9/CMP5B/CMP7A/IBIAS2/ISRC2/ 64 PGC3/RP35/PWM4H/IOMAD7/RC2
RP10/RA9

15 AD1TANN1/AD1AN4/CVDAN10/CMPEN/CMP5C/RP11/RA10 65 PGD3/RP38/PWM4L/IOMAD6/RC5

16 CVDTX23/RP69/RE4 66 RP36/PWM3H/IOMAD5/RC3

@ MICROCHIP

22

Table 9. 100-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPSSlO/dsPIC33AKXXXMPSZlO) (1.2) (continued)

I S

CVDAN15/RP16/RA15 RP37/PWM3L/IOMAD4/RC4

18 AVsg 68 RP43/PWM7H/IOMBD5/IOMBF1/RC10

19 AVpp 69 RP44/PWM7L/IOMBD4/IOMBFO/RC11

20 CVDAN14/CMP1D/RP15/RA14 70 RP45/PWM8H/IOMBD7/RC12

21 OATOUT/ADTANO/CVDAN2/CMP1A/RP3/RA2 71 RP46/PWMS8L/IOMBD6/RC13

22 OA1IN-/ADTANNZ2/AD1AN2/CVDAN3/CMPCN/ 72 Vss
CMP1C/RP4/RA3

23 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4 73 Vpp

24 OA30UT/AD3ANO/CVDANS5/CMP3A/RP6/INTO/RAS 74 RP47/APWM3H/IOMBD9/RC14

25 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/ 75 RP48/APWM3L/IOMBD8/RC15
CMP3C/RP7/RA6

26 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/ 76 RP58/PWM6H/IOMBD3/IOMBF7/RD9
RP22/RB5

27 CVDAN28/CVDTX12/CMP3D/RP29/RB12 77 RP59/PWM6L/IOMBD2/IOMAF9/I0OMBF9/RD10

28 Vss 78 RP49/PWM2H/IOMAD3/RDO0O

29 Vbop 79 TCK/RP50/PWM2L/IOMAD2/RD1

30 AD3ANN1/AD3AN3/CVDAN29/CVDTX13/RP30/RB13 80 Vg

31 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RBO 81 Vpp

32 TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 82 TDO/RP51/PWM1H/IOMAD1/RD2
CMP2C/RP18/RB1

33 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 83 TDI/RP52/PWM1L/IOMADO/RD3

34 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8 84 SWVpp

35 AD2ANN1T/AD2AN3/CVDAN25/CVDTX9/CMP8D/RP26/RB9 85 Ly

36 AD2AN5/CVDAN31/CVDTX15/RP32/RB15 86 SWVss

37 AD3AN4/CVDTX29/RP81/RF0O 87 Vppcore

38 CVDTX30/RP82/RF1 88 Vs

39 CVDTX31/RP83/RF2 89 Vpp

40 Vss 90 RP54/PWM5H/ASCL1/I0MBD1/RD5

41 Vbp 91 RP55/PWM5L/ASDA1/10MBDO0/RD6

42 CVDAN30/CVDTX14/CMP8B/RP31/RB14 92 CVDTX16/RP53/ASCL3/IOMBF6/RD4

43 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 93 RP60/APWM1H/IOMADS/IOMAF8/IOMBF8/RD11
44 PGC1/AD4ANO/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4 94 RP61/ASDA3/RD12

45 AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/CMP7D/ 95 RP62/IOMBF4/RD13
IBIASO/ISRCO/RP23/RB6

46 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/ 96 RP63/APWM2H/IOMAD11/RD14
ISRC1/RP24/I0MAFQO/RB7

47 AD4AN4/CVDAN26/CVDTX10/CMP8A/RP27/SCK2/IOMAF11/ 97 RP64/APWM2L/IOMAD10/IOMBF5/RD15
IOMBF11/RB103)

48 CVDAN27/CVDTX11/CMP7B/RP28/I0MAF10/IOMBF10/ 98 CVDTX17/RP56/ASCL2/IOMAF4/RD7
SDI2/RB11(3)

49 RP84/RF3 99 CVDTX18/RP57/ASDA2/IOMAF3/RD8

50 NC 100 MCLR

Notes:

1. RPnrepresents remappable peripheral functions.
2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

23

@ MICROCHIP

Figure 8. 100-Pin TQFP
] = 5V Tolerant

w
@ a
Eoor\‘u—)ie?—‘:qgomomgﬁ gmmowrogm
oOoono0o0000000acg3eT x=000n00A000
Srrrrrrryrrerxy >>>n Jnrxe>>rKexo.
°‘888583%8358%%588%8%58."2?2’;2
REO 1 75 1 RC15
RE1 2 74 1 RC14
RA12 3 73 1 Voo
RAO 4 72 [Vss
RA7 5 71 [RC13
RE3 6 70 1 RC12
RA1 7 69 [RCM
Vss 8 68 1 RC10
VDD 9 67 [_1RC4
RE2 10 66 1 RC3
RA13 1 65 1 RC5
RA11 12 dsPIC33AKXXXMC510 64 [1RC2
RA8 13 dsPIC33AKXXXMC210 63 [RC1
RA9 14 62 [1 Rco®
RA10 15 61 1 Voo
RE4 16 60 [Vss
RA15 17 59 RC7
AVss 18 58 = RC6
AVDD 19 57 1 Rco®
RA14 20 56] RC8
RA2 21 55 1 Vob
RA3 22 54 [Vss
RA4 23 53 [__] RG2
RAS 24 52 [1 RG1
RA6 25 51] RGO

-

RB5 |26
RB12 |27
Vss |28
Vop [_]29
RB13 |30
RBO 31
RB1 []32
RB2 33
RB8 |34
RB9 []35
RB15 (|36
RFO 37
RF1 [38
RF2 39
vss [_]40
Vobo [_|41
RB14 |42
RB3 []43
RB4 |44
RB6 |45
RB7 |46
RB10®) 47
RB11(3) []48
RF3 49
NC 50

Table 10. 100-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC510/dsPIC33AKXXXMC210) (1.2)

I T
1 CVDTX19/RP65/REQ RP97/RGO
2 CVDTX20/RP66/RE1 52 RP98/APWM4H/IOMBD11/RG1
3 CVDAN12/RP13/RA12 53 RP99/APWMA4L/IOMBD10/RG2
4 PGD2/AD3AN5/CVDANO/RP1/SCL2/IOMAF2/RA0 54 Vss
5 ADS5ANN1/AD5ANO/CVDAN7/RP8/SDA2/IOMAF1/RA7 55 Vpp
6 CVDTX22/RP68/RE3 56 RP41/APWM1L/IOMAD8/IOMBF3/RC8
7 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1 57 RP42/SD0O2/I0OMBF2/RC9(3)
8 Vss 58 RP39/SCL3/RC6
9 Vbp 59 RP40/SDA3/I0OMAF7/RC7
10 CVDTX21/RP67/RE2 60 Vss
11 CVDAN13/RP14/RA13 61 Vpp
12 AD5ANN2/AD5AN2/CVDAN11/CMPFN/RP12/RA11 62 0OSCO/CLKO/RP33/IOMAF5/RCO®)
13 DACOUT2/AD5AN3/CVDANS8/IBIAS3/ISRC3/RP9/RA8 63 OSCI/CLKI/RP34/I0MAF6/RC1
14 UREF/AD1AN3/CVDAN9/IBIAS2/ISRC2/RP10/RA9 64 PGC3/RP35/PWM4H/IOMAD7/RC2
15 AD1ANN1/AD1AN4/CVDAN10/CMPEN/RP11/RA10 65 PGD3/RP38/PWM4L/IOMAD6/RC5
16 CVDTX23/RP69/RE4 66 RP36/PWM3H/IOMAD5/RC3
17 CVDAN15/RP16/RA15 67 RP37/PWM3L/IOMAD4/RC4
18 AVsg 68 RP43/PWM7H/IOMBD5/IOMBF1/RC10
19 AVpp 69 RP44/PWM7L/IOMBD4/IOMBFO/RC11
24

@ MICROCHIP

Table 10. 100-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMC510/dsPIC33AKXXXMC210) (1.2) (continued)

I S

21
22

23
24
25

26

27
28
29
30
31
32

33
34
35
36
37
38
39
40
M
42
43
44
45

46

47

48
49
50

Notes:

CVDAN14/CMP1D/RP15/RA14
OA10UT/AD1ANO/CVDAN2/CMP1A/RP3/RA2
OA1IN-/ADTANN2/AD1AN2/CVDAN3/CMPCN/
CMP1C/RP4/RA3
OAT1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4
OA30UT/AD3ANO/CVDAN5/CMP3A/RP6/INTO/RAS

OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/
CMP3C/RP7/RA6

OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/
RP22/RB5

CVDAN28/CVDTX12/CMP3D/RP29/RB12

Vss

Vop

AD3ANN1/AD3AN3/CVDAN29/CVDTX13/RP30/RB13
OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RBO

TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/
CMP2C/RP18/RB1

OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2
AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8
AD2ANN1/AD2AN3/CVDAN25/CVDTX9/RP26/RB9
AD2AN5/CVDAN31/CVDTX15/RP32/RB15
AD3AN4/CVDTX29/RP81/RFO

CVDTX30/RP82/RF1

CVDTX31/RP83/RF2

Vss

Vbb

CVDAN30/CVDTX14/RP31/RB14
PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3
PGC1/AD4AN0O/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4

AD4ANN2/AD4AN1/CVDAN22/CVDTX6/CMP/IBIASO/ISRCO/
RP23/RB6

AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/
ISRC1/RP24/I0MAF0/RB7

AD4AN4/CVDAN26/CVDTX10/RP27/SCK2/IOMAF11/
IOMBF11/RB106)

CVDAN27/CVDTX11/RP28/IOMAF10/I0MBF10/SDI2/RB11(3)
RP84/RF3
NC

1. RPnrepresents remappable peripheral functions.

2. Unless otherwise stated, pins are 4x drive strength.

3. This pin has 8x drive strength.

@ MICROCHIP

RP45/PWM8H/IOMBD7/RC12

71 RP46/PWMS8L/IOMBD6/RC13

72 Ves

73 Vpp

74 RP47/APWM3H/IOMBD9/RC14

75 RP48/APWM3L/IOMBD8/RC15

76 RP58/PWM6H/IOMBD3/I0OMBF7/RD9

77 RP59/PWM6L/IOMBD2/IOMAF9/IOMBF9/RD10
78 RP49/PWM2H/IOMAD3/RDO

79 TCK/RP50/PWM2L/IOMAD2/RD1

80 Vs

81 Vpp

82 TDO/RP51/PWM1H/IOMAD1/RD2

83 TDI/RP52/PWM1L/IOMADO/RD3

84 SWVpp

85 Ly

86 SWvVes

87 Vppcore

88 Vs

89 Vpp

90 RP54/PWM5H/ASCL1/I0MBD1/RD5

91 RP55/PWM5L/ASDA1/I0MBD0/RD6

92 CVDTX16/RP53/ASCL3/IOMBF6/RD4

93 RP60/APWM1H/IOMAD9/IOMAF8/IOMBF8/RD11
94 RP61/ASDA3/RD12

95 RP62/IOMBF4/RD13

96 RP63/APWM2H/IOMAD11/RD14

97 RP64/APWM2L/IOMAD10/IOMBF5/RD15
98 CVDTX17/RP56/ASCL2/IOMAF4/RD7

99 CVDTX18/RP57/ASDA2/IOMAF3/RD8
100 MCLR

25

Figure 9. 128-Pin TQFP

] = 5V Tolerant

Reo 1 96 [] RC15
RE1 2 95[] RC14
RA12 []3 s Voo
= S s
RA7 []5 —
91 [] RC12
RE3 [6 90
RA1 []7 = Re4
89 [] RG9
RE9 []8
Voo 9 88 [RC11
ss 87 1 RC10
Vpp []10
86 [] RG8
RE2 [11
RA13 12 85 (] RC4
RA11 []13 84 L RC3
RA8 [14 23 —1 RC5
RES []15 81 : §8§
2’; E 1? dsPIC33AKXXXMPS512 80] Rc1
Rat0 18 dsPIC33AKXXXMPS212 79 /1 Ro®
RE4 Bl 10 78 1 Vop
77 [Vss
RA15 []20
76 1 RG6
AVgs [21
75 (@@ RC7
Avpp []22
74] RG5
RE6 []23
73 [l RC6
RA14 [24 72 RC9®)
RA2 []25 71 — ROS
RE5 [] 26 70 :
RA3 [] 27 69 [\N/C
RA4 []28 o8 VDD
RA5 []29 [1 Vss
RE10 [30 6711 Re2
RA6 [31 66] RG1
NG [32)) 65 [] RGO
NoOOO (3] — —
BTRRs83ITITITLNITISIBILSEIB3 58I
LONO O O™ ‘\:\—NOOO’J‘LQO‘—N wor\f_rmzo‘ftomv\gamo
g G g R R PR A A At
X ¥oo 4 4 Q0
['4

Table 11. 128-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPS512/dsPIC33AKXXXMPS212)(1:2)

P | S e ncion

Pin

u b WN -

Function
CVDTX19/CMP7C/RP65/REQ
CVDTX20/CMP8C/RP66/RE1
CVDAN12/RP13/RA12
PGD2/AD3AN5/CVYDANO/CMP6A/RP1/SCL2/IOMAF2/RA0

AD5ANN1/AD5ANO/CVDAN7/CMP6B/RP8/SDA2/
IOMAF1/RA7

CVDTX22/RP68/RE3
PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1
CVDTX28/RP74/RE9

Vss

Vbp

CVDTX21/RP67/RE2

CVDAN13/CMP5D/RP14/RA13
AD5ANN2/AD5AN2/CVDAN11/CMPEN/CMP6C/RP12/RA11

DACOUT2/AD5AN3/CVDAN8/CMP5A/IBIAS3/ISRC3/
RP9/RA8

CVDTX27/RP73/RE8

UREF/AD1AN3/CVDAN9/CMP5B/CMP7A/IBIAS2/ISRC2/
RP10/RA9

@ MICROCHIP

65
66
67
68
69

70
71
72
73
74
75
76
77
78

79
80

RP97/RGO
RP98/APWM4H/IOMBD11/RG1
RP99/APWM4L/IOMBD10/RG2
Vss

Vop

NC
RP41/APWM1L/IOMADS8/IOMBF3/RC8
RP42/SD02/IOMBF2/RC9(3)
RP39/SCL3/RC6

RP102/RG5

RP40/SDA3/IOMAF7/RC7

RP103/RG6

Vss

Vbp

0SCO/CLKO/RP33/I0MAF5/RCO)
OSCI/CLKI/RP34/IOMAF6/RC1

26

Table 11. 128-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMP5512/dsPIC33AKXXXMP5212)(1 2) (continued)

I "

CVDTX26/RP72/RE7 RP104/RG7

18 ADTANN1/AD1AN4/CVDAN10/CMPEN/CMP5C/RP11/RA10 82 PGC3/RP35/PWM4H/IOMAD7/RC2

19 CVDTX23/RP69/RE4 83 PGD3/RP38/PWM4L/IOMAD6/RC5

20 CVDAN15/RP16/RA15 84 RP36/PWM3H/IOMAD5/RC3

21 AVss 85 RP37/PWM3L/IOMAD4/RC4

22 AVpp 86 RP105/RGS

23 CVDTX25/RP71/RE6 87 RP43/PWM7H/IOMBD5/IOMBF1/RC10

24 CVDAN14/CMP1D/RP15/RA14 88 RP44/PWM7L/IOMBD4/IOMBFO/RC11

25 OATOUT/ADTANO/CVDAN2/CMP1A/RP3/RA2 89 RP106/RG9

26 CVDTX24/RP70/RE5 90 RP101/RG4

27 OATIN-/ADTANN2/AD1AN2/CVDAN3/CMPCN/ 91 RP45/PWM8H/IOMBD7/RC12
CMP1C/RP4/RA3

28 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4 92 RP46/PWMSBL/IOMBD6/RC13

29 OA30UT/AD3ANO/CVDAN5/CMP3A/RP6/INTO/RAS 93 Vss

30 RP75/RE10 94 Vpp

31 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/ 95 RP47/APWM3H/IOMBD9/RC14
CMP3C/RP7/RA6

32 NC 96 RP48/APWM3L/IOMBD8/RC15

33 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/ 97 RP113/RHO
RP22/RB5

34 RP91/RF10 98 RP58/PWM6H/IOMBD3/IOMBF7/RD9

35 CVDAN28/CVDTX12/CMP3D/RP29/RB12 99 RP59/PWM6L/IOMBD2/IOMAF9/IOMBF9/RD10

36 RP90/RF9 100 RP114/RH1

37 Vss 101 RP49/PWM2H/IOMAD3/RDO0O

38 Vbp 102 TCK/RP50/PWM2L/IOMAD2/RD1

39 RP89/RF8 103 RP115/RH2

40 AD3ANN1/AD3AN3/CVDAN29/CVDTX13/RP30/RB13 104 Vss

41 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RBO 105 Vpp

42 RP92/RF11 106 TDO/RP51/PWM1H/IOMAD1/RD2

43 TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/ 107 TDI/RP52/PWM1L/IOMADO/RD3
CMP2C/RP18/RB1

44 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2 108 SWVpp

45 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8 109 Ly

46 AD2ANN1/AD2AN3/CVDAN25/CVDTX9/CMP8D/RP26/RB9 110 SWVgg

47 AD2AN5/CVDAN31/CVDTX15/RP32/RB15 111 Vppcore

48 AD3AN4/CVDTX29/RP81/RFO 112 Vss

49 CVDTX30/RP82/RF1 113 Vpp

50 CVDTX31/RP83/RF2 114 NC

51 Vss 115 RP54/PWM5H/ASCL1/IOMBD1/RD5

52 Vbp 116 RP55/PWM5L/ASDA1/I0MBDO0O/RD6

53 RP88/RF7 117 CVDTX16/RP53/ASCL3/IOMBF6/RD4

54 CVDAN30/CVDTX14/CMP8B/RP31/RB14 118 RP60/APWM1H/IOMADY9/IOMAF8/IOMBF8/RD11

55 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3 119 RP61/ASDA3/RD12

56 RP87/RF6 120 NC

57 PGC1/AD4ANO/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4 121 RP62/IOMBF4/RD13

58 AD4ANNZ2/AD4AN1/CVDAN22/CVDTX6/CMP/CMP7D/ 122 RP63/APWM2H/IOMAD11/RD14
IBIASO/ISRCO/RP23/RB6

59 RP86/RF5 123 RP64/APWM2L/IOMAD10/IOMBF5/RD15

60 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMP4C/IBIAS1/ 124 CVDTX17/RP56/ASCL2/IOMAF4/RD7
ISRC1/RP24/I0MAFQO/RB7

61 AD4AN4/CVDAN26/CVDTX10/CMP8A/RP27/SCK2/IOMAF11/ 125 CVDTX18/RP57/ASDA2/IOMAF3/RD8
IOMBF11/RB10®)

62 CVDAN27/CVDTX11/CMP7B/RP28/IOMAF10/I0MBF10/ 126 Vsg
SDI2/RB113)

63 RP84/RF3 127 Vpp

64 NC 128 MCLR

@ MICROCHIP

27

Table 11. 128-Pin TQFP Complete Pin Function Descriptions (dsPIC33AKXXXMPS512/dsPIC33AKXXXMPS212)(1-2) (continued)

[Pin | Funcon [Pn] Fucton |
Notes:

1. RPnrepresents remappable peripheral functions.

2. Unless otherwise stated, pins are 4x drive strength.
3. This pin has 8x drive strength.

B 28
ﬁ\ MICROCHIP

Figure 10. 129-Pin TFBGA

@ =5V Tolerant

1 2 3 4 5 6 7 8 9 10 n 12 13
A(flO O ®@ O O @ @ O O O O O O

REO MCLR RD8 RD15 RD13 RD12 RD6 RD3 RD1 RD10 RHO RC14 RC13
sl O O @ O O O @ O O O o o o

RE1 RA12 RD7 RD14 NC RD11 RD5 RD2 RDO RD9 RC15 RG4 RC12
cl O O @ O O O O O

RAO RA7 RE3 Voo Vss RD4 NC RH2 RH1 Voo Vss RCM RG9Y
p|] O O O o O O

RA1 RE9 Vss RC4 RG8 RC10
el O @ O o O O

RA13 RE2 Vop RC2 RC5 RC3
Fl O O O o O O o O O

RA11 RA8 RES SWyss Lx SWVpp RC1 rco® Ra7
s/l O O O o O O O

RA9 RE7 RA10 VDDCORE Lx Voo Vss RG6 Voo
nl @ O O o O O @ O

RE4 RA15 AVss Vss Voo Vss RC6 RG5 RC7
,J o o o O O O

RA14 RE6 AVpp Voo RC8 Rco®
O o o© O O O

RA2 RE5 RA3 Vss RG2 NC
L o O O O O O O

RA4 RA5 RE10 Vss Voo RB1 RB9 Vss Voo RB3 RB6 RGO RG1
M O O O @ O O O O

RA6 NC RB12 RF8 RBO RB2 RB15 RF1 RF7 RF6 RF5 RB1063) NC
N o o O O O

RB5 RF10 RF9 RB13 RF11 RB8 RFO RF2 RB14 RB4 RB7 rRB11® RF3

Table 12. 129-Pin TFBGA Complete Pin Function Descriptions (dsPIC33AKXXXMPSSlZ/dsPIC33AKXXXMPSZlZ)“'Z)

e = uncion

m Function
Al CVDTX19/CMP7C/RP65/REO
A2 MCLR

A3 CVDTX18/RP57/ASDA2/IOMAF3/RD8

A4 RP64/APWM2L/IOMAD10/IOMBF5/RD15
A5 RP62/IOMBF4/RD13

A6 RP61/ASDA3/RD12

A7 RP55/PWM5L/ASDA1/I0OMBDO0/RD6

A8 TDI/RP52/PWM1L/IOMADO/RD3

A9 TCK/RP50/PWM2L/IOMAD2/RD1

A10 RP59/PWM6L/IOMBD2/IOMAF9/IOMBF9/RD10
A11 RP113/RHO

A12 RP47/APWM3H/IOMBD9/RC14

A13 RP46/PWM8L/IOMBD6/RC13

@ MICROCHIP

G8
G11
G12
G13

H1

H2

H3

H6

H7

H8
H11
H12
H13

Vop

Vss

RP103/RG6

Vbp
CVDTX23/RP69/RE4
CVDAN15/RP16/RA15
AVss

Vss

Vbp

Vss

RP39/SCL3/RC6
RP102/RG5
RP40/SDA3/IOMAF7/RC7

29

Table 12. 129-Pin TFBGA Complete Pin Function Descriptions (dsPIC33AKXXXMPSSlZ/dsPIC33AKXXXMP5212)(1 2) (continued)

I - B L A R
CVDTX20/CMP8C/RP66/RE1 CVDAN14/CMP1D/RP15/RA14
BZ CVDAN12/RP13/RA12 J2 CVDTX25/RP71/RE6
B3 CVDTX17/RP56/ASCL2/IOMAF4/RD7 3 AVpp
B4 RP63/APWM2H/IOMAD11/RD14 J11 Vpp
B5 NC J12 RP41/APWM1L/IOMAD8/IOMBF3/RC8
B6 RP60/APWM1H/IOMAD9/IOMAF8/IOMBF8/RD11 J13 RP42/SD0O2/IOMBF2/RC93)
B7 RP54/PWM5H/ASCL1/10MBD1/RD5 K1 OATOUT/ADTANO/CVDAN2/CMP1A/RP3/RA2
B8 TDO/RP51/PWM1H/IOMAD1/RD2 K2 CVDTX24/RP70/RE5
B9 RP49/PWM2H/IOMAD3/RDO0O K3 OA1IN-/ADT1ANN2/AD1AN2/CVDAN3/CMPCN/
CMP1C/RP4/RA3
B10 RP58/PWM6H/IOMBD3/IOMBF7/RD9 K11 Vss
B11 RP48/APWM3L/IOMBD8/RC15 K12 RP99/APWM4L/IOMBD10/RG2
B12 RP101/RG4 K13 NC
B13 RP45/PWM8H/IOMBD7/RC12 L1 OA1IN+/AD1AN1/AD5AN4/CVDAN4/CMP1B/RP5/RA4
Cc1 PGD2/AD3AN5/CVDANO/CMP6A/RP1/SCL2/IOMAF2/RA0 L2 OA30UT/AD3ANO/CVDAN5/CMP3A/RP6/INTO/RAS
Cc2 AD5ANN1/AD5ANO/CVDAN7/CMP6B/RP8/SDA2/ L3 RP75/RE10
IOMAF1/RA7
c3 C3:CVDTX22/RP68/RE3 L4 Vss
C4 Vpp L5 Vpp
Cc5 Vss L6 TMS/OA2IN-/AD2ANN2/AD2AN2/CVDAN17/CVDTX1/CMP2C/
RP18/RB1
(@) CVDTX16/RP53/ASCL3/IOMBF6/RD4 L7 AD2ANN1/AD2AN3/CVDAN25/CVDTX9/CMP8D/RP26/RB9
C7 NC L8 Ve
c8 RP115/RH2 L9 Vpp
(@°] RP114/RH1 L10 PGD1/AD4AN3/CVDAN19/CVDTX3/CMP4A/RP20/SDA1/RB3
C10 Vpp L11 AD4ANNZ2/AD4AN1/CVDAN22/CVDTX6/CMP/CMP7D/IBIASO/
ISRCO/RP23/RB6
C11 Ves L12 RP97/RGO
C12 RP44/PWM7L/IOMBD4/IOMBFO/RC11 L13 RP98/APWM4H/IOMBD11/RG1
C13 RP106/RG9 M1 OA3IN-/AD3ANN2/AD3AN2/CVDAN6/CMPDN/
CMP3C/RP7/RA6
D1 PGC2/DACOUT1/AD5AN1/CVDAN1/CMP4D/RP2/RA1 M2 NC
D2 CVDTX28/RP74/RE9 M3 CVDAN28/CVDTX12/CMP3D/RP29/RB12
D3 Vss M4 RP89/RF8
D11 RP37/PWM3L/IOMAD4/RC4 M5 OA20UT/AD2ANO/CVDAN16/CVDTX0/CMP2A/RP17/RB0O
D12 RP105/RG8 M6 OA2IN+/AD2AN1/CVDAN18/CVDTX2/CMP2B/RP19/RB2
D13 RP43/PWM7H/IOMBD5/IOMBF1/RC10 M7 AD2AN5/CVDAN31/CVDTX15/RP32/RB15
E1 CVDAN13/CMP5D/RP14/RA13 M8 CVDTX30/RP82/RF1
E2 CVDTX21/RP67/RE2 M9 RP88/RF7
E3 Vbp M10 RP87/RF6
E11 PGC3/RP35/PWM4H/IOMAD7/RC2 M11 RP86/RF5
E12 PGD3/RP38/PWM4L/IOMAD6/RC5 M12 AD4AN4/CVDAN26/CVDTX10/CMP8A/RP27/SCK2/IOMAF11/
IOMBF11/RB103)
E13 RP36/PWM3H/IOMAD5/RC3 M13 NC
F1 AD5ANN2/AD5AN2/CVDAN11/CMPFN/CMP6C/RP12/RA11 N1 OA3IN+/AD3AN1/AD4AN5/CVDAN21/CVDTX5/CMP3B/
RP22/RB5
F2 DACOUT2/AD5AN3/CVDANS8/CMP5A/IBIAS3/ISRC3/ N2 RP91/RF10
RP9/RA8
F3 CVDTX27/RP73/RE8 N3 RP90/RF9
F6 SWV¢g N4 AD3ANN1/AD3AN3/CVDAN29/CVDTX13/RP30/RB13
F7 Ly N5 RP92/RF11
F8 SWVpp N6 AD2AN4/CVDAN24/CVDTX8/CMP2D/RP25/RB8
F11 OSCI/CLKI/RP34/IOMAF6/RC1 N7 AD3AN4/CVDTX29/RP81/RFO
F12 OSCO/CLKO/RP33/I0MAF5/RCO®3) N8 CVDTX31/RP83/RF2
F13 RP104/RG7 N9 CVDAN30/CVDTX14/CMP8B/RP31/RB14

@ MICROCHIP

30

Table 12. 129-Pin TFBGA Complete Pin Function Descriptions (dsPIC33AKXXXMPSSlZ/dsPIC33AKXXXMP5212)(1 2) (continued)

I T N . N
UREF/AD1AN3/CVDAN9/CMP5B/CMP7A/IBIAS2/ISRC2/ N10 PGC1/AD4ANO/CVDAN20/CVDTX4/CMP4B/RP21/SCL1/RB4
RP10/RA9

G2 CVDTX26/RP72/RE7 N11 AD4ANN1/AD4AN2/CVDAN23/CVDTX7/CMPAC/IBIAS1/ISRC1/
RP24/I0MAF0/RB7

G3 AD1ANN1/AD1AN4/CVDAN10/CMPEN/CMP5C/RP11/RA10 N12 CVDAI3\127/CVDTX11/CMP7B/RP28/IOMAF1O/IOMBF10/SDI2/
RB11G)

G6 Vppcore N13 RP84/RF3

G7 Ly

Notes:

1. RPnrepresents remappable peripheral functions.
2. Unless otherwise stated, pins are 4x drive strength.
3. This pin has 8x drive strength.

o 31
ﬁ\ MICROCHIP

Pinout I/O Descriptions

Table 13. Pinout I/O Descriptions

Buffer
Type Type Description

ADTANO - ADTAN4
ADTANN1 - ADTANN2
AD2ANO - AD2AN5
AD2ANN1 - AD2ANN2
AD3ANO - AD3ANS5
AD3ANNT - AD3ANN2
AD4ANO - AD4ANS
AD4ANN1T - ADAANN2
AD5ANO - AD5AN4
AD5ANN1T - AD5ANN2

ADTRG31
CLKI

CLKO

CVDTX0-CVDTX31
CVDANO-CVDAN31
0OsCl

0SsCO

REFCLKI
REFCLKO
INTO
INT1
INT2
INT3
INT4

I/0

Analog
Analog
Analog
Analog
Analog
Analog
Analog
Analog
Analog
Analog

ST
ST/CMOS

Analog
ST/CMOS

ST
ST
ST
ST
ST
ST

No
No
No
No
No
No
No
No
No

Yes
No

No

No
No
No

No

Yes
Yes
No
Yes
Yes
Yes
Yes

ADC1 positive input channels
ADC1 negative input channels
ADC2 positive input channels
ADC2 negative input channels
ADC3 positive input channels
ADC3 negative input channels
ADC4 positive input channels
ADC4 negative input channels
ADCS5 positive input channels
ADC5 negative input channels

ADC Trigger Input 31

External Clock (EC) source input. Always
associated with OSCl pin
function.

Oscillator crystal output. Connects to the
crystal or resonator in Crystal Oscillator mode.
Optionally, it functions as CLKO in RC and

EC modes. Always associated with OSCO pin
function.

Oscillator crystal input. ST buffer when configured
in RC mode; CMOS otherwise.

Oscillator crystal output. Connects to the
crystal or resonator in Crystal Oscillator mode.
Optionally, it functions as CLKO in RC and EC
modes.

Reference clock input

Reference clock output

External Interrupt O

External Interrupt 1

External Interrupt 2

External Interrupt 3

External Interrupt 4

Legend: CMOS = CMOS compatible input or output; Analog = Analog input; P = Power; ST = Schmitt Trigger input with CMOS levels; O =

Output; | = Input; PPS = Peripheral Pin Select; TTL = TTL input buffer

Notes:

1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

@ MICROCHIP

32

Table 13. Pinout I/O Descriptions (continued)

Pin Name(® Buffer Description
Type Type P

IOCA[15:0]
IOCB[15:0]
I0CC[15:0]
|0CD[15:0]
IOCE[10:0]
IOCF[3:0], IOCF[11:5]
IOCG[2:0], IOCG[9:4]
IOCHI[2:0]
IOMADI[11:0]
IOMBD[11:0]
IOMAF[11:0]
IOIMBF[11:0]

QEIAT
QEIB1
QEINDX1
QEIHOM!1
QEICMP
RAO-RA15
RBO-RB15
RCO-RC15
RDO-RD15
REO-RE15
RFO-RF15
RG[2:0], RG[9:4]
RH[2:0]
T1CK
U1CTS
UTRTS
U1TRX
U1TX
UTDSR
U1DTR
U2CTS
U2RTS
U2RX
U2TX
U2DSR
U2DTR

Legend: CMOS = CMOS compatible input or output; Analog = Analog input; P = Power; ST = Schmitt Trigger input with CMOS levels; O =
Output; | = Input; PPS = Peripheral Pin Select; TTL = TTL input buffer

Notes:

- - -0

O____

170
1/0
170
I/0
I/0
I/0
170
1/0

O —-— 0 — 0 —

|
o)

|
o)

|

o)

ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST

ST

ST

ST

ST

ST

No
No
No
No
No
No
No

Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Interrupt-on-Change input for PORTA
Interrupt-on-Change input for PORTB
Interrupt-on-Change input for PORTC
Interrupt-on-Change input for PORTD
Interrupt-on-Change input for PORTE
Interrupt-on-Change input for PORTF

Interrupt-on-Change input for PORTG
Interrupt-on-Change input for PORTH

I/0 Monitor Bank A Reference
I/0 Monitor Bank B Reference
I/0 Monitor Bank A Feedback
I/0 Monitor Bank B Feedback

QEl Input A1

QEl Input B1

QEl Index 1 input

QElI Home 1 input

QEl comparator output

PORTA is a bidirectional 1/0 port
PORTB is a bidirectional I/O port
PORTC is a bidirectional 1/0 port
PORTD is a bidirectional I/0 port
PORTE is a bidirectional I/0 port
PORTF is a bidirectional 1/0 port
PORTG is a bidirectional I/0 port
PORTH is a bidirectional I/O port
Timer1 external clock input
UART1 clear-to-send

UART1 request-to-send

UART1 receive

UART1 transmit

UART1 data-set-ready

UART1 data-terminal-ready
UART2 Clear-to-Send

UART2 Request-to-Send

UART2 receive

UART2 transmit

UART2 Data-Set-Ready

UART2 Data-Terminal-Ready

1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

@ MICROCHIP

33

Table 13. Pinout I/O Descriptions (continued)

Pin Name(® Buffer Description
Type Type P

U3CTS | UART3 Clear-to-Send
U3RTS (0] — Yes UART3 Request-to-Send
U3RX | ST Yes UART3 receive
U3TXx O = Yes UART3 transmit
U3DSR I ST Yes UART3 Data-Set-Ready
U3DTR (¢} — Yes UART3 Data-Terminal-Ready
SENT1 | ST Yes SENT1 input
SENT2 I ST Yes SENT2 input
SENT10UT) — Yes SENT1 output
SENT20UT) — Yes SENT2 output
PTGTRG24 O — Yes PTG Trigger Output 24
PTGTRG25 (0] — Yes PTG Trigger Output 25
TCKI1-TCKI9 I ST Yes SCCP/MCCP Timer Inputs 1 through 9
ICM1-ICM9 I ST Yes SCCP/MCCP Capture Inputs 1 through 9
OCFA-OCFD | — Yes SCCP/MCCP Fault Inputs A through D
OCM1-0CM9 0 — Yes SCCP/MCCP Compare Outputs 1 through 9
SCK2 I/0 ST Yes Synchronous serial clock I/0 for SPI2
SDI2 I ST Yes SPI2 data in
SDO2 (6} — Yes SPI2 data out
SS2 I/0 ST Yes SPI2 Client synchronization or frame pulse /0
SCK3 110 ST Yes Synchronous serial clock I/0 for SPI3
SDI3 I ST Yes SPI3 data in
SDO3 0 — Yes SPI3 data out
SS3 170 ST Yes SPI3 Client synchronization or frame pulse /0
SCL1 I/0 ST No Synchronous serial clock I/0 for 12C1
SDA1 1/0 ST No Synchronous serial data 1/0 for 12C1
ASCL1 I/0 ST No Alternate synchronous serial clock 1/0 for 12C1
Alternate synchronous serial data 1/0 for 12C1
ASDA1 170 ST No
SCL2 110 ST No Synchronous serial clock I/0 for 12C2
SDA2 1/0 ST No Synchronous serial data 1/0 for 12C2
ASCL2 110 ST No Alternate synchronous serial clock I/0 for 12C2
Alternate synchronous serial data I/0 for 12C2
ASDA2 170 ST No
BISS1SL I ST Yes BiSS1 return input
BISS1GS I ST Yes BiSS1 get sense
BISSTMO 0 ST Yes BiSS1 output
BISSTMA 0 ST Yes BiSS1 clock

Legend: CMOS = CMOS compatible input or output; Analog = Analog input; P = Power; ST = Schmitt Trigger input with CMOS levels; O =
Output; | = Input; PPS = Peripheral Pin Select; TTL = TTL input buffer

Notes:
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

34

@ MICROCHIP

Table 13. Pinout I/O Descriptions (continued)

Pin Name(® Buffer Description
Type Type P

JTAG Test mode select pin

I
TCK | ST No JTAG test clock input pin
TDI | ST No JTAG test data input pin
TDO (6} — No JTAG test data output pin
PCI8-PCI18 | ST Yes PWM inputs 8 through 18
PCI19-PCI22 | ST Yes PWM inputs 19 through 22
PWMEA-PWMEF 0 — Yes PWM event outputs A through F
PWM1L-PWMSL? 0 — Yes PWM low outputs 1 through 8
PWM1H-PWM8H® 0] — Yes PWM high outputs 1 through 8
APWM1L-APWM4L 0 — Yes APWM low outputs 1 through 4
APWM1TH-APWM4H 0 — Yes APWM high outputs 1 through 4
CLCINA-CLCIND I ST Yes CLC inputs A through D
CLC10UT-CLC8OUT (6} — Yes CLC outputs 1 through 8
CMP1A-CMP8A I Analog No Comparator channels 1A through 8A inputs
CMP1B-CMP8B | Analog No Comparator channels 1B through 8B inputs
CMP1C-CMP8C | Analog No Comparator channels 1C through 8C inputs
CMP1D-CMP5D | Analog No Comparator channels 1D through 5D inputs
CMP7D-CMP8D | Analog No Comparator channels 7D through 8D inputs
CMPNC-CMPNF | Analog No All comparators negative inputs
CMP I Analog No All comparators positive input
DACOUT1 — No DAC1T output voltage

(o]
DACOUT2 (e} — No DAC2 output voltage
O

IBIAS3, IBIAS2, IBIAST,
IBIASO/ISRC3, ISRC2,

Analog No Constant-Current outputs 0 through 3

ISRC1, ISRCO
OATIN+ | = No Op Amp 1+ input
OA1IN- | = No Op Amp 1- input
OAT0UT (e} — No Op Amp 1 output
OA2IN+ | — No Op Amp 2+ input
OA2IN- | — No Op Amp 2- input
OA20UT (0] — No Op Amp 2 output
OA3IN+ | — No Op Amp 3+ input
OAS3IN- | — No Op Amp 3- input
OA30UT (e} — No Op Amp 3 output
UREF 0] — No UREF output

Legend: CMOS = CMOS compatible input or output; Analog = Analog input; P = Power; ST = Schmitt Trigger input with CMOS levels; O =
Output; | = Input; PPS = Peripheral Pin Select; TTL = TTL input buffer

Notes:
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

35

@ MICROCHIP

Table 13. Pinout I/O Descriptions (continued)

Pin Name(® Buffer Description
Type Type P

PGD1 Data I/0O pin for programming/debugging

communication channel 1

HGE I =l No Clock input pin for programming/ debugging

communication
PGD2 1/0 ST No channel 1

Data I/0 pin for programming/ debugging

PGC2 I ST No communication channel 2
Clock input pin for programming/ debugging
PGD3 170 ST No communication
channel 2
PGC3 ' ST No Data I/0 pin for programming/ debugging
communication channel 3
Clock input pin for programming/ debugging
communication channel 3
MCLR I1/P ST No Master clear (Reset) input. This pin is an active-low
Reset to the device.
AVpp P P No Positive supply for analog modules. This pin must
be connected at all times.
AVss P P No Ground reference for analog modules. This pin
must be connected at all times.
Vop P — No Positive supply for peripheral logic and I/0 pins
Vss P — No Ground reference for logic and 1/0 pins

Legend: CMOS = CMOS compatible input or output; Analog = Analog input; P = Power; ST = Schmitt Trigger input with CMOS levels; O =
Output; | = Input; PPS = Peripheral Pin Select; TTL = TTL input buffer

Notes:
1. Not all pins are available in all package variants. See the Pin Diagrams section for pin availability.

2. These pins are remappable as well as dedicated.

36

@ MICROCHIP

To Our Valued Customers

It is our intention to provide our valued customers with the best documentation possible to ensure successful
use of your Microchip products. To this end, we will continue to improve our publications to better suit your
needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing
Communications Department via E-mail at doc.errors@microchip.com. We welcome your feedback.

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:
www.microchip.com/

You can determine the version of a data sheet by examining its literature number found on the bottom outside
corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is
version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended
workarounds, may exist for current devices. As device/documentation issues become known to us, we will
publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it
applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:
* Microchip’s Worldwide Website: www.microchip.com/
* Your local Microchip sales office

When contacting a sales office, please specify which device, revision of silicon and data sheet (include the
literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com/ to receive the most current information on all of our products.

Terminology Cross Reference

Table 14 provides updated terminology for deprecated naming conventions. Register and bit names remain
unchanged, however, descriptions and usage guidance may have been updated.

Table 14. Terminology Cross References

CPU Master Initiator
DMA Master Initiator
12C Master Host
Slave Client
SPI Master Host
Slave Client
UART, LIN Mode Master Commander
Slave Responder
PWM Master Host
Slave Client

37

@ MICROCHIP

https://www.microchip.com/
https://www.microchip.com/
https://www.microchip.com/

Table of Contents

OPErating CONAITIONS....c.veiiuieiiriirieeeresterte sttt ettt et e bt st s besbesbe st e s b e b e b e benbestententesee st sbesbesbe s b e s b e sbe st enbensenbensensenteneenes 1
High-Performance dSPIC33A DSP/CISC CPU.....ccciiiiirieieieienieieteientetestete sttt st ettt st sbe st be s bt eb et e b sebeneebenes 1
MEIMIOIY FEATUIES.....eeeeeeeeet ettt ettt e s e e be e s bt e bt e s bt e sae e e be e s ab e e sae e e aseeemeeeneesaneesseeeaneesaneennneenreens 1
SEOUIEY FEATUIES. ..ttt ettt et b e bt e b s b s b e b e s b e b e b et et e e et e ne e st et e bt e bt e b e e b e s b e sbesbesbe b et ensensensennans 2
HIZN-SPEEA PWM ..ottt ettt bbbt b et b et s b et s b et b et e b et e b e e eb e b ebe b ebenbebenbentsbenesbeneas 3
High-Speed ANalog-to-Digital CONVEITEIS......ccciviiiririeieieietetetet ettt sttt st ettt e st e st e st e b ettt e e sseebessessesbesbesee 3
PEITPNEIAI FRATUIES.....ctiiieietetete ettt ettt b et b e bt st e bt s e bt s b e bt e bt b e bt b ebe b eb e s b eaesbe st s benesbene et et ebeneebenesbens 4
ANGIOE FEATUIES....euiiteiieteteitetete sttt s sttt et ettt et et e b et e s s s b s b s besbe s b e s b et e b et et e st enbenaent e st e bt s b e s b e s be s b e s b et et et enbensensensensons 4
SATEEY FRATUIES ...ttt ettt bttt sttt ettt b e st e b et e b et e bt e b et ek et e b et e b e b e b et e bt st e bt b ebesbesesbenesbeneebentebentetene 5
FUNCLIONAI SAFELY SUPPOI...eiuiiiiiiieiiiiieiieeseseste sttt ettt ettt st st s b e st st st e st et e b e b esseseesesbesbesbesbesbesbesbesbensensensensannen 5
(@ 15 F= 11 [aF=1 1 o] o FOTE TP 5
Programming and DEDUE INTEITACES. ..ottt ettt sttt ettt s bt sbe s b e b e e 5
ASPIC33AK5T2MPS5T2 FAMIlY FEATUIES....ciiiiieieiieientertesestesteste sttt ettt ettt et ettt s s b e sbesbesbesbesbesbesbesaensensensensens 6
PN DIAZIaMIS. .ttt ettt et ettt et ettt h e bt e bt e b e s b e s b e s b e s b e b e b e b e b et e b et e R e e R e e Rt e Rt e Rt e bt e bt e b e e b e eh e e b e b e b e b et et e ne e ens 10
PINOUL 170 DESCIIPLIONS. ..euteeteteeieeitteitesttete st et s et et st eite s bt e bt sae e s bt satesbesasesaeessessee st eaeesbeeasesaeentesabessesnsesseensesseensesneensenns 32
TerminolOgY CrOSS REFEIENCE....c.civiiiirieirie ettt sttt ettt b et b et b et e b et e b e st ekt b et e b et ebe b ebe b ebe st enesbenes 37
T, DVICE OVEIVIEW...ciiiiiiiiiieieieteteee ettt sttt s b e a et e ettt et et e b e s bt s b e s b e bt e b e s b e b e b e a e s e b esnennenneneene 45
2. Guidelines for Getting Started with Digital Signal CONTrollErs........ccvvivieirieiinieireereereere et 47
2.1. Basic CONNECLION REQUITEIMENTS....c.ciiiiriiriiriertetetetete ettt sttt sb e sbesbe bbbt ebesbesbe b ene 47
2.2, DECOUPIING CAPACITOIS....iciriirirtiirieieiesieierteieteiete bttt st et sttt st s te s st esestesesse st sbesesbesesbesesbenesbentesenestenessenesseneas 47
2.3, POWET SEQUENCING .eeottetirtieieeteiteeiesttete st et siee st et st et e s st e s e eseessesase s bt essesaee bt sasesbeessesaeeasesneesesnnessesnsesseensenns 47
2.4. Buck Converter Guidelines and CONSIAEratioNS......c.ceeveereeereeereerereeireerereeresre e essesesee e resesreesrenees 48
2.5, MaSter ClEar (MCLR) PiN...iiiiieiiiiiiciie it it st ceate et e et e saeeesbessabeesavsebesssbeessssabeesassebessabeesassenbesenbessssesnsees 50
2.6, ICSP PiNS.ciiieiirieiirieestetete ettt ettt ettt st b e sttt st sttt et e b e st s b et s b et e b et e bt ekt e bt e h et bt e bt s b e bt be st be st ke e ebeneeten 51
2.7, EXernal OSCllator PiNS.....cccii ettt sttt ettt sne s 51
2.8. External OsCillator LayOUL GUIANCE.......ccecivirerereriereniesiesieniestestessestetesesteseeessessessessessessessessessensensensensons 52
2.9. Oscillator Value Conditions 0N DeViCe Start-UP......cocecereeerieuerieinieinieesieesieesieeseesessesestesesbeesbeessenesseneenes 52
2,10, UNUSEA [/0S..uiieiiiieirieesieesiete ettt ettt b et eb sttt sttt st e b st e b e b ese b ebe st e st st esesbesesbesesbenesbenesbenesbenesbenesbenesbeneas 52
2,17, Targeted APPIICAtIONS. ..o ii ittt sttt sttt ettt b s bbbt bbbttt e b et et e e e e eneens 53
B CPU ettt bbbt b bbbt bbbt e h S e bt b ek Ao bt b b et b et eb e bbb e bt s b e bt b ene et e st et e st et e st et eneebenes 54
3.1, AFCHILECTUIAl OVEIVIEW. . .cueiiiieiieeiirietetetee ettt ettt bbbt sa et st e s e e sbe e snenesneneen 54
3.2, ROZISTEI SUMIMIAIY ..ttt ettt ettt ettt ettt et b e s b s b s bbb b e b e b e e e b et e e s bt sbesbesbesbesbesbenens 56
330 OPRIALION. ettt b e bbbt a e bbbt e b s b s bt b e e b e nb e b et et e b e e enneneas 78
3.4, Prefetch BrancCh UNIT (PBU).. o ittt ettt sveesaresveesatessseessasssseesessessssssessnsessssesssesssssssssesns 108
3.5, Performance MONILOr UNIt (PIMU)......ooueeiiieieieieeeerieeeeree e steeessteeessreeessseesssnteessbesessssessssssesessnsessssssesssnnns 119

@ MICROCHIP

38

10.

3.6. Floating-Point UNit (FPU) COPIOCESSON...iiiririeieieieteteeeteieesessessessessessessessessessessessessessessessesessessessessesses 131

MEMONY OFZaANIZATION...cuuiiiieieieieieeee ettt ettt ettt ettt et b e bt e b s b e s b e s b e b e b et et et et e e et e st e st ebeebesbesbesres 183
4.1. Device-SPeCifiC INfOrmMatioN.. ..ottt ettt e s sbesbesbesbesbesbeseas 183
4.2, ArChiIitECIUrAl OVEIVIEW.....uiiieuiieiirieieieerte ettt sttt ettt ettt b et b et b et b et b e bt s ebe st be st ebetebeeebennes 185
4.3, REZISTEI SUMIMAIY..c.iiiiiiieiietirieeieeterte sttt et ettt ettt et e bt s bt s b e sbesbesbesbe b e b et e b et et esteseebesbesbesbesbesbesbessens 188
N =11 QL @] o = =] 1 [0 TP PP P PSP UUOTPRO PRSPPI 219
4.5, APPIICATION EXAMIPIE ..ttt sttt ettt et a et s b e b e st sbe s b e s b e s b et et et et e s enaenaeneens 222
D1z Y =T o g o] TSP OO PRSPPSO PR PPTOP 224
5.1, Device-Specific INFOrmMation.... ...ttt 224
5.2, AICHITECTUIAl OVEIVIEW....ouiuiieiirieiieietetetet ettt ettt sttt sttt sttt ettt b et be e b et e b et et et ebe s ebensebesebennen 224
5.3, REGISTON SUMMIAIY ..eiitiiiiiiiiieieeteree ettt sttt b st b e e b s bt et sre e b s e e s b e e e e sbeeasesseenesaeesbesanesreen 226
TR S O] o= =1 4 [0 o PRSPPI PURPROPRI 246
FIASH PrOZIram MEIMOIY.....civueirieiirieiirieerteie sttt ettt sttt b et b e stk s bbbt ebe st ebe b ebesaebesbebe st enesbenesbenessenesan 253
6.1. Device-Specific INFOrMatioN. ...ttt 253
6.2, ROZISTEI SUMIMIAIY ..ttt ettt ettt ettt ettt st b s bbb s b b et e s e b e s e e e st e st e beebeebeebesbesbesbenee 255
6.3, OPEIALION..ciiiiiitiiicitcte bbb bbb bt en s 284
6.4, FIash DU PArtitioN......cooveuirieiinieiricicinctre ettt st st et 289
6.5, APPIICAION EXAMPIE ..ttt ettt st st b e b e ne e ebene 298
CONTIGUIATION BilS...uiiuiiitiieiirieiirieeieest ettt sttt sttt et te e te s be e sbe st sbese st e e e b e s ese st ese st ese s ese s esesaenesbenesbenessenenes 300
7.0, Configuration REZISTEr SUMMIAIY.....cccoeireireirieierieerie ettt sttt ettt b et b et b e s be s be s bt besaebeneebesaenis 303
7.2. Device Calibration and IdentifiCation........c.ccereirieinieinieereeeeeee ettt st sbe e 323
SECUITY MOAUIE...c.eiititiieieiet ettt sttt ettt e a et et et e e et e st ebe e st sbesbe s b e sbesb e st e st e sba st e s e bensensensensensones 326
8.1, ArChItECTUrAl OVEIVIEW....ciiiitiiririet ettt ettt sttt b et a bt naene 327
8.2, REZISTE SUMIMIAIY ...iiiiiieiieterieete sttt st sttt sttt st e e s bt et e s bt e aeshe e bt sae e s bt e s e sbe e b e eneesesntesseennesseensesnes 329
8.3, FlaSh MeEMOIY IMAP....cecueieieieieieienietereet sttt ettt ettt st sttt b et b et b et b et eb e e bt e b e ebe b be e enenes 352
B4, DEVICE LOCKING .. ittt ettt ettt b et b etk etk et ket e b et e b et e b et ebesaebensenes 354
8.5. Flash ProteCtion REZIONS......ccovueirieirieirieirieirietrte sttt te sttt te st e s et sse e eb e e s b e aebesaesesaesessesensenensesensen 358
8.6, CrypLOgraphiC ACCEIBIATON. ..ottt ettt st sb e s be bbbt e b e s e b e s enaenaeneenees 360
8.7. Peripheral ACCess CONLIOllEr (PAC). ..ottt et b e bbbttt essese b e saene 366
RESEES ..ttt b s s b s b sr s 368
9.1, AFCHITECTUIAl OVEIVIEW....eeuiieiirieierieerieeete ettt ettt et b st b sttt b et b e bbb st s bt s bese st et ebe e ebe st ebeneebeneen 368
9.2, REEISTEI SUMIMIAIY..c.ciuiiiiiiiiiieiiieeteete ettt ettt b et st s be b bess b saenis 369
1S G T O o =T = Y4 (o o IO TR PO OO TSP PR PTPRRTPRUPRIPROPRONt 371
9.4, APPIICAtION EXAMPIE ittt e bbbt st st b e b e s e nnene 374
0.5, Eff@CES Of RSO ..ttt b et bbbt b bbb bbb bt st e bt b e bt s b e st st e et e et e st enen 375
INEEITUDT CONTIOIIEI ittt sttt sttt ettt b et et e et e e sesse s b e ebesbesbesbesbesbesbenbensensensensen 376
10.1. Device-SPecific INfOrMATION....cccoiirieiierie ettt b sttt et sttt sbenea 376
10.2. ArChit@CtUral OVEIVIEW.....ooviuiiieiiieiriciictetee ettt sttt sa et st sne s 383
10.3. INTEITUPE VECEOE TaADIE.uuiiiiiiiiriiieetetect ettt sttt ettt et a e e e e s sbesbesbesbesbesbesbenbensenes 384
10.4. Interrupt Controller REGIStEr SUMIMAIY......coiirieirieerieenteeret sttt sttt sttt st b et be s bt b e b e naenens 387
T0.5. OPEIATION. ettt ettt ettt ettt b e bt e bt s bt s b e s b e s b e s b e b e b et et e e e st et e bt e bt e bt eb e e bt e b e e b e s b e b et e b et et entenees 583
10.6. Interrupt Control and STAtUS REGISTEIS......ccuiviiiiieieeeeeteertertese ettt st bbb nnens 584
10,7 P OFIEY e teetteite sttt ettt sttt et s bt et ae et e e st e s b e e st e s bt e b e s b e et e s ae e b e e a b e e Rt e a b e e R e e b e e Rt e bt e Rt e she e bt she e beeanenreennenee 585
T0.8. INTEITUPE SEOUENCE......iiiriieiieiteiteecteert ettt ettt ettt b e s bbb b b e b e b e e e e e e e e bt e bt e b e sbesbesbesbesnes 587

@ MICROCHIP

39

11.

12.

13.

14.

15.

10.9. NON-MaSKADIE TraPsS..ceeieieiriririninisesese sttt ettt ettt ettt s b s b sbe s b e s b e sbesbesbesbessentensensensenseneenesses 588

10.70. INEEITUPT OPEIAtIONS. ..ottt ettt ettt s sa e bbb sn et besbesbesbesnesbe s 590
170 POItS With EAZE DETECT.....c.eiririeieeeeirieiccitert ettt ettt sb et s bbbttt s b bt e 594
11.1. Device-SPecific INfOrMATioN. ...c.ciiieereee ettt ettt bbb sbene 594
17.2. ArChItECTUIAl OVEIVIEW.....eiiiiieiirieitrieeste ettt ettt b bbbttt et b et b e st e bt s b e st st ese st ese st e e benessenes 611
11,3, REGISTEI SUMIMIAIY.ciiiiiiiieiietetee ettt sttt ettt e b e s bt e bt sa e e s bt e bt she e b e emeesbeemsesseennesaeenesnnesreen 614
L I O T o 1< = 40 o FO TSSOSO U PE PSP UTPRT PSRRI 704
17.5. APPIICAtION EXAMIPIE....iiiiiieiie ettt ettt b et b e bbbt s bbb b s ntenenes 714
I L [o 1=] o TSP P RO RRPO PP RPRPP 715
11.7. POWEI-SAVING IMOAES......ciiiiiiieiritrerieeeeeste sttt st sttt et ettt ettt e e s b s b sbe s b e sbesbesbesbe s b e be b ensensensenneneens 715
11.8. Effects Of VarioUs RESELS.....coi ittt ettt 716
OSCIlIATOr MOAUIE. ...ttt sttt ettt ettt s b et s b et s bt s b et ek et e b et eb e st ebe st ebe b ebesaebesaenesbesesenenes 717
12.1. Device-SPecific INfOrMAtioN. ...ccoeireie ettt ettt st sbenea 717
12.2. ArChitECTUIAl OVEIVIEW....iiuiieierieiirieeeteete ettt ettt b et b et b et b et b et e b et b e s bbb ese st e se st e e st et besesbenes 718
12.3. REGISTEI SUMIMIAIY.ciiiiiiiiiiiiiieee ettt st sttt re s bt bt st e s bt s b s he e b e sseesbesabesseennesaeenbesanesreen 721
A O T o1 = 4 [o] o FO TP P OSSP PRTO PP PROSRO 765
Direct Memory ACCESS (DMA) CONTIOIIEI ...iiiuiririiieerieiete ettt sttt ettt ettt a b s b s 791
13.1. Device-SpecifiC INfOrMAtiON. ...c.ooeireieecee bbbt 791
13.2. ArChIitECIUIAl OVEIVIEW.....eteiiieiieieietetetetet ettt ettt sttt sttt b st se b et b et b etk e e s be e sbe e ebe e ebens 793
13,3, REGISTE SUMIMAIY ..ciuiiiiitiitiiiitist ettt ettt sttt b st sb e s b s be s b et et et et et et et e st et e st ese e st sbesbesbesbesbesbensen 795
ISR @ T oT=1 = 4 (o] o FO TSROSO PSP PP PRORRP 818
13.5. APPlICAtION EXAMIPIES...c.eiiiiiiiietiteire ettt ettt et bbbt sb e se e nnene 841
1300, INEOITUPES. ettt ettt ettt et s h e bbbt e b e b s b s b e b e b e b e b e b et e e e b e b e e et e bt e bt e beebesbesbene 843
13.7. POWEI-SAVING IMOOES.......ciiiinieiiietiietistete ettt ettt sttt sttt st et s e be s te e sbe st sbe st sbe st sbenesbenesbenessensesensesans 846
CAN Flexible Data-Rate (FD) ProtoCol MOAUIE.......c..ooiiiiiieiiiceecrec ettt et sveesaesebe e sareesaneeaneeenns 847
14.1. Device-SPecifiC INfOrMATiON.....cccviiieiieirie ettt b e st s b e e ssesessesassenessanens 847
TA.2. FRATUMES. ..ttt h e bbb ettt b s bt s b bbb b e b a e b n e e enis 847
14.3. CAN FD MESSAZE FraAmMES......cociiuiriiiiiriiriiniiniesiesresteste ettt sttt st b et sb e s bbb b b sn e aenesa e seenis 849
TA.4. REGISTEI SUMIMAIY ..ciuiiiiiiiitiiirtestertestete ettt et ettt b s bt s bt s b s b s besbe s b e b et et et e b et et enee st e st eseebesbesbesbesbesbenbensen 853
14.5. MOAES OFf OPEIATION....c.eietiirtiieiirieterieerte et ert ettt ettt st st se st e e sesessesassesessesessesesbesessenessensssensesensesenessenees 932
TA.6. CONTIGUIATION. ...ttt ettt sttt st s e st st e b et e st e b e e et et eseeseeseesesbesbesbesbesbesbesbesbensensensensenseneen 938
T4.7. MESSALE TraNSIMIISSION...eeuiitiitiiiiitiitestetet ettt ettt ettt s b s bbb s b st s b et e b et e b et e b e e et e e sseesesseesessesressens 948
14.8. TransMIt EVENT FIFO - TEF ..ottt sbe st sttt ettt st be b s b sbesbe b 957
T4.9. MESSALE FIlLRIING.cueiuiriiriiriiterterterteet ettt sttt ettt s bt e st et et et et et et e st esesbeebesbesbesbesbesbensensansan 960
14.70. MESSAZE RECEPILION...eeiieteteeeerttete sttt sttt sttt sttt st ettt e s bt et e sae et e ssee b e saeesbeeabesbeeasesaeesbesnsesseensensnenses 964
TA.TT. FIFO BERNAVIO .ttt ettt sttt b e bbbt b et bbb et b e st bt st e st s b et st eseebenesbenenbene 969
1412, TIMESTAMIPING . .ueitiieiiriieieeiteterteet ettt ettt et et ettt et e bt e bt s bt eb e sbesbe s b e b e b e s et enb et e st e st estebeebesbesbesbesbesbenbensens 979
LG T 1 01 (=] g U] o] TSP PP P PRSPPSO RPRROPRPRORPRTI 980
TA A, ErrOr HANAIING . ..ooieieiiiiriesesie sttt ettt ettt sttt st s b st st e st et et e s b e s et e st e st et esaenaesesbessessessessessesses 986
High-Resolution PWM with Fine EAZe PlaC@mMENT......ccoueirieiriiirieinieerieerieteie sttt ettt ettt st 988
15.1. Device-Specific INfOrMAtioN. ...ccoe ittt be e sbenea 988
15.2. ArChIitECTUIAl OVEIVIEW.....iiiuiieierieierietrtete ettt sttt ettt b ettt b bbb bt st bbbt e st e e st et ebe st ebenes 990
LT T =Y 4 1 = TP TSP PSP PTOUPROPRPOTI 993
(ST O o1 = 1 4[] o FO OO OO PSSO U SRR PORPN 1127
15.5. APPlICAtION EXAMIPIES....ooiiiieietietieteet ettt et st b e bbb b nes 1177

@ MICROCHIP

40

16.

17.

18.

19.

20.

21.

22.

1508, INEEITUPES ettt ettt ettt s bt et s e bt e b e s bt e b e s se e be e st e sbeeab e s bt e b e she e b e saeesbeensesseensesnnenbesanens 1197

15.7. POWEI-SAVING MOAES.....ciiiiieieiiiitresese st st s st ste st esaesae st e s e s e s et eseesesbesbesbesbasbesbesbesbesbensensensensensensoneas 1198
40 MSPS Analog-to-Digital CONVErter (ADC)......cccveerieririeririeirieesieesieessesestessssessesessesessesessesessesessesessesessesessesens 1199
16.1. Device-SPecifiC INfOrMAtioN.io ittt sttt ettt s b e b 1199
16.2. ADC ArChit@CtUIal OVEIVIEW...c.ccuiieeiieiiieierieiesteit ettt ettt st et b ettt et e bbb be s st esesbenesbenesbenens 1203
16.3. REEISTEI SUMIMIAIY.ccuiiiiiitiiieieetert ettt st sttt b e s st e b sae e bt s e e sh e et sbe et e e st eseeneesseennesreensesnns 1205
16,4, OPBIATION..ccutieeetieterte ettt sttt et et st s et e s bt et e s st e s bt et e sbe e b e she e beeatesaeenseesb e besaeesbeeabesh e e bt eanesbeentenaeennens 1393
16.5. APPlICAtION EXAMIPIES....oitiiiteietiiet ettt ettt b et b e b e b b e b e 1400
16.6. EffECtS OF RESEL ...ttt st bbbttt e b et st et b et s b et et et ebe st ebenaenens 1407
Integrated TOUCh CONLIOIEr (ITC).uiiiiiiririrererereriertestertet ettt st et s e s e sbesbe st e ssessessessessensessessessessesessessessenses 1408
17.1. Device-SPecifiC INfOrMAtiON.....ccvviririieiiceeere ettt st sttt be st e sbenesbenees 1410
172 REEISTOIS. .ottt sttt et e s bt st e s bt et e s bt e bt s ae e s bt e e e s ae e b e e et e b e s Rt e bt e aeeshe e bt eae e b e eab e be et e nreeanes 1410
17.3. TOUCH CONErOIEr OPEIALION...c.ccuiieeeieteieiertetireet ettt sttt b e b e s b et saebeneebesaebesaenesbenens 1452
17.4. APPIICAtION EXAMIPIE.... ittt sttt ettt b et b bbb bbb bbb e s sbenenas 1466
High-Speed Analog Comparator with Slope Compensation DAC.......c.coeceveerrereneineinreeneeneeneesesesreeenes 1471
18.1. Device-Specific INFOrMAtiON. ..ottt 1471
18.2. ArChitECtUral OVEIVIEW.....ivvieirieiiieircetctctt ettt st a e sae e 1474
18,3, REGISTEI SUMIMIAIY.ciuiiiiiiiiieittete sttt sttt et e st ettt e st e et esbeesbe s bt ebesueesbesatesbeeatesaeenbessbensesasensaensesseensesaes 1476
T84, OPEIATION. ittt ettt ettt b e s bbb e s b e b b e b e b e b e e e b et e bt e bt e b e e bt e b e e b b s b e bt et et et ennes 1489
18.5. APPlICAtION EXAMIPIES...c.oriiiiiieiiriiieitiririeietett ettt ettt ettt s bbbt 1494
Quadrature ENcoder INtErface (QEI) ... i ettt sttt st e estreebeesaesebeesabsesbessabeesassesbeessseesseenseesseeen 1500
19.1. Device-SPeCifiC INfOrMATION.....ccoviieiieiieeeee ettt st st e st e e ssesessenessanessenees 1500
19.2. ArChIitECIUIAl OVEIVIEWivieiirieeirieierieerteerretetet ettt et b e bt e b e s sa s seebenaesenes 1500
T9.3. REZISTEI SUMIMAIY ..ciuiiiiiiiiiiiteretetetee ettt sttt s b et b e bbb b sa e b et se e e e besbesbesbesbesbesnennens 1503
T4, OPEIATION. ettt ettt ettt ettt b e bt s bt s b s b e s b e s b e s b e b et et et e e et e st e st e bt e bt e bt e b e s bt e b e e b et et et etenteneen 1523
19.5. APPHCAtION EXAMPIE...iiuiiiiiiieirieeeerertese sttt ettt ettt s b s b s b st s b e st e sb et e b e b e s enaenseneenis 1531
T8, INEEITUPES .ttt ettt e e s bt et e s bt e bt she e bt s at e s b e et e s ae e b e s st e b e eabesbeeaseshee b e sseesbesasesseensesanennenneens 1532
19.7. POWEI-SAVING IMOOES.......ooieiiieiiieierieieste sttt sttt et b et b bbbt st et e bbbt e st sbe st s b e st sbe st et et ebe e ebenesbens 1532
Universal Asynchronous Receiver Transmitter (UART).....coivirirererenenienienietetenieteseeeeessessessessessessessessessens 1533
20.1. DeVvice-SPeCific INFOrMatioN.... ..ottt ettt be e 1533
20.2. ArChitECTUrAl OVEIVIEW......ciriieiiiiiririetceit ettt sttt sttt sttt sttt et se b beneas 1533
20.3. REZISTEN SUMIMAIY . ..iiiiiiieitieiirieerte et e et et e st et st e s bt st e s et e b e e see b e sate bt easeshe e s e saee b eessesseensesneensesneenseensessesn 1535
20,4, OPEIATION..c.iiiitiitiet ettt b et b et e e et b e e bt bt s Rt R h e b e s e s e nenennene 1556
20.5. APPIICAtION EXAMPIES....oitiiriiiiriiieiertetertetertetert ettt ettt sttt sttt ettt b et b bbb bt e bbbt e b b esenbenenas 1585
L ST 1 (=T o U] o] & PSSP TP SRPROPRPRROPRPRN 1587
20.7. POWEI-SAVING MOUTES......cccirtirririirierienienientestestetee st stestestestestesbestesaessesessessestestssessesbesbesbesbesbessensensensensensones 1588
Serial Peripheral INTEIrfate (SPI).....o ittt ettt ettt s b et b ekt besa b s b eebenes 1589
21.1. Device-Specific INFOrmMatioN... ...ttt 1589
271.2. ArCHITECTUIAl OVEIVIEW....ceiuiieiirieitrieerteerte ettt b st b et b et b bbb bt st e bt b e st st et st e e sbe e saenesbene 1589
27,3, ROZISTOI SUMIMIAIY.c.iiitiiiieieieiteteteteete ettt st sttt ettt et s e bt e bt e b s b e s b e s b e s b e b e s et e s et et e st e st ebeebesbesbesbesbenses 1594
B I S O o 1=T = Y4 (o o IO OO P ST P PSP RRPRRPRO 1609
205, INEEITUPES ettt b ettt st b e s bbb bbb nenen e e bt et 1642
21.6. Power-Saving and DEDUEZ IMOTES.......cc.ciriirieirieirieierieeste sttt ettt sttt be sttt be e a e neebeeene 1643
Inter-Integrated Circuit (120 ettt et et e et e et et e e e et at et ae et et e aetea et eaeaeae e et et eeeneatateeenentt et eaeaeneaeenenene 1645

@ MICROCHIP

41

23.

24.

25.

26.

27.

22.1. DeVvice-Specific INFOrMAtiON. ...ttt sttt et se e sse e e s e e esenens 1645

22.2. ArCHItECTUIAl OVEIVIEW....ciiiiieeiieitrieerteeteete ettt sttt ese et sa bbbt bbb et st e e b e e saenesnene 1645
22.3. 12C SYSTEIM OVEIVIEW....c.ueruivetititeniesiestete sttt et se st st s bt s bt s b s b s bbb e e et e e et e st e st e bt ebesbe s bt s b e s b e s b e b e s e s ennens 1648
22.4. REGISTEI SUMIMIAIY..c.civiiiiiiiiiiitiiiieiireieiet ettt sttt b e s bbbt b et sn et sbe st sbe st sbene 1650
S T O o 1=T = Y4 (o] o IO TSROSO SO PO PRURRPROPRI 1682
22.6. APPIICALION EXAMPIES....ooiiiriiirieeieet ettt ettt b et b s bbb e bennesenes 1729
22.7. INEEITUPES ettt ettt ettt et b e s bbb b e b b et e e e et e bt e bt e bt e bt s bt s b e s b e b e b et e b e b et e e eneeneeneene 1738
22.8. Operation in POWEr-SaViNg MOAES.........ceciriririeuiininieieeiiresettsesie ettt sttt st nene 1741
Single-Edge Nibble TransmiSSION (SENT)...c.cie ettt ettt eeeb st sa bbb e sae s seesesbene 1742
23.1. DeVvice-SPpecific INFOrMAtiON.....cccvireiieeiceeeeee ettt ettt b e be e s e e sseens 1742
23.2. ArCHItECTUIAl OVEIVIEW....ceiiiieiirieiirieeceteertetstet ettt st et b e ne e snesesnene 1742
23.3. ROZISTEI SUMIMIAIY.c.iiiiiiiiiieieieiteitereet sttt ettt ettt ettt s bt s bt s bbb e s e b e b e n e b e e et e bt ebesbesbesbesbennes 1745
234, OPRIATION. ..ttt ettt ettt b s bt b e s bbb bbbttt R et R e Rt e Rt bt e bt e b e e b e eheeh e e b e b et e b e nennennent 1753
23.5. APPIICAtION EXGMIPIES....iiiiiriiriiriririerterte sttt ettt ettt ettt b e s b s b s b s b st e b e st et et e b ense e e e eneeneens 1764
230, MBI UPES ettt ettt et s bt e b e s bt et eae e s bt et e s bt et e e a e et e e ab e bt e b e s he e bt sRe e b e e b e nhe et e ean e besaeenreeane 1767
23.7. POWEI-SAVING MOGES......cirieiirieirieiniertetete ettt ettt b et b st b et b s bbb e bt ebe st e b e b ebesbebesbebesbesesbenenbenenbenenas 1767
23.8. EffECLS O @ RESEL. ettt ettt ettt s b et b et b et et ettt be b ebe s ebetene 1767
Bidirectional Serial Synchronous (BiSS) MOAUIE........ccciviriiriirienieieieietetecet et se ettt sbe s saensenaen 1769
24.1. Device-SPecific INFOrMatioN.... ...ttt ettt b e b e e 1769
24.2. ArChItECTUIAl OVEIVIEW....cv ittt ettt st s r et n et se e snesennene 1769
24.3. ReZISTEI SUMMIAIY.c.uiiiiiiiiiiieiteiteieeeet sttt ettt ettt ettt st s bt s bt s bbb s e s e e e b e et seebesbesbesbesbesbennes 1776
244, OPEIATION.cc.iitiitistirest ettt ettt ettt ettt s bt s bt s bbbt b ettt et et R e Rt e bt bt bt e b e e b e e b e s b e s b et e b e b e s enennene 1795
24.5. APPIICATION EXAMPIES....ooiirieiriiiitiieierteierteet ettt ettt st sttt st be e ebe e b et sbe st eb et esessesesbesesenenseneasan 1803
24,6, MBI UPES e euteteeteettete ettt sttt st e s et et e s bt e bt sae e s b et e s bt et e s aa e b e e a e e bt e as e s he e bt eRe e b e e a b e nR e et e eanenreeneenreeane 1807
24.7. POWEL SAVING MOAES....c..ceiiiiitiieieieieieieetete ittt sttt sttt sttt sttt s b et bbb e e b e e s b e e e b e e ebeneebeneene 1807
24.8. TEIMUNOIOEY.c.eitirietirtetirieiertet ettt sttt sttt ettt b et be e b et e b et e bt s b e bt s b e st st ese b e st et e st ebesesbe st sbe st sbentebensebenbebens 1807
LI =T TP PP P TP TO TR 1809
25.1. Device-Specific INfOrMatioN......c.ccriieiiircct ettt 1809
25.2. ArChiIteCtUIal OVEIVIEW....cucuirieiiriciieiictieetetrtet ettt s st n et b et sne e snene 1809
25,3, REZISTEN SUMIMIAIY . ..iiiiiiieitieitisiteste ettt sttt st ettt e s b et e s bt e be s st e b e sate s bt eabeshe e st sabesbeenbesaeenbesaeensesnsensesnsesseen 1810
25,4, OPRIATION.c.iitiitistirtest ettt s b e bbbt bRt e b et b e bt bt e b e bt s b e b e b et et e nenennent 1814
BT T 1 1 (=T o 0] o] TP 1823
25.6. POWEI-SAVING MOTES......ccertirririiriirienieniesiertetetee et st ste st ste st sbestesteste b et et et e st sbesbesbesbesbesbesbenbensensensensensenes 1824
25.7. Effects Of VarioUS RESEES.......ci ittt ettt ne st neenes 1824
Capture/Compare/PWM/TImer MOAUIES (CCP).....cccverireirreirieirieesieesiesesiestssesseseseeseseesessesesaesessesessesessesessesenes 1825
26.1. Device-SPecific INFOrMatioN.ttt 1825
26.2. IMICCP.ciiieeeiette ettt ettt sttt b et b et b et bt bbbt bbb ekt ke skt hea e b e Rt b e st e b et e bbb b e bt ebe b ene et netn 1825
26.3. ArChiIteCtUIal OVEIVIEW....c.oouivieiirieiieicttctctte ettt st st sttt b et ene e snene 1837
26.4. REZISTEI SUMIMAIY . ..iiiiiiiiiiieiesiteite ettt e te st et e st et saee s b et e s et e be s st e b e satesseeaseshe e st satesbeensesaeensesssensesnsenseensessenn 1839
26.5. OPEIATION.c.iitiitirtiert ettt b e bt bt e b e bt e bbb et e n e ne e e e ene 1858
26.6. POWEI-SAVING MOGES......ciriiiirieirieirieteieteiert ettt ettt ettt steb st b e st be bbb ebe b e b et eb et ebesbenesbesesbenesbenesbenesan 1894
26.7. EffECLS OF @ RESEL....iiiiririeieiiirisiet ettt ettt sttt b et se b b 1895
Configurable LOZIC Cell (CLO)..uiuiireririenieiirietintetesieieste ettt ettt sttt et be e b et eb et eb et ebesbebesbe st sbenesbeneenan 1896
27.1. Device-Specific INfOrMatioN. ...ttt sttt ettt ettt sbasbesbesbesbens 1896
27.2. ATCNITECIUI ..ttt b et b e bbbttt et b e s b st s b e st s b etk et b et b et e b e ebe e eb e e ebentenes 1897

@ MICROCHIP

42

28.

29.

30.

31.

32.

33.

27.3. REZISTEN SUMIMAIY . .iiitiiieitieiesitete ettt sttt st et st s bt et st et s st e b e sate bt esae s bt et e saee b e e b e sbeebesneensesatenseennesseen 1901

B R O o =T 4 [¢] o TSSO PP POPRPOPPPRPPRRONt 1910
27.5. CLC APPIICatioN EXAMPIE.....cieiiieiiieierieieteieeet sttt ettt sttt b etk ettt be b be e ebenane 1913
27.6. CLC INTOITUPES. .ottt sttt e b e st b e st e bt s b e s bt et e s be et e s e ebesatesbeeabesreennesas 1915
27.7. POWEI-SAVING MOUTES......coirtirrirririiieniesieterteteteie st stestestesbesbe st sbesaeste st eae st esaesessesbesbesbesbesbesbebensensensensensons 1916
Peripheral Trigger GENErator (PTQG)......cccoetretrieerieerieerieestesestestetestste st stestebetebe st st e st ebesaesesbesessesesebessesessesessenes 1917
28.1. Device-Specific INfOrMatioN. ...ttt sttt a et bt et sa s s e sbassesbesbesbens 1917
28.2. ArCHITECTUIAl OVEIVIEW. ...eiiuiieiiieiirieerte ettt ettt ettt b et b et b e bt st e bt b e bt e et et sbeseesenesaene 1918
28.3. REZISTI SUMIMIAIY ..ttt ettt st et st et ettt et e s e bt s bt e b e s b e s b e s b e s b e b e s et e e et et e st e st ebeebesbesbesbesbenees 1926
R S O o<1 = Y4 (o] o IO OO P ST PP PRURRPRRPRO 1948
28.5. APPIICAtION EXAMIPIES..c.iiiiiiiiiririnisiseseste sttt ettt st ettt s s s b e s b e sbesbesbesbesbesbesbesbesensensensensenseneens 1961
28,6, INEEITUPES..eeiitiietetetetetete ettt ettt et et b e e b e b e s bt s b e b e b e b e s e b et e e et e e e seebesbeebene 1971
28.7. POWEI-SAVING MOGES......ciriiirieirieirieietete ettt te sttt ettt e s bt sttt be b e be st ebe b ebe st ebesbebesbenesbesesbenesbenesseneesan 1971
32-Bit Programmable Cyclic Redundancy Check (CRC) GENErator.....cuiivirerierierienienieieieeeesesesesessessessensens 1972
29.1. ArChiItECTUrAl OVEIVIEW......eiriiriiiiririet ettt sttt sttt ettt sa b benene 1972
20.2. REZISTEN SUMIMAIY . ..iiiiiiieitieiesteete ettt s te st et ste ettt e s bt et s bt et e e st esesate s bt easeshe e st saee b eeasesaeensesneensesneensesnsesseen 1974
B T O o T=T¢= 14 [¢] o TSSO PP PO PRPRTRPORPPRPROt 1979
29.4. APPIICATION EXAMPIES....ootiiriiiirieirieietet ettt ettt ettt sttt ettt e b ettt b et e bbb bbb ebe st ebenbenenas 1986
29.5. POWEI-SAVING MOGES.....cirieiirieirieisietstetetetetestetestesestesetsbestesessesessesessesesesessesessesessesessesessesessesessenessensasn 1990
CUrrent Bias GENEIATOr (CBG)..uuiiiieieiiieieiiieieiireeeeiteeeesteeeesteeecereeesssbesesbsesesssasessssssessssesessesesassesesssssesssssessssees 1991
30.1. Device-Specific INFOrMatioN.......cvivieiieeieeeecere ettt ettt s e se e e s e e eseens 1991
30.2. ArCHItECTUIAl OVEIVIEW....ceiiiieiirieiisieeeeteerte sttt et b e bt s e st bbb et st e e b e e saesesaene 1991
30.3. Current Bias Generator CONtrol REZISTOr.......cvirirerieerieienieeree ettt et sbe s b saenens 1993
30,4, OPEIALION.cutitiitistirtestert ettt ettt ettt ettt b s b s b s bbb e s b et et e st et et e Rt e st e Rt e bt e Rt e bt e b e e b e e b e eb e s b e s b et et et e aennennent 1994
30.5. APPIICAtiON EXGMIPIES....iiiiieiriririniresteste sttt ettt ettt et s s s b s b s b e s b st e st e s b e sbe b e b e sensensenaenseneens 1997
30.6. INEEITUPES..cviiiiiiietetetetetete ettt b e s bbb b e b e b e b e e et et sesbesbesre e 1998
30.7. POWEI-SAVING MOGES.....ciriiirieirieirietrietete ettt sttt bttt b et be s bbb ebe st ebesteb e b ebesbebesbenesbe st sbenesbenesaeneanan 1998
30.8. EffECLS OF @ RESEL...cuiiiiirieirieieteiet ettt sttt sttt et st ettt b e e b et e b et eb et e b et ebe s ebe s ebesene 1998
UREF REfEreNCE OULPUL....couiuirieieieieieieteteieeet ettt ettt ettt st sttt ettt sb e e b e s b e e b eneenes 1999
31.1. Device-SPecific INFOrMAtioN.....cccviv ettt ettt b e be e s e sseens 1999
371.2. UREF CONIOl REZISTEI Tuuuiiiieiiiiriiriniiniesiesiesiesie st stestestestesteste st et e s et esassassessessessessessessessessessensensensensensonsones 2001
Operational AMPLIfier (OP AMP)..c.c oottt ettt sttt sttt et s te e be st sbe e sbesesbesesbesesbenessensesensesens 2002
32.1. Device-SPecific INFOrmMatioN.... ..ottt et 2002
32.2. ArCHITECTUIAl OVEIVIEW....ceiuiieiiieiiieierieerte ettt sttt ettt b bbbt b b e bt s bbb e st e st s be e sbe e eaenesbene 2002
32.3. OP AMP REGISTEI SUMMIAIY...ciiitiieiriirieritritsiestesteste st testeste st e ste st et et et et e st esesbeebesbesbesbessesbessesensensensenes 2003
S O o 1=T = Y4 (o] o LT TSSO PSPPSR PUSOPROPRIUROPRORt 2006
32.5. Op AMP APPlIiCatioN EXGMPIES....ccucirieirieirieerieerieeriesee ettt et b st st ae et sbe e seenesbenen 2008
WatChAOZ TIMEE (WDT)...ccuieuieierienienieriesieniesterte ettt ettt st s b st st s b st e st et et et et et e st sbtsbesbesbesbesbe st esbebensensensenseneen 2009
33.1. DeVvice-SPecific INFOrMatioN.ttt be e 2009
33.2. ArCHITECTUIAl OVEIVIEW....cueiuiieeiieiirieieietrieteiet sttt sttt ettt et b et b et be st e b st ese st e s sbesesbesesbenesbenestenessens 2009
33,3, REZISTEN SUMIMAIY . .eiiiiiieiiieie ettt sttt st b et st st e bt st e bt e s e s bt e st saee s b e e s e sneebesneensesnnenseennesseen 2011
3304, OPRIATION.c..iiiitirticrt ettt et b s s h e b a e s r e n e n e aen e ent 2013
33.5. WatChdOg TIME RESEL.....ceiueirieietiietist ettt ettt ettt st b et b ettt be e bbb et e b et ebesbebesbe st b enenbenenas 2016
33.6. Operation of Watchdog Timer in Sleep/ldle MOAES.........cccereririeireninierinierisieneeeseee e saenes 2017

@ MICROCHIP

43

33.7. WWDT GENEIIC TrAP cueesteerterrerieeniietesteesteseeste st estestesreesesue e bt saee s bt easesseessesaeensesaee bt easesheensesaeenbesnsensesnsessnenses 2017

33.8. WDT Sample CONfiGUIALION.c..c.iveuirieirieierieereetrtei ettt st e b nene 2017
34, DEAAMAN TIMEE (DIMT).ciiuviiitiiitieeieeitteeieeerteeettestteesteesteesaeeesbeesstessstesassesssssbeesaseesssesseessseesssessssesssessseesssessessnseens 2020
34.7. ArCHITECTUIAl OVEIVIEW. ...eviuiieiirieiirieerteertetrte ettt sttt b e b bbbt b st be s b bt s b e bt e et e st st et snenesaene 2020
34.2. REZISTEI SUMIMIAIY ..ttt st st st et e st et et e sttt e et e bt s bt s b e sbesbe s b e s b e s b e b et et et et e st e st ebeebesbesbesbesbenees 2021
N T O o<1 =14 o] o IO TP P ST P T PRURRPRRPRO 2030
35. DeViCe POWEI-SAVING IMOTES.c.cuirieuirieiirieisietstestete ettt ettt s bt st e bt st st e st st e st st e st sbe st sbe st s be e s ket ebe st ebeaebensebenes 2034
35.T. ArCHhItECTUIAl OVEIVIEW....ceiiirieiiriciirieieeeeretrte ettt st et e n et n e snesennene 2034
35.2. REZISTEI SUMIMIAIY.c.uiitiiiiiiiiiieiteieetr ettt ettt ettt ettt s b e s bbb b s e s e e e sn e et et e bt s bt sbesbesbesrennes 2035
35,3, OPOIALION. ettt sttt e h e bt bbbt e b e s b e s b e b e b e b et e nenennene 2049
30, JTAG INTEITACE. .. ittt et sae e e be e e ab e e be e sabeesabe e beesabeesbssesbsessseebeeeabeessasenbessabeesbseenbeessteeseeennees 2053
37, IN-CIrCUIT DEDUEERT.c.c.eiiteiiiieteteetrt ettt st sttt b et b bbb bttt b bt eas 2054
38. INSTUCLION SEE SUMIMAIY...iiiiiiiiieicieetetetet ettt ettt sttt s s b e s b s b b snesnenennes 2055
39, DEVElOPMENT SUPPOI . ittt ettt ettt st st s b s b st st e st et et et et et e st e st e st eseebessesbesbesbesbesbesbessensensensennen 2066
40. ElECtriCal CharatleriStiCS. . cieiieierieirteieietetet ettt ettt ettt sttt be e bbbt e bt st e bt b ebe st e st st e e b e st st esesbe st sbenesbenesbeneaee 2067
40.7. DC CRAraCIISTICS. .veuerreirreirreieieteteee ettt ettt st e s bbb e st aenesnesesnenens 2067
40.2. AC Characteristics and TiMiNg Parameters.......ccocveireireinerinerenereeeneereseereseebeseeseseese s e e sesaeeenes 2077
A7, Packaging INfOrMAtioN......civieirieirieirieerie ettt ettt et a b e e b e s e e s e saesesbesessesessesasenessenessenessanens 2103
41.7. Package Marking INfOrmMation.......cccocireirieinieinieirietrtees ettt ettt b et b e s be e ne e 2103
471.2. PaCKAZE DELAIlS. ettt ettt 2105
A2, REVISION HISTOIY ..eoutiiiiiiiiiiiiine ettt b e s bbb et ettt s bt e bt s b s bt s b s b sb e n e nenenns 2129
43, Product [dentifiCation SYSTEM.....coeivieiirieirieirieirtetstees ettt et sesaeseseesesaesesaesessesessesessenessesassenessenessenessanens 2130
MICIOCHIP INTOIMNATION.c.c.titiieiiieeee ettt b et bbbt st b e bbbt e st e st st e st sbe st s b e stk ene et et ebe s ebensebens 2132
TrAAERMAIKS .ttt ettt et e e e b Rt e et a et Rt R et r e r e enen 2132
LEEAI NOTICE ettt ettt stttk b e b e bt e bt e bt e e bbbt st e b e b e b et e b et e st et e st s b e st s b ene e b et ee 2132
Microchip Devices Code ProteCtion FEAtUIE.........ciieirieirieiretrtetstetst ettt ettt be bbb s ebe s ebesaenens 2132

@ MICROCHIP

44

1. Device Overview

This document contains device-specific information for the dsPIC33AK512MPS512 Digital Signal
Controller (DSC) family of devices.

dsPIC33AK512MPS512 devices contain Digital Signal Processor (DSP) functionality with a high-
performance architecture and a Single and Double Precision Floating Point Unit (FPU).
dsPIC33AK512MPS512 family devices have an internal low-voltage regulator to supply power to the
core at 1.1V (typical).

Figure 1-1 shows a general block diagram of the core and peripheral modules of the
dsPIC33AK512MPS512 family.

@ MICROCHIP

45

Figure 1-1. dsPIC33AK512MPS512 Family Block Diagram

Sub System
CPU
CPU CPU CPU DMA ICD DEBUGRAM
FPU » Instruction X Data Y Data Data Data Data
Bus Bus Bus Bus Bus Bus
A A A
A4 v A4 v v
Bus Fabric (BMX)
A
32 32
Prefetch
Branch Unit
128 X RAM Y RAM Bus Splitter
ECC ECC
Flash
ash| Wrapper | | | A A A A

v
Row
ECC | |Program RAM Panels RAM Panels

il
o
[
o
0
I
=1
o
[

P

v ;
CFG Data NVM DMA

CFG Intg CLK Cfg PWM1-8
PTG APWM 1-4 CRC

CAM

GPIO Data

CFG Test

d
al
=l c

PPS UART 1-3
GPIO Cfg SPI1-4)
Far Slow Peripheral Bus (1:4) ADC 1-5
CLC 1-10 12C 1-3 B
JTAG ECC SENT 1-2
ITC
CHIP TAP RAMBIST Mccp 1
ALT TAP DMT SCCP 1-8 Fast Peripheral Bus (1:1)
CLKMON1-4 TMR 1-3
DFX TAP PWR
PWR QEI 1-4 VBG
MBIST UREF BISS
USER MBIST OPAMP 1-3 CAN 1-2 -BUCK Reg
wDT DAC/CMP 1-8 VREG1-3
Slow Peripheral Bus (1:4) IOIM 1-16
PMU
PAC
PBU
ICD

Std. Peripheral Bus (1:2)
Notes:

1. Notall I/O pins or features are implemented on all device pinout configurations. See Pinout I/O
Descriptions for specific implementations by pin count.

2. Some peripheral I/0s are only accessible through Peripheral Pin Select (PPS).

46

@ MICROCHIP

2.2.

2.2.1.

2.3.

Guidelines for Getting Started with Digital Signal Controllers

Basic Connection Requirements

Getting started with the dsPIC33AK512MPS512 family devices requires attention to a minimal set
of device pin connections before proceeding with development. The following pins must always be
connected:

+ All Vpp and Vss power supply pins must be properly biased with required voltages (see Electrical
Characteristics).

« All AVpp and AVss analog supply pins must be properly biased regardless of which analog
modules or components of the dsPIC33A device are used (see Electrical Characteristics).

+ The MCLR pin is connected with Vpp and Vsg based on circuit or application needs.
+ PGCx/PGDx for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see ICSP Pins)
+ 0OSCl and OSCO pins when an external oscillator source is used (see External Oscillator Pins)

Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as Vpp, Vss, AVpp and
AVsg, is required.

Consider the following criteria when using decoupling capacitors:

+ Value and type of capacitor: Recommendation of two 0.1 pF (100 nF) in parallel rated at 10-20V.
These capacitors should be low-ESR and have a resonance frequency in the range of 20 MHz and
higher. Ceramic capacitors are recommended.

+ Placement on the Printed Circuit Board: The decoupling capacitors should be placed as close
to the pins as possible. It is recommended to place the capacitors on the same side of the board
as the device. If space is constricted, the capacitor can be placed on the opposite side of the PCB
connected through a via; however, ensure that the trace length from the pin to the capacitor is
within one-quarter inch (6 mm) in length.

+ Handling high-frequency noise: If the board is experiencing high-frequency noise above tens of
MHz, add an additional ceramic-type capacitor in parallel to the decoupling capacitors. The value
can be in the range of 0.01 pF to 0.001 pF. Place this capacitor next to the primary decoupling
capacitors. In high-speed circuit designs, consider implementing a set of capacitances as close to
the power and ground pins as possible. For example, 0.1 yF in parallel with 0.01 pF and 0.001 pF.

+ Maximizing performance: On the board layout from the power supply circuit, run the power
and return traces to the decoupling capacitors first and then to the device pins. This ensures that
the decoupling capacitors are first in the power chain. It is equally important to keep the trace
length between the capacitor and the power pins to a minimum, thereby reducing PCB track
inductance.

Bulk Capacitors

For on boards with power traces running longer than six inches in length, it is suggested to use a
bulk capacitor for integrated circuits, including DSCs, to supply a local power source. The value of
the bulk capacitor should be determined based on the trace resistance that connects the power
supply source to the device and the maximum current drawn by the device in the application. In
other words, select the bulk capacitor so that it meets the acceptable voltage sag at the device.
Typical values range from 4.7 pF to 47 pF.

Power Sequencing

The dsPIC33AK512MPS512 family requires power sequencing when running high speeds and heavy
loads. Starting device at full load or waking from sleep can result in device reset from a core voltage
supervisor trip. The recommended method is to ensure that high-power consumers (PLLs, PLL
start-up, etc) are sequenced with delays between one another.

@ MICROCHIP

47

2.4. Buck Converter Guidelines and Considerations

A buck converter is implemented on buck device variants to power the core at a lower voltage.
The buck allows for reduced power loss and heat generated within the device. Four port pins are
replaced with connections for the buck converter. The connections are:

+ SWVpp - This power pin is connected to the internal power switches of the buck converter. This
pin has high transient currents and should have a low impedance path to Vpp. A 10 pF (4.7 uF
minimum) capacitor is recommended as close as possible to the pin.

+ SWVss - This power pin is connected to the internal power switches of the buck converter. This
pin has high transient currents and should have a low impedance path to PCB ground.

* Ly - This pin is the output of the H bridge power switches and provides current to the external
inductor. This pin has high transient currents and should have a low impedance trace to the
inductor.

* Vppcore - This pin supplies power from external inductor to the core. A 10 yF capacitor is
required and should be placed as close to the Vppcogre pin and inductor as possible.

The buck converter adjusts duty cycle to maintain a constant voltage output as the current demands
change. Current is delivered to the core through the external inductor and is filtered with the
capacitor in the Vppcore pin. Figure 2-1 illustrates a simplified topology of the buck components
inside the dsPIC .

Figure 2-1. Buck Regulator Topology

SwVDD

Lx

No other connections should be made to the Vppcoge Or Lx pins. The output voltage of the buck
converted is listed in Electrical Characteristics. An example application circuit is shown in Figure 2-2.

48

@ MICROCHIP

Figure 2-2. Example Application Circuit

VbD
—0.1pF

Vss T

0.001pF

VDD Core
1

SW Vss {

LX ——"Y Y Y |

SW VDD

0.1 uF .001puF C2

J-10 uF J-0
11

2.4.1. Buck Design Considerations

The buck regulator runs at a fixed frequency of 3 MHz nominal, and the inductor and Vcoge
capacitor are sized accordingly for the buck's control loop performance. Additional parasitic
resistance and inductance from the PCB pads and traces can shift the operating parameters

and cause instability under certain conditions. Therefore, it is important to minimize all related
trace lengths and compact the buck layout as much as possible. It is recommended to place all
components on the same side of the PCB as the dsPIC device. If the same side is not physically
possible, buck components can be placed on the opposite side with the same goal of minimal trace
length and parasitics. An example layout is shown in Figure 2-3.

@ MICROCHIP

49

Figure 2-3. Example Buck Component Layout

C6

™
O O

—
—

|||ﬁ

C1

&

o —

C208
C5

2.4.2. Component Selection

The selection of the inductor and filter capacitor are important for robust operation. The
temperature ratings should be sufficient for the intended environmental conditions. The saturation
current rating and DC resistance requirements are listed in Table 2-1.

Table 2-1. Inductor Selection Guidance

Inductance (pH) DCR (Ohm) Isat (mA)

10 <10 >300

2.5. Master Clear (MCLR) Pin
The MCLR pin provides two specific device functions:
+ Device Reset
+ Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to
the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently,
specific voltage levels (V4 and V|.) and fast signal transitions must not be adversely affected. Ensure
that the MCLR pin (V,4 and V) voltage specifications are met.

50

@ MICROCHIP

2.6.

2.7.

For example, Figure 2-4 shows the MCLR pin connections with general circuit components used,
such as resistor R, series resistor R1 and capacitor C, and their placements. It is recommended to
place these passive components with one-quarter inch (6mm) from the MCLR pin.

Figure 2-4. Example of MCLR Pin Connections

=U]
RrR1(2
MCLR

JP

dsPIC33

1 o

Notes:

1. R<10kQis recommended. A suggested starting value is 10 kQ. Ensure that the MCLR pin V|4
and V|_specifications are met.

2. R1<470Q will limit any current flowing into MCLR from the external capacitor, C, in the event of
MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure
that the MCLR pin V| and V,_ specifications are met.

3. C< 1 pFmay be recommended. However, values of C should be based on Reset timings
required for any application. Make sure to isolate C from the MCLR pin during programming
and debugging operations.

ICSP Pins

The PGCx and PGDx pins are used for programming and debugging purposes. It is recommended
to keep the trace length between the ICSP connector and the ICSP pins on the device as short

as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is
recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended
as they will interfere with the programmer/debugger communications to the device. If such
discrete components are an application requirement, they should be removed from the circuit
during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing
requirements information in the respective device Flash programming specification for information
on capacitive loading limits and pin Voltage Input High (V|y) and Voltage Input Low (V)
requirements.

External Oscillator Pins

When the Primary Oscillator (POSC) circuit is used to connect a crystal oscillator, special care and
consideration are needed to ensure proper operation. The POSC circuit should be tested across
the environmental conditions in which the end product is intended to be used. The load capacitors
specified in the crystal oscillator data sheet can be used as a starting point, however, the parasitic
capacitance from the PCB traces can affect the circuit, and the values may need to be altered

to ensure proper start-up and operation. Excessive trace length and other physical interaction
can lead to poor signal quality. Poorly tuned oscillator circuits can have reduced amplitude,
incorrect frequency (runt pulses), distorted waveforms and long start-up times that may result

in unpredictable application behavior, such as instruction misexecution, illegal opcode fetch, etc.
Ensure that the crystal oscillator circuit is at full amplitude and the correct frequency before the
system begins to execute code. In planning the application’s routing and 1/0 assignments, ensure
that adjacent port pins, and other signals in close proximity to the oscillator, do not have high

@ MICROCHIP

51

frequencies, short rise and fall times, and other similar noise. For further information on the POSC,
see Primary Oscillator (POSC).

2.8. External Oscillator Layout Guidance

Use best practices during PCB layout to ensure robust start-up and operation. The oscillator circuit
should be placed on the same side of the board as the device. Also, place the oscillator circuit close
to the respective oscillator pins, not exceeding a one-half inch (12 mm) distance between them.
The load capacitors should be placed next to the oscillator itself, on the same side of the board.
Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits.
The grounded copper pour should be routed directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. If using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. Suggested layouts are shown in Figure 2-5. With
fine-pitch packages, it is not always possible to completely surround the pins and components. A
suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the
guard trace(s) must be returned to ground.

For additional information and design guidance on oscillator circuits, please refer to related
Application Notes that are available at the Microchip website (www.microchip.com).

Figure 2-5. Suggested Placement of the Oscillator Circuit

Single-Sided and In-Line Layouts: Fine-Pitch (Dual-Sided) Layouts:
) . Top Layer Copper Pour
Copper Pour Primary Oscillator)
(tied to ground) Crystal (tied to ground)

DEVICE PINS Bottom Layer

Copper Pour
(tied to ground) — %=

Prima
Osaillatdr

C1

0scOo

C2

Oscillator
Crystal

C2
GND

C1

OscCl

DEVICE PINS

2.9. Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the
maximum oscillator source frequency must be limited to a certain frequency (see Phase-Locked
Loop (PLL)) to comply with device PLL Start-up conditions. This means that if the external oscillator
frequency is outside this range, the application must start up in the FRC mode first. The default PLL
settings after a POR with an oscillator frequency outside this range will violate the device operating
speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD
to a suitable value and then perform a clock switch to the Oscillator + PLL clock source.

2.10. Unused I/Os

Unused I/0 pins should be configured as outputs and driven to a Logic Low state. Alternatively,
connect a resistor (1k-10k ohm) between Vss and unused pins, and drive the output to a logic low.

52

@ MICROCHIP

https://www.microchip.com

2.11. Targeted Applications
* Power Factor Correction (PFC)
- Interleaved PFC

- Critical Conduction PFC
- Bridgeless PFC

« DC/DC Converters
- Buck, Boost, Forward, Flyback, Push-Pull
- Half/Full-Bridge
- Phase-Shift Full-Bridge
- Resonant Converters

+ DC/AC
- Half/Full-Bridge Inverter
- Resonant Inverter

+ Motor Control
- BLDC

- PMSM
- SR
- ACIM
+ Advanced Sensor Interfacing
+ High-Performance Embedded Control
+ High-Speed Data Acquisition and Processing
+ Safety-Critical Designs
+ Digital Lighting

@ MICROCHIP

53

3.1.

CPU

The dsPIC33AK512MPS512 family has a fixed-point fractional DSP engine supporting the Central
Processing Unit (CPU). The CPU processes instructions out of program memory and utilizes

system RAM to perform tasks and calculations. The CPU is interfaced to memory and peripherals
through the bus matrix. The CPU supports coprocessors, including the Floating-Point Unit (FPU) for
mathematical computation.

CPU key features:

+ 32-bit Working Registers

+ Unified Memory Map

+ 5-Stage Instruction Pipeline

+ Conditional Branching with Speculative Execution
* Instruction Prefetch Cache

+ Mathematical Support

+ Low Overhead Loop Support

Architectural Overview

The CPU has 32-bit (data) modified Harvard architecture with 32-bit instructions, a 5-stage
instruction pipeline and a single phase clock design.

The CPU has a 32-bit instruction word with a variable length opcode field. The CPU also supports
some instructions that are only available in 16-bit format. The Program Counter (PC) is 24 bits wide
to access a 16MB (24-bit address) unified linear address map.

The CPU supports up to eight addressing modes. A 5-stage fully interlocked instruction pipeline,
with reduced branch latency and hardware mitigated pipeline hazard stalls, helps maintain
throughput and provides predictable execution. Most instructions execute in a single-cycle effective
execution rate, except for instructions that change the program flow. A hardware program loop
construct is supported by the overhead free REPEAT instruction, which is interruptible at any point.
For loops greater than one instruction, the DBT (Decrement Test and Branch) instruction may be
used to reduce loop overhead.

The CPU supports High Performance Math Support with a tightly coupled 16/32-bit Integer and a
Fixed-Point fractional DSP engine with a 72-bit shifter, saturation and rounding support. There is an
optional common issue Single and Double Precision Floating-Point Unit (FPU) coprocessor with an
independent load-store execution pipeline.

The CPU supports closely coupled coprocessor macros with the following features.

+ Decode and issue from the CPU pipeline into independent coprocessor pipeline(s).

+ Pipeline hazards detected and mitigated in both the CPU and coprocessor(s).

+ Instructions are a dedicated data move and a conditional coprocessor status branch.
« Coprocessor interrupt support

Figure 3-1 illustrates the CPU block diagram.

@ MICROCHIP

54

Figure 3-1. Core Conceptual Block Diagram with a FPU Coprocessor

Y Address
Y Address
X Address o
Inst.
type
Y Data ol 32 XData X-bus
- > >
32 YData Y-bus
Ll 23
=
o
(<]
” X Address | =
[0} Ll
2
3
; Instruction Pipeline
. m Py 9 Y
DSP Engine § % e g)
= 2 o e =3 3 I-bus
() 2 kel - = {
32 D 2 3 m ?
-~ 2= I K R =~ I - I -
3 = > g 8
33 x 33 Multiplier @ o & 2
Operand Pre-proc I L
A A
FPU Coprocessor
s 1
- P> Divide Shifter
2 <«—| & Incrementer]
S W-reg Array = A @ Sequencer
®| 16 x 32-bit regs |os 2
<C 1 1}
| with Contexts(! § 2
< X
W15/ Stack Prr.| <]
D 1 — -
1 Divide Quotient
k—/—it‘ Eval. and Control
32 32 A 32 F-reg Array
< »‘ - » 32 x 32-bit regs
with Contexts(®
ALU[5$1\6/32] Status (SR
1
Single Bit |%
Shifter >
- _.
=) =) N
— ™ » E »
= Program Counter % % _‘:% % ¢
oL [m] < c = = c O
“EA 500 PC ' > 20 g 20
%) » o0 2 oo
o= as s S
§<—3 [PCTRAP < > %’E’ 2 % %
£ c = O =
83 o T > 5 A | 8%
[PCHOLD (emulation) |« %2 > o 2
-
FPU Control®) u
\J \J
To/From
Peripherals/SFRs
Notes:

1. The CPU includes base plus seven register contexts (one per IPL) for WO through W7, AccA, AccB,
RCOUNT and CORCONT[15:0].

2. The FPU includes eight register contexts (one per IPL) for FO through F7, FSR and FCR.

@ MICROCHIP

3.2. Register Summary

I S T B T S S S N

0x00 PC
0x04 SPLIM
0x08 RCOUNT
0x0C DISIIPL
0x10 CORCON
0x14 MODCON
0x18 XMODSRT
0x1C XMODEND
0x20 YMODSRT
0x24 YMODEND
0x28 XBREV
0x2C PCTRAP
0x30 FEX
0x34 FEX2

@ MICROCHIP

23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0

SATA SATB SATDW

XMODEN YMODEN
YWMI[3:0]

PC[23:16]
PC[15:8]
PC[7:0]

SPLIM[23:16]
SPLIM[15:8]
SPLIM[7:0]
RCOUNT[31:24]
RCOUNT[23:16]
RCOUNT[15:8]
RCOUNT[7:0]

us

ACCSAT

XMODSRT[23:16]
XMODSRT[15:8]
XMODSRT[7:0]

XMODEND[23:16]
XMODEND[15:8]
XMODEND[7:0]

YMODSRT[23:16]
YMODSRT[15:8]
YMODSRT[7:0]

YMODEND[23:16]
YMODEND[15:8]
YMODEND[7:0]

XBREV[14:8]

XBREV[7:0]

PCTRAP[23:16]
PCTRAP[15:8]
PCTRAP[7:0]
FEX[31:24]
FEX[23:16]
FEX[15:8]
FEX[7:0]
FEX2[31:24]
FEX2[23:16]
FEX2[15:8]
FEX2[7:0]

DISIIPL[2:0]

IPLST[2:0]
RND IF

XWM[3:0]

56

Register Summary (continued)

I S T S S S N

0x38 PCHOLD 23:16 PCHOLDI[23:16]
15:8 PCHOLDI[15:8]
7:0 PCHOLD[7:0]
31:24
23:16 VFA[23:16
0x3C VFA []
15:8 VFA[15:8]
7:0 VFA[7:0]
0x40
Reserved
O0x1EQOF
31:24
Ox1E10 HPCCON 2316
15:8 ON CLR
7:0
31:24 SELECT[3][4:0]
23:16 SELECT[2][4:0]
Ox1E10 HPCSELO
15:8 SELECT[1][4:0]
7:0 SELECTI[0][4:0]
31:24 SELECT[7][4:0]
23:16 SELECT[6][4:0]
Ox1E14 HPCSEL1
15:8 SELECT[5][4:0]
7:0 SELECT[4][4:0]
Ox1E18
Reserved
OX1E1F
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E20 HPCCNTLO
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E24 HPCCNTHO
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E28 HPCCNTL1
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E2C HPCCNTH1
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E30 HPCCNTL2
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E34 HPCCNTH2
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23:16 HPCCNT[23:16]
Ox1E38 HPCCNTL3
15:8 HPCCNTI[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
23:16 HPCCNT[55:48]
Ox1E3C HPCCNTH3
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]

@ MICROCHIP

Register Summary (continued)

Loifset L Name i sithos L7 L s L s L Ll Lo

HPCCNT[31:24]

23116 HPCCNT[23:16]
OX1E40 HPCCNTL4
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
Ox1E44 HPCCNTH4 2316 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23116 HPCCNT[23:16]
Ox1E48 HPCCNTLS
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
Ox1E4C HPCCNTHS 2316 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23116 HPCCNT[23:16]
OX1E50 HPCCNTL6
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
Ox1E54 HPCCNTH6 2316 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24 HPCCNT[31:24]
23116 HPCCNT[23:16]
OX1E58 HPCCNTL?
15:8 HPCCNT[15:8]
7:0 HPCCNT[7:0]
31:24 HPCCNT[63:56]
OX1ESC HPCCNTH7 2316 HPCCNT[55:48]
15:8 HPCCNT[47:40]
7:0 HPCCNT[39:32]
31:24
23116
OX1E60 CHECON g - e S
70 FLTIN]
31:24
Ox1E64 CHESTAT 2316
15:8
70 RD PAR
31:24
OX1E68 CHEFLTINJ 2316
15:8
7:0 FLTPTRI7:0]

@ MICROCHIP

3.2.1. CPU Program Counter Register
Name: PC
Offset: 0x000
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| PC[23:16]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| PC[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
PC[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - PC[23:0] Program Counter bits

@ MICROCHIP

59

3.2.2. Stack Pointer Limit Value Register

Name: SPLIM
Offset: 0x004
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| SPLIM[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| SPLIM[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
SPLIM[7:0]
Access R/W RIW R/W R/W RIW R/W RIW R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - SPLIM[23:0] Stack Limit Address bits

@ MICROCHIP

60

3.2.3. REPEAT Loop Counter Register

Name: RCOUNT

Offset: 0x008

Bit 31 30 29 28 27 26 25 24
| RCOUNT[31:24]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| RCOUNT[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| RCOUNT[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RCOUNTI7:0]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - RCOUNT[31:0] Loop Counter Value for REPEAT Instruction bits

@ MICROCHIP

61

3.2.4. DISIIPL(W) Instruction Current IPL Threshold

Name: DISIIPL
Offset: 0x00C
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
DISIIPL[2:0]
Access R R R
Reset 0 0 0

Bits 2:0 - DISIIPL[2:0] Current IPL Threshold Value bits

@ MICROCHIP

62

3.2.5. Core Mode Control Register(!)

Name: CORCON
Offset: 0x010

Note:

1. The Core More Control register (CORCON) has bits that control the operation of the DSP
multiplier hardware.

Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | us | | IPLST[2:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
SATA | SATB | SATDW | ACCSAT | | | RND | IF |
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 12 - US Unsigned or Signed Multiplier Mode Select bit

Value Description

1 Unsigned mode enabled for DSP ops
0 Signed mode enabled for DSP ops

Bits 10:8 - IPLST[2:0] Interrupt Priority Level Supervisor Mode Threshold bits
User Mode: These bits are read-only.
Supervisor Mode: The bits are R/W-0 (CPU will reset into Supervisor mode)

111 No interrupts will execute in Supervisor mode.

110 Level 7 interrupts will execute in Supervisor mode.

101 Level 6 and 7 interrupts will execute in Supervisor mode.

100 Level 5 through 7 interrupts will execute in Supervisor mode.
011 Level 4 through 7 interrupts will execute in Supervisor mode.
010 Level 3 through 7 interrupts will execute in Supervisor mode.
001 Level 2 through 7 interrupts will execute in Supervisor mode.
000 Level 1 through 7 interrupts will execute in Supervisor mode.

Bit 7 - SATA AccA Saturation Enable bit

Value Description

1 Accumulator A saturation enabled
0 Accumulator A saturation disabled

@ MICROCHIP

63

Bit 6 - SATB AccB Saturation Enable bit

Value Description
1 Accumulator B saturation enabled
0 Accumulator B saturation disabled

Bit 5 - SATDW Data Space Write from DSP Engine Saturation Enable bit

Value Description
1 Data Space write saturation enabled
0 Data Space write saturation disabled

Bit 4 - ACCSAT Accumulator Saturation Mode Select bit

Value Description
1 9.63 saturation (super saturation)
0 1.63 saturation (normal saturation)

Bit 1 - RND Rounding Mode Select bit

Value Description
1 Biased (conventional) rounding enabled
0 Unbiased (convergent) rounding enabled

Bit 0 - IF Integer or Fractional Multiplier Mode Select bit

Value Description
1 Integer mode is enabled for DSP multiply.
0 Fractional mode is enabled for DSP multiply.

@ MICROCHIP

3.2.6. Modulo Addressing Control Register(!)

Name: MODCON
Offset: 0x0014

Note:
1. The MODCON register enables and configures Modulo Addressing (circular buffers).

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| XMODEN | YMODEN |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
| YWM[3:0] | XWM[3:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 1 0 0 0 1

Bit 15 - XMODEN X RAGU & X WAGU Modulo Addressing Enable bit

Value Description
1 X AGU Modulo Addressing enabled
0 X AGU Modulo Addressing disabled

Bit 14 - YMODEN Y AGU Modulo Addressing Enable bit

Value Description
1 Y AGU Modulo Addressing enabled
0 Y AGU Modulo Addressing disabled

Bits 7:4 - YWM[3:0] Y AGU W Register Select for Modulo Addressing bits

Value Description

1111 Modulo Addressing disabled (W15 does not support Modulo Addressing)
1110 W14 selected for Modulo Addressing

0000 WO selected for Modulo Addressing

Bits 3:0 - XWM[3:0] X RAGU & X WAGU W Register Select for Modulo Addressing bits

Value Description

1111 Modulo Addressing disabled (W15 does not support Modulo Addressing)
1110 W14 selected for Modulo Addressing

0000 WO selected for Modulo Addressing

@ MICROCHIP

3.2.7. X AGU Modulo Addressing Start Register(1)

Name: XMODSRT
Offset: 0x0018

Note:

1. The XMODSRT and XMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the X data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| XMODSRT[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| XMODSRT[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| XMODSRT[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - XMODSRT[23:0] X RAGU & X WAGU Modulo Addressing Start Address bits

@ MICROCHIP

3.2.8. X AGU Modulo Addressing End Register()

Name: XMODEND
Offset: 0x001C

Note:

1. The XMODSRT and XMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the X data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| XMODENDI[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| XMODEND[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| XMODEND[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - XMODENDI[23:0] X RAGU & X WAGU Modulo Addressing End Address bits

@ MICROCHIP

3.2.9. Y AGU Modulo Addressing Start Address Register(1)

Name: YMODSRT
Offset: 0x0020

Note:
1. The YMODSRT and YMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the Y data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| YMODSRT[23:16]
Access RIW R/W R/W R/W R/W R/W RIW R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| YMODSRT[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
YMODSRT[7:0]
Access RIW R/W R/W R/W R/W R/W RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - YMODSRT[23:0] Y RAGU Modulo Addressing Start Address bits

@ MICROCHIP

3.2.10. Y AGU Modulo Addressing End Register()

Name: YMODEND
Offset: 0x0024

Note:

1. The YMODSRT and YMODEND registers hold the start and end addresses for modulo (circular)
buffers implemented in the Y data memory address space.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| YMODEND[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| YMODEND[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| YMODEND[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - YMODEND[23:0] Y RAGU Modulo Addressing End Address bits

@ MICROCHIP

3.2.11. X AGU Bit Reversal Addressing Control Register(!)

Name: XBREV
Offset: 0x0028
Note:

1. The XBREV register sets the buffer size used for Bit-Reversed Addressing.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | XBREV[14:8]
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| XBREV[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 14:0 - XBREV[14:0] X AGU Bit Reversed Modifier bits

@ MICROCHIP

70

3.2.12. Captured PC Address at Time of Trap Register

Name: PCTRAP
Offset: 0x002C

Notes:
1. PCTRAPI[O] always reads as 0.
2. Ifthe current IPL is greater or equal to 8, the PC address will not be captured.

3. Hardware update is blocked after the first PCTRAP update occurs, preventing newer traps
from overwriting the source address of older ones. An update can be re-enabled by the
user attempting to write 24'h000000 to PCTRAP (the write will not occur, preserving PCTRAP

contents).
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
PCTRAP[23:16]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| PCTRAP[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PCTRAP[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - PCTRAP[23:0] Captured PC Address at Time of Trap Exception bits(1.2:3)

@ MICROCHIP

71

3.2.13. Force Execution Instruction Register 1

Name: FEX
Offset: 0x0030

Bit 31 30 29 28 27 26 25 24
| FEX(31:24]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| FEX[23:16]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
FEX[15:8]
Access R/W R/W R/W R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FEX[7:0]
Access R/W R/W R/W R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 1

Bits 31:0 - FEX[31:0] Force Execution Instruction bits
For two-word operations, FEX contains the first instruction to be executed using the UFEX
instruction. FEX is only visible as a R/W register in Debug mode. In all other operating modes, it
is read-only for all 0's.

@ MICROCHIP

3.2.14. Force Execution Instruction Register 2

Name: FEX2
Offset: 0x0034

Bit 31 30 29 28 27 26 25 24
| FEX2[31:24]
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| FEX2[23:16]
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
FEX2[15:8]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FEX2[7:0]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 31:0 - FEX2[31:0] Force Execution Instruction 2 bits
For two-word operations, FEX contains the second instruction to be executed using the UFEX
instruction. FEX is only visible as a R/W register in Debug mode. In all other operating modes, it
is read-only for all 0's.

@ MICROCHIP

3.2.15. Debug Hold PC Register

Name: PCHOLD
Offset: 0x0038
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| PCHOLDI[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| PCHOLDI15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
PCHOLD[7:0]
Access R/W RIW R/W R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 1

Bits 23:0 - PCHOLD[23:0] Debug Hold PC register bits

PCHOLD is only visible as a R/W register in Debug mode. In all other operating modes, it is read-only
for all O's.

@ MICROCHIP

74

3.2.16. Vector Fail Address Register(1)

Name: VFA
Offset: 0x003C

Note:
1. The Reset value of VFA[23:1] must be set to the contents of the Reset vector located at address
0x800000.
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| VFA[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| VFA[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| VFA[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - VFA[23:0] Vector Fail Address Register bits

@ MICROCHIP

3.2.17. CPU STATUS Register(!
Name: SR

Note:

1. The CPU STATUS register is not memory mapped. The IPL3 bit is concatenated with the IPL[2:0]
bits (SR[7:5]) to form the CPU Interrupt Priority Level.

Bit 31 30 29 28 27 26 25 24
| | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
L v] | CTX[2:0] |
Access R R R R
Reset 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| oA [oB | SA | sB | OAB | SAB | | P3|
Access RIW RIW R/W R/W R R/C R/C
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| IPL[2:0] | RA | N | ov | Z | C |
Access R/W R/W R/W R R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 - VF Vector (Fetch) Fail Status bit

1 Indicates to the Bus Error handler that the source of the bus error is a vector fetch. The vector data read will be
substituted with the contents of the Vector Fail Address (VFA) SFR.
0 Indicates to the Bus Error handler that the source of the bus error is not a vector fetch.

Bits 18:16 - CTX[2:0] Current (W register) Context Identifier bits

111 Context 7 is currently in use.
110 Context 6 is currently in use.
101 Context 5 is currently in use.
100 Context 4 is currently in use.
011 Context 3 is currently in use.
010 Context 2 is currently in use.
001 Context 1 is currently in use.
000 Context 0 is currently in use.

Bit 15 - OA Accumulator A Fractional Overflow Status bit

Value Description

1 Accumulator A fractional overflow has occurred (its contents can no longer be represented as a 1.31 fractional
value).
0 Accumulator A has not overflowed.

Bit 14 - OB Accumulator B Fractional Overflow Status bit

@ MICROCHIP

76

1 Accumulator B fractional overflow has occurred (its contents can no longer be represented as a 1.31 fractional
value).
0 Accumulator B has not overflowed.

Bit 13 - SA Accumulator A Saturation/Sign Overflow ‘Sticky’ Status bit

1 Accumulator A is saturated, or has been saturated at some time or has overflowed into bit 71 (if saturation is
disabled).
0 Accumulator A is not saturated or has not overflowed into bit 71 (if saturation is disabled).

Bit 12 - SB Accumulator B Saturation/Sign Overflow ‘Sticky’ Status bit

1 Accumulator B is saturated, or has been saturated at some time or has overflowed into bit 71 (if saturation is
disabled).
0 Accumulator B is not saturated or has not overflowed into bit 71 (if saturation is disabled).

Bit 11 - OAB Combined Accumulator A or Accumulator B Fractional Overflow Status bit

1 Accumulators A or B fractional overflow has occurred (one or both of their contents can no longer be
represented as a 1.31 fractional value).
0 Neither Accumulators A nor B have overflowed.

Bit 10 - SAB Combined Accumulator A or Accumulator B "Sticky" Status bit

1 Accumulators A or B are saturated, or have been saturated at some time or have overflowed into bit 71 (if
saturation is disabled).
0 Neither Accumulator A nor B are saturated or have overflowed into bit 71 (if saturation is disabled).

Bit 8 - IPL3 MS-bit of CPU Priority Level Nibble bit
User mode: This bit is R/C-0 (read-only if Supervisor mode supported) and will reset to 1'b0.
Supervisor mode: This bit is R/C-0 (CPU will reset into Supervisor mode).

Value Description
1 CPU Priority > 8 (trap exception underway).
0 CPU Priority < 8 (no trap exception underway).

Bits 7:5 - IPL[2:0] CPU Interrupt Priority Level status bits
User mode: This bit is R/C-0 (read-only if Supervisor mode supported) and will reset to 1'b0.
Supervisor mode: This bit is R/C-0 (CPU will reset into Supervisor mode).

111 All interrupts disabled.

110 Level 7 interrupts enabled.

101 Level 6 and 7 interrupts enabled.
100 Level 5 through 7 interrupts enabled.
011 Level 4 through 7 interrupts enabled.
010 Level 3 through 7 interrupts enabled.
001 Level 2 through 7 interrupts enabled.
000 Level 1 through 7 interrupts enabled.

Bit 4 - RA REPEAT Loop Active bit

Value Description
1 REPEAT loop is in progress.

@ MICROCHIP

77

Bit 3 -

Bit 2 -

Bit 1 -

Bit 0 -

3.3.

3.3.1.

3.3.2.

3.3.3.

Value Description

0 REPEAT loop is not in progress.
N MCU ALU Negative bit

Value Description

1 Result was negative.
0 Result was not negative (zero or positive).

OV MCU ALU Overflow bit
This bit is used for signed arithmetic (two’s complement). It indicates an overflow of the magnitude
that causes the sign bit to change state.

Value Description

1 Overflow occurred for signed arithmetic (in this arithmetic operation).
0 No overflow occurred.

Z ALU ‘Sticky’ Zero bit

Value Description

1 An operation which effects the Z bit has set it at some time in the past.
0 The most recent operation which effects the Z bit has cleared it (i.e. a non-zero result).

C ALU Carry/Borrow bit
SR[31:0] is stacked during exception processing, preserving context.

Operation

Instruction Set

The dsPIC33A instruction set has two classes of instructions: MCU instructions and DSP instructions.
These two classes are seamlessly integrated into the architecture and execute from a single
execution unit. The instruction supports integer, fixed point and floating-point math operations.

Data Space Addressing

The Data Space is split into two blocks as X and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The MCU class of instructions operates solely through
the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP
instructions operate through the X and Y AGUs to support dual operand reads, which split the data
address space into two parts.

In dsPIC33A devices, overhead-free circular buffers (Modulo Addressing mode) are supported in
both X and Y address spaces. The Modulo Addressing removes the software boundary checking
overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class
of instructions. The X AGU also supports the Bit-Reversed Addressing mode to greatly simplify input
or output data reordering for radix-2 FFT algorithms.

Addressing Modes
The CPU supports up to eight addressing modes as shown in Table 3-1

Table 3-1. MCU Instruction Addressing Mode Definitions

Function (Source, ppp) Function (Destination, qqq) Description
EA = [Ws + Wb] EA = [Wd + WDb] Indirect with (signed) register offset
EA =SR EA=SR Status register direct
EA = [Ws+=1] EA = [Wd+=1] Register indirect pre-incremented
EA = [Ws-=1] EA = [Wd-=1] Register indirect pre-decremented

@ MICROCHIP

78

3.3.4.

Table 3-1. MCU Instruction Addressing Mode Definitions (continued)

Function (Source, ppp) Function (Destination, qqq) Description
EA = [Ws]+=1 EA = [Wd]+=1 Register indirect post-incremented
EA = [Ws]-=1 EA = [Wd]-= Register indirect post-decremented
EA = [Ws] EA = [Wd] Register indirect
EA =Ws EA =Wd Register direct

Each instruction is associated with a predefined addressing mode group, depending upon its
functional requirements. For most instructions, the dsPIC33A CPU can execute all of the following
functions in a single instruction cycle:

+ Data memory read

+ Working register (data) read

+ Data memory write

« Program (instruction) memory read

As a result, three-operand instructions can be supported, allowing A + B = C operations to be
executed in a single cycle.

Programmer’s Model

The programmer’s model for the dsPIC33A CPU is shown in Figure 3-2. All registers in the
programmer’'s model are memory-mapped and can be manipulated directly by instructions. Table
3-2 provides a description of each register in the programmer’s model.

In addition to the registers contained in the programmer’s model, the dsPIC33A devices contain
control registers for Modulo Addressing, Bit-Reversed Addressing and Interrupts. These registers are
described in subsequent sections of this document.

All registers associated with the programmer’'s model are shown in Figure 3-2.

Table 3-2. Programmer's Model Register Descriptions

Register(s) Name Description

WO through W15 Working Register Array (Default Context)
WO through w7(1-2) Working Register Array (Alternate Context 1-7)
ACCA,ACCBM 72-bit DSP Accumulators (Context 0-7)
PC 24-bit Program Counter
SRM ALU and DSP Engine Status Register
SPLIM Stack Pointer Limit Value Register
RCOUNT 32-bit REPEAT Loop Count Register (Context 0-7)
CORCON DSP Engine Configuration

Notes:
1. WO through W15, ACCx and SR are not mapped to memory.

2. WO through W7 are part of Alternate W register sets.

@ MICROCHIP

79

3.3.5.

3.3.6.

Figure 3-2. dsPIC33A CPU Programmer’s Model

Contexts 1 -7

. '_l_‘:::::::_lj
e WO/WREG |\ Note 1: W15[1:0] and SPLIM[1:0] always = 2’b00
willil Note 2: PC[0] always =1'b0
w2 |‘ Note 3: CORCON register is also a part of all contexts
|
w3 |\
w4 I‘
wsll |
wé _!f
DSP/INTEGER wr
OPERAND/ADDRESS <
REGISTERS ws
(CONTEXT 0) wo
W10
w11
w12
w13
FRAME POINTER / W14
_ 8'b0 \ STACK PTRIW151| 00
31
l 8'b0 | spLIM! | 00| STACK POINTER LIMIT
Contexts 1-7
I'_I.J'_______________________________________‘—I
AccA \l
DSP ACCUMULATORS
(CONTEXT 0) AccB
71 63 31 0
Contexts 1-7
- e — — — — — — 1
‘ RCOUNT REPEAT LOOP COUNTER (CONTEXT 0)
31 0
23 0
PC? |o PROGRAM COUNTER
23 18 0
[vPa| [cmxi2:0] [oa] o8| sA | sB |oAB|sAB | IPL[3:0] [RA| N[ov][z | c| sTaTUSREGISTER (SR)3

DSP Engine and Instructions

The DSP engine features

* Ahigh-speed, 33-bit by 33-bit multiplier

« A72-bitALU

+ Two 72-bit saturating accumulators

« A 72-bit bidirectional barrel shifter, capable of shifting a 40-bit value up to 32 bits right or up to
32 bits left, in a single cycle

The DSP instructions operate seamlessly with all other instructions and are designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently fetch
two data operands from memory while multiplying two W registers. This requires that the data
space be split for these instructions and linear for all others.

Exception Processing

The dsPIC33A devices have a vectored exception scheme. Each interrupt source can be assigned to
one of seven priority levels.

In addition, each of the Alternate W register contexts can be associated with its own Interrupt
Priority Level (IPL) for exception handling. See Alternate Working Register Arrays for more
information.

@ MICROCHIP

80

3.3.7. CPU Register Descriptions

3.3.7.1. SR: CPU STATUS Register

The dsPIC33A CPU has a 32-bit STATUS Register (SR). A detailed description of the CPU SR is shown
in SR.

SR contains

+ All ALU Operation Status flags

« The CPU Interrupt Priority Level Status bits, IPL[3:0]

+ The REPEAT Loop Active Status bit, RA (SR[4])

+ The DSP Adder/Subtracter Status bits

The SR bits are readable/writable with the following exceptions
+ The RA bit (SR[4]) is read-only.

* The OA, OB (SR[15:14]), OAB (SR[11]), SA, SB (SR[13:12]) and SAB (SR[10]) bits are readable and
writable; however, once set, they remain set until cleared by the user application, regardless of
the results from any subsequent DSP operations.

Note: Clearing the SAB bit also clears both the SA and SB bits. Similarly, clearing the OAB bit
also clears both the OA and OB bits. A description of the STATUS Register bits affected by each
instruction is provided in the “dsPIC33A Programmer’s Reference Manual” (DS70005540).

« The CTX bit (SR[18:16]) is read-only; it reflects which W register context is currently in use by the
CPU.

« The VF bit (SR[23]) is read-only.

3.3.7.2. CORCON: Core Control Register
A detailed description of the CPU CORCON is shown in CORCON.

CORCON contains

+ Unsigned or Signed Multiplier Mode Select bit

* Accumulator A and B Saturation Enable bits

+ Data Space Write from DSP Engine Saturation Enable bit
+ Accumulator Saturation Mode Select bit

* Rounding Mode Select bit

+ Integer or Fractional Multiplier Mode Select bit

The CORCON bits are all readable/writable.

3.3.8. Working Register Array

The Working (W) registers can function as data, address or address offset registers. The function of a
W register is determined by the addressing mode of the instruction that accesses it.

The dsPIC33A instruction set can be divided into two instruction types: register instructions and file
register instructions.

3.3.8.1. Register Instructions

Register instructions can use each W register as a data value or an address offset value. Example 3-1
shows register instructions.

Example 3-1. Register Instructions

MOV.1 wo, wl ; move contents of WO to Wl
MOV. 1 WO, [W1l] ; move WO to address contained in Wl

81

@ MICROCHIP

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU16/ProductDocuments/ReferenceManuals/dsPIC33A-Programmers-Reference-Manual-DS70005540.pdf

3.3.8.2.

3.3.8.3.

3.3.8.4.

3.3.9.

ADD.1 WO, [wW4], W5 ; add contents of WO to contents pointed
; to by W4. Place result in W5.

File Register Instructions

File register instructions operate on a specific memory address contained in the instruction opcode
and register, W0. WO is a special Working register used in File register instructions.

The File register address space is determined by the maximum address range of the file
instructions, which is either 64 KB (if a W-reg operand is required) or 1 MB (if no W-reg operand
is required), and encompasses the user RAM area and Special Function Registers (SFRs) within DS.

Example 3-2 shows File register instructions.

Example 3-2. File Register Instructions

ADD.w 0x4500, Wn ; (0x4500)+w0 -> 0x4500
ADD.w 0x4500, w0, Wn ; (0x4500)+w0 -> 0x4500
ADD.w 0x4500, w4, Wn ; (0x4500)+wd4 -> 0x4500

W Register Memory Mapping

The W registers are not memory-mapped, and thus, it is not possible to access a W register in a File
register instruction. This helps in eliminating data hazards.

W Registers and Byte Mode Instructions

Byte instructions that target the W register array affect only the Least Significant Byte (LSB) of

the target register, while word instructions that target the W register array affect only the Least
Significant Word (LSW) or the bottom 16 bits of the target register. Since the Working registers are
not memory-mapped, only the LSB and LSW of these registers are accessible through byte mode
and word mode instructions, respectively, using Register Direct Addressing only.

Alternate Working Register Arrays

Alternate Working register arrays are a subset of the Working registers (W0 through W7). Depending
on the specific device, up to seven Alternate Working register arrays may be implemented. Each set
implements registers WO through W7, AccA, AccB, RCOUNT and DSP related CORCON control bits
(US, SATA, SATB, SATDW, ACCSAT, RND, IF). The Alternate W registers are not memory-mapped to
data memory space just like the default W array.

All W register arrays are persistent; that is, the contents of the default and Alternate W registers do
not change whenever the CPU switches to another set. This saves time by reducing the amount of
saving and restoring of register contents, making this very useful for time-critical applications.

Each Alternate W array is inherently assigned to a respective IPL (e.g., IPL4 is assigned to Context 4)
and Interrupt Service Routine (ISR) in the application code. The Current Context Identifier (CTX[2:0])
status field is located within the Status Register (SR). Each context is associated with a specific
Interrupt Priority Level (IPLV). The context is exited during execution of RETFIE instruction of the
interrupt ISR.

During exception processing, the (CTX[2:0]) status field located within the Status Register (SR) is
stacked. The stacked SR.CTX[2:0] represents the CPU register context in use at the time of the
exception. The value is updated whenever the register context is changed, either through automatic
interrupt-based hardware switching or as the result of a context change brought about by the
execution of a CTXTSWP{W?} instruction.

Depending on the device, different context Working register behavior can be observed with nested
interrupts. Consider the example, as shown in Figure 3-3, where there are nested interrupts. In this
case, the system is configured as follows

@ MICROCHIP

82

3.3.9.1.

3.3.10.

« Timer1 interrupt with an Interrupt Priority Level (IPL) of 1. The Alternate Working Register Set 1
(CTX1) has an IPL of 1.

+ ADCANT1 interrupt with an IPL of 4. The Alternate Working Register Set 4 (CTX4) has an IPL of 4.
+ PWM?1 interrupt with an IPL of 5. The Alternate Working Register Set 5 (CTX5) has an IPL of 5.

The application begins in the main function. At some point in time, the Timer1 interrupt flag is

set and the program jumps to the Timer1 ISR. The register set switches from the default Working
register set 0 to the Alternate Working register set 1, CTX1. At some point during the Timer1 ISR, the
ADCAN1 conversion completes, and its interrupt flag is set. Because it has a higher IPL, the program
jumps to the ADCAN1 ISR. The register set switches from the set 1, CTX1 Alternate Working register
set to the Alternate Working register set 4, CTX4. At some point during the ADCAN1 ISR, the PWM1
interrupt flag is set. Because the PWM1 IPL is higher than the ADCAN1 IPL, the program jumps to the
PWM1 ISR and remains in the Alternate Working register set 5 CTX5.

Once the PWM ISR execution is completed, the program jumps back to the ADCAN1 ISR using CTX4.
Similarly, after the execution of the ADCAN1 ISR, the program jumps back to the Timer1 ISR using
CTX1. Exceptions above IPL7 (i.e., traps) will execute in whatever register context the CPU was in
prior to the trap event.

Figure 3-3. Nested Interrupt Context Flow

Main
DEFAULT
v IPL=1
IPL=1 Timer1 Interrupt IPL =1
TAIF (IFSO3) = 1; | Timert Interrupt SET1 Timer1 Interrupt
SET1 SET1
IPL=4
IPL=4 IPL=4 ADCANT1 Interrupt
ADCAN1 Interrupt| ADCANAIF (IFS6[15]) = 1; |ADCAN1 Interrupt SET4
SET4 SET4
IPL=5
IPL=5 IPL=5 PWM1 Interrupt
PWM1 Interrupt PWM1 Interrupt | PWM1IF (IFS5[14]) = 1; SETS
SET5 SET5
Active Register Set1: SR.CTX=CTX1 Active Register Set4: SR.CTX=CTX4 Active Register Set5: SR CTX=CTX5

Alternate Working Register Set

Alternatively, before enabling interrupts associated with a particular context, the application may
manually switch to it by executing the CTXTSWP instruction. CTXTSWP does not affect the CPU IPL;
it is used to support software context switching for either context initialization, run-time usage of
contexts within procedure calls or the like, thus operating independently from the interrupt system.

Software Stack Pointer

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified
by exception processing, subroutine calls and returns; however, W15 can be referenced by any
instruction in the same manner as all other W registers. This simplifies reading, writing and
manipulating the Stack Pointer (for example, creating stack frames).

Note: To protect against misaligned stack accesses, W15[1:0] is fixed to ‘00’ by the hardware.

W15 is initialized to 0x4000 during all Resets. This address ensures that the Software Stack Pointer
points to valid RAM in all devices and permits stack availability for non-maskable trap exceptions.

@ MICROCHIP

83

These can occur before the SSP is initialized by the user software. Reprogramming the SSP to any
location within the data space is possible during initialization.

The Software Stack Pointer always points to the first available free word in the data space (RAM) and
fills the software stack, working from lower addresses toward higher ones. Figure 3-4 illustrates how
it pre-decrements for a stack pop (read) and post-increments for a stack push (write).

When the PC is pushed onto the stack, PC[23:0] are pushed onto the first available stack word, as
shown in Figure 3-4.

Figure 3-4. Stack Operation for a CALL Instruction

31 0

8’h00, PC[23:1], 1'b0 |-« W15 (before CALL)
(Free Word) ~« V15 (after CALL)

Stack Grows Towards
Higher Address

-
-

POP: [W15 - =4]
PUSH: [W15]+=4

3.3.10.1. Software Stack Examples

The software stack is manipulated using the pPUusH and pOP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 as the Destination Pointer. For
example, the contents of W0 can be pushed onto the stack by:

PUSH WO

This syntax is equivalent to:

MOV.L WO, [W15++]

The contents of the Top-of-Stack (TOS) can be returned to WO by:
POP WO

This syntax is equivalent to:

MOV.L [--W15],WO

Figure 3-5 through Figure 3-8 illustrate examples of how the software stack is used. Figure 3-5
illustrates the software stack at device initialization. W15 has been initialized to 0x00004000. This
example assumes the values, OXAAAAAAAA and 0xBBBBBBBB, have been written to WO and W1,
respectively. In Figure 3-6, the stack is pushed for the first time, and the value contained in WO

is copied to the stack. W15 is automatically updated to point to the next available stack location
(0x00004004). In Figure 3-7, the contents of W1 are pushed onto the stack. Figure 3-8 illustrates how
the stack is popped and the Top-of-Stack value (previously pushed from W1) is written to W3.

@ MICROCHIP

Figure 3-5. Stack Pointer at Device Reset

W15 ——

0x00000000
0x00004000

End of RAM

W15 = 0x00004000
WO = OxAAAAAAAA
W1 = 0xBBBBBBBB

Figure 3-6. Stack Pointer After the First PUSH Instruction

W15 —

Figure 3-7. Stack Pointer After the Second PUSH Instruction

W15 ——

Figure 3-8. Stack Pointer After a POP Instruction

W15 ——

3.3.10.2. W14 Software Stack Frame Pointer

0x000000
[OXAAAAAAAA 0x004000 PUSH WO
0x004004
End of RAM
W15 = 0x00004004
WO = OXAAAAAAAA
W1 = BBBBBBBB
0x000000
[OXAAAAAAAA 0x004000 PUSH W1
[0OxBBBBBBBB_ 0x004004
0x004008
End of RAM
W15 =0x00004008
WO = OXAAAAAAAA
W1 = 0xBBBBBBBB
0x000000
POP W3

|OXAAAAAAAA 0x004000
0xBBBBBBBB_ 0x004004

End of RAM

W15 = 0x00004004
0xBBBBBBBB—~W3

A frame is a user-defined section of memory in the stack that is used by a single function. The
Working register, W14, can be used as a Stack Frame Pointer with the LNK (link) and ULNK (unlink)
instructions. W14 can be used in a normal Working register by instructions when it is not used as a

Frame Pointer.

@ MICROCHIP

85

3.3.10.3. Stack Pointer Overflow

The Stack Pointer Limit (SPLIM) register specifies the size of the stack buffer. SPLIM is a 32-bit
register, but SPLIM[1:0] is fixed to ‘00" because all stack operations must be long word-aligned.

The stack overflow check is not enabled until a long word write to SPLIM occurs. After this, it can
only be disabled by a device Reset. All Effective Addresses (EAs), generated using W15 as a source

or destination, are compared against the value in SPLIM. If Effective Addresses (EAs) exceed the
contents of the SPLIM register, and a PUSH operation is performed, a stack error trap occurs on a
subsequent pPUSH operation. For example, if it is desirable to cause a stack error trap when the stack
grows beyond address 0x5000 in RAM, initialize the SPLIM with the value Ox4FFC.

Note: A stack error trap can be caused by any instruction that uses the contents of the W15
register to generate an Effective Address (EA). Therefore, if the contents of W15 are greater than

the contents of the SPLIM register by a value of four, and a CALL instruction is executed, or if an
interrupt occurs, a stack error trap is generated.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 Effective Address
calculation wraps over the end of data space.

A pre/post inc/dec operation is performed on W15 that results in EA[1:0] = 2'b00 (i.e., not long word
aligned). This will detect byte and word pre/post inc/dec operations that are otherwise considered
aligned but would result in a misaligned Stack Pointer.

Note: A write to the SPLIM should not be followed by an indirect read operation using W15.

3.3.10.4. Stack Pointer Underflow

3.3.11.

The stack is initialized to 0x4000 during a Reset. A stack error trap is initiated if the Stack Pointer
address is less than 0x4000.

Note: Locations in data space between 0x0000 and 0x3FFF are, in general, reserved for core and
peripheral Special Function Registers (SFRs).

Arithmetic Logic Unit (ALU)

The dsPIC33A ALU is 32 bits wide and is capable of addition, subtraction, single-bit shifts and logic
operations. Unless otherwise mentioned, arithmetic operations are a two's complement in nature.
Depending on the operation, the ALU can affect the values of the following bits in the STATUS
Register:

+ Carry (Q)

« Zero (2)

* Negative (N)

« Overflow (OV)

The ALU can perform 8/16-bit or 32-bit operations, depending on the mode of the instruction that is
used. Data for the ALU operation can come from the W register array or data memory depending on

the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W
register array or a data memory location.

Note: Byte operations use the 16-bit ALU and can produce results in excess of eight bits. However,

to maintain backward compatibility with PIC" MCU devices, the ALU result from all byte operations is
written back as a byte (i.e., the MSB is not modified) and the STATUS Register is updated based only
upon the state of the LSB of the result.

3.3.11.1. Byte to Word Conversion

The dsPIC33A CPU has two instructions that are helpful when mixing 8-bit and 16-bit ALU
operations.

The Sign-Extend (SE) instruction takes a byte value in a W register or data memory and creates a
sign-extended word value that is stored in a W register.

@ MICROCHIP

86

3.3.12.

The Zero-Extend (ZE) instruction clears the 8 MSbs of a word value in a W register or data memory
and places the result in a destination W register.

DSP Engine

The DSP engine is a block of hardware that is fed data from the W register array, but contains its
own specialized result registers. The DSP engine is driven from the same instruction decoder that
directs the MCU ALU. In addition, all operand Extended Addresses (EAs) are generated in the W
register array. Concurrent operation with MCU instruction flow is not possible, though both the MCU
ALU and DSP engine resources can be shared by all instructions in the instruction set.

The DSP engine consists of the following components:

+ High-speed, 33-bit by 33-bit multiplier

+ Barrel shifter

+ 72-bit adder/subtractor

« Two target Accumulator registers

* Rounding logic with selectable modes

+ Saturation logic with selectable modes

Data input to the DSP engine is derived from one of the following sources:

+ Directly from the W array for dual source operand DSP instructions; Data values fetched via the X
and Y memory data buses.

* From the X memory data bus for all other DSP instructions
Data output from the DSP engine is written to one of the following destinations:

+ The target accumulator, as defined by the DSP instruction being executed
+ The X memory data bus to any location in the data memory address space

The DSP engine can perform inherent accumulator-to-accumulator operations that require no
additional data.

The MCU shift and multiply instructions use the DSP engine hardware to obtain their results. The X
memory data bus is used for data reads and writes in these operations.

Figure 3-9 illustrates a block diagram of the DSP engine.

@ MICROCHIP

87

Figure 3-9. DSP Engine Block Diagram

| 72-bit Accumulator A To ¢
72-bit Accumulator B > 3D|E
[- |®
%M
E—
Adder
il :
\
(72
=)
g m
= 3
E ©
@ (m}
X

Sign/Zero Extend

A

Zero
Backfill

—

33-bit
Multiplier/Scaler

R

To/From W Array (CPU Clock)

3.3.12.1. Data Accumulators
Two 72-bit data accumulators, ACCA and ACCB, are the Result registers for the DSP instructions
listed in DSP Multiply Instructions. Each accumulator is not memory-mapped and is referred as
these three registers, where X’ denotes the particular accumulator:

+ ACCxL: ACCx[31:0]
« ACCxH: ACCx[63:32]
+ ACCxU: ACCx[71:64]

For fractional operations that use the accumulators, the radix point is located to the right of bit 31.
The range of fractional values that can be stored in each accumulator is -256 to +(256 - 2**-63).

@ MICROCHIP

For integer operations that use the accumulators, the radix point is located to the right of bit 0.
The range of integer values that can be stored in each accumulator is -0x80_00000000_00000000 to
Ox7F_FFFF_FFFF_FFFF_FFFF.

3.3.12.2. Multiplier
The dsPIC33A devices feature a 33-bit-by-33-bit multiplier shared by both the MCU ALU and the DSP
engine. The multiplier is capable of a signed, unsigned or mixed-sign operation and supports either
9.31 fractional (Q.31) or 64-bit integer results.

The multiplier takes in 32-bit input data and converts the data to 33 bits. Signed operands to

the multiplier are sign-extended. Unsigned input operands are zero-extended. The internal 33-bit
representation of data in the multiplier allows correct execution of mixed-sign and unsigned 32-bit
by 32-bit multiplication operations.

The representation of data in hardware for Integer and Fractional Multiplier modes is as follows:

+ Integer data is inherently represented as a signed two's complement value, where the Most
Significant bit (MSb) is defined as a Sign bit. Generally speaking, the range of an N-bit two's
complement integer is -2(N-1) to 2(N-1)-1,

+ Fractional data is represented as a two’s complement fraction, where the MSb is defined as a
Sign bit, and the radix point is implied to lie just after the Sign bit (Q.X format). The range of an
N-bit two's complement fraction with this implied radix point is -1.0 to (1 - 2(1-N)),

The range of data in both Integer and Fractional modes is listed in Table 3-3. Figure 3-10 and Figure
3-11 illustrate how the multiplier hardware interprets data in Integer and Fractional modes.

The Integer or Fractional Multiplier Mode Select (IF) bit (CORCONI[0]) determines the integer/
fractional operation for the instructions listed in Table 3-4. The IF bit does not affect MCU multiply
instructions listed in Table 3-5, which are always integer operations. The multiplier scales the result
one bit to the left for fractional operation. The LSb of the result is always cleared. The multiplier
defaults to Fractional mode for DSP operations at a device Reset.

Table 3-3. dsPIC33A Data Ranges

Register Size Integer Range Fraction Range Fraction Resolution
16-Bit -32768 to -1.0to (1.0 - 271%) (Q1.15 3.052x107
32767 Format)
32-Bit -2,147,483,648to -1.0 to (1.0 - 231) (Q1.31 4.657x1010
2,147,483,647 Format)
64-Bit -9.223372037e18 to -1.0to (1.0 - 2°93) (Q.1.63 1.08420x10°1?
9.223372037e18 Format)
72-Bit -2.361183241e21 to -256.0 to (256.0 - 2:93) (Q.9.63 1.08420x101?
2.361183241e21 Format with 8 Guard bits)

@ MICROCHIP

Figure 3-10. Integer and Fractional Representation of 0x40000001
Different Representations of 0x40000001

Integer:

[olsfofofofoJofoJofofoJofoJofol:]
-2°312"30 2°29 20
0x40000001 = 2830+20 = 1073741825

1.31 Fractional:

20 . 21 22 o3 2*

0x40000001 = 2*-1+2”-31 = 0.5000000005

Figure 3-11. Integer and Fractional Representation of 0xC0000002

Different Representations of 0xC0000002

Integer:

[tfafofofofofJofJoJoJofoJofJoJofafol]
2A31 28302429 20
0xC0000002 = 2A31+2429+27=49154

1.31 Fractional:

20, 21 22 23 231
0xC0000002 = -270+27-1+27-30 = 1-0.5-9.313225746e-10 = 0.4999999991

3.3.12.2.1. DSP Multiply Instructions
The DSP instructions that use the multiplier are summarized in Table 3-4.

Table 3-4. DSP Instructions that Use the Multiplier

MAC Multiply and Add to Accumulator or Square and Add to a=a+b*c
Accumulator

or
a=a+b?
MSC Multiply and Subtract from Accumulator a=a-b*c
MPY Multiply a=b*c
MPY.N Multiply and Negate Result =-b*c

Note:

1. DSP instructions using the multiplier can operate in Fractional (1.15/1.31) or Integer modes.

o 90
@ MICROCHIP

Table 3-4. DSP Instructions that Use the Multiplier (continued)

SOR Square to Accumulator a=br2
SQRAC Square and Accumulate a=a+(b?)

ED Partial Euclidean Distance a=(b-c?
EDAC Add Partial Euclidean Distance to the Accumulator a=a+(b-c?

Note:
1. DSP instructions using the multiplier can operate in Fractional (1.15/1.31) or Integer modes.

The DSP Multiplier Unsigned/Signed Control (US[1:0]) bits (CORCON[13:12]) determine whether the
DSP multiply instructions are signed (default), unsigned or mixed-sign. The US[1:0] bits do not
influence the MCU multiply instructions, which have specific instructions for a signed or unsigned
operation. If the USx bits are set to ‘01’, the input operands for instructions shown in Table 3-4 are
considered as unsigned values, which are always zero-extended into the 33th bit of the multiplier
value. If the USx bits are set to ‘00’, the operands are sign-extended.

If the USx bits (CORCONI[13:12]) are set to ‘10, the operands for the instructions listed in Table
3-4 are considered as unsigned values. The result is zero-extended prior to any operation with the
accumulator (which will always effectively be signed).

3.3.12.2.2. MCU Multiply Instructions
The DSP multiplier is also used to support all MCU multiply instructions, which include signed,
unsigned or mixed signed/unsigned operations. All instructions support both Word and Long Word
operands. All literals are either sign or zero-extended to the operand size prior to use as appropriate
for the particular instruction. Some instructions use W-regs for the result destinations, while others
can target ACCA or ACCB, using the same result data paths as the DSP multiply instructions. The
instructions targeting the accumulator can be either integer or fractional operations, irrespective
of the state of the DSP engine fractional/integer control bit at CORCON.IF. This removes the need
for software to test/control the CORCON.IF bit. All MCU multiply instructions (other than MUL.x,
which are by definition unsigned integer operations) explicitly identify the signed or unsigned
characteristic of each operand. The result for all signed and mixed signed/unsigned multiply
operations is always sign-extended to the MSb of the target register. Unsigned multiply operations
are zero-extended to the MSb of the target accumulator.

Table 3-5. MCU Instructions that Utilize the Multiplier

MCU Instruction Description

MUL. {b/w/1} Unsigned integer multiplication of Wn and the file register;
results written back to default destination register W2.

MULSS. {w/1/d} Word or Long Word integer multiplication of two signed
integers; stores the results in W-registers.

MULSU. {w/1/d} Word or Long Word integer of signed and unsigned integers;
stores the results in W-registers.

MULUS. {w/1/d} Word or Long Word integer of unsigned and signed integers;
stores the results in W-registers.

MULUU. {w/1/d} Word or Long Word integer of two unsigned integers; stores
the results in W-registers.

MULFSS. {w/1} Word or Long Word fractional multiplication of two signed
fractional values; stores the results in the accumulator.

MULFSU. {w/1} Word or Long Word fractional multiplication of a signed
and an unsigned fractional value; stores the results in the
accumulator.

Note:
1. MCU instructions using the multiplier operate only in Integer mode.

91

@ MICROCHIP

Table 3-5. MCU Instructions that Utilize the Multiplier (continued)

MCU Instruction Description

MULFUS. {w/1} Word or Long Word fractional multiplication of a signed
and an unsigned fractional value; stores the results in the
accumulator.

MULFUU. {w/1} Word or Long Word fractional multiplication of two unsigned
fractional values; stores the results in the accumulator.

MULISS. {w/1} Word or Long Word integer multiplication of two signed
integers; stores the results in the accumulator.

MULISU. {w/1} Word or Long Word integer multiplication of signed and
unsigned integers; stores the results in the accumulator.

MULIUS. {w/1} Word or Long Word integer multiplication of signed and
unsigned integers; stores the results in the accumulator.

MULIUU. {w/1} Word or Long Word integer multiplication of two unsigned
integers and stores the results in the accumulator.
Note:

1. MCU instructions using the multiplier operate only in Integer mode.

3.3.12.3. Data Accumulator Adder/Subtractor
The data accumulators have a 72-bit adder/subtractor with automatic sign extension logic for the
multiplier result (if signed). It can select one of two accumulators (A or B) as its pre-accumulation
source and post-accumulation destination. For the ADD (accumulator) and LAC instructions,
the data to be accumulated or loaded can optionally be scaled via the barrel shifter prior to
accumulation.

The 72-bit adder/subtractor can optionally negate one of its operand inputs to change the sign of
the result (without changing the operands). The negation is used during multiply and subtract (MSC)
or multiply and negate (MPY . N) operations.

The 72-bit adder/subtractor has an additional saturation block that controls accumulator data
saturation, if enabled.

3.3.12.3.1. Accumulator Status Bits
Six STATUS Register bits that support saturation and overflow are located in the CPU STATUS
Register (SR) and are listed in Table 3-6.

Table 3-6. Accumulator Overflow and Saturation Status Bits

Status Bit (SR Description
Location)

OA ([15]) Accumulator A overflowed into guard bits (ACCA[71:63]).
OB ([14]) Accumulator B overflowed into guard bits (ACCB[71:63]).
SA([13]) ACCA saturated (bit 63 overflow and saturation) or
ACCA overflowed into guard bits and saturated (bit 71 overflow and saturation).
SB ([12]) ACCB saturated (bit 63 overflow and saturation) or
ACCB overflowed into guard bits and saturated (bit 71 overflow and saturation).
OAB ([11]) OA logically ORed with OB, clearing OAB clears both OA and OB.
SAB ([10]) SA logically ORed with SB, clearing SAB clears both SA and SB.

The OA and OB bits are modified each time data passes through the accumulator add/subtract logic.
When set, they indicate that the most recent operation has overflowed into the accumulator guard
bits (ACCx[71:64]). This type of overflow is not catastrophic; the guard bits preserve the accumulator
data. The OAB Status bit is the logically OR value of OA and OB.

The OA and OB bits, when set, can optionally generate an arithmetic error trap. The trap is enabled
by setting the corresponding Overflow Trap Flag Enable bit (OVATE or OVBTE) in Interrupt Control

@ MICROCHIP

Register 4 (INTCON4[10:9]) in the interrupt controller. The trap event allows the user to take
immediate corrective action, if desired.

The SA and SB bits can be set each time data passes through the accumulator saturation logic.
Once set, these bits remain set until cleared by the user application. The SAB Status bit indicates the
logical OR value of SA and SB. When set, these bits indicate that the accumulator has overflowed

its maximum range (bit 63 for 64-bit saturation or bit 71 for 72-bit saturation) and are saturated (if
saturation is enabled).

When saturation is not enabled, the SA and SB bits indicate that a catastrophic overflow has
occurred (the sign of the accumulator has been destroyed). If the Catastrophic Overflow Trap Enable
(COVTE) bit (INTCON4[8]) is set, SA and SB bits will generate an arithmetic error trap when saturation
is disabled. The SA and SB bits can be set in software, enabling efficient context state switching.

3.3.12.3.2. Saturation And Overflow Modes
The dsPIC33A CPU supports three Saturation and Overflow modes.

+ Accumulator 71-Bit Saturation
In this mode, the saturation logic loads the maximally positive 9.63 value
(OX7F_FFFF_FFFF_FFFF_FFFF) or maximally negative 9.63 value (0x80_0000_0000_0000_0000) into
the target accumulator. The SA or SB bit is set and remains set until cleared by the user
application. This Saturation mode is useful for extending the dynamic range of the accumulator.

To configure for this mode of saturation, set the Accumulator Saturation Mode Select (ACCSAT)
bit (CORCONI[4]). Additionally, set the ACCA Saturation Enable (SATA) bit (CORCON[7] and/or the
ACCB Saturation Enable (SATB) bit (CORCON]I6]) to enable accumulator saturation.

+ Accumulator 63-Bit Saturation
In this mode, the saturation logic loads the maximally positive 1.63 value
(Ox00_7FFF_FFFF_FFFF_FFFF) or maximally negative 1.63 value (OxFF_8000_0000_0000_0000) into
the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When
this Saturation mode is in effect, the guard bits, 64 through 71, are not used except for sign
extension of the accumulator value. Consequently, the OA, OB or OAB bits in SR are never set.

To configure for this mode of overflow and saturation, the ACCSAT (CORCON[4]) bit must be
cleared. Additionally, the SATA (CORCON[7]) and/or SATB (CORCONI6]) bits must be set to enable
accumulator saturation.

« Accumulator Catastrophic Overflow
If the SATA (CORCONI7]) and/or SATB (CORCON([6]) bits are not set, then no saturation operation
is performed on the accumulator, and the accumulator is allowed to overflow all the way up to
bit 71 (destroying its sign). If the Catastrophic Overflow Trap Enable (COVTE) bit (INTCON4[8] in
the interrupt controller) is set, a catastrophic overflow initiates an arithmetic error trap.

Accumulator saturation and overflow detection can only result from the execution of a DSP
instruction that modifies one of the two accumulators via the 72-bit DSP ALU. Saturation and
overflow detection do not take place when the accumulators are accessed via the MCU class

of instructions. Furthermore, the Accumulator Status bits shown in Table 3-6 are not modified.
However, the MCU Status bits (Z, N, C, OV, DC) will be modified, depending on the MCU instruction
that accesses the accumulator.

Accumulator Catastrophic Overflow

If the SATA (CORCONI[7]) and/or SATB (CORCON][6]) bits are not set, then no saturation operation
is performed on the accumulator, and the accumulator is allowed to overflow all the way up to bit
71 (destroying its sign). If the Catastrophic Overflow Trap Enable (COVTE) bit (INTCON4[8] in the
interrupt controller) is set, a catastrophic overflow initiates an arithmetic error trap.

Accumulator saturation and overflow detection can only result from the execution of a DSP
instruction that modifies one of the two accumulators via the 72-bit DSP ALU. Saturation and
overflow detection do not take place when the accumulators are accessed via the MCU class
of instructions. Furthermore, the Accumulator Status bits shown in Table 3-6 are not modified.

@ MICROCHIP

However, the MCU Status bits (Z, N, C, OV, DC) will be modified, depending on the MCU instruction
that accesses the accumulator.

3.3.12.3.3. Data Space Write Saturation
In addition to adder/subtractor saturation, writes to data space can be saturated without affecting
the contents of the source accumulator. This feature allows data to be limited, while not sacrificing
the dynamic range of the accumulator during intermediate calculation stages. Data space write
saturation is enabled by setting the data space write from the DSP Engine Saturation Enable
(SATDW) control bit (CORCONTI5]). Data space write saturation is enabled by default at a device
Reset.

The data space write saturation feature works with the sac and SACR instructions. The value held
in the accumulator is never modified when these instructions are executed. The hardware takes the
following steps to obtain the saturated write result:

1. Theread data are scaled based upon the arithmetic shift value specified in the instruction.
The scaled data are rounded (SACR only).

The scaled/rounded value is saturated to a 16-bit result based on the value of the guard bits. For
data values greater than 0x007FFF, the data written to memory are saturated to the maximum
positive 1.15 value, Ox7FFF. For input data less than 0xFF8000, data written to memory are
saturated to the maximum negative 1.15 value, 0x8000.

3.3.12.3.4. Accumulator Write Back
The MAC and MSC instructions can optionally write a rounded version of the accumulator that is
not the target of the current operation into data space memory. The write is performed across the
X-bus into the combined X and Y address space. This accumulator write-back feature is beneficial in
certain algorithms, such as FFT and LMS filters.

Two addressing modes are supported by the accumulator write-back hardware:

« WO, W1, W2, W3, W13 or W14, Register Direct: The rounded contents of the non-target
accumulator are written into the destination register as a 1.15 (Word mode) or 1.31 (Long Word
mode) fractional result.

« [W13]+ =2 or [W15]+ = 2, Register Indirect with Post-Increment: The rounded contents of the
non-target accumulator are written into the address pointed to by W13 or W15 as a 1.15 (Word
mode) or 1.31 (Long Word mode) fraction. W13 or W15 is then incremented by 2.

3.3.12.4. Round Logic
The round logic can perform a conventional (biased) or convergent (unbiased) round function during
an accumulator write (store). The Round mode is determined by the state of the Rounding Mode
Select (RND) bit (CORCONI1]). It generates a 16-bit 1.15 or 32-bit 1.31 data value, which is passed to
the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15
or 1.31 data value is stored.

The two Rounding modes are shown in Figure 3-12. Conventional rounding takes bit 31 of the
accumulator, zero-extends it and adds it to the most significant word (msw), excluding the guard or
overflow bits (bits 32 through 63). If the least significant word (Isw) of the accumulator is between
0x80000000 and OxFFFFFFFF (0x80000000 included), the msw is incremented. If the Isw of the accu-
mulator is between 0x0000 and 0x7FFFFFFF, the msw remains unchanged. A consequence of this
algorithm is that over a succession of random rounding operations, the value tends to be biased
slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding except
when the Isw equals 0x80000000. If this is the case, the LSb of the msw (bit 32 of the accumulator) is
examined. If itis ‘'1’, the msw is incremented. If it is ‘0", the msw is not modified. Assuming that bit 16
is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The sAC and SACR instructions store either a truncated (SAC) or rounded (SACR) version of the
contents of the target accumulator to data memory via the X-bus (subject to data saturation).

94

@ MICROCHIP

For the MAC class of instructions, the accumulator write-back data path is always subject to
rounding. An overflow that occurs as a consequence of a rounding operation will also be subject
to saturation.

Figure 3-12. Conventional and Convergent Rounding Modes

Conventional (Biased) Convergent (Unbiased)

32 31 0 32 31 0

msw 1XXX XXXX XXXX XXXX msw 1 1000 PR 0000
Round Up (add 1 to msw) when: Round Up (add 1 to msw) when:
Isw >0x80000000 Isw = 0x80000000 and bit 32 = 1

32 31 0 32 31 [1]

msw 0XXX XXXX XXXX XXXX msw 01000 e 0000
Round Down (add nothing) when: Round Down (add nothing) when:
Isw < 0x80000000 Isw = 0x80000000 and bit 32 = 0

3.3.12.5. Barrel Shifter

The barrel shifter can perform up to a 32-bit arithmetic right shift, or up to a 32-bit left shift, in a
single cycle. DSP or MCU instructions can use the barrel shifter for multibit shifts.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and
direction of the shift operation.

+ A positive value shifts the operand right.
+ A negative value shifts the operand left.
+ Avalue of ‘0’ does not modify the operand.

The barrel shifter is 72 bits wide to accommodate the width of the accumulators. A 72-bit output
result is provided for DSP shift operations, and a 32-bit result is provided for MCU shift operations.

Table 3-7 provides a summary of instructions that use the barrel shifter.

Table 3-7. Instructions that Use the DSP Engine Barrel Shifter

ASR Arithmetic multibit right shift of data memory location
LSR Logical multibit right shift of data memory location
SL Multibit shift left of data memory location
SAC Store DSP accumulator with optional shift
SFTAC Shift DSP accumulator

3.3.12.6. DSP Engine Mode Selection

These operational characteristics of the DSP engine, discussed in previous sections, can be selected
through the CPU Core Configuration register (CORCON).

« Fractional or integer multiply operation
+ Conventional or convergent rounding
+ Automatic saturation on/off for ACCA

@ MICROCHIP

« Automatic saturation on/off for ACCB
« Automatic saturation on/off for writes to data memory
« Accumulator Saturation mode selection

3.3.12.7. DSP Engine Trap Events

3.3.13.

Arithmetic error traps that can be generated for handling exceptions in the DSP engine are selected
through the Interrupt Control Register 4 (INTCON4). These are:

+ Trap on ACCA overflow enable using OVATE (INTCON4[21])
+ Trap on ACCB overflow enable using OVBTE (INTCON4[20])

« Trap on catastrophic ACCA and/or ACCB overflow enable using COVTE (INTCON4[19]).
Occurrence of the traps is indicated by these error status bits.

- OVAERR (INTCON4[5])
- OVBERR (INTCON4[4])
- COVAERR (INTCON4([3])
- COVBERR (INTCON4[2])

An arithmetic error trap is also generated when the user application attempts to shift a value
beyond the maximum allowable range (+32 bits) using the SFTAC instruction. This trap source
cannot be disabled and is indicated by the Shift Accumulator Error Status (SFTACERR) bit
(INTCON4[1] in the interrupt controller). The instruction will execute, but the results of the shift
are not written to the target accumulator.

Divide Support

The dsPIC33A CPU supports the following types of division operations.
+ DIVF.sD: 16/16 signed fractional divide
+ DIVF.SD:32/16 signed fractional divide
* DIVF.SD:32/32 signed fractional divide
* DIV.SD:32/32 signed divide

* DIV.UD:32/32 unsigned divide

* DIV.SD:32/16 signed divide

* DIV.UD:32/16 unsigned divide

* DIV.SW: 16/16 signed divide

* DIV.UW: 16/16 unsigned divide

The quotient for all divide instructions can placed in any Working register, Wm. The remainder is
placed in W(m+1). The 32/16-bit divisor can be located in any W register. A 32/16-bit dividend can
be located in any W register. The integer 16/16 divide instructions will either zero or sign extend the
least significant dividend word into the most significant dividend word during the first iteration to
create a 32-bit dividend.

All 16-bit/16-bit and 32-bit/16-bit divide instructions are iterative operations and must be executed
six times within a REPEAT loop. All 32-bit/32-bit divide instructions are iterative operations and must
be executed 10 times within a REPEAT loop.

The developer is responsible for programming the REPEAT instruction. A complete divide operation
takes seven or 11 instruction cycles to execute.

The divide flow is interruptible, just like any other REPEAT loop. All data is restored into the
respective data registers after each iteration of the loop, so the user application is responsible for
saving the appropriate W registers in the ISR. Although they are important to the divide hardware,

@ MICROCHIP

96

the intermediate values in the W registers have no meaning to the user application. The divide
instructions must be executed seven or 11 times in a REPEAT loop to produce a meaningful result.

A divide-by-zero error generates a math error trap. This condition is indicated by the Arithmetic
Error Status (DIVOERR) bit (INTCON4[6] in the interrupt controller).

3.3.14. Instruction Flow Types

Most instructions in the device architecture occupy a single word of program memory and execute
in a single cycle. However, some instructions take two or more instruction cycles to execute.
Consequently, there are seven different types of instruction flow.

3.3.14.1. One Instruction Word, One Instruction Cycle

These instructions take one instruction cycle to execute, as shown in Figure 3-13. Most instructions
are one-word, one-cycle instructions.

Figure 3-13. One-Word, One-Cycle (Generic) Instruction Flow
Legend:

F: Instruction Fetch / Pre-decode

A W-reg select / Read EA (RAGU) / Write EA (WAGU)
R: Data Read / pre-MAC

X: Execute 1 (ALU, multiply, divide iteration)

W: Execute 2 (ACCx add/sub, shift, round) / Data Write

Instruction read decode

Instruction write decode

XY RAGU and X WAGU Indirect address W-array write backs
F A R X w and MOVPAG target write
F A R X /v Integer SR read (as direct register)
F A R / X w Integer SR update (bit-wise)
DSP SR update (bit-wise)

Result write-back to W-array, ACCx or EA

Effective address calculated (Wb, Ws, Wd)

F A R X w
F A R X w
F A R X w

3.3.14.2. One Instruction Word, Two Instruction Cycles

In these instructions, there is no prefetch flush. The only instructions of this type are the MOV.D
instructions (load and store double word), SFR reads and SFR bit operations. Two cycles are required
to complete these instructions, as shown in Figure 3-14.

@ MICROCHIP

97

Figure 3-14. MOVLL & MOVLCR Two-Word, Two-Cycle Instruction Flow

F A R X w
F A R X w
Wd EA calculated
F A R X W
Wd or

coprocessor target write

/

MOVLL, MOVLCR B A R X W

Extract lit[19:0] from opcod

Extract lit [31:20] from opcode’

3.3.14.3. One Instruction Word, Two or Four Instruction Cycles (Program Flow Changes)
These instructions include relative call and branch instructions. When an instruction changes the PC
(other than to increment it), the program memory prefetch data must be discarded. This makes the
instruction take four effective cycles to execute, as shown in Figure 3-15.

Figure 3-15. BFEXTF, BTINSF & BFINSL Two-Word, Two-Cycle Instruction Flow

7 A R X w
F A R X w BFINSF, BFEXTF: Read source file data
BFINSL: Read Ws source data
B A R X w
Perform bit field insert or extract

BFINSF, BFEXTF: Update file source

) BFINSL: Update Ws source
BFINSL: Extract lit[15:0] from opcode

BFINSF, BFEXTF, BFINSL F A R X w
F A R X w
F A R X w

3.3.14.4. Two Instruction Words, Four Instruction Cycles - GOTO or CALL
In these instructions, the fetch after the instruction contains data. This results in a four-cycle
instruction, as shown in Figure 3-16. The second word of a two-word instruction is encoded so
that it executes as a NOP if it is fetched by the CPU when the CPU did not first fetch the first word of
the instruction. This is important when a two-word instruction is skipped by a skip instruction (see
Figure 3-16).

@ MICROCHIP

98

Figure 3-16. GOTO & CALL Unconditional PFC Instruction Flow

F A R X w
F A R X W
(8'0, (PC[23:2]), 20) — TOS (CALL only)
1st Target Op
Target pC ReadFCache TA" R x w
F o} R X W
F 4\3 R X W
F Q R X
F % R W
F ol X w

3.3.14.5. Address Register Dependencies
These are instructions subjected to a stall due to a data address dependency between the X data
space read and write operations. An additional cycle is inserted to resolve the resource conflict, as
discussed in Figure 3-17.

Figure 3-17. MAC-Class One-Cycle Instruction Flow

XIY EA’s calculated

DSP multiplication

AWB rounding

Select ACCx and accumulate

X/Y RAGU and X WAGU Indirect address W array write backs

SR DSP status update (OA OB, SA, SB)

Result write to ACCx and/or AWB target

[A R X w
AWB EA'’s calculated
X/Y data read F A R X w
Green text: Data read or AWB write function
Red text: DSP instruction calculation function [F A R X w
[A R X w

Note: DSP status cannot be updated prior to the end of the W-stage (i.e., one cycle later than the

ALU status).

3.3.15. Loop Constructs

The dsPIC33A CPU supports two REPEAT constructs to provide unconditional automatic program

loop control. The REPEAT instruction implements a single instruction program loop. REPEAT
instructions use control bits within the CPU STATUS Register (SR) to temporarily modify the CPU

operation.

@ MICROCHIP

99

3.3.15.1. REPEAT Loop Construct

The REPEAT instruction causes the instruction that follows it to be repeated a specified number of
times. A literal value contained in the instruction, or a value in one of the W registers, can be used
to specify the REPEAT count value. The W register option enables the loop count to be a software
variable.

An instruction in a REPEAT loop is executed at least once. The number of iterations for a REPEAT

loop is the 20-bit literal value + 1 or Wn + 1. The syntax for the two forms is shown in REPEAT Loop
Construct.

Example 3-3. REPEAT Loop Construct

2 Using a literal value as a counter
REPEAT #1it20 ; RCOUNT <-- 1it20
(Valid target Instruction)

; Using a W register as a counter
REPEAT Wn ; RCOUNT <-- Wn

(Valid target Instruction)

3.3.15.1.1. REPEAT Operation
The loop count for REPEAT operations is held in the 32-bit Repeat Loop Counter register (RCOUNT),
which is memory-mapped. RCOUNT is initialized by the REPEAT instruction. The REPEAT instruction
sets the REPEAT Loop Active (RA) Status bit (SR[4]) to ‘1" if the RCOUNT is a non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the Program Counter is not incremented. Furthermore, Program Counter
increments are inhibited until RCOUNT = 0.

For a loop count value equal to ‘0', REPEAT has the effect of a NOP and the RA (SR[4]) bit is not set.
The REPEAT loop is essentially disabled before it begins, allowing the target instruction to execute
only once while prefetching the subsequent instruction (i.e., normal execution flow).

Note: The instruction immediately following the REPEAT instruction (i.e., the target instruction) is

always executed at least one time, and it is always executed one time more than the value specified
in the 20-bit literal or the W register operand.

3.3.15.1.2. Interrupting a REPEAT Loop
A REPEAT instruction loop can be interrupted at any time.

The state of the RA bit is preserved on the stack during exception processing to enable the user
application to execute further REPEAT loops from within any number of nested interrupts. After the
SR is stacked, the RA Status bit is cleared to restore normal execution flow within the ISR.

Note: If a REPEAT loop has been interrupted, and an ISR is being processed, the user application
must stack the Repeat Count register (RCOUNT) before it executes another REPEAT instruction
within an ISR. If a REPEAT instruction is used within an ISR, the user application must unstack the
RCOUNT register before it executes the RETFIE instruction.

Returning into a REPEAT loop from an ISR using the RETFIE instruction requires no special handling.
RETFIE pops the PC, and that becomes the address of the next instruction to be fetched in its
F-stage. The RETFIE instruction is "padded" with FNOPs (2), so the target instruction of the RETFIE
PFC can execute as normal.

Early Termination of a REPEAT Loop

An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in the software.

3.3.15.1.3. Restrictions on the REPEAT Instruction
Any instruction can immediately follow a REPEAT except for the following:

. 100
@ MICROCHIP

« Program Flow Control instructions (any branch, compare and skip, subroutine calls, returns, etc.)
* Another REPEAT or DTB instruction

* DISICTL, ULNK, LNK, PWRSAV Or RESET instruction
Note: Some instructions and/or Instruction Addressing modes can be executed within a REPEAT
loop, but it might not make sense to repeat all instructions.

3.3.16. Data Space Address Generation Units (AGUs)

dsPIC33AK512MPS512 family devices contain three independent Address Generator Units (AGUSs).
The X RAGU and X WAGU support byte (.b), word (.w) and long word (.I)-sized data space reads and
writes for MCU instructions, and word or long word reads and writes for DSP instructions. The Y
AGU supports word and long word-sized data reads for the DSP MAC-class of instructions only. The
AGUs are each capable of supporting two types of data addressing.

+ Linear Addressing
+ Modulo (circular) Addressing

In addition, the X WAGU can support Bit-Reversed Addressing.

Linear and Modulo Data Addressing modes can be applied to any address within the unified address
space. Although Bit-Reversed Addressing will work with any EA calculation, by definition, it is only
applicable to data space.

Data space memory is organized as 32-bit words; all Effective Addresses (EAs) point to bytes.
Instructions can thus access any byte, aligned word (data words at an even byte address) or aligned
long word (data words at an even 32-bit word address).

Misaligned accesses are not supported, and if attempted, they will initiate an address error trap.
The least significant two bits of the EA are used to determine the byte or upper/lower 16-bit word
access. EA[O] will always be 1'b0 for word accesses, and EA[1:0] will always be 2'b00 for long word
accesses.

SFRs and RAM support byte, word and double-word read or write operations.

When executing instructions that require just one source operand to be fetched from (and one
result to be written back to) data space, the X RAGU and X WAGU are used to calculate the EAs of the
source and destination, respectively. The AGUs can generate an address to point to anywhere in the
16 Mbyte address space. They support all MCU addressing modes and Modulo Addressing for low
overhead circular buffers. The X WAGU also supports Bit-Reversed Addressing to facilitate FFT data
reorganization.

When executing instructions which require two source operands to be concurrently fetched (i.e., the
MAC class of DSP instructions), both the X RAGU and Y AGU are used simultaneously.

The dsPIC33AK512MPS512 device family contains an X AGU and a Y AGU for generating data
memory addresses. Both X and Y AGUs can generate any EA within the available data memory
range. However, EAs that are outside of the physical memory provided return all zeros for data
reads and writes to those locations and, therefore, have no effect. Furthermore, an address error
trap will be generated. For more information on address error traps, refer to Interrupt Controller.

3.3.16.1. X Address Generation Unit

The X AGU is used by all instructions and supports all addressing modes. The X AGU consists of a
read AGU (X RAGU) and a write AGU (X WAGU), which operate independently on separate read and
write buses during different phases of the instruction cycle. The X read data bus is the return data
path for all instructions that view data space as a combined X and Y address space. It is also the X
address space data path for the dual operand read instructions (DSP instruction class). The X write
data bus is the only write path to the combined X and Y data space for all instructions.

The X AGU supports linear addressing through all of the address space. It can, therefore, generate
EAs within the range 0x000000 to OxFFFFFF.

101

@ MICROCHIP

The X RAGU starts its EA calculation during the prior instruction cycle, using information derived
from the just prefetched instruction. The X RAGU EA is presented to the address bus at the
beginning of the instruction cycle.

The X WAGU starts its EA calculation at the beginning of the instruction cycle. The EA is presented to
the address bus during the write phase of the instruction.

Both the X RAGU and the X WAGU support Modulo Addressing.
Bit-Reversed Addressing is supported by the X WAGU only.

3.3.16.2. Y Address Generation Unit
The Y data memory space has one AGU that supports data reads from the Y data memory space.
The Y memory bus is never used for data writes. The function of the Y AGU and Y memory bus is to
support concurrent data reads for DSP class instructions.

The Y AGU can generate an EA within the data space address range 0x0000 to OxFFFFFF.

The Y AGU timing is identical to that of the X RAGU, in that its EA calculation starts prior to the
instruction cycle, using information derived from the prefetched instruction. The EA is presented to
the address bus at the beginning of the instruction cycle.

The Y AGU supports Modulo Addressing and Post-Modification Addressing modes for the DSP class
of instructions that use it.

Note: The Y AGU does not support data writes. All data writes occur via the X WAGU to the
combined X and Y data spaces. The Y AGU is only used during data reads for dual source operand
DSP instructions.

3.3.16.3. Address Generation Units and DSP Class Instructions
The Y AGU and Y memory data path are used in concert with the X RAGU by the DSP class of
instructions to provide two concurrent data read paths. For example, the MAC instruction can
simultaneously fetch two operands to be used in the next multiplication.

DSP class of instructions may use any W-reg (except W15) for either X or Y address space accesses,
unlike previous devices. Any data write performed by a DSP class instruction takes place in the
combined X and Y data space and the write occurs across the X-bus. Consequently, the data can be
written to any address regardless of where the EA is directed.

The Y AGU only supports Post-Modification Addressing modes associated with the DSP class of
instructions. The Y AGU also supports Modulo Addressing for automated circular buffers. All other
(MCU) class instructions can access the Y data address space through the X AGU when it is regarded
as part of the composite linear space.

3.3.16.4. Data Alignment
The ISA supports long word (32-bit), word (16-bit) and byte (8-bit)-sized operations. Data are aligned
in data memory and registers as long words, but all data space EAs resolve to bytes. Data word and
byte reads will read the complete 32-bit word that contains the word or byte, using the LSbs of any
EA to determine which word or byte to select within the CPU. The selected word or byte is placed
onto the Isw or byte of the X data path (no byte accesses are possible from the Y data path as the
MAC-class of instruction can only fetch words or long words). That is, data memory and registers are
organized as four parallel byte-wide entities with a shared (long word) address decode but separate
write lines. Data byte writes will only write to the corresponding side of the array or register which
matches the byte address.

Note: Byte reads will always read the entire word, so mechanisms to clear or set peripheral status
bits when read (e.g. quick flag clearing mechanisms) are not allowed.

As a consequence of this byte addressability, all EA calculations must be scaled to step through

long word aligned memory. For example, the core must recognize that Post-Modified Register
Indirect Addressing mode, [Ws]+=1, will result in a value of Ws+1 for byte operations, Ws+2 for word
operations and Ws+4 for long word operations.

102

@ MICROCHIP

Misaligned word or long word accesses are not supported. For word accesses, the LSb of the

EA must be 1'b0. For long word accesses, the least significant two bits of the EA must be 2'b00.
Therefore, care must be taken when mixing operations of different data widths or translating from
16-bit code. Should a misaligned read or write be attempted, an address error trap will be forced.
If the Fault occurs during a read access, the read will be allowed to complete. If the Fault occurs
during a write access, the write will also be allowed to complete (inhibiting the write would have
been possible but inconsistent with other situations where an errant write could not be inhibited).
In both cases, the address error trap will be asserted. The next instruction (already prefetched
and underway) will be executed while the exception is arbitrated and acknowledged. When this
instruction completes, the trap will then be taken, allowing the system and/or user to examine the
machine state subsequent to execution of the address Fault.

Note: Byte and word ALU operations can produce results in excess of a byte or a word. However,

to maintain 16-bit backwards code compatibility, the ALU result destination write from all operations
maintains the same width as that of the source operands (i.e., MSbs of the destination are not
modified) and the SR is updated based only upon the state of the result data.

A sign extend (SE) instruction is provided to allow users to translate 8-bit to16-bit and 16-bit to 32-bit
signed values. Alternatively, for unsigned data, users can clear the MS portion of any W register
through executing a byte or word zero extend (ZE).

Note: Care must be taken when mixing byte and word-sized instructions/operands.

Although most instructions are capable of operating on long word, word or byte data sizes, it should
be noted that the DSP and some other instructions operate on long word or word-sized data only.

Figure 3-18. Data Alignment

3 23 15 7 o Address
Byte 3 | Byte2 | Byte1 | Byte O 24’h00_0000

Byte 7 | Byte6 | Byte5 | Byte 4 24’h00_0004

Byte 11| Byte10 | Byte9 | Byte 8 24’h00_0008

3.3.17. MAC Instructions

The dual source operand DSP instructions (ED,EDAC, MAC, MPY, MPYN, SQR, SQRAC, MSC, SQRSC and
SQRN), also referred to as MAC instructions, use a simplified set of addressing modes to allow the
user application to effectively manipulate the data pointers through register indirect tables.

These instructions support various addressing modes for X and Y data bus, where W-registers
accessing these data buses may be any W-reg (except W15) for either X or Y address space accesses.
Pre or post-modification values are scaled based upon instruction operand width. The MAC-class
instruction also supports the ability to write the contents of the accumulator that is not being used
as the instruction result destination to a memory or W-register as defined by the instruction with a
restricted set of addressing modes. This is referred to as the Accumulator Write Back (AWB).

Note:
AWB is only intended for use when the DSP engine is operating in Fractional Data mode. It can only
write the MS portion of the target accumulator fractional value.

MAC-class instructions are no longer tied to operand reads of X and Y address space. Operands
may both be sourced from X-space, resulting in reading the operand data sequentially rather than
concurrently. This will add an additional RAM data fetch delay (typically one cycle) to all such
instructions.

103

@ MICROCHIP

3.3.18. Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data
buffers using hardware. The objective is to remove the need for software to perform data address
boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism
is essentially the same for both). One circular buffer can be supported in each of the X (which also
provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on
any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since
these two registers are used as the stack frame pointer and stack pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there
are certain restrictions on the buffer start address (for incrementing buffers) or end address (for
decrementing buffers) based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these
buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is,
address boundary checks are performed on both the lower and upper address boundaries).

3.3.18.1. Start and End Address

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded
into the 24-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND.

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is
always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between
the corresponding start and end addresses. The maximum possible length of the circular buffer is
32K words (64 Kbytes).

3.3.18.2. W Address Register Selection

The Modulo and Bit-Reversed Addressing Control register, MODCON[15:0], contains enable flags as
well as a W register field to specify the W Address registers. The XWM and YWM fields select the
registers that operate with Modulo Addressing.

« IfXWM=1111, XRAGU and X WAGU Modulo Addressing is disabled.
« IfYWM=1111, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is
stored in MODCONT[3:0]. Modulo Addressing is enabled for X data space when XWM is set to any
value other than‘1111" and the XMODEN bit is set (MODCONT[15]).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is
stored in MODCONT[7:4]. Modulo Addressing is enabled for Y data space when YWM is set to any
value other than ‘1111’ and the YMODEN bit is set (MODCON[14]).

104

@ MICROCHIP

Figure 3-19. Modulo Addressing Operation Example

; Set XMODEN bit and XWM = w7
; w7 selected for X-AGU modulo addressing

Byte MOV.1 #0x8007, w6
Address MOV.1 w6, MODCON
0x1100

; set modulo end address
MOV.1l #0x40AF, w6
MOV.1l w6, XMODEND

; set modulo start address
MOV.1l #0x4000, w7
MOV.1l w7, XMODSRT

0x1163 ; Modulo Addressing buffer length set to OxAF.

Start Addr = 0x1100
End Addr = 0x1163 MPY.1l [w7]+=4, w5, A ; w7 = 0x4004

Length = 0x0032 words REPEAT #0x2A
MAC.1 [w7]+=4, w5, A
;Content of W7 rolled back to 0x4000

3.3.18.3. Bit-Reversed Addressing
Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It
is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order
reversed. The address source and destination are kept in normal order. Thus, the only operand
requiring reversal is the modifier.

3.3.18.3.1. Bit-Reversed Addressing Implementation

Bit-Reversed Addressing can only be enabled through the use of the movr.(w/l) instruction. This type
of addressing is effective when used with pre-modified or post-modified destination addressing. The
destination Bit-Reversed Addressing modifier is sourced from XBREV.XB[14:0].

If the length of a bit-reversed buffer is M = 2N bytes, the last ‘N’ bits of the data buffer start address
must be zeros.

The XB[14:0] bits are the Bit-Reversed Addressing modifier, or ‘pivot point’, which is typically a
constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume either word size (where the least significant bit of
every effective address is always clear) or long word size (where the two least significant bits of
the effective address are always clear), based on the operation data width selected. The XB value is
scaled accordingly to generate compatible (byte) addresses.

Bit-Reversed Addressing is only possible when using the MOVR instruction, and it can target a

16-bit or 32-bit-sized data. The MOVR instruction supports register indirect with Pre-Increment or
Post-Increment Addressing and 16/32 bit-sized data writes. When Bit-Reversed Addressing is active,
the W address pointer is always added to the address modifier (XB) and the offset associated with
the Register Indirect Addressing mode is ignored. In addition, the LSb of each 16-bit address and the
LS 2-bits of each 32-bit address will always be zero for both source and destination EAs. The MOVR
instruction also supports “in-place” data reordering (where only one data buffer is used for both the
source and destination). Source and destination indirect addressing may use the same register

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the
same W register, but the Bit-Reversed Addressing operation will always take precedence for data
writes when enabled.

105

@ MICROCHIP

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to
the XBREV register should not be immediately followed by an indirect read operation using the W
register that has been designated as the Bit-Reversed Pointer.

Figure 3-20. Bit-Reversed Addressing Example
Sequential Address

b15|b14|b13|b12|b11{b10| b9 | b8 | b7 | b6 | bS | b4 | b3 | b2 | b1| O

Bit Locations Swapped Left-to-Right
Around the Center of Binary Value

\
b15|b14|b13|b12|b11|b10| b9 | b8 | b7 | b6 | b5 | b1 | b2 | b3 | b4 | O
Bit-Reversed Address

Pivot Point XB = 0x0008 for a 16-Word Bit-Reversed Buffer

Table 3-8. Bit-Reversed Addressing Sequence (16-Entry)

Normal Address Bit-Reversed Address

A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 8
0 0 1 0 2 0 1 0 0 4
0 0 1 1 3 1 1 0 0 12
0 1 0 0 4 0 0 1 0 2
0 1 0 1 5 1 0 1 0 10
0 1 1 0 6 0 1 1 0 6
0 1 1 1 7 1 1 1 0 14
1 0 0 0 8 0 0 0 1 1
1 0 0 1 9 1 0 0 1

1 0 1 0 10 0 1 0 1

1 0 1 1 11 1 1 0 1 13
1 1 0 0 12 0 0 1 1

1 1 0 1 13 1 0 1 1 I
1 1 1 0 14 0 1 1 1

1 1 1 1 15 1 1 1 1 15

Example 3-4. 32-Bit Data, Two Buffer Bit-Reversed Data Reordering Example

; Two buffer (input and output) bit reversed data re-order subroutine for 32-
bit (real)
; data values

WO0: Temp

Wl: Data table size N (long words)

W8: Input data table pointer (natural order) initialized to start of table
W9: Output data table pointer (bit reversed) initialized to start of table

push.l w0
mov.sl # XBREV, w0
lsr.l wl, #1, [w0] ; XBREV = N/2

sub.l #1, wl

repeat wl

movr.l [w8++], [w9++] ; Move data from input to output buffer, then
; bump natural order and bit reversed pointers

@ MICROCHIP

106

pop.1l w0
return

3.3.19. Address Register Dependencies

The dsPIC33A architecture supports a data space read (source) and a data space write (destination)
for most MCU class instructions. The EA calculation by the AGU and a subsequent data space read
or write each take one instruction cycle to complete. This timing causes the data space read and
write operations for each instruction to overlap.

3.3.19.1. Read-After-Write Dependency Rules

If the W register is used as a write operation destination in the current instruction, and the W
register being read in the prefetched instruction is the same, the following rules apply.

+ If the destination write (current instruction) does not modify the contents of Wn, no stalls will
occur.

« If the source read (prefetched instruction) does not calculate an EA using Wn, no stalls will occur.

During each instruction cycle, the dsPIC33A hardware automatically checks to see if a RAW

data dependency is about to occur. If the conditions specified above are not satisfied, the CPU
automatically adds a one-instruction cycle delay before executing the prefetched instruction. The
instruction stall provides enough time for the destination W register write to occur before the next
(prefetched) instruction that uses the written data. Table 3-9 provides a summary of read-after-write
dependency.

Table 3-9. Read-After-Write Dependency Summary

Destination Addressing Mode Source Addressing Mode N Examples (Wn = W2)
Using Wn Using Wn

Direct Direct Allowed ADD.w WO, W1, W2 MOV.w W2, W3

Direct Indirect Stall ADD.w WO, W1, W2 MOV.w [W2], W3

Direct Indirect with Modification Stall ADD.w WO, Wl, W2 MOV.w [W2++],
W3

Indirect Direct Allowed ADD.w WO, W1, [W2] MOV.w W2, W3

Indirect Indirect Allowed ADD.w WO, W1, [W2]

MOV.w [W2], W3

Indirect Indirect with Modification Allowed ADD.w WO, Wl, [W2] MOV.w [W2++],
W3

Indirect with Modification Direct Allowed ADD.w WO, W1, [W2++] MOV.w W2,
W3

Indirect Indirect Stall ADD.w WO, Wl, [W2]

MOV.w [W2], W3
; W2=0x0004 (mapped W2)
Indirect Indirect with Modification Stall ADD.w WO, W1, [W2] MOV.w [W2++],
W3
; W2=0x0004 (mapped W2)

Indirect with Modification Indirect Stall ADD.w WO, Wl, [W2++] MOV.w [W2],
w3

Indirect with Modification Indirect with Modification Stall ADD.w WO, W1, [W2++] MOV.w [W2+
+], W3

3.3.19.2. Instruction Stall Cycles

An instruction stall is essentially a wait period instruction cycle added in front of the read phase
of an instruction to allow the prior write to complete before the next read operation. For interrupt

@ MICROCHIP

107

latency, the stall cycle is associated with the instruction following the instruction where it was
detected (i.e., stall cycles always precede instruction execution cycles).

If a RAW data dependency is detected, the dsPIC33A CPU begins an instruction stall. During an
instruction stall, the following events occur.

+ The write operation in progress (for the previous instruction) is allowed to complete as normal.
« Data space is not addressed until after the instruction stall.

+ PCincrement is inhibited until after the instruction stall.

« Further instruction fetches are inhibited until after the instruction stall.

3.3.19.2.1. Instruction Stall Cycles And Interrupts

When an interrupt event coincides with two adjacent instructions that causes an instruction stall,
one of two possible outcomes can occur.

If the interrupt coincides with the first instruction, the first instruction is allowed to complete while
the second instruction is executed after the ISR completes. In this case, the stall cycle is eliminated
from the second instruction because the exception process provides time for the first instruction to
complete the write phase.

If the interrupt coincides with the second instruction, the second instruction and the appended
stall cycle are allowed to execute before the ISR. In this case, the stall cycle associated with the
second instruction executes normally. However, the stall cycle is effectively absorbed into the
exception process timing. The exception process proceeds as if an ordinary two-cycle instruction
was interrupted.

3.3.19.2.2. Instruction Stall Cycles and Flow Change Instructions

The cALL and RCALL instructions write to the stack using Working register, W15, and can, therefore,
force an instruction stall prior to the next instruction if the source read of the next instruction uses
W15.

The RETFIE and RETURN instructions can never force an instruction stall prior to the next instruction
because they only perform read operations. However, the RETLW instruction can force a stall
because it writes to a W register during the last cycle.

The GoTo and branch instructions can never force an instruction stall because they do not perform
write operations.

3.3.19.2.3. Instruction Stalls and REPEAT Loops

Other than the addition of instruction stall cycles, RAW data dependencies do not affect the
operation of either Do or REPEAT loops.

The prefetched instruction within a REPEAT loop does not change until the loop is complete or an
exception occurs. Although register dependency checks occur across instruction boundaries, the
dsPIC33A devices effectively compare the source and destination of the same instruction during a
REPEAT loop.

3.3.19.3. Data Space Arbiter Stalls

A CPU stall can also be a result of competition for extended data space resources. When the data
space arbiter logic determines that the CPU cycle must be stalled to allow another bus master (e.g.,
DMA controller or USB module) access to data memory, instruction execution is suspended until the
higher priority bus master completes the data access.

3.4. Prefetch Branch Unit (PBU)

The Prefetch Branch Unit (PBU) in the dsPIC33A core devices accelerates the interface between the
Program Flash Memory (PFM) and the CPU instruction bus. The PBU can predictively prefetch the
next sequential address and cache fetched program data that are the target of a CPU instruction
fetch.

108

@ MICROCHIP

PBU in dsPIC33A core devices supports the following functions.

« PBU accelerates the execution of linear program code flow.

+ As cache accelerates, the execution of non-linear program flow changes (branches).

The PBU in the dsPIC33A core devices have the following features:

+ Provides an interface between the PFM and the CPU instruction bus.

+ Instruction Stream Buffers for prefetching and caching of linear PFM instruction flows

+ Instruction cache for caching the most frequently hit target instructions

* Provides parity checks on program data stored in the instruction cache to ensure data integrity.

The PBU block diagram in Figure 3-21 shows data paths to and from the PBU in the dsPIC33A
environment. The PBU provides data when the CPU fetches program data from Flash memory.
It may provide program data from an internal buffer or fetch program data from Flash if the
requested program data is not available. Flash fetch operations are, therefore, accelerated when
data are sourced from internal PBU buffers.

Figure 3-21. PBU Block Diagram

Prefetch Branch Unit (PBU)

Pgm Addr Tag Memory

140-bit
Flash
Memory

3.4.1. Architectural Overview

The PBU is a direct mapped 128-line cache that helps in providing faster program data fetches to the
CPU from Flash memory. The PBU provides program data from an internal instruction buffer, but

if it is not available in the internal buffer, the PBU may fetch program data from Flash. Flash fetch
operations are, therefore, accelerated when data are sourced from internal PBU buffers.

The PBU provides an interface between the Program Flash Memory (PFM) and the CPU instruction
bus and has the following components associated for operation.

* Instruction Stream Buffer (ISB) - Also termed as the Prefetch Unit (PFU), it is available for
prefetching and caching linear PFM instruction flows. ISB is the component that buffers program
data words from the program memory. The ISB consists of one or more buffers of a fixed depth.
Each buffer holds one or more lines of data fetches from Flash memory. The data held in each
buffer represents a linear code flow. These are defined as internal PBU buffers.

+ Instruction Cache (IC) - Also known as Branch Target Instruction Cache (BTIC), it is used for
caching the target instructions that are most frequently hit. The IC refers to both the cache
memory and the associated control logic that form the cache. The PBU supports a direct mapped

109

@ MICROCHIP

128-line cache. The required width for the cache is 129-bits. The PBU Cache has two operating
modes: IC mode and BTIC mode.

+ Integrity Checking Logic - Provides parity checks on program data stored in the IC to ensure
data integrity. This logic provides parity checking and Fault injection on the contents of RAM
associated with the IC.

The PBU assumes Flash data width and Flash access speed are sufficient to allow linear program
execution at the required speed using only the ISB. The ISB serves as the prefetch buffer and allows
the next line of Flash to be fetched as instructions from the current line are executed.

The PBU IC becomes useful when there are frequent program flow changes in the source code.

A program flow change will result in extra clock cycles because the current Flash fetch must be
allowed to complete and then a new fetch must be initiated at the new location. If the desired
program data is available in the IC, the data may be sourced immediately without waiting for the ISB
to complete a new fetch from Flash. However, PBU uses a larger, direct-mapped instruction cache
and has little control and status interface available to the user as its operations are transparent.

Note: PBU does not provide data or caching for initiators other than the CPU instruction bus. Data
access by the CPU data bus and other bus initiators is accomplished via a dedicated read buffer in
the NVM wrapper.

The ISB has multiple buffers also called slices. The ISB slices help increase performance with CALL/
RETURN and other flow changes in the code that return back to the previous code stream.

The ISB is two levels deep in the dsPIC33A PBU. For the first generation of dsPIC33A devices, Flash
access time is fast enough to support linear code execution with the given program data word
width. Therefore, only one level of prefetch buffer is required. The CPU can execute from the first
level, while the next fetch occurs into the second level.

In cases where the code to be executed has a linear flow, no further caching of data is necessary.
However, program flow changes insert latency into the code flow. A prior Flash fetch must be
completed and discarded. Then, a new Flash fetch must be started in the new flow. This process can
add a variable amount of clock cycles to the execution time, depending on when the flow change
occurred relative to the prefetch that was in progress.

When Flash access time is fast enough to support continuous linear program flow, full instruction
caching is not required. The cache could be configured as a BTIC, for which only the targets of
program flow changes are cached. This mode of cache increases the effective cache size because all
program data words do not have to be cached. However, program data must be transferred from
the cache memory to the ISB when a flow change occurs so that data words are prefetched.

@ MICROCHIP

110

3.4.2. Register Summary

I T N S S S S

23:16
15:8 ON CHEINV CHECOH
7.0 FLTINJ
31:24
23:16
15:8
7.0 RD PAR
31:24
23:16
15:8
7.0 FLTPTR[7:0]

0x1E60 CHECON
Ox1E64 CHESTAT

O0x1E68 CHEFLTIN]J

@ MICROCHIP

111

3.4.2.1. Cache Control Register

Name: CHECON
Offset: Ox1E60

Notes:

1. After being set, this bit will be cleared by hardware after the cache and ISB invalidations are
completed. Any automatic invalidation will also result in this bit being cleared.

2. This setting is useful when programming non-program data into Flash (emulated EEPROM).

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
ON CHEINV | CHECOH
Access R/W R/S/HC R/W
Reset 1 1 1
Bit 7 6 5 4 3 2 1 0
| | | FLTIN] |
Access R/S/HC
Reset 1

Bit 15 - ON Cache ON bit

1 Cache and all ISB slices are enabled.

0 All cache lines and ISB buffers except for the first buffer slice are invalidated. ISB operates with one buffer
slice, creating a two deep buffer (basic Prefetch mode).

Bit 11 - CHEINV Manual Invalidate Control bit(

1 Force invalidation of all cache and ISB lines
0 Invalidation of Instruction Cache and ISBs occurs according to CHECOH bit

Bit 10 - CHECOH Cache Coherency Control bit(2

Value Description
1 Invalidate cache upon a Flash programming event.
0 Do not invalidate cache on a Flash programming event.

Bit 0 - FLTINJ Fault Inject Control bit

1 Parity Fault injection enabled for one-time event; cache line will be invalidated and flushed when access
occurs, and upbs_event[1] will be asserted to indicate an integrity error to the system.

112

@ MICROCHIP

Value Description

0 Parity Fault injection disabled

@ MICROCHIP

113

3.4.2.2. Cache Status Register

Name: CHESTAT
Offset: Ox1E64
Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
| | | | | RD__| PAR
Access R/W R/S/HC
Reset 1 1

Bit 1 - RD Read Error Status bit

1 A read error event has occurred; the CPU has fetched a word from the ISB with a security error.
0 No read error event has occurred.

Bit 0 - PAR Cache Parity Error Status bit

1 A parity error event has occurred; the CPU has fetched a word from the cache with a parity error.
0 No parity error event has occurred.

@ MICROCHIP

3.4.2.3. Cache Fault Injection Register

Name: CHEFLTINJ
Offset: Ox1E68
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
| FLTPTR[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1
Bits 7:0 - FLTPTR[7:0] Fault Injection Pointer bits

Value Description

255-129 No effect
128 Cache Data Line Parity bit
127 Bit 127 of cache data line
1 Bit 1 of cache data line
0 Bit 0 of cache data line
3.4.3. Operation
The PBU registers only have control to enable or disable certain PBU functions. Parameters such as
ISB depth, ISB number of buffers, cache associativity, etc., are all fixed.
The CHECON.ON bit is reset to ‘1" by default. This provides the best CPU performance for both linear
code and program flow changes. The ON bit can be cleared in software to disable most caching
functions and make the PBU behave as a basic 2-deep prefetch buffer. This results in lower code
performance due to longer program flow changes but still gives deterministic execution behavior,
and thus, the program flow changes to longer execution time but takes a constant number of cycles.
3.4.3.1. Cache/ISB Manual Invalidation

Manual invalidation of the instruction cache and ISBs is used to force cache coherency when
the user knows that the cache and Flash contents may not match. It occurs under the following
conditions.

« CHECON.CHEINV Control bit: When set by software, this bit will invalidate both the instruction
cache and all ISBs. The hardware will clear this bit automatically after the cache and ISB memory
have been invalidated.

@ MICROCHIP

115

Note: CHECON.CHEINV is also cleared should an automatic invalidation occur after the bit has
been set.

+ CHECON.ON control bit: The instruction cache memory and ISB buffers are invalidated when the
CHECON.ON bit is cleared. This will be the case out of Reset. Execution continues using only a
single default ISB slice. Setting CHECON.ON has no effect with respect to cache/ISB invalidation
as it is already invalidated and the active ISB will contain valid data from the current instruction
flow.

3.4.3.2. Cache/ISB Automatic Invalidation

Automatic invalidation of the instruction cache and ISBs is used to ensure cache coherency when
the device knows that the cache and Flash contents may not match. It occurs under the following
conditions.

+ Flash write operation: Automatic invalidation only occurs if the Cache Coherency Control bit
(CHECON.CHECOH) is set (default) and Flash is programmed/erased. This is only applicable for
writing to the active panel in dual-panel devices.

+ Parity error: Refer to PBU Data Error Handling for further details. Only the accessed cache line
of the ISB buffer is affected, and the remainder of the cache memory does not need to be
invalidated.

3.4.3.2.1. Cache Invalidation when Writing to Flash
Whenever the Flash is written, the user has the option to automatically invalidate the instruction
cache and ISBs using the CHECON.CHEOH control bit. If instruction data are being written to Flash,
invalidation ensures Flash memory contents remain synchronized with the cache and ISB contents.

Note: To fully ensure a correct operation, it is recommended that the final instruction that initiates
Flash programming be followed by four NOP instructions to flush the instruction pipeline. This
ensures coherency since the remaining instructions in the CPU pipeline will take no action.

3.4.3.3. PBU Data Error Handling

The PBU handles error correction in two ways. First, any data errors that originate from the program
memory are tracked. Secondly, internal PBU data errors that may occur while program data are
stored in the PBU Cache RAM are monitored.

3.4.3.3.1. Program Memory Data Errors

Error status is captured from the program memory and buffered along with the fetched program
data word in the ISB. Consequently, each line in the ISB has 129 bits: 128 bits of data and one

bit for error status. The error status bit indicates the data read from the program memory are
unusable and incorrect. The program memory data can be bad for multiple reasons, including an
uncorrectable ECC error and a security violation that would suppress the data. In any case, the data
are not a valid CPU instruction and should not be executed by the CPU.

The PBU does not generate any kind of event, trap or interrupt when bad data are fetched from
the program memory. This is because the ISB may speculatively fetch data that would never be
executed by the CPU. Secondly, the CPU may speculatively fetch instructions from the PBU during
conditional branches that may never get executed.

A bus error signal is passed with the program data to the CPU for instructions fetched from the
PBU. If the program data are invalid with the bus error signal asserted, then the CPU can suspend
execution in the pipeline and cause a trap event to occur.

3.4.3.3.2. Cached Data Error
The second method of PBU error handling occurs when the cache has detected a parity error on
a cached line of program word data. When valid program data are cached for later consumption,
then the error status bit is stripped, and the program data word is stored in the cache memory. A
single even parity bit is calculated and stored along with the data. This parity bit is used to protect
the system from data corruption that could occur in the cache RAM.

@ MICROCHIP

A maskable interrupt event is generated by the PBU when a parity error is detected on a cache line.
In this case, the cache will invalidate the line with the parity error, and the program data must be
refetched from the program memory. Other than the interrupt event, the only other effect that can
be observed during a cache parity error is additional execution latency caused by Flash program
fetch. No address associated with the parity error is captured.

3.4.3.3.3. Corrected Program Memory Data Errors
The program memory error correction logic may correct a data error in the program data
supplied to the PBU. These corrections are not reported to the PBU which is usually done for the
uncorrectable errors. Specifically, a single-bit corrected error (SEC event) is not reported to the PBU.

The program memory is responsible for tracking and reporting the corrected event. These actions
serve as a warning to the system software that integrity of the NVM data may be failing.

3.4.3.4. Cache Fault Injection

A single-bit error can be injected on any of the data bits of the cache line or the associated parity
bit. The error injection is performed by XORing the data read from the cache line with a ‘1". Since the
PBU can cache program data from a variety of address locations depending on the program flow, it
is impractical to perform error injection for a particular program memory fetch address.

The PBU error injection, when enabled with the FLTIN] bit, will cause a one-time error injection the
next time the cache memory is accessed by the CPU. The CHESTAT.PAR bit will indicate when the
error injection has been performed. At this time, the PBU will also signal that an integrity error has
occurred by creating an interrupt event. The user will not be able to determine which line of the
cache buffer caused the event and fetch address.

A write to the FLTPTR register while FLTINJ = 1 will have the effect of re-arming the Fault injection.
This will help facilitate a software test routine that cycles through an error injection on each bit.

3.4.3.5. Non-Cached Events
Certain fetches from the NVM are not cached. These include:

+ Interrupt Vector fetches
+ Fetches of debug executive code
+ Fetches of invalid program memory data

All these types of fetches are not cached to avoid cache thrashing. Thrashing occurs when other
useful data are evicted from the cache and replaced with less useful or invalid data. Inhibiting
caching during the above fetches is expected to improve the overall efficacy of the cache, resulting
in more cache hits at run time.

Interrupt Vector fetches are a special type of non-cached event. Specifically, only one program word
is fetched from the NVM when the CPU indicates a vector fetch and the ISB is bypassed. When an
interrupt occurs, the interrupt vector address is fetched from the vector table, then the instruction
at the interrupt vector address is fetched. There is no need for an ISB to perform a prefetch and
fetch the program word after the one that contains the interrupt vector address. This would be
wasteful and produce extra latency in the servicing of the interrupt event.

The PBU monitors whether the CPU is executing user code or debug executive code. Instructions
fetched from the debug executive code are not cached. This avoids additional indeterministic
behavior when code execution transitions from the debug executive code back to user mission-
mode code.

In addition, the BMX supports execution from RAM and a RAM-based Interrupt Vector Table

(IVT). Program or vector fetches from RAM are also non-cached events. However, this capability
introduces the possibility of both a vector and its associated handler routine being in either NVM or
RAM. Whenever the IVT and/or an exception handler (interrupt or trap) are located within RAM, this
is treated as a special case by the PBU to maintain efficient operation.

117

@ MICROCHIP

3.4.3.6. PBU Performance Monitoring
Each word of data requested on the CPU instruction bus will be sourced either from the ISB or the
instruction cache and not the external NVM. This ensures that each fetch of program data can be
completed in minimal time, which maximizes application performance.

Program data that are not already present in the ISB or cache must be fetched from the NVM,
which takes additional cycles and decreases overall application performance. Once program data in
a particular NVM program word has been consumed by the CPU, it is stored in the instruction cache
for later use. The exceptions to this are program data with uncorrectable errors, security violations
or debugger executive program data. Once stored, the program data will be available for later reuse
in the instruction cache until those contents are erased and replaced with another program data
word.

3.4.3.6.1. Cache Busy Cycles
The program word is cached on the cycle following the fetch from NVM. During this time, the IC will
be busy because of the write-to-cache memory. If the CPU requests program data during this cycle,
the PBU will check the contents of the ISB for an address tag match. In most cases, the data may
be sourced from the ISB while the IC is busy. This results in an ISB hit and no extra cycle penalty is
incurred. When the IC is busy and no ISB hit occurs, then an extra cycle of latency will be inserted
while the PBU waits for the IC write cycle to complete. Then, the IC address tags are checked for an
IC hit.

3.4.3.6.2. PBU Performance Event Outputs
The PBU has event outputs that can be connected to external performance counters at the device
level for characterization of the PBU performance. These events can be counted over a period of
application execution and compared with the total number of executed instructions and/or the total
number of elapsed clock cycles to get a measurement of the PBU efficacy. The performance event
signals available from the PBU include:

+ Instruction cache “hit” event

+ Instruction stream buffer “hit” event
+ PBU “hit” event

+ Instruction cache “busy” event

The IC hit event indicates when a particular instruction was fetched from the cache memory. The ISB
hit event indicates when a particular instruction was fetched from the ISB. This generally happens
on the second fetch from a program word while that word is written to the cache memory.

The PBU hit event is of most interest for PBU performance analysis. This event signal is the logical
OR of the IC hit and the ISB hit events, and it indicates that the PBU was able to source the
requested data without initiating a new NVM fetch.

The IC busy event is used to count the number of extra cycles that were inserted when the ISB
could not source the requested data and a Wait state was necessary to determine if the data were
available in the IC. An IC busy event is expected to be infrequent and would occur during program
flow changes.

3.4.3.6.3. Factors Affecting PBU Efficacy
PBU efficacy is not a constant value. For a given code segment, such as function call, the efficacy of
the PBU will be very much dependent on these factors:

+ The code that was executed prior to a given code segment

* The size of the code

+ The specific location of this code in memory

+ Flow changes that occur during the execution of a specific code segment

Different performance results are possible when a specific segment of code is executed in one
context vs. another context. The prior code executed will determine what code data are presentin

118

@ MICROCHIP

the cache memory. The prior code may have evicted all program data associated with the segment
of interest. However, if the segment of interest is repetitively executed, then there is a strong
possibility that program data associated with this segment will remain in the cache memory without
eviction.

In general, a small segment of code, which is repetitively executed, will produce the best PBU
performance results. This is because the code size is small enough to fit within the cache memory,
and the repetitive nature of the code will maximize the reuse of the cache contents with a
minimum of evictions. The absolute location of a code segment within memory will impact the
PBU performance. This is closely related to how the code is compiled, optimized and linked during
the software development process.

Two different program data words in a segment of code could have the same address tags. If these
program data words are executed often, then numerous cache evictions and NVM fetches will result
during code execution. A larger cache memory and/or increased cache associativity can both help
this issue. A larger cache memory increases the number of available address tags, while increased
associativity increases the number of location options where a specific program data word could be
stored. The more flow changes that occur in each segment of code, the higher the possibility that
PBU performance will be reduced.

3.4.3.6.4. Implications of Variable NVM Wait States

3.5.

The NVM Wait states are currently fixed at three, supporting a 4-cycle NVM read access time, and
the nature of the PBU/NVM data access handshake is not sensitive to NVM access time. However,
variable access times could be advantageous.

1. Devices are designed to target maximum frequency, and the NVM read access time is based
upon this requirement. But not all applications will require full-speed operation and/or may be
willing to trade-off speed for lower power consumption. Consequently, it may be desirable to
allow the user to select fewer (or no) NVM read access Wait states when operating at lower
frequencies. This will improve the IC/ISB miss latency and decrease the effective CPI (clocks per
instruction) metric, improving overall device execution efficacy.

2. Slower Flash panels will consume less power so future devices may support a different speed
NVM. Zero Wait state linear code execution directly from Flash would, of course, no longer be
possible but would rely on the ISB and IC implementations.

Performance Monitor Unit (PMU)

The performance monitor provides a method to analyze code efficiency and allows software
routines that incur processor stalls to be identified and optimized. In the dsPIC33AK512MPS512
family of devices, the architecture does not have a fixed relationship between the CPU clock speed
in MHz and the throughput of the CPU in MIPS (Million Instructions per Second). The throughput of
the CPU is dependent on extra cycles incurred from the following:

+ CPU pipeline data dependency

+ Branches or program flow changes
+ Cache misses

+ Slow memory or SFR accesses

+ Arbitration between bus masters

* Abus thatis slower than the CPU

The performance monitor counts the events that cause extra cycles to be inserted into the program
flow and the number of elapsed clock cycles. Using this information, the cycles-per-instruction (CPI)
can be calculated and the reasons for poor code efficiency can be determined. The CPI value is the
number of elapsed clock cycles divided by the number of opcodes that were executed. The stall
cycle types listed above will increase the CPI.

@ MICROCHIP

119

The performance monitor uses a set of event signals from the CPU to determine stalls. The module
features eight 64-bit counters that can be independently configured to count the occurrence of
events from Table 3-11.

3.5.1. Device-Specific Information

Table 3-10. Performance Monitor Summary

Peripheral Bus Speed Clock Source

8 Standard Standard Speed Peripheral Clock

Table 3-11. Counter Event Source Selection

SELECT n Event source Note
[4:0]

18 Fetch stage PBU miss This event indicates that the requested program data could not be sourced from
either the cache memory or the ISB. Therefore, a new fetch from program memory
with additional execution cycles was required to obtain the data.

17 Fetch stage PBU hit This event indicates that the requested program data was sourced from either the
cache memory or the ISB. Therefore, no additional execution cycles were required
to fetch the instruction.

16 Fetch stage cache busy ' Indicates a cycle when the cache was busy transferring data from the instruction
stream buffer (ISB) to the cache memory.
15 Fetch stage program Indicates that the CPU fetches an interrupt vector and is aligned with a Program
memory vector fetch ~ Flow Change event. This event can be used to count interrupt events.
14 Fetch stage program Indicates that a change in program flow has occurred. This could be due to a CALL,
memory program flow RETURN, RETFIE, conditional or unconditional branch, or interrupt event.
change
13 Fetch stage read stall Indicates an extra cycle is needed to fetch a program word from memory. This

could be caused by a cache miss or an arbitration conflict when fetching program
words and data from the same memory.

12 Fetch stage interrupt Indicates the number of cycles due to interrupt latency.
latency count enable
11 Address stage stall Indicates that CPU pipeline was stalled in the Address stage for any reason, possibly
because the instruction is being discarded.
10 Address stage read stall Indicates that an instruction could not continue because of an extra latency reading
a RAM or SFR location.
9 Address stage FPU read Indicates that CPU execution is presently stalled because the CPU cannot read from
stall a FPU register. This occurs because the FPU is currently busy updating the register
data.
8 Address stage FPU Indicates that execution in the FPU coprocessor is currently stalled due to a register
instruction stall data dependency.
7 Address stage hazard Indicates an extra execution cycle caused by a data dependency upon an earlier
instruction in the CPU pipeline, which could not be forwarded.
6 Read stage branch Indicates an extra execution cycle caused by mispredicted program flow changes.
mispredict
5 Read stage conditional Indicates the occurrence of a conditional branch instruction. The count of
branch conditional branch instructions can be compared to the number of branch

mispredictions in order to determine the effectiveness of the CPU branch
prediction logic.

4 Write stage stall Indicates that an instruction could not continue because of an extra latency writing
to RAM or SFRs.
3 Write stage FPU stall Indicates that CPU execution is presently stalled because the CPU cannot write to

the FPU registers. This occurs because the FPU is currently busy working on the
existing register data.

2 CPU instruction Indicates that an instruction in the CPU pipeline has completed.
completed

120

@ MICROCHIP

Table 3-11. Counter Event Source Selection (continued)

SELECT n Event source Note
[4:0]

1 CPU cycle elapsed This event count provides the total number of CPU clock cycles elapsed.
(reference)
0 None

121

@ MICROCHIP

3.5.2.

Ox1E10

Ox1E10

Ox1E14

Ox1E18

Ox1E1F

0x1E20

Ox1E24

Ox1E28

Ox1E2C

O0x1E30

Ox1E34

Ox1E38

O0x1E3C

0x1E40

Ox1E44

O0x1E48

@ MICROCHIP

Register Summary

Corset | name lowpos 7| 6 | 5 | 4 | 3 | 2 | 1 | o
31:24

HPCCON

HPCSELO

HPCSEL1

Reserved

HPCCNTLO

HPCCNTHO

HPCCNTL1

HPCCNTH1

HPCCNTL2

HPCCNTH2

HPCCNTL3

HPCCNTH3

HPCCNTL4

HPCCNTH4

HPCCNTLS

23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0

31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0

ON

CLR

HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]
HPCCNT[7:0]
HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]
HPCCNT[7:0]
HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]
HPCCNT[7:0]
HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]
HPCCNT[7:0]
HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]
HPCCNT[7:0]
HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]
HPCCNT[7:0]

SELECT([3][4:0]
SELECT[2][4:0]
SELECT[1][4:0]
SELECT[0][4:0]
SELECT[7][4:0]
SELECT[6][4:0]
SELECT[5][4:0]
SELECT[4][4:0]

122

Register Summary (continued)

Cofet | Name lowposl 7| 6 | 5
31:24

Ox1E4C

0x1E50

O0x1E54

Ox1E58

Ox1E5C

@ MICROCHIP

HPCCNTH5

HPCCNTL6

HPCCNTH6

HPCCNTL7

HPCCNTH7

23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0

HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]

HPCCNT[7:0]
HPCCNT[63:56]
HPCCNT[55:48]
HPCCNT[47:40]
HPCCNT[39:32]
HPCCNT[31:24]
HPCCNT[23:16]
HPCCNT[15:8]

HPCCNT[7:0]
HPCCNT[63:56
HPCCNT[55:48
HPCCNT[47:40

]
1
1
HPCCNT[39:32]

2 1 0

123

3.5.2.1. HPCCON Register

Name: HPCCON
Offset: Ox1E10

Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
[__ON | | CR | | | | |
Access R/W R
Reset 0 0
Bit 7 6 5 4 3 2 1 0
| | | | | | | | |
Access
Reset

Bit 15 - ON On Control bit

1 Module is enabled and counters increment on event signals.
0 Module is disabled and counters do not increment on event signals. Counter values may be read.

Bit 13 - CLR Clear Control bit
A write of a ‘1" to this location will cause the event counters to clear. This bit may be set at any time
whether the PMU is in the Enabled state or the Disabled state. This bit location always reads as ‘0'.

@ MICROCHIP

124

3.5.2.2. HPCSELO Register

Name: HPCSELO
Offset: Ox1E10

Bit 31 30 29 28 27 26 25 24
| | | | SELECT[3][4:0] |
Access R/W RIW R/W RIW RIW
Reset 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| | | SELECT[2][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| | SELECT[1][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | SELECT[0][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 28:24 - SELECT[3][4:0] Counter #3 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

Value Description

11111-000 Selects the event to be monitored.
01

00000 No event selected (1'b0); counter is disabled.

Bits 20:16 - SELECT[2][4:0] Counter #2 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

Value Description

11111-000 Selects the event to be monitored.
01

00000 No event selected (1'b0); counter is disabled.

Bits 12:8 - SELECT[1][4:0] Counter #1 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

Value Description

11111-000 Selects the event to be monitored.
01

00000 No event selected (1'b0); counter is disabled.

Bits 4:0 - SELECT[0][4:0] Counter #0 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

125

@ MICROCHIP

Value Description

11111-000 Selects the event to be monitored.
01

00000 No event selected (1'b0); counter is disabled.

o 126
ﬁ\ MICROCHIP

3.5.2.3. HPCSEL1 Register

Name: HPCSEL1
Offset: Ox1E14

Bit 31 30 29 28 27 26 25 24
| | | | SELECT[7][4:0] |
Access R/W RIW R/W RIW RIW
Reset 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| | | SELECT[6][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| | SELECT[5][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | SELECT[4][4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 28:24 - SELECT[7][4:0] Counter #7 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

Value Description

11111- Selects the event to be monitored.

00001

00000 No event selected (1'b0)\; counter is disabled.

Bits 20:16 - SELECT[6][4:0] Counter #6 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

Value Description

11111- Selects the event to be monitored.

00001

00000 No event selected (1'b0); counter is disabled.

Bits 12:8 - SELECT[5][4:0] Counter #5 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

Value Description

11111- Selects the event to be monitored.

00001

00000 No event selected (1'b0); counter is disabled.

Bits 4:0 - SELECT[4][4:0] Counter #4 Event Source Selection bits
These control bits determine which event is counted by the associated counter.
See Table 3-11 for assignments.

127

@ MICROCHIP

Value Description

11111- Selects the event to be monitored.
00001
00000 No event selected (1'b0); counter is disabled.

o 128
ﬁ\ MICROCHIP

3.5.2.4. HPCCNTLx Register

Name: HPCCNTLx

Offset: 0x1E20, Ox1E28, 0x1E30, Ox1E38, 0x1E40, Ox1E48, Ox1E50, Ox1E58

Bit 31 30 29 28 27 26 25 24
| HPCCNT[31:24]
Access R/W R/W R/W R/W R/W R/W R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| HPCCNT[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| HPCCNT[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| HPCCNT([7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - HPCCNT[31:0] Event Counter bits

@ MICROCHIP

129

3.5.2.5. HPCCNTHXx Register

Name: HPCCNTHx
Offset: Ox1E24, Ox1E2C, Ox1E34, Ox1E3C, 0x1E44, 0x1E4C, 0x1E54, Ox1E5C

Bit 31 30 29 28 27 26 25 24
| HPCCNT[63:56] |
Access R/W R/W R/W R/W R/W R/W R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| HPCCNT[55:48] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| HPCCNT[47:40] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| HPCCNT[39:32] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - HPCCNTI[63:32] Event Counter bits

3.5.3. Operation

The performance monitor operates on the basis of comparing the counter values to the number of
CPU cycles. To capture the number of CPU cycles as a reference, one of the available counters is
used.

For example, counter 0 can be used for the reference count, and the remaining counters can be
used to monitor the available events.

3.5.3.1. Event Selection

Each counter has an associated control to select one of the event sources. The SELECTn[4:0] bits in
HPSELO and HPSEL1 select one of the signals that are listed in Table 3-11. The CPU cycle elapsed
event is the reference and is incremented on each CPU cycle. The CPU instruction completed

event indicates that the CPU pipeline has completed. Comparing instructions completed to cycles
elapsed yields the CIP value. The ideal value is one instruction completed per one cycle elapsed. The
remaining stall, branch or hazard events can be used to determine where stalls occur and what part
of the code to optimize.

3.5.3.2. Counters

Each 64-bit counter is split across a pair of 32-bit registers, HPCCNTLx and HPCCNTHx. The
registers are read-only and do not have provisions for saturation or rollover events. It is up to

user software to halt the module before saturation occurs. The counters can be reset with the CLR
bit (HPCCON[13]). The counters are started and stopped using the ON bit (HPCCONI[15]). The count
values should only be read when ON =0".

3.5.3.3. Debugging

Provisions have been made to support the performance monitor in Debug mode. By default, the
module is halted in Debug mode to avoid counting cycles associated with the debug executive.

130

@ MICROCHIP

3.5.3.4. Operation in Power-Saving modes
The Performance Monitor module does not operate in Sleep or Idle mode.

3.6. Floating-Point Unit (FPU) Coprocessor

The dsPIC33A FPU Coprocessor includes hardware implementations of the most common floating-
point operations for both Single Precision (32-bit) and Double Precision (64-bit) data formats.

It is intended to significantly accelerate C compiler floating-point operations when compared to
executing software library equivalents and is designed to be compliant with the IEEE 754-2008/2019
floating-point standards. It also includes additional non-IEEE compliant features which may be
enabled to handle subnormal values and improve performance.

3.6.1. Features
+ Comprehensive IEEE 754-2008/2019 Compliant Instruction Set
- Supports both Single and Double Precision operations for most instructions
- Supports all required rounding modes
+ Closely Coupled to dsPIC33A CPU Core
- Instructions issued from CPU core as part of an application instruction stream
- Independent instruction pipeline and hazard management
+ 32 x 32-Bit Data Registers (F-Regs)
- May be used to hold 32-bit Single Precision or 64-bit Double Precision values
- Base plus seven partial FPU register contexts
+ Optional Subnormal Handling for Improved Performance
- Subnormal result “Flush-To-Zero" (FTZ) mode
- Subnormal operand “Subnormals-Are-Zero” (SAZ) mode
+ Comprehensive Exception Implementation and Reporting Structure
- |EEE 754-2019 compliant exception implementation
- Additional exceptions supported for huge integer results and subnormal operands
+ Debug Features Supported:
- Exception address capture register (FEAR)
- Exception break signaling
- NaN propagation

3.6.2. Architectural Overview

The FPU macro relies on the associated dsPIC33A CPU for all instruction fetches, most decoding,
and for all operand movement to and from the system memory. The FPU contains no local memory
other than its own register set. Being coupled to the CPU, data size nomenclature is common to
both CPU and FPU wherein a word is 16 bits wide, a long word is 32 bits wide and a double word is
64 bits wide.

FPU instructions are part of the CPU instruction set architecture and are executed as part of the CPU
code image. FPU instructions are therefore executed as a part of the normal execution flow. There
are no restrictions with regards to when FPU instructions may appear within the instruction flow.

The CPU can issue, and the FPU can accept, no more than one instruction per clock cycle. However,
once issued, the CPU and FPU use independent pipelines to execute the instruction. Consequently,
there can be multiple instructions in the process of being executed in both pipelines at any one
time. The FPU pipeline will stall the CPU when it is unable to accept any more instructions. The FPU
pipeline is also sensitive to speculative instruction control from the CPU (i.e., such that not all issued
FPU instructions will be committed). This allows FPU instructions to be located within speculative
execution slots that follow conditional branches.

131

@ MICROCHIP

After a successful issue of an FPU instruction, the CPU continues as if executing a single cycle FNOP
instruction, and the FPU instruction execution continues within the FPU. Therefore, as some FPU
instructions require several cycles to complete, subsequent CPU (and/or FPU) instructions can be
fetched, issued and executed (dependencies aside) while the FPU operation progresses. Only when
the CPU encounters a hazard with the FPU will it be stalled until the hazard is resolved.

Data and structural hazards are detected and mitigated in both the CPU and FPU and can result
in operational stalls which will extend the execution time and increase the effective cycles per
instruction of both CPU and FPU instructions.

Note: Refer to the “dsPIC33A Programmer's Reference Manual” (DS70005540) for the syntax of all
FAND, FIOR, FMUL, etc., instructions.

3.6.2.1. Instruction Pipeline Overview

The pipeline stages consist of Read (RD), Execute (X[n]) and Write-Back (WB), differentiated from

the equivalent CPU pipeline stages through the use of different nomenclature. The RD stage is a

single-cycle operation (unless stalled). The WB stage is always a single-cycle operation. However,
the Execute stage will consist of as many cycles as deemed necessary for the selected instruction
functional block. Most basic functions are single-cycle execute operations, though more complex
functions (e.g., divide) can be many cycles.

Each instruction that is issued to the FPU must be completed (or killed if speculative) in the order
issued. That is, Out of Order (Oo0) execution is not supported. However, as the execution time of
the FPU instructions can vary considerably, in-order execution requires logic to tag each instruction
as it is committed for execution, then track its progress as it flows through the instruction pipeline.
Subsequent instructions will therefore be stalled until such time that earlier ones have progressed
to allow for sequential, in-order execution.

3.6.2.2. Introduction to Floating Point
The IEEE standard for Floating-Point Arithmetic (IEEE 754-2008) specifies the floating-point data
formats which are comprised of a Sign bit, an exponent value and a (fractional) mantissa value. The
dsPIC33A Floating-Point Unit (FPU) supports both Single Precision (32-bit, SP) and Double Precision
(64-bit, DP) operations for most (though not all) instructions. To avoid the need for another Sign
bit in the exponent, the IEEE floating-point format exponent is biased by 127 (SP) or 1023 (DP).
Consequently, for any datum, the required IEEE exponent value = datum exponent + bias.

In addition, the ‘1’ to the left of the most significant bit of the mantissa is implied for all numbers
except subnormal numbers and is consequently referred to as the leading bit convention’s “hidden
bit.” The mantissa is, therefore, a fractional value with an implied integer value of [1].

132

@ MICROCHIP

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU16/ProductDocuments/ReferenceManuals/dsPIC33A-Programmers-Reference-Manual-DS70005540.pdf

Figure 3-22. IEEE Floating-Point Data Formats and Single Precision Example

Single Precision Floating Point

31 30 23 22 0
S 8-bit exponent 23-bit mantissa
biased exponent
0=+127
31 30 23 22 0
5.75= 1] 1 10000001 01110000000000000000000
129 [11.4375

Double Precision Floating Point
63 62 52 51 0

S 11-bit exponent 52-bit mantissa

biased exponent
0=+1023
An IEEE floating-point number can therefore be represented as:
(-1)° X [1].(M (pgsez) X 2(015)
where:

+ ‘S'indicates the sign of the number (same values as a signed integer value).

+ ‘e'represents the exponent value.

* 'm’'represents the fractional mantissa value.

* ‘'bias’is 127 (SP) or 1023 (DP).

For example, -5.75 = -(1.4375 x 22). In IEEE SP format this would be represented as:
¢ (1)1 x[11.4375 x 2(129-127)

or (as shown in Figure 3-22):

+ S=1, exponent = 1294, mantissa = [1].4375

or:

+ 0xCOB8 0000

3.6.2.2.1. IEEE 754-2008 Compliance

This module is compliant with the IEEE 754-2008 Standard for Floating-Point Arithmetic for data
formats, supported signaling and quiet branch predicates, exception status flags and exception
status behavior.

Note that the IEEE 754-2008 minNum(x,y) and maxNum(x,y) definitions are supported only through
the largely compatible IEEE 754-2019 minimumNum(x,y) and maximumNum(x,y) operations via the
FMINNUM and FMAXNUM instructions. The functional differences related to how +0 and -0 are
considered.

+ |EEE 754-2008 minNum(x,y) / maxNum(x,y): Operand values +0 and -0 are regarded as equivalent.
The (implementation dependent) result could therefore be either +0 or -0.

« |EEE 754-2019 minimumNum(x,y) / maximumNum(x,y): Operand values +0 and -0 are not
regarded as equivalent such that -0 compares to less than +0. The result will therefore be the
correct sign of 0 based on the selected operation.

Features Beyond IEEE 754 Requirements

133

@ MICROCHIP

Exception Address Capture Register
The Floating-Point Exception Origination Address Capture register (FEAR) captures the address of

the instruction that generates a floating-point macro exception, provided the associated exception

mask bit is clear. If the exception is masked, nothing is captured.

This register is intended for use during system debug, though the FEAR register is read/write in both
Mission and Debug modes.

Huge Integer Exception

This exception is signaled whenever a Float-to-Integer Conversion operation (FF2DI or FF2LI) results
in an integer value that is larger than the destination register can represent. It is not defined within
any |IEEE 754 specification apart from a reference to setting the Invalid exception should an integer
value exceed the destination size unless this “cannot otherwise be indicated.”

3.6.2.2.2. IEEE 754-2019 Compliance

Minimum and Maximum Functions
The FPU module supports all minimum and maximum operations defined in the IEEE 754-2019

standard. The IEEE 754-2008 minNum(x,y) and maxNum(x,y) operations are not directly supported.

+ FMINNUM, FMAXNUM: IEEE 754-2019 minimumNumber(x,y)/maximumNumber(x,y) functions.

When one of the input operands is a NaN and the other input is a floating-point number (that is

not a NaN), the instructions will return the floating-point number. If both input operands are a

NaN, the instructions will return a gNaN.

« FMIN, FMAX: IEEE 754-2019 minimum(x,y)/maximum(x,y) functions. When one (or both) of the
input operands is a NaN, the instructions will return a gNaN.

Refer to the truth table shown in Table 3-12 for a definition of how NaN operands are handled.

For all minimum and maximum operations, any finite operand value will compare as less than

+infinity or greater than -infinity. An operand value of -0 compares to less than +0.

Table 3-12. FMINNUM/FMAXNUM/FMIN/FMAX Operat‘ion

FMINNUM
FMAXNUM
FMIN FMAX

FMINNUM
FMAXNUM

@ MICROCHIP

Source Operands Invalid Result Fd FSR.INVAL
Exceptlon VE S

FPN1

gNaN1

sNaN
gNaN
sNaN1

FPN1

gNaN

FPN1

sNaN

FPNZ

qNaN2

gNaN

sNaN
sNaN2
gNaN

FPN2

sNaN

FPN2

Don't care

Don't care

- O = O =

0
Don't care
Don't care

1

0
1
0

FPN1 or
FPN2(1.2.3.4)

gNaN1 or
gNaN2 ®

gNaN (Fs) (©

gNaN (Fb) ©

Quieted sNaN1
or sNaN2 ()

FPN1
FPN2
FPN1

FPN2

Invalid
Exception
Taken?

No

No
Yes
No
Yes
No
Yes
No
No
No
Yes
No
Yes

134

Table 3-12. FMINNUM/FMAXNUM/FMIN/FMAX Operation (continued)

Source Operands Invalid Result Fd FSR.INVAL Invalid
Exceptlon Mask Exception
Taken?
No

FMIN FMAX FPN1 qNaN Don't care gNaN (Fs)
gNaN FPN2 Don't care gNaN (Fb) 0 No
FPN1 sNaN 1 Quieted sNaN 1 No
0 (Fs) Yes
sNaN FPN2 1 Quieted sNaN 1 No
0 (Fb) Yes
Notes:
1. FPN1 and FPN2 are floating-point numbers that are not a NaN (i.e., normal, zero, infinity or
sub-normal).

Result determined by a FMINNUM/FMIN or FMAXNUM/FMAX operation.

Operand value of -0 compares to less than +0.

If Fb = Fs (and of the same sign, including infinities), result (Fd) will be loaded with Fb.
NaN with largest significand will be passed to result (Fd), quieted if an sNaN.

oA WN

gNaN values have priority over sNaN values (see Table 3-14).

Clamping (Limit) Functions

Although not specified in any IEEE 754 standard, the ISA supports a clamping (or limit) instruction
(FFLIM) intended for use where an input operand needs to be constrained between an upper and
lower limit. It serves a similar purpose to the integer equivalent FLIM instruction and is essentially
a concurrent execution of FMIN and FMAX operations with a common operand. Refer to the truth
table shown in Table 3-13 for a definition of how NaN operands are handled.

Any finite operand value will compare as less than +infinity or greater than -infinity. An operand
value of -0 compares to less than +0.

For FFLIM operations, when both upper and lower limits are either both gNaN or both sNaN values,
a NaN significant comparison is not required, and the Fb NaN will be the default source for the
result. This differs from how coincident NaN values are treated in general.

Furthermore, a NaN input value (Fd) will cause the limit values to be ignored and will become the
source for the result. That is, checks between input NaNs and limit values (NaNs or otherwise) are
also not required.

135

@ MICROCHIP

Table 3-13. FFLIM Operation¥)

Fb® Fs® Fd Invalid FSR.INVAL Exception
(Lower Limit) (Upper Limit) (Input Value) | Exception Mask Taken?

FPNL(FPNU Don't care FPNL or FPNU
or FPN®@ or
Distinguished
gNaN®
FPNL gNaN_U FPN Don't care qNaN_U 0
FPNL sNaN_U FPN 1 Quieted sNaN_U 1
0
qNaN_L FPNU FPN Don't care gNaN_L 0
sNaN_L FPNU FPN 1 Quieted sNaN_L 1
0
sNaN_L sNaN_U FPN 1 Quieted 1
0 sNaN_L®
sNaN_L gNaN_U FPN 1 gNaN_u® 1
0
gNaN_L sNaN_U FPN 1 gNaN_L(® 1
0
gNaN_L gNaN_U FPN Don't care gNaN_L® 0
Don't care Don't care sNaN 1 Quieted sNaN®@ 1
0
Don't care Don't care gNaN Don't care gNaN 0
Notes:

1.
2.
3.

FPNL and FPNU are floating-point numbers that are not a NaN.
Result determined by FFLIM operation.

If Fs is less than Fb (and neither Fs nor Fb are NaN values), the result will be the distinguished gNaN, and the invalid

exception will be signaled.

FFLIM operation based on IEEE 754-2019 minimum(x,y) and maximum(x,y) operation definitions.

Unlike FMIN/FMAX operations, no magnitude comparison of limit NaN values is required. The default result will always

be sourced from Fb.

gNaN values have priority over sNaN values (see Table 3-14).

Unlike FMIN/FMAX operations, no comparison of limit and input (Fd) values is required. The default result will always be

sourced from Fd.

NaN Propagation

The FPU macro supports NaN (payload) propagation to facilitate code debugging. After the CPU

No
No
Yes
No
No
Yes
No
Yes
No
Yes
No
Yes
No
No
Yes
No

issues an instruction to the FPU, the source operands are examined and a NaN value detected,

compared and then propagated. Two operand instructions propagate NaN values as shown in Table

3-14.

The FMAC instruction is a special case with respect to NaN propagation as it is essentially three

operands consisting of the two source operands (for the multiply) and a prior FMAC result value (i.e.,
the intermediate used for the accumulate function). The source operands are examined as usual but
in conjunction with the selected intermediate result, and any NaN values detected are propagated

as defined by Table 3-14.

FFLIM is also a three-operand instruction, though it is ultimately either a two-operand maximum or
minimum operation based on the value of the source operand. NaN values detected are propagated

as defined by Table 3-13.

@ MICROCHIP

136

Table 3-14. NaN Propagation Priority

B

sNaN Quieted sNaN INVAL signaled
FPN qNaN gNaN
sNaN FPN Quieted sNaN - INVAL signaled
gNaN FPN gNaN
qNaN1 gNaN2 qNaN1 gNaN1 =gNaN2
gNaN2 gNaN2 > gNaN1
sNaN gNaN gNaN - INVAL signaled
gNaN sNaN gNaN - INVAL signaled
sNaN1 sNaN2 Quieted sNaN1 sNaN1 > sNaN2 INVAL signaled
Quieted sNaN2 sNaN2 > sNaN1

NaN Propagation Rules
For instructions that generate a result, special propagation rules apply when one or both source
operands are NaN values, such that sNaNs can be successfully used as “tracer” values.

When both source operands are NaNs, gNaNs take priority over sNaNs. The appropriate NaN values
will be selected as the operation default result as shown in Table 3-14. In the absence of any

NaN source operands, any other floating-point numbers will be processed by the FPU module to
generate the result.

Note: Source sNaN values will always generate an Invalid exception, but the corresponding quieted
sNaN may not always be the operation result.

This magnitude comparison is based on the magnitude of the significand associated with each of
these values (the sign is ignored). It is straightforward to implement because:

« The MSb of a sNaN significant is 0 (with any non-zero value in the remaining bits).
+ The MSb of a gNaN significant is 1 (with any value in the remaining bits).

An example tracer sNaN propagation is shown in Figure 3-23. When an FPU operation (Op1)
executes with a sNaN and a normal floating-point number, the sNaN will be quieted and propagate
as the result. In Figure 3-23, this is sNaN1 (the initial tracer) being propagated as gNaN1. Should

a subsequent operation (Op2) execute with gNaN1 and, for example, a later sNaN tracer (sNaN2),
operand qNaN1 will have priority, thereby maintaining propagation of the original tracer payload.
However, should that gNaN1 value then be presented to another FPU operation (Op3) together
with another gNaN, the gNaN result could be either of the source gNaNs, depending upon the
magnitude of their respective significands.

However, if the significand of the initial SNaN1 tracer is large enough, it will ultimately be able to
continue to propagate past all subsequent NaNs and be available to view at the end of the code
block, thereby allowing it to be traced back to its source.

Figure 3-23. Tracker sNaN Operand Propagation Example

FPN Op1 sNaN2 NaN2 Op3
N gNaN1 qNaN1 \{S Result
(tracer) A Fb
sNaN1

If gNaN1 >= gNaN2, Result = gNaN1
If gNaN2 > gNaN1, Result = gNaN2

137

@ MICROCHIP

Table 3-15. FMAC NaN Propagation Priority

Multiply Source Operands Add Source Operands

Fbor Fs Fs or Fb Intermediate | Accumulator
Result Source(Fd)

FPN(

FPN(

FPNG)

gNaN1

sNaN1

Notes:

1. FPNis a floating-point number that is not a NaN.

FP Multiply

sNaN1

gNaN1

gqNaN2

sNaN2

gNaN
sNaN
Distinguished FPN
gNaN®
gNaN1
sNaN
Quieted FPN
sNaN1
gNaN
sNaN2
gNaN1 FPN
gNaN2
sNaN
gNaN1 or FPN
gNaN2(@
gNaN3
sNaN
Quieted FPN
(sNaN1 or
sNaN2)@
gNaN
sNaN3

2. Using significand magnitude comparisons as defined in Table 3-14.

3. Adistinguished gNaN intermediate result will arise when operands are 0 and Inf (any sign).

@ MICROCHIP

FMAC Result
(Fd)

gNaN
Quieted sNaN

Distinguished
gNaN

Distinguished
gNaN or
gNaN1@

Distinguished
gNaN or
Quieted
sNaN(@

Quieted
sNaN1

Quieted
sNaN1 or
gNaN®@

Quieted
sNaN1@

gNaN1

gNaN1 or
gNaN2@

gNaN1

gNaN1 or
gNaN2@

gNaN1 or
gNaN2 or
gNaN3®

gNaN1 or
gNaN2@

Quieted
(sNaN1 or
sNaN2)@

Quieted
(sNaN1 or
sNaN2)@ or

gNaN
Quieted

(sNaN1 or
sNaN2)@

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

INVAL
signaled

138

3.6.3. Zero, Infinity, Not a Number (NaN) and Subnormal Values

The IEEE 754-2008/2019 standards reserve data encoding to represent special values, as shown in
Figure 3-24.

Zero is conveyed when both the exponent and mantissa are all 0's. Zero is a signed value (for some
operations) as determined by the Sign bit. Infinity is conveyed by an exponent value of all 1's with an
all 0's mantissa. Infinity is a signed value as determined by the Sign bit.

A Signaling NaN is conveyed by an exponent value of all 1's with the MSb of the mantissa setto 0
(remaining mantissa bits may be set to any value). The Quiet Nan (qNaN, see Not a Number (NaN)) is
conveyed by an exponent value of all 1's with the MSb of the mantissa set to 1 (remaining mantissa
bits may be set to any value). NaN values are not signed, so the Sign bit may be any state.

A Subnormal value (see Subnormal Number) is conveyed by an exponent of all 0's and any non-zero
mantissa value. Subnormals are signed values as determined by the Sign bit.

3.6.3.1. Not a Number (NaN)
The Signaling NaN (sNaN) and Quiet NaN (gNaN) are specific data codes that indicate certain
situations. In all cases, an exponent value of all 1's with a non-zero mantissa signifies a NaN (an
exponent value of all 1's with an all 0's mantissa is used to convey Infinity).

gNaNs may be generated as the result of an invalid operation, such as taking the square root

of a negative floating-point number. A gNaN will propagate through subsequent floating-point
operations. Operations that will generate an Invalid exception for each instruction are documented
in Table 3-19.

sNaNs are reserved input operands which, under default exception handling, will signal an Invalid
exception when encountered. This may be used to indicate uninitialized variables or as debug aids,
but they are never generated by arithmetic computations or comparisons. Whenever the source
operand of operation is an sNaN, the result will be a gNaN.

Both sNaNs and gNaNs can store “payloads” in the mantissa bit field. The payload must not affect
the MSB of the mantissa. The payload can be used as a debugging aid in tracing through complex
arithmetic calculations.

3.6.3.1.1. gqNaN and sNaN Propagation
The IEEE 754-2008/2019 standards indicate that source gNaNs should be propagated, including any
associated payload. The FPU module does not propagate any source gNaNs, but instead generates
fixed distinguished gNaN results.

In keeping with other device floating-point implementations, this module will propagate gNaN and
sNaN values where possible. Refer to NaN Propagation for further detail.

For instructions where a source operand gNaN is not available, a distinguished gNaN value will be
provided as the result whenever those instructions suffer a computational error:

+ Single Precision: Distinguished gNaN = 0x7FC0_0001
+ Double Precision: Distinguished gNaN = 0x7FF8_0000_0000_0001

139

@ MICROCHIP

Figure 3-24. Floating-Point Encodings

Single Precision

31 30 23 22 0
Not all Ones
S Not all Zeros Any Value
31 30 23 22 0
S 00000000 00000000000000000000000
31 30 23 22 0
S 00000000 Not All Zeros
31 30 23 22 0
S 11111111 00000000000000000000000
31 30 23 22 0
X 11111111 0... NotAll Zeros
31 30 23 22 0
X 11111111 1. Any Value
Note: sNaN and gNaN values may be of either sign.
Double Precision
63 62 52 51 0
Not all Ones
S | Not all Zeros Any Value
63 62 52 51 0
S | 00000000000 00
63 62 52 51 0
S | 00000000000 Not All Zeros
63 62 52 51 0
S | 11111111111 00
63 62 52 51 0
x | 11111111111 0... Not All Zeros
63 62 52 51 0
x| 11111111111 1. Any Value

Note: sNaN and gNaN values may be of either sign.

3.6.3.1.2. NaN Operands with Float-to-Integer Conversion

The FF2DI and FF2LI are the float-to-integer instructions. These instructions can output a huge
integer in lieu of invalid integers when the source is a value that would convert to an integer outside
the range of the result format under the applicable rounding attribute. This output is implemented

as a new exception, Huge Integer (FSR.HUGI).

The IEEE 754-2008/2019 standard calls for Invalid to be signaled if this situation cannot otherwise
be indicated. The FSR.HUGI exception is considered an implementation of “otherwise indicated,”

making the FF2DI and FF2LI instructions compliant.

@ MICROCHIP

+Normal

10

+Subnormal

1
+
8

sNaN

gNaN

= xNormal

= +0

+Subnormal

1
+
8

= gNaN

140

The module drives status output Invalid (and does not drive Huge Integer) when the source is tNaN,
or == per the IEEE 754-2008/2019 standards. Note that Invalid is also driven for a gNaN input

3.6.3.2. Subnormal Number
A subnormal number (denormal number) is a non-zero floating-point number with a magnitude of
less than that of the smallest normal number representable in the given format. The benefit of
subnormal numbers is that they allow for gradual underflow when a result is very small (when
compared to that without subnormal numbers). The IEEE 754 standard represents subnormal
numbers as a special case.

Using Single Precision data format as an example, the smallest normal numbers around 0 are
greater than +27126 or less than -2-126, which occur when the floating-point number exponent is 1
(bearing in mind that the 8-bit exponent is defined with a bias of +127) and the mantissa is all 0's.

The exponent value of 0 is reserved for subnormal numbers. However, the |IEEE 754 standard treats
subnormal numbers as a special case where the hidden mantissa bit becomes 0 and the exponent
bias is changed (by +1) to compensate, such that the datum exponent becomes -126. This allows the
subnormal range to surround 0 and be between a little greater than -2-12° to a little less than -2-126,
That is:

-27126 < sybnormal < +2-126

The minimum exponent value is referred to as Emin, and is -126 for Single Precision and -1023 for
Double Precision formats. A subnormal number would therefore be represented as:

(- 7)5 X [0].M pgser X 2fmin
where:

+ ‘S'indicates the sign of the number (same values as a signed integer value).
+ 'm'represents the fractional mantissa value.

For example, the largest SP positive subnormal number will be when all mantissa bits are all set
(Ox007F_FFFF), and the smallest number will be when all mantissa bits are all clear (0x0000_0000),
which is 0.0.

3.6.3.2.1. Subnormal Number Handling

Should any floating-point calculation generate a subnormal result, the FSR.UDF will be set; if it is not
already set, the sticky status FSR.UDFS will also be set. In addition, if any instruction is presented
with a subnormal operand value, FSR.SUBO will be set. If it is not already set, the sticky status
FSR.SUBOS will also be set.

Subnormal Override Functions

Although not IEEE 754 compliant, subnormal operands and/or results may be overridden to improve
the performance of some applications that do not require subnormal number precision. Use of the
subnormal override function:

+ Avoids the consequences of processing or having to deal with subnormal datum.
« Handles result underflows when a result is subnormal, negating the need to handle an underflow
exception.

The subnormal override functions consist of two parts, one to flush subnormal input operands
to zero (referred to as Subnormals-Are-Zeros or SAZ mode), and the other to remove subnormal
results (referred to as Flush-To-Zero or FTZ mode).

Note: Subnormal override modes are not applicable to FCPS/FCPQ (no result to override), FAND,
FIOR, FTST, FMOV, FMOVC or any CPU to/from a FPU data move instruction.

Subnormals-Are-Zero (SAZ)
Subnormals-Are-Zero (SAZ) mode is enabled when FCR.SAZ is set and will ensure that any
subnormal operand input to a functional block is replaced with a 0 value of the same sign as

141

@ MICROCHIP

the subnormal value it is replacing. This avoids the consequences of processing or having to deal
with subnormal datum. This operation applies to all floating-point instructions except: FMOV, FMOVC,
FAND, FIOR, FTST, FLI2F and FDI2F.

Note: SAZ mode is applied to FABS and FNEG instructions to ensure result consistency with that of
an equivalent sequence of FPU arithmetic instructions.

Note: Does not apply to FPU to CPU or CPU to FPU move instructions.

3.6.3.2.2. Flush-To-Zero (FTZ)
Flush-To-Zero (FTZ) mode is enabled when both FCR.FTZ and FCR.UDFM are set. If the underflow
exception is unmasked (FCR.UDFM = 0), then the FCR.FTZ bit will have no effect. Should a
floating-point operation generate an infinitely precise result that is less than the smallest possible
subnormal number, then the functional block will round this to a result of 0 with the same sign
as the subnormal value. This will occur irrespective of whether FTZ mode is enabled or not. Both
Underflow (FSR.UDF) and Inexact (FSR.INX) will be signaled (if not already set, sticky status FSR.UDFS
and FSR.INXS will also be set). Should a floating-point result be a subnormal number (that the
functional block has not rounded up to the smallest magnitude normal number), and FTZ mode is
enabled, the result will be replaced with 0 of the same sign as the subnormal value it is replacing.
Again, both Underflow (FSR.UDF) and Inexact (FSR.INX) will be signaled (if not already set, sticky
status FSR.UDFS and FSR.INXS will also be set), though the Underflow exception has to be masked
(in order to enable FTZ mode), so no interrupt will be issued. Forcing the result to 0 allows the user
to ignore underflows (though at the expense of some accuracy).

The FCR.FTZ bit is only examined during the WB stage of an instruction such that it may be modified
as late as the cycle before the instruction enters the WB stage. For example, the following code
sequence will only apply the FTZ function to the FSUB instruction:

* Assume FCR.FTZ=0 && FCR.UDFM=1 at entry

ADD.s FO, F1,F2 ; add without FTZ

IOR.s #0x0400, FCR ; set FCR.FTZ

SUB.s F3, F4,F5 ; sub with FTZ

AND.s #0xFBFF, FCR ; clear FCR.FTZADD.s

F2,F6,F7 ;add without FTZ
3.6.3.2.3. Subnormal Operand Exception

Should any affected instruction execute using a subnormal operand, and SAZ mode is disabled, the
Subnormal Operand (FSR.SUBQ) exception will be signaled. This provides a mechanism to indicate
the use of a subnormal value without requiring the operand to be tested (FTST).

Should SAZ mode be enabled and a subnormal operand is encountered (and changed to a 0 value),
SUBO will not be signaled.

SAZ mode may be enabled irrespective of whether the SUBO exception is masked or not (though
when enabled, it will never signal SUBO).

142

@ MICROCHIP

3.6.4. Floating-Point Data Register (FO-F31)
Name:
Bit 31 30 29 28 27 26 25 24
| Fn[31:24]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| Fn[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
Fn[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
Fn[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - Fn[31:0] Floating-Point Data Register bits

@ MICROCHIP

143

3.6.5. Floating-Point Control Register
Name: FCR

Note:

1. Floating-Point Exception Mask bits, FCR [6:0]: Each Exception Mask bit corresponds to an
Exception Status flag in the FSR. The Mask bit must be clear to allow the exception event to
generate an interrupt to the CPU. The Underflow Mask bit (FCR.UDFM) is also used as part of the
Flush-to-Zero (FTZ) mode enable as discussed in Flush-To-Zero (FTZ).

Floating-point rounding mode control, FCR [9:8]: These bits define the global IEEE 754
compatible rounding mode used by the FPU instruction. See Rounding Modes.

Floating-point subnormal override mode control, FCR [11:10]: These bits enable the Subnormals-
Are-Zero (SAZ) and Flush-To-Zero (FTZ) subnormal override modes supported by the FPU.

Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | SAZ | F1Z | RND [1:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| SUBOM | HUGIM INXM | UDFM | OVFM | DIVOM | INVALM |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 11 - SAZ Subnormals-Are-Zero Operand Mode bit

Value Description

1 Subnormals-Are-Zero mode is enabled.
0 Subnormals-Are-Zero mode is disabled.

Bit 10 - FTZ Flush-To-Zero Result Mode bit

Value Description

1 Flush-To-Zero mode is enabled.
0 Flush-To-Zero mode is disabled.

Bits 9:8 - RND [1:0] FPU Rounding Mode bits

11 IEEE Round to Negative Infinity (floor)
10 IEEE Round to Positive Infinity (ceiling)
01 IEEE Round to Zero (truncate)
00 IEEE Round to Nearest (even)

Bit 6 - SUBOM Subnormal Operand Exception Mask bit

144

@ MICROCHIP

Value Description
1 Subnormal exception is masked.
0 Subnormal exception is not masked.

Bit 5 - HUGIM Huge Integer Exception Mask bit

Value Description
1 Huge Integer exception is masked.
0 Huge Integer exception is not masked.

Bit 4 - INXM Inexact Exception Mask bit

Value Description
1 Inexact exception is masked.
0 Inexact exception is not masked.

Bit 3 - UDFM Underflow Exception Mask bit

Value Description
1 Underflow exception is masked.
0 Underflow exception is not masked.

Bit 2 - OVFM Overflow Exception Mask bit

Value Description
1 Overflow exception is masked.
0 Overflow exception is not masked.

Bit 1 - DIVOM Divide-By-Zero Exception Mask bit

Value Description
1 Divide-By-Zero exception is masked.
0 Divide-By-Zero exception is not masked.

Bit 0 - INVALM Invalid Exception Mask bit

Value Description
1 Invalid exception is masked.
0 Invalid exception is not masked.

145

@ MICROCHIP

3.6.6.

Bit

Access
Reset

Bit

Access
Reset

Bit

Access
Reset

Bit

Access
Reset

Floating-Point Status Register

Name: FSR

Note: Dynamic Floating-Point Exception status, FSR [6:0]: Dynamic Status bits are updated based
on the results from each instruction functional block and will be updated after execution of each
instruction.

Sticky Floating-Point Exception status, FSR [14:8]: Sticky Status bits can be set based on the results
from each instruction functional block but cannot be cleared by hardware (other than at device
Reset) and, therefore, represent a history of status since the last time the sticky bits were cleared.
The FSR bits can be cleared through software.

Floating-Point Compare status, FSR [19:16]: The status generated by executing a floating-point
compare (FCPS/FCPQ) instruction. Used individually or combined to generate the floating-point
branch conditions used by the CPU CBRAN instructions.

Floating-point Test status, FSR [27:24]: Floating-Point Datum Characteristic status generated by
executing the Floating-Point Test (FTST) instruction.

31 30 29 28 27 26 25 24
| | | | suB | INF | FN | FZ | FNAN |
R/W R/W R/W R/W RIW
0 0 0 0 0
23 22 21 20 19 18 17 16
| | | | [& [o0 [B] UN_]
R/W R/W R/W RIW
0 0 0 0
15 14 13 12 11 10 9 8
SUBOS HUGIS INXS UDFS OVFS DIVOS INVALS
R/W RIW R/W RIW R/W RIW RIW
0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
SUBO HUGI INX UDF OVF DIVO INVAL
R/W RIW R/W RIW R/W RIW RIW
0 0 0 0 0 0 0

Bit 28 - SUB (FTST) Subnormal Status bit

Value Description

1 Operand is subnormal.
0 Operand result is not subnormal.

Bit 27 - INF (FTST) Infinite Status bit

Value Description

1 Operand is infinite.
0 Operand is not infinite.

Bit 26 - FN (FTST) Negative Status bit

@ MICROCHIP

Value Description

1 Operand is negative.
0 Operand is not negative.

146

Bit 25 - FZ (FTST) Zero Status bit

Value Description
1 Operand is zero.
0 Operand is not zero.

Bit 24 - FNAN (FTST) Not a Number Status bit

Value Description
1 Operand is a NaN (gNaN or sNaN) value.
0 Operand is not a NaN value.

Bit 19 - GT (FCPS/FCPQ) Greater Than Status bit

Value Description
1 Minuend is greater than the subtrahend (Fb > Fs).
0 Minuend is not greater than the subtrahend (Fb < Fs).

Bit 18 - LT (FCPS/FCPQ) Less Than Status bit

Value Description
1 Minuend is less than the subtrahend (Fb < Fs).
0 Minuend is not less than the subtrahend (Fb > Fs).

Bit 17 - EQ (FCPS/FCPQ) Equal Status bit

Value Description
1 Minuend is equal to the subtrahend (Fb = Fs).
0 Minuend is not equal to the subtrahend (Fb != Fs).

Bit 16 - UN (FCPS/FCPQ) Unordered Status bit

Value Description
1 Either or both operands are NaN values.
0 Neither operands are NaN values.

Bit 14 - SUBOS Sticky Subnormal Operand Exception Flag bit

Value Description
1 Subnormal Operand exception has just occurred or at some time in the past.
0 Subnormal Operand exception has not occurred.

Bit 13 - HUGIS Sticky Huge Integer Exception Flag bit

Value Description
1 Huge Integer exception has just occurred or at some time in the past.
0 Huge Integer exception has not occurred.

Bit 12 - INXS Sticky Inexact Exception Flag bit

Value Description
1 Inexact exception has just occurred or at some time in the past.
0 Inexact exception has not occurred.

Bit 11 - UDFS Sticky Underflow Exception Flag bit

Value Description
1 Underflow exception has just occurred or at some time in the past.
0 Underflow exception has not occurred.

@ MICROCHIP

147

Bit 10 - OVFS Sticky Overflow Exception Flag bit

Value Description
1 Overflow exception has just occurred or at some time in the past.
0 Overflow exception has not occurred.

Bit 9 - DIVOS Sticky Divide by Zero Exception Flag bit

Value Description
1 Divide by Zero exception has just occurred or at some time in the past.
0 Divide by Zero exception has not occurred.

Bit 8 - INVALS Sticky Invalid Exception Flag bit

Value Description
1 Invalid exception has just occurred or at some time in the past.
0 Invalid exception has not occurred.

Bit 6 - SUBO Subnormal Operand Exception Flag bit

Value Description
1 Subnormal Operand exception has occurred.
0 Subnormal Operand exception has not occurred.

Bit 5 - HUGI Huge Integer Exception Flag bit

Value Description
1 Huge Integer exception has occurred.
0 Huge Integer exception has not occurred.

Bit 4 - INX Inexact Exception Flag bit

Value Description
1 Inexact exception has occurred.
0 Inexact exception has not occurred.

Bit 3 - UDF Underflow Exception Flag bit

Value Description
1 Underflow exception has occurred.
0 Underflow exception has not occurred.

Bit 2 - OVF Overflow Exception Flag bit

Value Description
1 Overflow exception has occurred.
0 Overflow exception has not occurred.

Bit 1 - DIVO Divide by Zero Exception Flag bit

Value Description
1 Divide by Zero exception has occurred.
0 Divide by Zero exception has not occurred.

Bit 0 - INVAL Invalid Exception Flag bit

Value Description
1 Invalid exception has occurred.
0 Invalid exception has not occurred.

@ MICROCHIP

148

3.6.7. Floating-Point Exception Address Capture Register
Name: FEAR

Note:
1. FEAR[1]is always set to 1'b0.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| FEAR[22:15] |
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| FEAR[14:7] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| FEAR[6:0] | EACE |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:1 - FEAR[22:0] Floating-Point Instruction Exception Address Capture Register bits(!)

Bit 0 - EACE Exception Address Capture Enable bit

Value Description

1 FEAR register address capture enabled
0 FEAR register address capture disabled (and FEAR [23:0] may contain a captured address)

@ MICROCHIP

149

3.6.8. FPU Module Operation

Figure 3-25. FPU Module Block Diagram

FPU Instruction Select P Instruction 5
i
Instruction Precision Select - ';::gnitsl;zlr R g
Rounding Mode Override ' b
FPU |
Instruction Register Selects > RD-stage
Instruction Literal Operand L Floating-Point -
Functional 2| Output F1Z
[>
Units FPU 3| Selector "1 override
WB-stages e
A
FPU -
F-reg Partial Contextf_ X[n]-stages
<@—P» F-reg Data Register File 2 —>
Hazard Detection and b [
5 Data Forwarding Block 5
a3 -
> 38 Instruction Trackin,
58% 3 Result Data Write-back———————
& e
8~ FCR Conte)(tS'J._____f__.i
FPU Control T
< [FCR.RND[1:0
il Register (FCR) L+ (0] FCR.FTZ
Floating-Point
Interrupt Request €—————— Exception Control
FSR Contextsll __________ =
|
|
<7 == ROREUTD Result Status Update

Register (FSR) r

Fbcc Conditional
Branch Status
Encoding

Register Read/Write Interface ~f—pp»-

FBcc Conditional Branch Status <€

3.6.8.1. Floating-Point Unit Registers
The Floating-Point Unit (FPU) provides a large set of working registers (F-regs).
+ 32 x 32-bit (Single Precision, FO ... F31) or
* 16 x 64-bit (Double Precision, FO, F2 ... F28, F30) or
« A mix of the two sizes aligned as shown in Figure 3-26

In addition to the F-regs, status (FSR) and control (FCR) registers are also supported as shown in
Figure 3-26:

+ FCR (FPU Control Register, 16-bit)
FCR [6:0]: Exception mask control

FCR [9:8]: Rounding mode control
FCR [10]: Subnormal result “Flush-to-Zero” (FTZ) control
FCR [11]: Subnormal operand “Subnormals-are-Zero” (SAZ) control

+ FSR (FPU Status Register, 32-bit): Holds the status of retired floating-point instructions
FSR [6:0]: Instruction “most-recent” exception status

FSR [14:8]: Instruction "sticky" exception status
FSR [19:16]: FCPS/FCPQ instruction status
FSR [28:24]: FTST instruction status

+ FEAR: (FPU Exception Address Capture Register, 24-bit): Holds the address of the first instruction
encountered that causes an exception. All subsequent instructions in the FPU pipeline that

. 150
ﬁ\ MICROCHIP

subsequently retire will not affect the FEAR, even if they also generate exceptions. The FEAR is
intended for use during debugging of the floating-point software.

Note: The FSR upper and lower 16 bits (represented as FSRH and FSRL, respectively) may be read/
written independently of each other by some instructions.

Note: Although inconsistent with device interrupts, where interrupt controls are referred to as
enables (where logic 1 represents enabled), it is more conventional (and in keeping with the
IEEE-754 specification) that the FPU exception controls be referred to as masks (where logic 1
represents masked). These bits are all set at Reset and masking exceptions by default.

3.6.8.1.1. FPU Register Access
Data may be moved in and out of any FPU register, from OR to W-regs or DS memory, by using
dedicated coprocessor register move instructions that execute from within the integer pipeline
(refer to MOVCRW, MOVWCR, MOVLCR, LDWLOCR, STWLOCR, PUSHCR and POPCR CPU instructions as

described in FPU Module Operation).

All data are moved as 32-bit entities, so double precision data moves will require the execution of
two instructions (64-bit data moves are not supported in this device).

In addition, the FPU supports FAND and FIOR instructions that can logically AND or OR a literal value
with the FSR (Isw only, exception status), FCR or FEAR (Isw only).

151

@ MICROCHIP

3.6.8.2. FPU Programmer’s Model

Figure 3-26. FPU Programmer’s Model

63 31 0
DP FO
SP F1 | FO \
DP F2
sP F3 | F2
DP F4
sP F5 | F4
DP F6
SP F7 [Fé
DP F8
SP F9 [F8
DP F10
sP F11 [F10
DP F12
SP F13 [F12
DP F14
sP F15 | Fi4 FP Working
DP F16 > Registers
SP F17 [F16
DP F18
SP F19 [F18
DP F20
SP F21 [F20
DP F22
SP F23 [F22
DP F24
SP F25 [F24
DP F26
SP F27 [F26
DP F28
SP F29 [F28
DP F30
sP F31 [F30 j
FP Round Control (FCR[11:8]) SAZ FTZ RND[1:0] 1
FCR[15:0]
Exception Masks (FCR[6:0]) |SUBOM | HUGIM| INXM | UDFM | OVFM | DIVOM |INVALM
—
\
FTST Status (FSR[28:24]) SUB | INF FN Fz FNAN
FCPS/FCPQ Status (FSR[19:16]) GT LT EQ UN
FSR[31:0]
Sticky Exception Status (FSR[14:8]) [suBos | HuGlis | INXs | UDFs | OVFs | DIvos |INVALS
Most-Recent Exception Status (FSR[6:0]) [suso | Hual | INx | ubF | ovF | Divo |INVAL
23 0
FP EXCEPTION ADDRESS CAPTURE REGISTER EACE FEAR[23:0]

@ MICROCHIP

152

3.6.8.3. FPU Register Set
The FPU Programmer’'s Model of registers is shown in Figure 3-26 and is comprised of floating-point
operand registers (F-regs), a floating-point control register (FCR), a floating-point status register
(FSR) and a floating-point exception address capture register (FEAR). None of the registers are
memory-mapped, and they must be read or written by the CPU using the coprocessor move
instructions (MOVCRW, MOVWCR, PUSHCR, POPCR, LDWLOCR, STWLOCR and MOVLCR). The FCR, FSR and
FEAR registers may also be subjected to a literal AND or OR operation by the FAND and FIOR
instructions, respectively.

3.6.8.3.1. Floating-Point Operand Registers (F-Regs)
To differentiate from the CPU working W-regs, the FPU operand/result data working registers are
referred to as F-regs. The FPU supports up to 32 Single Precision values, or up to 16 Double
Precision values. Aligned pairs of the F-regs registers (e.g., F1:FO values may be used to provide data
storage for Double Precision values. Single and Double Precision values may be mixed within the
register file. Other than data movement in and out of the FPU, all instructions are register-to-register
operations within the FPU register set.

The F-regs are not memory-mapped and can only be accessed by the CPU using specific instructions
as discussed in CPU Access of FPU Registers.

The 32 x 32-bit F-reg array, together with additional register contexts, is implemented as a register
file. FPU instructions can have 1, 2 or 3 operands (read sources) and 0 or 1 result destination, and
most also update status in the FSR. Registers may be used individually for Single Precision data
values or coupled as odd; even pairs (only) should be used to support Double Precision data values
(e.g., F1:FO).

Source registers are bound to an instruction when the instruction is issued and are not writable by
the CPU until the instruction is committed. At this point, they are clocked into operand registers that
drive the target functional block and can, therefore, be subsequently written. Note that a bound
source register may be read at any time.

Destination registers (F-regs and FSR) are bound to an instruction when the instruction is committed
and are not accessible by the CPU until the instruction has retired.

Floating-Point Control Register (FCR)
The FCR is comprised of the following bit fields as defined in FCR.

Floating-Point Exception Mask bits, FCR [6:0]: Each Exception Mask bit corresponds to an Exception
Status flag in the FSR. The Mask bit must be clear to allow the exception event to generate an
interrupt to the CPU. The Underflow Mask bit (FCR.UDFM) is also used as part of the Flush-to-Zero
(FTZ) mode enable as discussed in Flush-To-Zero (FTZ).

Floating-Point Rounding Mode Control bits, FCR [9:8]: These bits define the Global IEEE 754
Compatible Rounding mode used by the FPU instruction. See Rounding Modes.

Floating-Point Subnormal Override Mode Control bits, FCR [11:10]: These bits enable the
Subnormals-Are-Zero (SAZ) and Flush-to-Zero (FTZ) Subnormal Override modes supported by the
FPU.

3.6.8.3.2. Floating-Point Unit Register Contexts
To speed up real-time control systems and other time critical applications, the dsPIC33A FPU
supports multiple register contexts that are tied to Interrupt Priority Levels.

The FPU includes a set of hardware register contexts. Each context includes the FSR, FCR and four
register pairs (i.e., FO through F7). All other F-regs and FEAR are not included and must be saved and
restored through software.

The number of supported register contexts matches that of the CPU and is fixed at seven, which
represents one context per CPU Interrupt Priority Level (IPL). Should the CPU change context, then
the FPU will follow suit, and all subsequent instructions issued to the FPU will execute within that
(new) context. However, all FPU instructions issued in a prior context will be allowed to continue to

153

@ MICROCHIP

execute and retire within that context, irrespective of the context change within the CPU. Similarly,
any data dependencies that occur within the context of the instruction underway will remain within
that context.

As the FSR is part of the register context, exceptions are context specific. Should the FPU change
register context, any FPU exceptions generated as a result of the execution of FPU instructions
already issued from the prior context will remain pending until the FPU returns to that original
context.

Hazard detection is also context-based such that each instruction operand and result register are
tagged with their own context. Therefore, hazards can only exist within the same register context.

This concept extends to the FSR and FCR, which have independent representations within each
register context. Consequently, the CPU will not stall (assuming no FSR and/or FCR hazard exist
within the current context) if it accesses the FSR or FCR while the FPU continues to execute
instructions issued from within a different context. These instructions will have access to their own
version of the FSR and FCR.

3.6.8.3.3. CPU Access of FPU Registers

The following CPU instructions are provided specifically to support data movement into and out of
the coprocessors. The assembler uses the register declarations to direct encoding of the FPU as the
target coprocessor within each instruction op code:

* MOVCRW: Move any FPU register to a W-reg or DS memory (using indirect addressing).

* LDWLOCR: Move the contents of DS memory (read using register+literal offset addressing ([Ws +
S1it14])) to any FPU F-reg register.

* STWLOCR: Move any FPU F-reg to DS memory (read using register+literal offset addressing
([Wd+s1it14])).

* PUSHCR: 16-bit short instruction dedicated to moving any FPU register onto the system stack.
* MOVWCR: Move a W-reg or DS memory value (using indirect addressing) to any FPU register.

* POPCR: 16-bit short instruction dedicated to moving a value from the system stack to any FPU
register.

* MOVLCR: Move a 32-bit literal value to any FPU register.

Note: These instructions are referred asmov. 1, push.1 or pop. 1. Please refer to the “dsPIC33A
Programmer’s Reference Manual” (DS70005540) for the correct syntax of these instructions.

3.6.8.3.4. Intra-FPU Register Moves and Logical Operations

In addition to CPU to/from FPU data movement, the FPU supports instructions that execute within
its own pipeline that perform register to register moves or logical operations.

+ FMOV: Copy any F-reg or F-reg pair into another F-reg or F-reg pair.

+ FMOVC: Move one of 32 Single or Double Precision constant values into an F-reg or F-reg pair.
+ FAND: Logically AND a 16-bit literal value (lit16) with the Isw of the FPU FSR, FCR or FEAR.

* FIOR:Logically OR a 16-bit literal value (lit16) with the Isw of the FPU FSR, FCR or FEAR.

Note: To allow a subsequent instruction to immediately utilize FAND and FIOR changes to
FCR.RND[1:0] and FCR.SAZ control bits without stalls, these bits are manipulated and updated in
the first pipeline stage (RD-stage). However, the remaining FCR bits are not written back until the
end of the instruction as usual. Consequently, should the CPU need to read the FCR immediately
after modification, it will be stalled by the FPU until the FAND or FIOR instruction has retired.

3.6.8.4. Data Hazard Management
Read-After-Write (RAW) data hazards can arise due to:

+ Data dependencies between FPU instructions

154

@ MICROCHIP

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU16/ProductDocuments/ReferenceManuals/dsPIC33A-Programmers-Reference-Manual-DS70005540.pdf

« As the result of a register move from an FPU register to the CPU when an FPU instruction
underway has not yet completed its result write (to the same register)

Write-After-Read (WAR) data hazards within the FPU pipeline alone are not possible because the
pipeline ensures that instruction reads always precede subsequent instruction writes. However, a
WAR hazard can arise when the CPU pipeline writes to an FPU register that has yet to be read by a
previously issued but stalled FPU instruction.

Write-After-Write (WAW) data hazards are possible should the CPU attempt to write to an FPU
register that is also the target of a prior FPU instruction which has not yet completed its result write.

All hazards are detected within the FPU or CPU (or both) and will be mitigated either through data
forwarding or pipeline stalls.

3.6.8.5. FPU and CPU Exceptions
Issued FPU instructions that become committed (accepted by the Execute stage) are always atomic
with respect to CPU exceptions. No CPU exception (other than a Reset event) can force the FPU to
abandon an instruction that is already underway.

CPU exceptions will result in a register context switch in both the CPU and FPU. Furthermore, FPU
exceptions are always context specific. That is, any FPU exception occurring after a context switch
will remain pending until the FPU returns to the prior context.

FPU exceptions can only be taken and handled when unmasked (referred to as alternate exception
handling). The FPU will return the calculated result of each operation and signal any exception via an
interrupt to the CPU.

If FPU exceptions are masked, the FPU will return a default result for each operation that generates
an exception as defined in Table 3-16. The exception will be signaled by setting the corresponding
bit(s) in the FSR, but no interrupt will be issued to the CPU. This is intended to allow code to execute
unhindered by exception handling at the time of execution. If required, exception status may be
examined at a later time and appropriate action will be taken.

3.6.8.5.1. Huge Integer and Subnormal Exceptions
In addition to the IEEE 754-2008/2019 compliant exception support, this macro (the floating-point
module) also offers two exceptions and associated masks that some users may find useful.

* Huge Integer: FSR.HUGI
An exception is signaled whenever a Float-to-Integer conversion operation (FF2DI and FF2LI)
results in an integer value that is larger than the destination register can represent.

* Subnormal Operand: FSR.SUBO
An exception is signaled whenever an operand of an affected instruction is a subnormal value
and Subnormals-Are-Zeros (SAZ) mode is disabled (FCR.SAZ = 0). This is the only exception that
can be triggered by an operand source condition (all others are related to result conditions).

Table 3-16. Default Exception Results

FSR Bit Name Default Result

Invalid INVAL(2 Distinguished gNaN or quieted sNaN or
Largest integer result (for FF2DI/FF2LI only)

Divide By Zero DIVO Correctly signed Infinity®
Notes:

1. Under default exception handling, UDF is only set (along with INX) if the result is an inexact underflow. Applies
irrespective of whether FTZ mode is enabled or not.

2. FCPS and FCPQ do not generate a result other than an FSR update. However, INVAL will be set by FCPS if either or both
operands are a qNaN or sNaN, or by FCPQ if either or both operands are an sNaN.

3. 0/0is a special case (where both the dividend and divisor are not finite) which will return the distinguished gNaN as the
result. INVAL will be set, but DIVO will not.

155

@ MICROCHIP

Table 3-16. Default Exception Results (continued)

FSR Bit Name Default Result

Overflow OVF Nearest (Even) Infinity with a sign of
exact result

Zero Most positive finite
number with sign of
exact result

+Infinity Positive overflow:
) +Infinity
Rounding Mode Negative overflow:
Most negative finite

number

-Infinity Positive overflow: Most
positive finite number

Negative overflow:

-Infinity
Underflow UDF™M FCR.FTZ = 0: Rounded subnormal result
FCR.FTZ = 1; Zero with a sign of exact result
Inexact INX Rounded (inexact) result
Huge Integer HUGI Largest integer value with a sign of input operand
Subnormal Operator SUBO N/A (input operand exception)
Notes:

1. Under default exception handling, UDF is only set (along with INX) if the result is an inexact underflow. Applies
irrespective of whether FTZ mode is enabled or not.

2. FCPS and FCPQ do not generate a result other than an FSR update. However, INVAL will be set by FCPS if either or both
operands are a gNaN or sNaN, or by FCPQ if either or both operands are an sNaN.

3. 0/0is a special case (where both the dividend and divisor are not finite) which will return the distinguished gNaN as the
result. INVAL will be set, but DIVO will not.

3.6.8.6. CPU to FPU Interface
The CPU can issue instructions to a coprocessor (FPU), and directly read and write to FPU registers.
However, coprocessors otherwise operate independently of the CPU instruction pipeline, executing
their instructions within their own pipeline hardware.

An FPU can only receive, send and process data that are funneled through (and under the
direction of) the CPU. No CPU addressing capability is shared with an FPU. Consequently, an FPU
can only support register direct addressing for all instruction source or destination addressing
modes that target a FPU register. Data flow to and from each FPU is controlled using dedicated
move instructions that execute within the CPU. Because the CPU and FPU pipelines execute
independently, data related hazards that may arise when moving data between the CPU and an
FPU are mitigated using a simple request/grant bus which will stall the CPU as needed.

The CPU supports speculative execution of instructions that immediately follow a conditional
branch. These could be FPU instructions, so a mechanism exists to allow the CPU to cleanly kill
these instructions should the branch prediction prove incorrect.

In case an FPU SFR read is killed, all FPU SFRs (e.g., status and control registers) are defined such
that a read of any SFR is not destructive within itself. This will avoid the possibility of a killed SFR
read affecting the state of the FPU.

3.6.8.6.1. FPU Pipeline Operation
The CPU decodes all coprocessor instructions during the F-stage. The source and destination
coprocessor registers are extracted from the opcode and supplied to the coprocessor, along with
a corresponding instruction select and control signals such that no instruction decode is necessary
within the coprocessor.

156

@ MICROCHIP

The FPU pipeline stages consist of Read (RD), Execute (X[n]) and Write-Back (WB) stages. The Read
and Write-Back stages consist of a single register and are common to all instructions. The Execute
stage consists of as many stages as required to execute the specific instruction (i.e., X [0], X[1].....
X[n]) but at least X [0].

One instruction may be issued into the RD-stage, where it will remain for one cycle (hazards aside)
until dispatched into the X [0] stage. The number of cycles each instruction remains within the
execute phase varies depending upon the operation. In order to avoid stalling the pipeline for the
duration of any long instruction, up to four instructions may be dispatched into X[0] and executed
concurrently (structural hazards aside).

Instructions retire in the same order in which they are issued. As a consequence of being able to
execute multiple instructions with varying execution times, the pipeline Instruction/Hazard Tracker
logic ensures that in-order retirement is maintained.

All instructions with an execution latency of four cycles or less are implemented such that the
execution stages are fully pipelined. Consequently, assuming no data dependencies (hazards) arise,
these instructions can be repeatedly issued at a rate of one per cycle (and receive their results at a
rate of one per cycle after an initial execution latency), without incurring a structural hazard stall.

For instructions where the execution latency exceeds four cycles (FDIV and FSQRT), the FPU pipeline
will fill the instruction and then stall subsequent instructions (due to a structural hazard) until the
required execution resource becomes available.

+ FDIV: Floating-point divide is implemented as an iterative operation such that the input data
cannot be pipelined until all iterations have completed and the result is passed onto the
adjustment stage within the Functional Block. For example, should the CPU issue two sequential
FDIV instructions, the second FDIV instruction will stall in the RD-stage until the first FDIV enters
the final execution cycle, at which point the second FDIV may be dispatched into the execute
stage to commence execution.

« FSQRT: Floating-point square root requires 10 (Single Precision) or 13 (Double Precision) cycles
to execute. The hazard tracker can handle up to four issued instructions, so an FSQRT followed
by up to three sequential FPU instructions (including FSQRT) may be executing at any one time.
The CPU may issue one more instruction, but it will remain in the RD-stage until the oldest FSQRT
instruction underway enters the WB-stage, six cycles later, and subsequently retires. At this point,
one slot within the hazard tracker is now available for use, and the pending FPU instruction
will be committed for execution. Another FSQRT instruction will retire in the next cycle, opening
another hazard tracker slot for another issued FSQRT instruction, and so forth, until the hazard
tracker is full again and the pipeline must wait a further six cycles for the initial FSQRT to retire.
For FSQRT alone, the best case block repeat rate is therefore one per cycle for the initial 4 FSQRT
instructions issued, with a subsequent four FSQRT instructions to be issued after six (Single
Precision) or nine (Double Precision) cycles have passed. This supports an average execution time
of (4+6)/4 or 2.5 cycles/instruction (Single Precision) or (4+9)/4 or 3.25 cycles/instruction (Double
Precision).

FPU Read Stage

The FPU pipeline RD-stage receives instructions issued by the CPU. The CPU issues FPU instructions
from the A-stage into the FPU RD stage which consists of a single register, such that only one FPU
instruction can be held at any one time. The instruction is committed when it is dispatched to X[0],
where it will start execution. X[0] holds the instruction such that the CPU is free to issue another
instruction into the RD-stage.

The RD-stage is also subject to hazard checks and can therefore be stalled. Should a RAW hazard be
detected with a prior instruction that is already executing within the FPU pipeline, the hazard will be
detected in the RD-stage which will then be stalled until such time that the hazard is resolved.

Should the CPU subsequently attempt to issue additional FPU instructions, the RD-stage will not be
able to accept them which will also stall the CPU until such time that the RAW hazard has been
resolved. From the CPU perspective, this scenario is viewed as a structural hazard.

157

@ MICROCHIP

The RD-stage will also stall the CPU under the following conditions:

1. Whenever the number of instructions (default value is four) are in their execute X[n] stages,
an instruction is pending in the RD-stage, and the CPU is attempting to issue a further
instruction. In this situation, the Instruction/Hazard Tracker is full so the FPU cannot dispatch
another instruction from the RD-stage into X [0] until one of the instructions currently executing
passes into the WB-stage. Assuming the default value is four, this can occur when the pipeline
is executing instructions that take longer than four cycles to execute, and additional FPU
instructions are issued while the long instruction is still executing (i.e., not yet in the WB-stage).
The longer instruction(s) execute and retire at a rate which is slower than the rate at which the
Instruction/Hazard Tracker can be filled, resulting in the CPU being stalled.

2. Whenever the CPU attempts to issue more than two FDIV instructions while a previously issued
and a dispatched FDIV instruction is still executing (i.e., not yet in the WB-stage). FDIV is a
special case where no more than one instance can be executed within the pipeline at any one
time. Consequently, executing another FDIV while a prior instance is still executing will cause
this second FDIV to be issued but held pending in the RD-stage (i.e., CPU will not stall). But
attempting to issue a third FDIV instruction, while the pending (second) instance has not yet
been dispatched to X [0], will result in a CPU (issue) stall. The RD-stage also includes special logic
to support the FAND and FIOR operations (refer to FAND and FIOR Instructions).

FPU Execute Stage

Each instruction may consist of one or more execute stages depending upon the functional block
targeted by the operation. When the instruction enters the X [0]-stage, it is registered such that the
RD-stage is free to receive another instruction issued by the CPU.

All instructions (other than FDIV) are pipelined through as many X[n] stages as deemed necessary to
meet the timing requirements.

The pipeline stages will be added such that the propagation delay of each is as balanced as possible,
and the sequential issue of the same instruction may be fully pipelined (i.e., instructions using

the same functional block may be sequentially issued without incurring a structural hazard in the
Execute stage).

FPU Write-Back Stage

The WB-stage captures each Single Precision or Double Precision result as they exit the Execute
stage in dedicated registers. FPU instruction execution time is variable, but only one instruction

is permitted to be in the WB-stage at any one time. If more than one instruction has completed
execution and is in a position to retire, the pipeline will determine which instruction to retire to
maintain the instruction execution order and eliminate any WAW hazards. The instruction will then
complete the write back in one cycle during the WB-stage before being retired. The Instruction/
Hazard Tracker logic will ensure instructions enter the WB-stage in the same order as they were
issued.

Prior to writing the result, if FTZ mode is enabled (see Flush-To-Zero (FTZ)), the result is modified
accordingly if subnormal. This final value is also passed onto the RAW hazard mitigation forwarding
logic.

FAND and FIOR Instructions

The FAND and FIOR instructions operate with a 16-bit literal and can only target the FCR, FSR
and FEAR. They are considered a special case as they are executed using custom blocks that are
implemented within the RD-stage for some FCR bits and the WB-stage for everything else.

To allow subsequent instruction to immediately use FAND and FIOR changes to FCR.RND [1:0] and
FCR.SAZ control bits without (RAW hazard) stalls, these bits are modified during the RD-stage then
updated at the end of the RD-stage, so they are available for immediate use by any subsequent
instruction.

The remaining FCR bits and all FSR and FEAR bits are read, modified and written back during the
WB-stage. Reading the FSR late (i.e., in the WB-stage rather than the RD-stage) avoids a potential

158

@ MICROCHIP

RAW hazard arising between a prior instruction FSR update and a subsequent FAND or FIOR FSR
operation.

3.6.8.7. FPU Hazards

The coprocessor interface can suffer from structural and data dependencies as described in the
following sections. RAW, WAR and WAW data hazards are possible; RAR hazards are not.

3.6.8.7.1. FPU Structural Hazards

When a requested FPU resource is unavailable, a structural hazard will be detected. This may result
in the coprocessor stalling the CPU until the hazard is resolved.

Hazards that arise from actions within the FPU are referred to as “internal” hazards. Those that arise
due to actions between the CPU and FPU are referred to as “external” hazards. Depending upon
how the CPU/FPU pipeline is viewed (separate or conjoined), some of these hazards may be viewed
as either structural (i.e., a resource is unavailable) or data related.

FPU Pipeline Full or Busy

When the CPU attempts to issue an instruction to the coprocessor, and it is unable to accept it
because the pipeline is full or busy, an external structural hazard will result, and the coprocessor will
stall the CPU until such time that the instruction can be accepted.

When an issued instruction is stalled in the FPU RD-stage due to a RAW hazard with a prior currently
executing instruction, the FPU pipeline is considered busy such that further FPU instructions cannot
be accepted. Consequently, should the CPU attempt to issue any additional FPU instructions while
the RD-stage is stalled, the FPU will stall the CPU until such time that the hazard resolves, resulting in
an external structural hazard as shown in Figure 3-29.

The pipeline is considered full when the Instruction/Hazard Tracker FIFO is full, which occurs when
the number of instructions (default value is four) are active within it, including the one waiting in the
RD-stage for dispatch into X[0]. The pipeline will remain full until the oldest instruction enters the
WB-stage. Should the CPU attempt to issue another FPU instruction, the FPU will stall the CPU until
such time that the Instruction/Hazard Tracker FIFO is no longer full.

FPU Functional Block Unavailable

If the FPU pipeline is not full, and the FPU attempts to dispatch an instruction from the RD-stage that
uses a functional block that is already in use by a prior instruction, an internal structural hazard will
result, and the RD-stage will be stalled until such time that the functional block is no longer in use. If
the CPU attempts to issue another FPU instruction before this occurs, the FPU will then stall the CPU
until the hazard resolves.

This scenario can arise as a result of in-order retirement where instructions that target the same
functional block will be stalled in the pipeline waiting for slower, older instructions to complete
execution. An example is shown in Figure 3-3 where a slow instruction (FSIN) is followed by multiple
instructions that target the same MISC_SP functional block. The first FMov will stall in X [0] waiting
for the FSIN to retire, resulting in an internal structural hazard. The subsequently issued FMOV will
issue but will be stalled in the RD-stage because it cannot progress into X [0] until the first FMOV is
able to move into the WB-stage, another internal structural hazard. As the RD-stage is now stalled,
should the CPU attempt to issue any additional FPU FMOV or FMOVC instructions (which share the
same functional block), the FPU will stall the CPU until such time that the pipeline can advance again,
causing an external structural hazard.

This scenario will always arise for a sequential issue of the multi-cycle iterative FDIV instruction (all
other instructions can be pipelined) as shown in Figure 3-4.

FPU Register Unavailable to Read

When the CPU attempts to read a register that is bound to an issued FPU instruction, an external
structural hazard will result and the coprocessor will not be able to read until the register becomes
available, creating a read stall for the CPU.

159

@ MICROCHIP

FPU Register Unavailable to Write

When the CPU attempts to write to a register that is bound to an issued FPU instruction, the
coprocessor will not be able to write until the register becomes available, creating a write stall for
the CPU (see FPU WAW Hazards).

3.6.8.7.2. FPU Data Hazards
The coprocessor interface can suffer from data dependencies leading to RAW, WAR and WAW data
hazards (RAR hazards are not possible). Unlike the CPU integer pipeline, a coprocessor hazard does
not necessarily prevent the pipeline from progressing for other coprocessor instructions, unless
subject to other hazards.

Internal RAW Hazards

An internal RAW (Read-After-Write) data dependency hazard will occur when the result of an FPU
instruction is not available at the time it is selected as the source operand (F-reg) of a subsequent
FPU instruction. The affected instruction will be stalled in the RD-stage until such time that the
hazard is resolved.

In order to mitigate the hazards, the coprocessor includes data forwarding paths between the FPU
execution result data output and the coprocessor RD-stage (as shown in Figure 3-8). This path will
forward the write data value should the write and read instructions target a common register.
Forwarding as soon as the result data is available (i.e., prior to the FPU register write) will help
mitigate the impact of the hazard.

External RAW Hazards

An external RAW (Read-After-Write) data dependency hazard will occur should the contents of an
FPU register be unavailable at the time it is read by the CPU because the register is bound to a
previously issued FPU instruction. The coprocessor will detect the hazard and read will be stalled
until such time that the register becomes available (i.e., after the result has be written), creating a
read stall for the CPU.

In addition, an external RAW hazard will occur if:

« A CPU write to a coprocessor register is immediately followed by the CPU issuing a coprocessor
instruction that uses the same register as an operand source.

or
+ A CPU write to a coprocessor register is immediately followed by a CPU read of the same register.

In both of these CPU RAW hazard scenarios, the CPU is responsible for detecting the hazard and
inserting the necessary stall cycle for the coprocessor to resolve the hazard. Hazard detection is the
same for both scenarios.

In order to resolve these hazards, the coprocessor includes data forwarding paths between the CPU
W-stage and both the coprocessor RD-stage (as shown in Figure 3-5) and the CPU read data output
(as shown in Figure 3-6). These paths will forward the write data value should the write and read
instructions target a common register.

Note: When the CPU attempts to write to an F-reg, it is possible that an instruction in the RD-stage
is using the same register as an operand source, and it is stalled as the result of an internal RAW
hazard. Forwarding the new CPU write data into this register would then be incorrect because

the RD-stage instruction was issued prior to the CPU write instruction. Consequently, should the
instruction in the RD-stage have been there for more than one cycle (i.e., be stalled), the FPU will
disable the forward path and allow the stall mechanism to recognize the hazard as usual. This will
prevent the CPU write from completing until such time that the instruction in the RD-stage has been
dispatched to start execution.

CPU write data forwarding to the coprocessor RD-stage allows the CPU to issue a coprocessor
instruction earlier than would be possible if the CPU coprocessor write had to complete. CPU write
data forwarding to the CPU read data path together with a CPU stall cycle (detected and inserted
by the CPU) resolves the (unlikely) hazard that arises when a CPU write is followed immediately by

160

@ MICROCHIP

a CPU read of the same coprocessor register. The converse scenario where a CPU read of an FPU
register into a W-reg is immediately followed by a CPU write of the same W-reg to another F-reg is
shown in Figure 3-7.

FPU WAR Hazards

WAR (Write-After-Read) anti-dependency hazard can occur should the pipeline allow read and write
execution to be out of (instruction sequence) order. That is, a WAR hazard will arise whenever an
instruction writes to a register before the same register is read by a prior instruction. That is, the
read and write occur out of execution order resulting in the (older) read instruction ultimately using
the (later) write data which would be incorrect.

Under normal sequential execution conditions, a WAR hazard should never arise because the

read of all older instructions always precedes the writes of later ones. However, a WAR hazard

can arise within the coprocessor pipeline when a slow instruction (e.g., FPU FSIN) has a result
data dependency (RAW hazard) with a later instruction, and that later instruction is followed by a
MOVWCR Or POPCR instruction that targets the same register as the dependency. This is because the
dependency will force an FPU pipeline stall until the result data is available and the RAW hazard is
resolved, but the MOVWCR or POPCR move instructions (which do not execute using the FPU pipeline)
will not be stalled. Consequently, it is possible that the write from the MOVWCR or POPCR instruction
would occur prior to the stalled instruction continuing execution (after the RAW hazard). The write
would then be overwritten by the FPU pipeline and, therefore, lost. This scenario is detected as a
WAR hazard and prevented from happening by stalling the most recent write, such that the write
order remains correct. CPU to FPU move instructions that do not target the register involved in the
stall will still execute as normal (i.e., without stalling).

The coprocessor must, therefore, detect the possibility of such a hazard and force in-order
execution of all dependent instructions by stalling the most recent CPU write instruction in the
W-stage until after the prior read is completed.

An example WAR hazard and its resolution is as follows: A RAW hazard between the FSIN.s and
FMOV . s instructions will stall FMOV . s to resolve the hazard (stall cycles shown in green), but this will
also set the pipeline up for a possible WAR hazard because the subsequent MOVWCR instruction is
not prevented from continuing execution.

As is the case in this example, should the MOVWCR instruction destination be the same F-reg as
that used by the FMOV. s as a source, the MOVWCR must be prevented from writing until the prior
(FSIN.s) has been able to forward the write data to the MOV . s RD-stage. The FSIN. s and MOVWCR
enter their respective write stages together, and the FPU prioritizes the CPU write, maintaining
correct write ordering. This results in a one-cycle stall of MOVWCR instruction to resolve the hazard.

FPU WAW Hazards

The WAW (Write-After-Write) hazard is a further consequence of allowing instructions to continue
execution while others are stalled or taking longer to execute. As is the case for WAR hazards,
instruction writes can end up out of order, leaving an incorrect (stale) value in a destination register.

WAW output dependency is possible because once the coprocessor instruction is issued, the

CPU and coprocessor pipelines operate independently. A multi-cycle coprocessor instruction may
therefore complete after one or more CPU instructions that were subsequently issued (i.e., out of
order). A WAW hazard will exist when the CPU instruction is ready to retire before the coprocessor
instruction retires and either:

+ The same register is a destination for both the coprocessor instruction and the CPU instruction
that follows it.

or

+ The CPU instruction write targets a coprocessor register that is being used by the prior
coprocessor instruction.

In both cases, the resource cannot be shared.

161

@ MICROCHIP

An internal WAW hazard can arise between successive FPU instructions that have differing execution
times. However, each issued instruction is tracked by pushing its associated functional unit ID into

a FIFO, which is emptied in the same order as it is filled when instructions move results from their
functional units into the WB-stage. Should an expected (from the FIFO) functional unit result not be
ready, this knowledge is used in the Write stage to complete the destination write in the correct
sequence, stalling those instructions that arrive out of order, thereby eliminating the WAW hazard.

If the CPU and FPU pipelines are viewed as conjoined, a WAW hazard is also possible should the CPU
attempt to write a value to the same register as also targeted by a previously issued FPU instruction
whose write has not yet completed. However, access to the write target(s) of an instruction is
inhibited as soon as the instruction is committed (see FPU and CPU Exceptions). Consequently, any
attempt by the CPU to write to an FPU register that is already bound to a prior FPU instruction being
executed will result in the write grant failure (and the CPU write stalling).

Note: For the purpose of WAW hazard detection, the FSR is considered as a single entity.

Note: The FSRis bound to all FPU instructions except for FMOVC and FMOV (these ops do not
update the FSR), and FAND and FIOR, unless they will modify the FSR. The FEAR is bound to all FPU
instructions except for FMOVC, FMOV and FTST. Itis also not bound to FAND or FIOR unless it will
be modified by them. Note that this applies irrespective of whether FEAR is enabled or not (i.e.,
FEAR.EACE is a “don’t care” with respect to FEAR hazard detection).

3.6.8.7.3. Instruction/Hazard Tracker

The Instruction/Hazard Tracker is a mechanism whereby hazard-related information is required
while an instruction is progressing through the execute stages is captured in a FIFO for each issued
instruction when that instruction is committed and enters the FPU pipeline X [0]-stage. The FIFO
depth (default is four) defines how many instructions may be sequentially dispatched into the
Execution stage before it is regarded as full.

Each FIFO entry includes the following information which is used during the X-stages.
1. Entryvalid flag
2. Flags to indicate which Functional Block (function and operation precision) is targeted.

Operand source register identification and valid flag such that RAW hazards may be identified as
the instruction progresses.

4. Flags to support Single Precision and Double Precision NaN propagation logic.
5. Flag to indicate if an instruction is FDIV or FSUB (where the operand order is reversed).
6. Flag to indicate if an instruction is FMAC (special case for NaN propagation).

Each FIFO entry requires a ‘valid’ bit which is clear whenever the entry is empty or after it has been
used in the WB-stage. This bit will inhibit any associated hazard detection after an instruction has
retired.

Operation precision partially identifies the selected functional block but also directs the hazard logic.
Single Precision operations need to only check for hazards involving single F-regs whereas Double
Precision must check F-reg pairs for hazards.

Operand register identification and valid flags log which F-regs are used for operands (not all
instructions require all three source operands) for hazard tracking. In addition, each FIFO entry
includes the following information (also detected in the RD-stage) which is used during the
instruction WB-stage.

1. Flags to indicate if any result is to be written to an F-reg and whether the FSR is to be updated.

2. Result destination register (and context) identification (defined as DP targets). Additional flags
select the active registers (i.e., DP F-reg pair or one of two SP F-reg destinations).

3. Flag to indicate if the instruction permits a FTZ override of the result.

162

@ MICROCHIP

4. CPU A-stage instruction address to capture in the FEAR (if enabled) should the instruction
generate an exception.

5. Flags to indicate if the instruction is a FAND or IOR, and the associated FSR/FCR/FEAR target
register select bits.

6. The presence of a subnormal operand (when SAZ mode is disabled) is captured and used to
signal the subnormal exception (i.e., at the same time as any other exceptions the instruction
may generate).

3.6.8.7.4. CPU Write Stalls
Whenever the CPU encounters a write stall, the entire integer pipeline is stalled (because the CPU

only supports in-order execution). No subsequent instruction is permitted to move into the W-stage
to retire until the write stall is resolved. Different Pipeline stages are explained in FPU Pipeline
Operation.

Figure 3-27. CPU Pipeline Coprocessor Interface Flow

Instruction read decode

Instruction write decode

Generate FPU instruction select

Issue FPU instruction (drive coprocessor instruction interface)

Capture coprocessor read data(MOVCRW or PUSHCR)

F A X W Drive coprocessor write data(MOVWCR or POPCR)

E CPU pipeline (only) instruction
- CPU-> FPU pipeline instruction

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

163

@ MICROCHIP

Figure 3-28. CPU Pipeline Coprocessor Issue Flow

Instruction fetch

Instruction read decode

Instruction write decode

FPU instruction additional execute stages
X[n] (as needed for op)

FPU instruction issue

FPU instruction commit

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

164

@ MICROCHIP

Figure 3-29. Pipeline and Functional Block Busy Internal/External Structural Hazards

- Internal Structural hazard:
Fb MOV stalled in X[0]-stage, unable to advance due
to FSIN

Va Internal Structural hazard:
|~ Fec MOV stalled in RD-stage, unable to advance due to
Fb inability to advance

.~ External Structural hazard:
Fd MOV stalled in A-stage, unable to issue due to
stalled RD-stage

FSIN.s FO0, Fl
FMOV.s F2, F3
FMOV.s F4, F5
FMOV.s F6, F7

l:l CPU pipeline (only) instruction i i F -
l:l CPU pipeline stall or no operation
- CPU -> FPU pipeline instruction
- FPU pipeline operation

- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Figure 3-30. FDIV Pipeline and Functional Block Busy Internal/External Structural Hazards

Iterative X[0] stage divide evaluation

Fe issue stalled by FPU, and Fb FDIV stalled in RD-

FDIV.s FO, Fl, F& stage while Fa FDIV X[0] iterations execute
FDIV.s F2, F3, F9
FDIV.s F4, F5, P10 I:l CPU pipeline (only) instruction
Internal structural hazard (functional block busy):
Stall Fb FDIV until Fa FDIV enters WB-stage I:l CPU pipeline stall or no operation
External structural hazard (RD-stage full): - CPU -> FPU pipeline instruction
Stall Fe FDIV until Fb FDIV is dispatched from RD-stage
- FPU pipeline operation

- FPU pipeline stall
Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

@ MICROCHIP

165

Figure 3-31. External RAW Hazard (CPU Write Data to FPU Read Forwarding)

Register Direct Freg or Coprocessor SFR RAW hazard:
Compare Fa dst Freg to Fb src Freg

If true, stall 1 cycle

Test if Fa dst and Fb src are coprocessor SFRs {any) If
true, stall 1 cycle

{hazard detected in CPU)

External RAW hazard:
Stall FADD issue until CPU -> FPU move exits X-stage

- Register Direct Freg or Coprocessar SFR RAW hazard:
If hazard detected in CPU (A-stage stalled),
forward CPU W-stage data to coprocessor RD-stage

F A R X w S

o
"

P> (hazard mitigated by forwarding path in coprocessor)

F F A R X W
RAW hazard
B A R X w
MOV.1l
FADD.s

I:' CPU pipeline (only) instruction
I:l CPU pipeline stall or no operation
- CPU -> FPU pipeline instruction
FPU pipeline operation

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

166

@ MICROCHIP

Figure 3-32. External Raw Hazard (CPU F-REG Write Data to CPU F-REG Read Forwarding)

Register Direct Freg or Coprocessor SFR RAW hazard:
Compare Fa dst Freg to Fb src Freg

If true, stall 1 cycle

Test if Fa dst andl Fb src are coprocesser SFRs (any) If
true, stall 1 cycle

(hazard detected in CPU)

F A R X Y
Fa]
{MOVWCR er A R X w
POPCR) I
Fb . |
{MOVCRW or A A R X W
PUSHCR]
F F A R X W
F A R X W
RAW hazard
N
\\
AN

MOV.1l WO, @ |:| CPU pipeline {only} instruction

MOV.1 y W2
I:l CPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

Figure 3-33. External Raw Hazard (CPU W-REG Write Data to CPU W-REG Read Forwarding)

Register Direct (Correcting Wreg Data Value Read):
Read data: Compare Fa dst Wreg to Fb sre Wreg

If true, forward Fa dst data to Fb X data-in

(hazard detected and mitigated in CPU)

F A R X W
Fa
(MOVINER or A R X W
POPCR) ; I
Fb
(MOVCRW or A R X w
PUSHCR)
F A R X w
F A R X W
RAW hazard

MOV. 1 0, @ l:l CPU pipeline (only) instruction

MOV.1 @ F1

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

167

@ MICROCHIP

Figure 3-34. Internal Raw Hazard (FPU Write Data to FPU Read Forwarding)

Register Direct Freg or Coprocessar SFR RAW hazard:

/(Compare Fa dst Freg to Fb src Freg(s)
7 / If true, stall Fb in RD-stage until Fa result available to
/ forward to RD-stage

RAW hazard

FSIN.s

FABS.s (FO), F1 x

" Internal RAW hazard:
RI)-stage stalled

I:, CPU pipeline {only} instruction
- CPU -> FPU pipeline instruction
- FPU pipeline operation
- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

168

@ MICROCHIP

Figure 3-35. Internal Raw Hazard, External and Internal Structural Hazards

Register Direct Freg RAW hazard:
If hazard detected (FADD src = FSIN dst),
stall FADD RD until FSIN X[3]-stage data available to forward to RD-stage

External structural hazard (RD-stage full):
Stall FNEG Issue until FADD is dispatched from RD stage

RAW hazard

FADD.s (F) F3
FSUB.s FL, F7, FO

Note:
1) Even though FSUB shares the same functional
l:' CPU pipeline {only) instruction block as FADD, no structural hazard occurs due to
functional block pipelining.
l:l CPU pipeline stall or no operation 2) No RAW hazard with F1 because same hazard

resolved for prior instruction.

- CPU -> FPU pipeline instruction
- FPU pipeline operation
- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

169

@ MICROCHIP

Figure 3-36. FPU WAR Hazard

Regis ter Direct Freg or Coprocessor SFR RAW hazard:

Compare Fa dst Freg to Fb src Freg(s)
F A R X w If true, stall Fb in RD-stage until Fa result available to

forward to RD-stage

Register Direct Freg WAR hazard:
Resolved by forcing in-order writes.
Fc write stalled untll Fa enters WB-stage

Fi
MOV?NCR A R X w W [al————— Concurrent FSIN and MOVWCR update, where MOVWCR wins
F A R X X w
FSIN.s ., F1 F A R R X w
MOV.s FYI/ F4
MOV.1 Wi, (F1
F A A R X w
WAR hazard
F F A R X w
E CPU pipeline {only) instruction
£ A R X w
‘:’ CPU pipeline stall or no operation

- CPU -> FPU pipeline instruction
FPU -> CPU write grant (delayed to mitigate WAR hazard)

] L . CPU pipeline is stalled for the duration of the write stall
FPU pipeline operation

- FPU pipeline stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

170

@ MICROCHIP

Figure 3-37. CPU/FPU WAW Hazard

Register Direct FSR WAW hazard:
Compare Fa dst Freg to Fb dst Freg
If true, stall Fb in CPU W-stage (write stall) until Fa write completes

——~ FPU instruction additional execute stages

{as needed for op)

WAW Hazard with FSR./
/ \
\

X[3] WB .~ Concurrent MOV and FSIN FSR update, where MOV wins
7
7
-
w wo
X X W
e
L~ R R X W
~
CPU -> FPU write request ~
A A R X w
F F A R X W
N _
\ v F A R X W
FSIN.s FD,"\ F1

MOV.1 W7, FSR

y

l:' CPU pipeline (only) instruction
l:l CPU pipeline stall or no operation
- CPU -> FPU pipeline instruction

l:l FPU pipeline operation

FPU - CPU write grant (delayed to mitigate WAW hazard)
CPU pipeline is stalled for the duration of the write stall

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

3.6.8.8. Operand Pre-Processing

Floating-point operands are subject to examination during the RD-stage in order to implement
NaN propagation and the subnormal value override function. This is necessary to apply rules that
determine the outcome in the presence of one or more NaN input values and evaluate operands for

special conditions.

3.6.8.8.1. NaN Propagation Operand Detection

For instructions that generate a result, special propagation rules apply when one or both source
operands are NaN values, such that sNaNs can be successfully used as “tracer” values. Should a NaN
be deemed as propagated, then it will replace the operation result.

With reference to NaN Propagation, all instructions will examine the operands for NaN values during

the RD-stage.

+ Two operand instructions:

If one or both operands are NaN values, the RD-stage will apply a propagation priority as shown

in Table 3-14.

+ Three operand FMAC instructions:

The source operands are examined in the RD-stage as usual but in conjunction with the selected
intermediate result, and any NaN values detected are propagated as shown in Table 3-15.

+ Three operand FFLIM instructions:

If one or both limit operands are NaN values, the RD-stage will apply a propagation priority as
shown in Table 3-13. If the FFLIM input value is a NaN, the limit values are ignored and the input
NaN value is propagated (quieted if an sNaN).

@ MICROCHIP

171

In all cases, if a NaN is to be propagated, the corresponding NaN value is entered as the operand
value in the Instruction/Hazard Tracker FIFO entry for that instruction. The instruction FIFO entry
also sets a flag to indicate that NaN propagation is enabled.

3.6.8.8.2. Subnormals Operands
The FPU supports a subnormal operand override mode, Subnormals-Are-Zero (SAZ), the
functionality of which is defined in Subnormal Operand Exception. Subnormals- Are-Zero (SAZ)
mode is enabled when FCR.SAZ is set.

Should a subnormal operand be detected when SAZ mode is disabled, the subnormal exception
will be signaled by setting FSR.SUBO (and FSR.SUBOS if not already set) during the WB-stage (i.e., at
the same time as when all other exceptions are signaled). If SAZ mode is enabled, the subnormal
exception will not be signaled.

Note: SAZ mode is not applicable to FAND, FIOR, FMOV, FMOVC or any CPU to/from FPU data move
instruction, none of which can modify any FPU status. In addition, SAZ mode is ignored by FTST
such that a subnormal operand will always be recognized as such by the instruction, irrespective

of the state of FCR.SAZ. However, SAZ mode can influence FF2LI/FF2DI operands. In these cases,
subnormal or zero operands will write the same result (integer value of 0). But if the operand is
subnormal and SAZ mode is disabled, a subnormal exception will also be signaled. Conversely, if the
operand is subnormal and SAZ mode enabled, a subnormal exception will not be signaled.

3.6.8.9. Result Post-Processing

Floating-point results are subject to examination during the WB-stage to implement the subnormal
result override Flush-To-Zero (FTZ) mode and NaN propagation results.

3.6.8.9.1. Subnormal Results
The FPU supports a subnormal result override mode, Flush-To-Zero (FTZ), the functionality of which
is defined in Flush-To-Zero (FTZ). Flush-To-Zero (FTZ) is enabled when both FCR.FTZ and FCR.UDFM
are set. Should the underflow exception be unmasked (FCR.UDFM = 0), then the FCR.FTZ bit will have
no effect.

This mode is implemented within the WB-stage such that results written to the destination register
(and those forwarded) will be adjusted accordingly if FTZ mode is enabled. The FCR.FTZ bit is only
examined during the WB-stage of an instruction such that it may be modified as late as the cycle
before the instruction enters the WB-stage.

Note: FTZ mode is not applicable to FAND, FIOR, FMOV, FMOVC or any CPU to/from FPU data move

instruction, none of which can modify any FPU status. It is also not applicable to FTST because the

FSR is the only possible destination for this operation. In addition, FTZ mode will have no effect on

FF2LI/FF2DI and FLI2F/FDI2F instruction results because FF2LI/FF2DI results are integers and FLI2F/
FDI2F destination data may be zero but never subnormal.

3.6.8.9.2. NaN Propagation Result Write
NaN operand values are detected in the RD-stage, prioritized and then passed (via an Instruction/
Hazard Tracker FIFO entry) to the instruction WB-stage. A valid NaN propagation will cause the
operation result from the Execute stage to be ignored, and the propagated NaN value to be written
into the result destination instead, as discussed in NaN Propagation.

3.6.8.9.3. Rounding Modes
The Rounding mode for each instruction functional block is defined by the value written into
FCR.RND [1:0] as defined in FCR. The FPU treats the Rounding mode input as an operand supplied
from the RD-stage when the instruction is dispatched into the Execute stage.

Note: Rounding modes are not applicable to FAND, FIOR, FCPQ, FCPS, FTST, FABS, FNEG, FFLIV,
FMAX, FMIN, FMAXNUM, FMINNUM, FMOV, FMOVC or any CPU to/from FPU data move instruction.

There is a 3-bit Rounding mode input (rnd [2:0]) to support up to eight different rounding modes for
all FPU conversion operations. Setting rnd [2] = 1 and mapping rnd [1:0] to FCR [9:8] will allow a user
selection of the IEEE 754 compliant modes as defined in FCR.

172

@ MICROCHIP

The integer/floating-point conversion instructions (FDI2F, FLI2F, FF2DI, FF2LI) may either specify
the Rounding mode within the instruction syntax or default to that defined in FCR.RND [1:0]. CPU
will issue one of these instructions, and the FPU will use it to determine the Functional Block
Rounding mode as shown in Table 3-17.

Table 3-17. FPU Conversion OP Rounding Modes Control

Rounding Mode Bits in Opcode[2:0] Functional Block Rounding Mode

111 IEEE Round to Negative Infinity (floor)

110 IEEE Round to Positive Infinity (ceiling)

101 IEEE Round to Zero (truncate)

100 IEEE Round to Nearest (even)

0xx Global mode (defined by FCR.RND[1:01)

3.6.8.10. Floating-Point Status
The FPU generates four types of statuses.

« Exception condition “most-recent” status from most instructions (see Table 3-20). These bits are
located within FSR [6:0]:INX, HUGI, OVF, UDF, DIVO, INVAL, SUBO.

+ Exception condition "sticky" status from most instructions (see Table 3-20). These bits are located
within FSR [14:8]: INXS, HUGIS, OVFS, UDFS, DIVOS, INVALS, SUBOS.

+ Value ordering relations status indicates the result of the FCPS/FCPQ compare instructions. These
bits are located within FSR [19:16]:GT, LT, EQ, UN.

+ Operand characteristic status from the FTST datum inspection/classify instruction. These bits are
located within FSR [28:24]: SUB, INF, FZ, FN, FNAN.

Operand comparisons are likely to be used frequently, so the compare status bits generated

by the FCPS/FCPQ instructions are supported with CPU conditional branch instructions. All other
statuses must be read into the CPU (using the MOVCRW instruction) or pushed onto the stack (using
PUSHCR) and then acted upon as necessary.

Note: Irrespective of whether an exception is masked or not, writing a logic 1 to an exception status
flag using any instruction that can write 1's to the FSR will not result in any associated exception
being taken.

3.6.8.10.1. Compare Status and Predicates
IEEE 754-2008/2019 standards specify quiet and signaling compare predicates (equations) as shown
in Table 3-18. A “signaling” predicate signals (i.e., attempts to generate an exception) when a Quiet
NaN or Signaling NaN (gNaN or sNaN) operand is detected.

A “quiet” predicate will not signal when a gNaN operand is detected.

An sNaN will always signal an exception when detected as an operand for all instructions except for
those that do not generate any exceptions (FMOV, FMOVC, FABS, FNEG and FTST).

The FPU coprocessor macro implements signaling and quiet predicates by supporting two floating-
point compare options, one signaling (FCPS), one quiet FCPQ) and a set of floating-point branch
operations that test for the required predicates. Each compare instruction will set one of the four
mutually exclusive ordering relations (GT, LT, EQ, UN status bits) located in the FSR to indicate the
result of the comparison.

+ FCPS (signaling compare)

- gNaN or sNaN: If either or both operands are a gNaN or sNaN value, the compare is
considered unordered which will cause the FSR.UN bit to be set. In addition, the FSR.INVAL
bit will be set, causing the CPU to be signaled via the invalid exception (assuming that the
exception is not masked).

+ FCPQ (quiet compare)

173

@ MICROCHIP

- gNaN: If one or more operands contain a gNaN value, the compare is considered unordered
which will cause the FSR.UN bit to be set. A gNaN will not set the FSR.INVAL bit, so no
signaling will occur.

- sNaN: If either or both operands are a sNaN value, the compare is considered unordered
which will cause the FSR.UN bit to be set. In addition, the FSR.INVAL bit will be set, causing
the CPU to be signaled via the invalid exception (assuming that the exception is not masked).

The compare operation subtracts Fs (subtrahend) from Fb (minuend). The EQ, GT and LT status bits
are set as follows:

« If the minuend is equal to the subtrahend (Fb = Fs), the EQ status bit is set.
+ If the minuend is greater than the subtrahend (Fb > Fs), the GT status bit is set.
« If the minuend is less than the subtrahend (Fb < Fs), the LT status bit is set.

In addition, the UN status bit is set if one or both operands is a NaN. If this is the case, no other
compare status is set (i.e., UN, EQ, GT and LT are mutually exclusive).

Note: The FCPS/FCPQ instructions consider -0 and +0 as equivalent.

Note: Comparing a value to itself should produce an equivalent result. However, UN has
precedence over EQ such that should two values be identical but both are NaN, the UN bit will
be set, but the EQ bit will be cleared.

FPU Status Conditional Branches

The CPU has the ability to conditionally branch off various status bits generated within the
coprocessor. In the case of the FPU, an internal status register (FSR) is supported which is updated
at the end of each floating-point operation.

The FPU FSR is comprised of an instruction exception status and a FCPS/FCPQ/FTST instruction
status. Conditional branching is supported within the CPU for the FCPS/FCPQ compare instructions
only.

The CPU ISA includes a set of generic coprocessor conditional branch instructions, CBRAO through
CBRA15, and each can operate with any instantiated coprocessor and branch based upon the
state of a corresponding bit within a vector supplied by each coprocessor. In the case of the FPU,
CBRAO through CBRA13 are used, each represented as an FBRA instruction with its corresponding
assembler attribute for the FCPS/FCPQ instruction status branch conditions. The FCPS/FCPQ status
is held in FSR [19:16] and indicates the comparison result. CBRA[Nn] timing is the same as any other
CPU conditional branch, such that the condition is examined at the end of the CBRA[Nn] R-stage. If
the condition is true, the branch is taken. If the condition is not true, the branch is not taken and
sequential execution continues.

As is the case for all conditional branches, the instruction(s) immediately following the branch are
speculatively executed, and they will either be part of the taken or the not taken path, based on
the direction of the branch. These instructions are permitted to be floating-point operations. This
requires that the FPU accommodate the possibility that these instructions could ultimately be killed
due to a branch mispredict.

Note that the FPU will not return the result of FBRA instruction until any FCPS/FCPQ instruction
already underway in the coprocessor pipeline has retired. The CPU will consequently stall until such
time that the msw of the FSR is available to be read (though these are fast operations, so stalls
should be minimal). In effect, a CPU conditional branch instruction operation will synchronize the
integer and floating-point pipelines with respect to FPU FCPS/FCPQ status.

The LS 3-bits of the branch opcode concatenated with the Sub-Opcode bit (such that the Sub-
Opcode bit becomes the LSb of this value) may be used by the CPU decoder as a bit pointer into
the 16-bit branch status test value to select the corresponding branch predicate result. The branch
then decides if the outcome is true (taken) or false (not taken) based on the state of the selected bit
(where true is when the bit is set, false when clear).

174

@ MICROCHIP

Note: FCPS/FCPQ and FTST instructions update two different portions of the FSR. Consequently,
execution of an FTST instruction (which also updates the FSR) will not inhibit the CPU CBRAN
instructions from using the branch status generated from the FSR Ordering Relation bits.

3.6.8.10.2. Operand Characteristic (Test) Status
The FTST instruction will test the operand and update the SUB, INF, FN, FZ, FNAN status bits.
No exceptions will be generated by this instruction. Due to the relative infrequent use of this
instruction, dedicated conditional branches are not supported by the CPU to test these status bits.
The user must read the FSR and then act upon the bits of instruction using existing CPU instructions.

Table 3-18. Floating-Point Conditional Branches and Associated Predicates

Assembler Design Assembler Design Negated Predicates

FBRA Mn;é?&"'c Ordering Definition Atf:B'EAt Mnce;l:mc Ordering Definition
Attribute Manpin Relation (Alternative ribute Manpin Relation (Alternative
pping Definition) pping Definition)

_'I

T F T Unordered

EQ CBRAO F F T F Equal UNE CBRA1
or Greater
Than or Less
Than
(Unordered
or Not
Equal)
NE CBRA2 T T F F Greater UEQ CBRA3 F F T T Unordered
Than or Less or Equal
Than (Not
Equal)
GT CBRA4 T F F F Greater ULE CBRA5S F T T T Unordered
Than or Less Than
or Equal
GE CBRA6 T F T F Greater ULT CBRA7 F T F T Unordered
Than or or Less Than
Equal
LT CBRA8 F T F F Less Than UGE CBRA9 T F T T Unordered
or Greater
Than or
Equal
LE CBRA10 F T T F Less Than or UGT CBRA11 T F F T Unordered
Equal or Greater
Than
OR CBRA12 T T T F Ordered UN CBRA13 F F F T Unordered

3.6.8.10.3. FPU Instruction Kill
As is the case for all instructions executed within conditional branch speculative slots, floating-point
instructions will be killed if a branch mispredict occurs. The CPU will recognize a mispredict prior
to the end of the conditional branch R-stage (i.e., when the prior instruction status is available
to forward). If the instruction in the first speculative slot is an FPU instruction, it will be issued
to the FPU, but the CPU will assert a signal to kill the instruction for one cycle, forcing the FPU
to subsequently abandon execution prior to it being committed. If the instruction in the second
speculative slot is an FPU instruction, it will be abandoned prior to being issued to the FPU.

175

@ MICROCHIP

Figure 3-38. FPU Instruction Speculative Execution

Forwarded branch decision (status result)

F A R X w Speculatively executed FPU instruction issued but subsequently aborted due to
incorrect branch prediction.

Xa Assert kill_r_stage_instruction for 1 cycle to force FPU to abandon execution.
(SR rdy)

Speculatively execute 1% not taken (+ve offset) or taken (-ve offset) path

Fsl

Predi P = = =
redicted target PC (FPU Op) A // Speculative executed (CPU or FPU) instruction aborted due to
—— incorrect branch prediction
_—
RD _—
_—
Fs2 Speculatively execute 2nd not taken (+ve offset) or taken (-ve offset) path

(CPU or FPU
Op)

/ F A R X w
Continue execution from correct path
F A R X w
F A R X W
F A R X w
F A R X w

Legend: F = Fetch, A = Address decode, R = Read, X = Execute, W = Write back

3.6.8.11. Generating FP Exceptions
The FPU can generate the five IEEE-754 2008 compliant exceptions. Each exception has a flag
associated with it in the FSR register.

All instructions, except FTST, FMOV and FMOVC, can affect FSR exception status as a consequence
of the operation (any exception status flag bits not set will be cleared). The FTST, FMOV and FMOVC
instructions will neither set nor clear any exception flags. Refer to the IEEE-754 2008 standard for a
more detailed definition.

“Most-recent” exception status only shows the exception status of the most recent instruction
executed. It contains no accrued status from prior operations such that if a status bit is not affected
or not signaled by the instruction, it will be cleared.

“Sticky” exception status contains accrued status from all instructions executed.

The following summarizes when exceptions are signaled, and the default results for each exception
are summarized in Table 3-16. Refer to Table 3-19 for exception conditions and default results for
each instruction.

+ Invalid: FSR.INVAL Exception is signaled whenever an operation generates no usefully definable
result. INVAL is set under the following conditions:

- Any operation on a sNaN input

- Addition of infinities with opposite signs or subtraction of infinities with the same sign
- Multiplication 0*infinity

- Division 0/0 and infinity/infinity

- Square root of a negative floating-point value

Note: INVAL is also set by FF2DI and FF2LI Float-to-Integer conversion instructions in the event of a
gNaN or Infinity input value.

+ Divide by Zero: FSR.DIVO Exception is signaled whenever the FDIV instruction dividend is finite
and the divisor is 0.

176

@ MICROCHIP

+ Overflow: FSR.OVF Exception is signaled whenever an operation results in an overflow, defined as
a post-rounded result that exceeds the largest finite number that the destination can represent.

« Underflow: FSR.UDF Exception is signaled whenever an operation results in a tiny but non-zero
(subnormal) result (see Underflow with an Exact Rounded Result for a special case).
+ Inexact: FSR.INX Exception is signaled whenever the rounded result of an operation is:
- Not equal to the same result represented using infinite precision (i.e., has suffered a loss of
accuracy).

- Is subnormal and not an exact zero when FTZ mode is enabled.
In addition, this macro also generates two additional exceptions:

+ Huge Integer: FSR.HUGI Exception is signaled whenever a Float-to-Integer conversion operation
(FF2DI and FF2LI) results in an integer value that is larger than the destination register can
represent.

+ Subnormal Operand: FSR.SUBO Exception is signaled whenever an operand of an affected
instruction (see Subnormal Override Functions and Table 3-19) is a subnormal value, and
Subnormals-Are-Zeros (SAZ) mode is disabled.

3.6.8.11.1. Exception Generation Special Cases

Concurrent Exceptions
The following combinations of exceptions can occur together:

« Huge Integer will always also signal Invalid and Inexact.
+ Overflow will always also signal Inexact.
+ Underflow may also signal Inexact.

No other exceptions can occur concurrently.

Notes:
1. Inexact can be asserted independently of any other exception.

2. If Overflow, Underflow and Inexact exceptions are all enabled, the exception handler should
prioritize Overflow and Underflow above Inexact.

During FF2DI and FF2LI Float-to-Integer conversion instructions, should the HUGI exception be
signaled (due to a finite float-point value conversion that results in a value that exceeds the size of
the destination register), the INVAL exception will also be signaled. Users may, therefore, choose to
ignore the (not IEEE-754 compliant) HUGI exception.

Underflow with an Exact Rounded Result

An exact subnormal result is not viewed as an Underflow condition by the IEEE 754-2008/2019
standard when operating with default exception handling. Consequently, FPU exceptions operate
differently when the underflow exception is disabled (enabling default exception handling for the
underflow).

As summarized below, when operating with default exception handling (the underflow exception
masked, FCR.UDFM = 1), the FPU will only signal underflow (i.e., set FSR.UDF = 1) if the rounded
subnormal result suffers from a loss of accuracy (such that the Inexact status will also be set).
Otherwise, no status is affected. In both cases, the rounded (default) result will be delivered.

Note: If FTZ mode is active (FCR.FTZ && FCR.UDFM = 1), Inexact is signaled whenever a result is
subnormal and not an exact zero.

When operating with alternate exception handling (the underflow exception is unmasked),
underflow will be signaled whenever a subnormal result is detected irrespective of whether it is
exact or not. If the result also suffers from any loss of accuracy, Inexact will also be set.

Note: A zero result is not considered an Underflow condition, so will not signal underflow
irrespective of exception handling mode.

177

@ MICROCHIP

+ Default exceptions: UDF interrupt is masked (UDFM = 1)
- If an inexact underflow occurs, both UDF and INX (and sticky equivalents) are set.
- If an exact underflow occurs, no status is set.
- In both cases, default (rounded) result is delivered, and no interrupts are generated.

+ Alternate exceptions: UDF interrupt is unmasked (UDFM = Q)

- If any underflow occurs, UDF (and sticky equivalent) is always set and an interrupt occurs.
INX (and sticky equivalent) will also be set if it is inexact; it is cleared otherwise.

- Default (rounded) result is delivered and interrupt is generated

Invalid for a gNaN Input Operand

A gNaN input operand does not typically signal the invalid exception other than when encountered
by the following instructions:

« FF2DI and FF2LI Float-to-Integer conversion instructions (because a gNaN cannot, of course, be
represented as an integer value).

« FCPS instruction to signal any NaN input.

For both sNaN and gNaN operands, the FF2DI and FF2LI instructions will deliver the integer
indefinite value (the most negative number) as the result, and INVAL (but not HUGI) will be signaled.

No result is delivered for the FCPS instruction (other than FCPS/FCPQ status).

3.6.8.11.2. FP Exception Sticky Flags
The INVAL, DIVO, OVF, UDF, INX, HUGI and SUBO exception flags have corresponding “sticky” flags
INVALS, DIVOS, OVFS, UDFS, INXS, HUGIS and SUBOS also located within the FSR. These bits are
set whenever the corresponding exception flag is set. They will remain set if the exception flag is
cleared by a subsequent instruction; therefore, they are considered “sticky.” These bits support the
delayed exception handling model required by the IEEE 754-2008 standard and are analogous to
conventional interrupt flags.

3.6.8.11.3. Modifying Exception Status Through Software
Software may simultaneously clear both “most-recent” and “sticky” exception flags using the FAND
instruction. Software may also set both “most-recent” and “sticky” exception flags simultaneously
using the FIOR instruction, though this operation is of little utility.

Note: Clearing (or setting) a most-recent exception status bit by using the FAND (or FIOR)
instruction will not affect any corresponding sticky exception bits.

3.6.8.11.4. FP Exception Masks
FSR bits INVAL, DIVO, OVF, UDF, INX, HUGI and SUBO have corresponding INVALM, DIVOM, OVFM,
UDFM, INXM, HUGIM and SUBOM Exception Mask bits in the FCR. Should a “most-recent” exception
flag be set by an operation, the corresponding Exception Mask bit in the FCR must already be clear
in order to generate an interrupt.

Should an FCR Exception Mask bit be set when the corresponding FSR exception flag bit is set, no
interrupt will be generated. In all cases (except SUBO which is an input operand exception), a default
result (see Table 3-16) will be written. However, the corresponding “sticky” exception flag will be set
and remain set until manually cleared.

Note: If not masked, interrupts are generated at the time the corresponding flag is set (i.e., they are
generated by the leading edge of the flag set operation). However, setting a flag (in FSR [6:0]) when
the corresponding exception is enabled will not generate an interrupt. Should forcing an interrupt
be required (e.g., during debug), it may be achieved by setting the FPU interrupt flag (in the interrupt
controller). Conversely, unmasking a previously masked exception when its flag is already set will
not generate an interrupt.

178

@ MICROCHIP

Table 3-19. FP Instruction Exception Conditions

Instructi

FMOVC — —

Exceptions (FSR[6:0])

o

FMOV

Status Bit Set/Clear/Update Instructions

FAND U U

FIOR fn fn

FTST - —

Conversion Instructions
FLI2F 0 0

FDI2F 0 0

FF2LI 0 0

FF2DI 0 0

Comparison Instructions
FCPS () 0

FCPQ ¢ 0

FFLIM 0 0

U U U U U
f f f? f f

0 0 0 0 0

——

Logical AND with FSR[15:0]
Logical OR with FSR[15:0]

INX: See Generating FP Exceptions

INX: See Generating FP Exceptions

HUGI: Result exceeds target register
size
INX: See Generating FP Exceptions
INVAL: «, sNaN or gNaN

SUBO: Subnormal operand®

HUGI: Result exceeds target register
size
INX: See Generating FP Exceptions
INVAL: , sNaN or gNaN

SUBO: Subnormal operand®

INVAL: sNaN or gNaN
SUBO: Subnormal operand®

INVAL: sNaN
SUBO: Subnormal operand®

INVAL: sNaN
SUBO: Subnormal operand®

No exceptions are generated as
a consequence of setting an
exception flag.

No result is delivered other than
FTST status (FSR[28:24]).

INX: Destination will be written with
inexact floating-point result.

INX: Destination will be written with
inexact floating-point result.

HUGI: Destination will be written
with either most positive or most
negative integer, matching sign of
input operand.

HUGI will also cause INVAL to be
set.

INX: Destination will be written with
inexact integer result.

INVAL: Destination will be written
with integer indefinite value if HUGI
is not set, or value defined above if
HUGI is set.

Assertion of SUBO will not affect
integer result.

HUGI: Destination will be written
with either most positive or most
negative integer, matching sign of
input operand.

HUGI will also cause INVAL to be
set.

Note: INX: Destination will be
written with inexact integer result.

INVAL: Destination will be written
with integer indefinite value if HUGI
is not set, or value defined above if
HUGI is set.

Assertion of SUBO will not affect
integer result.

No result is delivered other than
FCPS/FCPQ status (FSR[19:16]).

No result is delivered other than
FCPS/FCPQ status (GT, LT, EQ or
UN).

Refer to Table 3-13 for the result
delivered. Operand value of -0
compares to less than +0.

Key: § = set or cleared, ‘0’ = always cleared, — = unchanged, t = may be cleared but never set, ¥ = may be set but never cleared

Notes:

1. Inall cases where INVAL is signaled as the result of an sNaN operand, the destination will be written with the quieted sNaN.

2. Underflow result is defined in Table 3-16 when SOV mode is enabled and the underflow exception is not enabled.

3. The Subnormal Operand exception (SUBO) is an input operand exception (all other exceptions are related to operation results). SUBO is never
signaled if SAZ mode is enabled.

@ MICROCHIP

179

Table 3-19. FP Instruction Exception Conditions (continued)

FMAX

INVAL: sNaN
SUBO: Subnormal operand®

Refer to Table 3-12 for the result
delivered. Operand value of -0
compares to less than +0.

Instructi Exceptions (FSR[6:0]) Conditions Default Results and Notes
¢ 0 0 0 0

FMAXNU 0 0 INVAL: sNaN Refer to Table 3-12 for the result
M SUBO: Subnormal operand® delivered. Operand value of -0
compares to less than +0.
FMIN ¢ 0 INVAL: sNaN Refer to Table 3-12 for the result
SUBO: Subnormal operand® delivered. Operand value of -0
compares to less than +0.
FMINNU) 0 INVAL: sNaN Refer to Table 3-12 for the result
M SUBO: Subnormal operand® delivered. Operand value of -0

Math Instructions

compares to less than +0.

FADD ¢ 0 INX: See Generating FP Exceptions | INX: Will also be set if OVF is set.
UDF: See Generating FP Exceptions = Will also be set if UDF is set and
OVF: See Generating FP Exceptions '€SUlt is not an exact subnormal.
) INX/UDF/OVF: Destination will be
INVAL: ((-e) + =) or sNaN written with a rounded result. 2
SUBO: Subnormal operand® Note: INVAL: Destination will be
written with the distinguished
gNaN or quieted sNaN.!
FSUB ¢ 0 INX: See Generating FP Exceptions INX: Will also be set if OVF is set.
UDF: See Generating FP Exceptions Will also be set if UDF is set and
OVF: See Generating FP Exceptions resultis notan exagt SE’b”Ofma'-
i INX/UDF/OVF: Destination will be
INVAL: (e -) or sNaN written with a rounded result. 2
SUBO: Subnormal operand® INVAL: Destination will be written
with the distinguished gNaN or
quieted sNaN.

FNEG $ — SUBO: Subnormal operand® |IEEE-754 requires no result
exceptions be signaled. Subnormal
operand exception is signaled
or SAZ mode applied to ensure
result consistency with that of
an equivalent sequence of FPU
arithmetic instructions.

FABS ¢ — SUBO: Subnormal operand® |IEEE-754 requires no result
exceptions be signaled. Subnormal
operand exception is signaled (or
SAZ mode applied) to ensure
result consistency with that of
an equivalent sequence of FPU
arithmetic instructions.

FMUL $ 0 INX: See Generating FP Exceptions | INX: Will also be set if OVF is set.

UDF: See Generating FP Exceptions = Will also be set if UDF is set and
OVF: See Generating FP Exceptions '€SUlt is not an exact subnormal.
ok . INX/UDF/OVF: Destination will be
INVAL: (0 *) or (= * 0) or sSNaN \yritten with a rounded result. 2
SUBO: subnormal operand® INVAL: Destination will be written
with the distinguished gNaN or
quieted sNaN.
Key: { = set or cleared, ‘0’ = always cleared, — = unchanged, t* = may be cleared but never set, ¥ = may be set but never cleared
Notes:
1. Inall cases where INVAL is signaled as the result of an sNaN operand, the destination will be written with the quieted sNaN.

2. Underflow result is defined in Table 3-16 when SOV mode is enabled and the underflow exception is not enabled.

3. The Subnormal Operand exception (SUBO) is an input operand exception (all other exceptions are related to operation results). SUBO is never
signaled if SAZ mode is enabled.

180

@ MICROCHIP

Table 3-19. FP Instruction Exception Conditions (continued)

Instructi Exceptions (FSR[6:0]) Conditions Default Results and Notes
°" | suso | Hug DIVO_| INVAL
FMAC 0 0 0) 0 0 k) INX: See Generating FP Exceptions INX: Will also be set if OVF is set.
UDF: See Generating FP Exceptions Wil also be set if UDF is set and
OVF: See Generating FP Exceptions 'esult is not an exact subnormal.
e N INX/UDF/OVF: Destination will be
INVAL: (0 * co)+c or (= * 0)+c or sNaN ritten with a rounded result. 2
SUBO: Subnormal operand® INVAL: Destination will be written
with the distinguished gNaN or
quieted sNaN.’
INVAL will also be signaled if
accumulation is a subtraction of
infinities.
FDIV ¢ 0) ¢ ¢ ¢ ¢ INX: See Generating FP Exceptions | INX: Will also be set if OVF is set.
UDF: See Generating FP Exceptions = Will also be set if UDF is set and the
OVF: See Generating FP Exceptions = '€SUlt is not an exact subnormal.
L o . o INX/UDF/OVF: Destination will be
DIVO: Finite Dividend with Divisor =0 \yritten with a rounded result. 2
INVAL: (0/0) or (/) or sNaN DIVO: Result of (£x/+0) will be +eo
SUBO: Subnormal operand® by default, where sign is XOR of
operand signs.
INVAL: Destination will be written
with the distinguished gNaN or
quieted sNaN.!
(0/0) or (=/0) are special cases and
will not set DIVO. Result of («/0) is
correctly signed infinity. Result of
(0/0) is the distinguished gNaN with
INVAL signaled.
FSQRT ¢ 0) 0 0 0) INVAL: x < 0 or sNaN INVAL: Destination will be written
SUBO: Subnormal operand® with the distinguished gNaN or
quieted sNaN.®
FSQRT(£0) = +0 (no exception
signaled)
FSIN 3 0 3 k3 0 0 3 INX:See Generating FP Exceptions INX: Will also be set if UDF is
UDF:See Generating FP Exceptions ' set and the result is not an exact
INVAL: | x | = e or sNaN subnormal.
SUBO: Subnormal operand® INX/UDF: Destination will be written
with a rounded result. @
INVAL: Destination will be written
with the distinguished gNaN or
quieted sNaN.®
FCOS ¢ 0)) 0 0 ¢ INVAL: | X | = o or sNaN INVAL: Destination will be written
SUBO: Subnormal operand® with the distinguished gNaN or
quieted sNaN.®
Key: § = set or cleared, ‘0’ = always cleared, — = unchanged, t = may be cleared but never set, ¥ = may be set but never cleared

Notes:

1. Inall cases where INVAL is signaled as the result of an sNaN operand, the destination will be written with the quieted sNaN.

2.
3.

Underflow result is defined in Table 3-16 when SOV mode is enabled and th

signaled if SAZ mode is enabled.

3.6.8.12. FP Instruction Status Effects

e underflow exception is not enabled.

The Subnormal Operand exception (SUBO) is an input operand exception (all other exceptions are related to operation results). SUBO is never

Table 3-20 lists the floating-point instructions and their effect on the FPU Status Bits.

+ FSR[19:16] can only be updated by the FCPS/FCPQ instructions.

+ FSR[28:24] can only be updated by the FTST instruction.

* FMOV, FMOVC, FABS and FNEG instructions do not generate any status.

3.6.8.12.1. FP Status Access

The msws and Isws of the FSR are implemented as 16-bit registers which can be independently read
and written by the CPU and FPU. This is intended to prevent structural hazards arising between

@ MICROCHIP

181

FTST/FCPS/FCPQ/FBcc instructions (that access the FSR msw) and all other instructions that could
affect the exception status (located in the FSR Isw). Hazards are not expected to exist between FTST
and FCPS/FCPQ instructions.

The FCPS/FCPQ/FTST status located in msw of the FSR (FSRH) can be read and stacked by the
PUSHCR instruction while the Isw of the FSR is written (or blocked to be written). The msws and
Isws of the FSR are otherwise concatenated into a single 32-bit value (FSR) for read/write by the
MOVCRW/MOVWCR and PUSHCR/POPCR instructions.

In addition, the FAND and FIOR instructions operate with a 16-bit literal and can be used to set or
clear the bit in the FCR or Isw of the FSR or FEAR. When the FSR is referenced in these ops, users

can manipulate the FPU exception status, but access to the FCPS/FCPQ/FTST status in FSRH is not
possible. This choice assumes that the need to modify FTST/FCPS/FCPQ status is rare. Consequently,
doing so using MOVCRW/MOVWCR Or PUSHCR/POPCR is expected to be adequate.

Table 3-20. FP Instruction Status Operations

Instructi FPU Status Register (FSR)

on

FMOV

FMOVC

FSR[28:24] FSR[14:8] FSR[6:0]

SUB FN FZ FNA LT SUB | HUGI| INXS| UDFS| OVFS| DIVO| INVA
N 0s S S LS

Move Instructions

Status Bit Set/Clear/Update Instructions

FAND @ — — — — — — — — — 4 U 4 [[U 4 U U U 4 U U
FIOR® — = = = = = = = = t ft 1t 1t t t ﬂ t t ﬂ 0 0 t
FTST 3 ki3 ki3 kI3 k) — — — - — — - — — — - — — — — — —
Conversion Instructions
FLI2F - — — — — — — — — — — @ — — — — 0 0 @ 0 0 0
FDI2F — — — — — — — — — — — i — — — — 0 0 3 0 0 0
FF2LI — — — — — — — — — f f i — — — i g ki3 k3 0 0 0
FF2DI — — — — — — — — — f f i — — — i ¢ kI3 b3 0 0 0
Comparison Instructions
FCPS — — — — — i3 ¢ ki3 i3 f — — — — — i i3 0 0 0 0 0
FCPQ — — — — — ki3 ki3 k3 ¢ f — — — — — f ki3 0 0 0 0 0
FFLIM = = — — — — — — — f — — — — — o ki3 0 0 0 0 0
FMAX — — — — — — — — — f — — — — — i k3 0 0 0 0 0
FMAXNUM — — — — — — — — — f — — — — — o i3 0 0 0 0 0
FMIN — — — — — — — — — o — — — — — i 0 0 0 0 0 0
FMINNUM — — — — — — — — — o — — — — — i 0 0 0 0 0 0
Math Instructions
FADD - - = = = = = = = i — i i f — t ¢ 0 0 ¢ i 0
FSUB — — — — — — — — — f — i i f — i g 0 k3) g 0
FNEG — — — — — — — — — o — — — — — — g — — — — —
FABS — — — — — — — — — f — — — — — — g — — — — —
FMUL — — — — — — — — — f — o i i — L 13 0 ki3 13 13 0
FMAC — — — — — — — — — f — f ki f — f i3 0) ki3 i3 0
FDIV = = — — — — — — — {0 — f o i ft i I3 0 ki3 I3 I3)
FSQRT — — — — — — — — — f — f — — — 1 ki3 0 k3 0 0 0
FSIN — — — — — — — — — f — i i — — o 0 0 h) k) 0 0
FCOS — — — — — — — — — o — 1 f — — i ki3 0 k3 ki) 0 0
Key: § set or cleared, ‘0’ always cleared, — unchanged, may be cleared but never set, # may be set but never cleared
Notes:
1. With respect to the FSR, FAND and FIOR can only affect FSR[15:0] (exception status). When set, no exception is signaled.

2. LI2F.s only. Inexact not possible for Long integer to Double Precision float (LI2F.d) conversion.

@ MICROCHIP

< & O o

e e e & e & <&

182

4. Memory Organization

This section describes the Memory Organization and Bus Matrix (BMX) in dsPIC33A devices. The
following features are covered.

Memory and SFR Maps
Modified Harvard Architecture
Unified Memory Map

Split Data Bus Speeds

Bus Matrix:

Establishes communication between initiator and targets.

Decodes addresses and provides arbitration between multiple initiators requesting access to
the same target.

Provides concurrent accesses to multiple targets from different initiators.
Generates a bus error exception back to an initiator on any failed access.
Provides support for the CPU to execute from RAM.

4.1. Device-Specific Information

4.1.1. Address Space
The program memory maps for dsPIC33AK512MPS512 devices are shown in Figure 4-1.

@ MICROCHIP

183

Figure 4-1. Memory Map for dsPIC33AK512MPS512

2 000000
£ SFRs
(] (see detailed view)
= 003FFC
x XRAM 32 KB 004000
7 YRAM 32 KB 00C000
H] 014000
]
Z U d - -
LS SFR Detailed View
000000
2 7A0000 o A
E CAM Secondary Map ot
7A8000 =i .
E Unused 7A8004 @ Fast Peripherals
T =1
7BFEO00 ©
? DEBUGRAM 7BFFFC w m
£ Fuse Config/Cal Read, 7C0000 000FFC
Test and Integrity Registers A 001000
7C3000
A
Far SFR Space 1 ~
P 7CFFFC N
7D0000 i
n
=
g Standard Speed
S Peripherals
©
3 2
g Reserved 8
3 n
+4
002FFC
. A 003000
7EFFFC X
7F0000 =
g Slow Speed
o Executive Code Memory m Peripherals
S (8K) 2
=3 °
(/2] 7F1FFC —_—
> 7F2000 bl Y
) Calibration Memory Page 003FFC
£ Die Serialization, FOTP
o 7F2FFC
ﬁ 7F3000
K Configuration A Active Page
- - -
® 7F3FFC Far SFR Detailed View
3 7F4000
o 7C0000
lE Configuration B Page
Q 7F4FFC
o 7F5000
Reserved
7FAFFC Fuse Config./Calib.
7FB000 Read Registers
Configuration A Inactive Page
7FBFFC
7FC000
Reserved DEVID, DEVREV 7C2000
e TEFFFC 7C3000
o 800000 <«—— User Reset Vector
£
g User Relocatable IVT [
3 FAR SFR Space
S o
S
g 512 KB Code M &
ode Memory 3
nE-’ (128K Instructions) g 7CFFFC
N
@ 87FFFC b
n
=) Unused
C00000
Reserved
FFFFFC

184

@ MICROCHIP

Notes:
1. Memory areas are not shown to scale.

2. Calibration data area includes UDID and ICSP™ Write Inhibit locations.

4.1.1.1. Unique Device Identifier (UDID)
All dsPIC33AK512MPS512 family devices are individually encoded during final manufacturing with
a Unique Device Identifier (UDID). The UDID cannot be erased by a bulk erase command or any
other user-accessible means. This feature allows for manufacturing traceability of Microchip devices
in applications where this is a requirement. It may also be used by the application manufacturer for
any number of things that may require unique identification, such as:

+ Tracking the device
* Aunique identifying number
* Aunique security key

The UDID comprises four full 32-bit words. When taken together, these fields form a unique 128-bit
identifier. The UDID is stored in read-only memory locations between 0x7F2120-0x7F212C in the
device configuration space. Table 4-1 lists the addresses of the identifier words and shows their
contents.

Table 4-1. UDID Address

0x7F2120 UDID Word 1
O0x7F2124 UDID Word 2
0x7F2128 UDID Word 3
0x7F212C UDID Word 4

4.2, Architectural Overview

4.2.1. Program Memory Organization

Program memory addresses are always word-aligned on the lower word, and addresses

are incremented or decremented by two during code execution. This arrangement provides
compatibility with data memory space addressing and makes data in the program memory space
accessible.

4.2.2. Interrupt and Trap Vectors

All dsPIC33AK512MPS512 family devices have the user program space starting at 0x800000. The
interrupt vector table is placed (by default) at the start of user program Flash memory (0x800004).
The user code can then relocate the IVT to any valid address in Flash/RAM by modifying the IVTBASE
register. The Reset vector into user program space is at 0x800000. When a Reset is asserted, the
Reset vector read commences and the vector contents are presented to the CPU. The data are

then immediately transferred to the program space address bus to create the address of the first
instruction to be executed, redirecting the program execution to the appropriate start-up routine.

4.2.3. Bus Matrix

The Bus Matrix (BMX) arbitrates memory accesses in the event two independent initiators are
trying to access the same targets. Initiators are a set of modules that can initiate a read or

write transaction to other modules called “Targets.” The BMX connects the initiator to targets and
determines which initiator gets priority (based on fixed priority scheme and the SFR priority). The
type of access, program or data, is determined by the initiator bus. It supports concurrent accesses
by different initiators as long as they have independent targets. For example, CPU to SFR could be
concurrent with DMA to RAM.

Bus Matrix Initiators include:

185

@ MICROCHIP

Initiator 0 - CPU X Data Bus (CPU XDS)
Initiator 1 - CPU Y Data Bus (CPU YDS)
Initiator 2 - DMA

Initiator 3 - CPU Instruction Bus (CPU IS)
Initiator 4 - Crypto

Initiator 5 - CAN 1

Initiator 6 - CAN 2

Initiator 7 - Nonvolatile Memory Controller
Initiator 8 - In-Circuit Debugger

Bus Matrix Targets include:

Program Flash (data reads)

Peripheral Buses (through Bus Splitter)
XRAM interface

YRAM interface

Debug RAM

Note: XRAM and YRAM simultaneous access is supported.

Figure 4-2 shows the typical block diagram of the Bus Matrix.

@ MICROCHIP

186

Figure 4-2. Bus Matrix Initiators and Targets

CPU
B CcPU CPU CcPU
Initiators Instruction X Data Y Data DMA NVM IcD Crypto CAN1 CAN 2
Bus Bus Bus
A A A A 4 4 A A A
Bus Fabric
A 4 A A 4 A A 4 A
Addr Decoder Addr Decoder Addr Decoder | | Addr Decoder, | | Addr Decoder, || Addr Decoder, | |Addr Decoder, | (Addr Decoder, | |Addr Decoder,
and and and Divider and Divider and Divider and Divider and Divider and Divider and
Read MUX Read MUX Read MUX Read MUX Read MUXes Read MUX Read MUX Read MUX Read MUX
7'y 4 2 I I A
Bus Interconnect v v v v v
A T i A i A i A i A
Flash RAM RAM RAM SFR
Arbiter Arbiter Arbiter Arbiter Arbiter
A
Prefetch
Branch
Unit
A
A A 4 v A
Bus Splitter
XRAM YRAM Debug RAM
Targets Flash I
g 9 o
e 2 2
g & 3
> 3 =
s 2 3
w P g
5 & 2
S

Note: See Table 4-4 for initiator/target options.

@ MICROCHIP

4.3.

I S T B T S S S N

0x0770

0x0774

0x0778

0x077C

0x0780

0x0784

0x0788

0x078C

0x0790

0x0794

0x0798

0x079C

@ MICROCHIP

Register Summary

BMXINITPR

BMXIRAML

BMXIRAMH

BMXXDATERR

BMXYDATERR

BMXDMAERR

BMXCPUERR

BMXCRYPTERR

BMXCAN1TERR

BMXCANZ2ERR

BMXNVMERR

BMXICDERR

23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24
23:16
15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0
31:24

23:16

15:8
7:0

NVMPR

CAN2PR

CAN1PR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

DBGWERR

DBGRERR

CRYPTPR

CPUPR

BMXIRAML[33:26]
BMXIRAML[25:18]
BMXIRAML[17:10]
BMXIRAMLI[9:4]
BMXIRAMH[33:26]
BMXIRAMH[25:18]
BMXIRAMH[17:10]
BMXIRAMHI[9:4]

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

CRYPTWERR

CRYPTRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YRAMWERR

YRAMRERR

YDATPR

XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR
XRAMWERR

IRAMWERR

XRAMRERR
IRAMRDERR

XDATPR

SFRWERR
ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR
SFRWERR

ADDWERR

SFRRERR
ADDRERR

ICDPR
DMAPR

PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR
PGSPCWERR
BADTGTWER
R
PGSPCRERR
BADTGTRERR

188

4.3.1. Bus Initiator Priority Control Register

Name: BMXINITPR
Offset: 0x770

Note:
1. CPU has the highest priority.

Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | | ICDPR_ |
Access R/W
Reset 0
Bit 7 6 5 4 3 2 1 0
NVMPR | CAN2PR | CANTPR | CRYPTPR | CPUPR | YDATPR | XDATPR | DMAPR |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 8 - ICDPR ICD Priority Override bit

Value Description
1 Raise ICD initiator priority above CPU.
0 No change to ICD initiator priority

Bit 7 - NVMPR NVM Priority Override bit

Value Description
1 Raise NVM initiator RAM access priority above CPU.
0 No change to NVM initiator RAM access priority

Bit 6 - CAN2PR CAN2 Priority Override bit

Value Description
1 Raise CAN 2 initiator priority above CPU.
0 No change to CAN 2 initiator priority

Bit 5 - CAN1PR CAN/1 Priority Override bit

Value Description
1 Raise CAN 1 initiator priority above CPU.
0 No change to CAN 1 initiator priority

Bit 4 - CRYPTPR Crypto Priority Override bit

Value Description
1 Raise Crypto Accelerator priority above CPU.

@ MICROCHIP

189

Value Description
0 No change to Crypto Accelerator priority

Bit 3 - CPUPR CPU Priority Override bit

Value Description
1 Raise CPU initiator priority above CPU.
0 No change to CPU initiator priority

Bit 2 - YDATPR Y RAM Priority Override bit

Value Description
1 Raise Y RAM initiator priority above CPU.
0 No change to Y RAM initiator priority

Bit 1 - XDATPR X RAM Priority Override bit

Value Description
1 Raise X RAM initiator priority above CPU.
0 No change to X RAM initiator priority

Bit 0 - DMAPR DMA Priority Override bit

Value Description
1 Raise DMA initiator RAM access above CPU.
0 No change to DMA initiator RAM access priority

190

@ MICROCHIP

4.3.2. BMX Instruction RAM Low Address Register

Name: BMXIRAML
Offset: 0x774

Bit 31 30 29 28 27 26 25 24
| BMXIRAML[33:26]
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| BMXIRAML[25:18]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
BMXIRAML[17:10]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
BMXIRAML[9:4]
Access RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 31:2 - BMXIRAML[31:2] Lower Boundary Address for Instruction RAM bits
Defines the lower boundary address (inclusive) for instruction RAM.

@ MICROCHIP

191

4.3.3. BMX Instruction RAM High Address Register

Name: BMXIRAMH
Offset: 0x778

Bit 31 30 29 28 27 26 25 24
| BMXIRAMH[33:26]
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| BMXIRAMH[25:18]
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
BMXIRAMH[17:10]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
BMXIRAMH[9:4]
Access R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 31:2 - BMXIRAMHI[31:2] Upper Boundary Address for Instruction RAM bits

Defines the upper boundary address (non-inclusive) for instruction RAM,

@ MICROCHIP

192

4.3.4. BMKX Error Status Register for X Data Bus Initiator

Name: BMXXDATERR
Offset: 0x77C

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR]|
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRAMRDERR | ADDRERR [BADTGTRERR
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description
1 Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description
1 Bus error generated by Crypto space write operation
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description
1 Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description
1 Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

@ MICROCHIP

193

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Targety Bus Read Error Flag bit

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

Value Description
1 Bus error generated by program space read operation
0 No error on program space read operation

@ MICROCHIP

194

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

195

@ MICROCHIP

4.3.5. BMKX Error Status Register for Y Data Bus Initiator

Name: BMXYDATERR
Offset: 0x780

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR]|
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRAMRDERR | ADDRERR [BADTGTRERR
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description
1 Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description
1 Bus error generated by Crypto space write operation
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description
1 Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description
1 Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

@ MICROCHIP

196

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Target y Bus Read Error Flag bit

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

Value Description
1 Bus error generated by program space read operation
0 No error on program space read operation

@ MICROCHIP

197

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

198

@ MICROCHIP

4.3.6. BMKX Error Status Register for DMA Initiator

Name: BMXDMAERR
Offset: 0x784

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR]|
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRAMRDERR | ADDRERR [BADTGTRERR
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description
1 Bus error generated by debug RAM write operation.
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description
1 Bus error generated by Crypto space write operation.
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Y RAM Write Error bit

Value Description
1 Bus error generated by Y RAM write operation.
0 No error on Y RAM write operation

Bit 26 - XRAMWERR X RAM Write Error bit

Value Description
1 Bus error generated by X RAM write operation.
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

Value Description
1 Bus error generated by SFR write operation.
0 No error on SFR write operation

@ MICROCHIP

199

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation.
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space.
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space.
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space.
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation.
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation.
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Targety Bus Read Error Flag bit

Value Description
1 Bus error generated by YRAM read operation.
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit

Value Description
1 Bus error generated by XRAM read operation.
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by the SFR read operation.
0 No error on the SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

Value Description
1 Bus error generated by program space read operation.
0 No error on program space read operation

@ MICROCHIP

200

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space.
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space.
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space.
0 No invalid target error

201

@ MICROCHIP

4.3.7. BMKX Error Status Register for CPU Initiator

Name: BMXCPUERR
Offset: 0x788

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR]|
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRAMRDERR | ADDRERR [BADTGTRERR
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description
1 Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description
1 Bus error generated by Crypto space write operation
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description
1 Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description
1 Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

@ MICROCHIP

202

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Targety Bus Read Error Flag bit

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

Value Description
1 Bus error generated by program space read operation
0 No error on program space read operation

@ MICROCHIP

203

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

204

@ MICROCHIP

4.3.8. BMX Error Status Register for Crypto Module Initiator

Name: BMXCRYPTERR
Offset: 0x78C

Note:
1. See Table 4-3 for target bus error indices.

Legend:y=0,1, 2, 3, 4.

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR |
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
| DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR |
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | | IRAMRDERR | ADDRERR [BADTGTRERR|
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description

Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description

Bus error generated by Crypto space write operation
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description

Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description

Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

205

@ MICROCHIP

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Target y Bus Read Error Flag bit(V

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit("

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

@ MICROCHIP

206

Value Description

1 Bus error generated by program space read operation
0 No error on program space read operation

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

@ MICROCHIP

207

4.3.9. BMKX Error Status Register for CAN 1 Initiator

Name: BMXCAN1TERR
Offset: 0x790

Note:
1. See Table 4-3 for target bus error indices.

Legend: x=0, 1, 2, 3, 4.

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR |
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
| DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR |
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | | IRAMRDERR | ADDRERR [BADTGTRERR|
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description

Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description

Bus error generated by Crypto space write operation
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description

Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description

Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

208

@ MICROCHIP

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto Accelerator read operation
0 No error on Crypto Accelerator read operation

Bit 11 - YRAMRERR Target y Bus Read Error Flag bit(V

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit("

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

@ MICROCHIP

209

Value Description

1 Bus error generated by program space read operation
0 No error on program space read operation

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

@ MICROCHIP

210

4.3.10. BMKX Error Status Register for CAN 2 Initiator

Name:
Offset:

Note:

BMXCANZ2ERR
0x794

1. See Table 4-3 for target bus error indices.

Bit 31 30 29 28 27 26 25 24
| | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR |
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
| DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR |
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | | IRAMRDERR | ADDRERR [BADTGTRERR|
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description

0

Bus error generated by debug RAM write operation
No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description

0

Bus error generated by Crypto space write operation
No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description

0

Bus error generated by Y RAM write operation
No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description

0

Bus error generated by X RAM write operation
No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

@ MICROCHIP

211

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Target y Bus Read Error Flag bit(V

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit("

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

@ MICROCHIP

212

Value Description

1 Bus error generated by program space read operation
0 No error on program space read operation

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

@ MICROCHIP

213

4.3.11. BMKX Error Status Register for Program Space Initiator

Name: BMXNVMERR
Offset: 0x798

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR]|
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRAMRDERR | ADDRERR [BADTGTRERR
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description
1 Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description
1 Bus error generated by a crypto write operation
0 No error generated by a crypto operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description
1 Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description
1 Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

@ MICROCHIP

214

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description

‘

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Targety Bus Read Error Flag bits

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bits

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

Value Description
1 Bus error generated by program space read operation
0 No error on program space read operation

@ MICROCHIP

215

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error

216

@ MICROCHIP

4.3.12. BMX Error Status Register for Debug Initiator

Name: BMXICDERR
Offset: 0x79C

Bit 31 30 29 28 27 26 25 24
| | | DBGWERR | CRYPTWERR | YRAMWERR | XRAMWERR | SFRWERR |PGSPCWERR]|
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
IRAMWERR | ADDWERR [BADTGTWER
R
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
DBGRERR | CRYPTRERR | YRAMRERR | XRAMRERR | SFRRERR | PGSPCRERR
Access R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C R/HS/C
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRAMRDERR | ADDRERR [BADTGTRERR
Access R/HS/C R/HS/C R/HS/C
Reset 0 0 0

Bit 29 - DBGWERR Debug RAM Write Error bit

Value Description
1 Bus error generated by debug RAM write operation
0 No error on debug RAM write operation

Bit 28 - CRYPTWERR Crypto Write Error bit

Value Description
1 Bus error generated by Crypto space write operation
0 No error on Crypto space write operation

Bit 27 - YRAMWERR Target Y Bus Write Error Flag bit

Value Description
1 Bus error generated by Y RAM write operation
0 No error on Y RAM write operation

Bit 26 - XRAMWERR Target X Bus Write Error Flag bit

Value Description
1 Bus error generated by X RAM write operation
0 No error on X RAM write operation

Bit 25 - SFRWERR SFR Write Error bit

Value Description
1 Bus error generated by SFR write operation
0 No error on SFR write operation

@ MICROCHIP

217

Bit 24 - PGSPCWERR Program Space Write Error bit

Value Description
1 Bus error generated by Program Space write operation
0 No error on Program Space write operation

Bit 18 - IRAMWERR |IRAM Write Error Flag bit

Value Description
1 Error generated by invalid instruction write outside of IRAM space
0 No IRAM write address errors

Bit 17 - ADDWERR Invalid Address Write Error Flag bit

Value Description
1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 16 - BADTGTWERR Invalid Target Write Error Flag bit

Value Description
1 Error generated by write to disallowed target space
0 No invalid target write error

Bit 13 - DBGRERR Debug RAM Read Error bit

Value Description
1 Bus error generated by debug RAM read operation
0 No error on debug RAM read operation

Bit 12 - CRYPTRERR Crypto Read Error bit

Value Description
1 Bus error generated by Crypto space read operation
0 No error on Crypto space read operation

Bit 11 - YRAMRERR Targety Bus Read Error Flag bit

Value Description
1 Bus error generated by YRAM read operation
0 No error on YRAM read operation

Bit 10 - XRAMRERR Target x Bus Read Error Flag bit

Value Description
1 Bus error generated by XRAM read operation
0 No error on XRAM read operation

Bit 9 - SFRRERR SFR Read Error bit

Value Description
1 Bus error generated by SFR read operation
0 No error on SFR read operation

Bit 8 - PGSPCRERR Program Space Read Error Flag bit

Value Description
1 Bus error generated by program space read operation
0 No error on program space read operation

@ MICROCHIP

218

Bit 2 - IRAMRDERR |IRAM Read Error Flag bit

Value Description

1 Error generated by invalid instruction read outside of IRAM space
0 No IRAM read address errors

Bit 1 - ADDRERR Invalid Address Error Flag bit

Value Description

1 Error generated by read or write to invalid address space
0 No unimplemented address write error

Bit 0 - BADTGTRERR Invalid Target Read Error Flag bit

4.4.

4.4.1.

4.4.1.1.

Value Description

1 Error generated by read to disallowed target space
0 No invalid target error
BMX Operation

The purpose of the BMX is to decode addresses, provide arbitration between multiple initiators
requesting access to the same target and to provide concurrent access to multiple targets from
different initiators.

Arbitration

The BMX supports a decentralized fixed priority arbitration scheme. Each target has an independent
arbitrator which will grant read and write requests to an initiator when that target is available.

The default priority of an initiator is fixed and determined by the initiator's index on the bus. The
priorities are shown in Table 4-2.

Table 4-2. Initiator Priority
Highest 0 CPU X Data Bus (CPU XDS)
CPU Y Data Bus (CPU YDS)
DMA
CPU Instruction Bus (CPU IS)
Crypto
CAN1
CAN2
NVM

N oo AN =

Lowest

Priority Overrides

The BMXINITPR register can be used to temporarily override the default priority scheme when
accessing RAM targets. When the corresponding bit is set, an initiator will have its priority raised
above the native priorities of the CPU and other initiators. The ICD bus master does not support
priority overrides; it will always be the lowest priority and does not have an associated BMXINITPR
bit.

If multiple override bits are set, priority between the overridden initiators is determined by their
natural priority order. For initiators that do not win arbitration, the BMX will stall the initiator of

the lower priority transaction until a subsequent cycle, after the target access completes, when the
initiator does win arbitration. Losing initiators will be forced to stall until no higher priority initiators
are requesting the target.

@ MICROCHIP

219

4.4.2. Concurrency

As the BMX has an independent address decode for each initiator and independent arbiters for each
target, it supports concurrent accesses. As long as each initiator is accessing a unique target, all
reads and writes can proceed simultaneously.

4.4.3. Write Buffers

The targets can operate on slower clock sources than the initiators, and the BMX requires that
targets have the ability to buffer writes. The target is then responsible for completing the write.
Posting the write improves performance since the write completes sooner from the perspective of
the CPU.

Posting writes improves single write performance only. Back-to-back writes can cause stalls to
initiators if the clocking for the target is not set to a 1:1 ratio. Write buffers are only one deep, so
repeated writes will be held by the BMX until the buffer is empty and the previous write completes.
All transactions to a target complete in order, and, therefore, reads are never allowed to pass writes.

4.4.4. Debug RAM

The BMX supports a RAM target for use in Debug mode only. The debug RAM space is at a fixed
location and is from 0x7BFEOO to Ox7BFFFF.

The ICD initiator can always access debug RAM. For other initiators, both read and write access

to debug scratch pad RAM is disallowed unless the device is in Debug mode. Access to the debug
RAM when outside of Debug mode will generate a bus error and set the ADDRERR (BMXxERR[1]) bit.
Additionally, debug RAM is not a valid target for the CPU instruction bus regardless of the Debug
state and will cause a bus error.

Note that because the CPU does not handle traps while in Debug mode, in some circumstances, bus
errors caused in Debug mode may result in a ‘soft lock’ situation that will require a device Reset to
resolve.

4.4.5. Bus Error
The Bus Matrix generates a bus error exception back to an initiator on any failed access. Failed
accesses can occur for a number of reasons.
+ Unimplemented memory in a valid target space. For example, the DMA accessing XRAM higher
than allowed by RAM array size.
* Any location in an invalid target space. For example, ICD addressing program space.

+ Instruction bus reads outside of the memory range defined by either of the BMXIRAML/H
registers. Note, the BMX will not generate bus errors for instruction bus accesses targeting Flash.
The Flash controller will generate the bus error and indicate status in NVMCON register.

+ Instruction bus reads of the debug RAM target, regardless of the BMXIRAML/H setting.

« A RAM write request is generated to the instruction RAM space defined by the BMXIRAML/H
registers.

* Flash or RAM read results in an ECC Double-Bit Error (ECC DED). This bus error is generated by
the target and passed up to the initiator, which will cause the initiator's Bus Error trap.

+ The target indicates a bus error (root causes are target-specific).

When a bus error is generated within the BMX, it will set the relevant bit within the BMXxERR
register for the initiator which generated the transaction. The user can diagnose the error by
examining the error register of the initiator responsible for the trap, using BMXXERR in conjunction
with the target error registers. See Table 4-3 for initiator indexes.

As the BMX supports simultaneous read and write operations to some targets, bus errors are split
into separate read or write operation errors. This ensures that even if two simultaneous errors
occur, they can both be captured.

220

@ MICROCHIP

Table 4-3. Target to Bus Error Index Mapping

TGTRaRRy (MERR(135)

0 Program Space Read
1 Bus Splitter/SFRs
2 XRAM

3 YRAM

4 Debug RAM Target
5 Crypto

4.4.5.1. Valid Targets

Not all targets are valid destinations for each initiator. Refer to Table 4-4 for details on which targets
are valid for each initiator.

Accessing an invalid target will generate a bus error and set the BADTGTWERR (BMXXERR[16]) or
BADTGTRERR (BMXXERR[0] bit.

Table 4-4. Valid Targets by Initiator

N
Initiators
CPU X Data v v v If Debug mode v —
is enabled
CPU Y Data — v v If Debug mode — —
is enabled
DMA v v v — v —
CPU Instruction — v v — — —
Crypto v v v v — v
CAN1 v v v — — —
CAN2 v v v — — —
NVM v — — — — —
ICD — v v v v —

4.4.5.2. Initiator Bus Error Handling
The BMX does not directly generate any trap or interrupt signals on error events. Instead, the
corresponding initiator will generate the event. Similarly, the BMX will not alter any data.
While initiators will handle bus errors differently, depending on individual module requirements, the
most typical handling of a bus error is as follows:
« Ignore or discard returned read data and retain failed write data.
« Abort or halt an operation in progress.

* Generate an interrupt or trap signal to the interrupt controller indicating a Bus Error state.

4.4.5.3. Target Bus Error Handling

A target will generate a bus error in any situation where it is unable to deliver data back to the BMX
on a read event or unable to latch data on a write event. The target will retain relevant error status
information which can be used to determine the cause of the bus error.

The BMX will set the TGTWERRyY (BMXERRX[28:24]) or TGTRERRy (BMXERRX[12:8]) bits for the specific
target that caused the error within the Error register for the initiator that generated the bus
transaction.

For example, an ECC DED error on an XRAM read by the CPU would set the