Compact Direct Operated

2/3 Port Solenoid Valve for Water and Air Series VDW

VDW10/20/30: 2 Port, VDW200/300: 3 Port

Compact Direct Operated 2/3 Port Solenoid Valve for Water and Air

Series VDW

- Compact (compared to series VX)

Single valve volume: Reduced 75\% (VDW20)
Manifold length: Reduced 18\% (VDW30, 7 stations)

- Light weight (compared series VX)

100 g : Reduced approx. 50% (for orifice size equivalent to ø2)

Improved durability (nearly twice the life of the previous series)

The use of a unique magnetic material reduces the operating resistance of moving parts, while improving service life, wear and corrosion resistance.

Clip type

Quick change coils Clip design makes coil replacement easy (2 port)

Threaded assembly
Simplifies maintenance Brass/Stainless steel manifolds added to series (2 port)

Mounting bracket also available

Compact Direct Operated
 2 Port Solenoid Valve for Water and Air Series VDW10/20/30

How to Order Valves (Single Type)
Series

$\mathbf{1}$	10
$\mathbf{2}$	20
$\mathbf{3}$	30

Valve type

Voltage

$\mathbf{1}$	$100 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{3}$	$110 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{4}$	$220 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{5}$	24 VDC
$\mathbf{6}$	12 VDC

cirdef Contact SMC regarding other voltages
Protective class
Class II (Mark: 回)........ Over 50V Class III (Mark: ©II) $1 . \ldots . . .50 \mathrm{~V}$ and less

Electrical entry ${ }^{\circ}$

Materials and insulation type

Symbol	Body material	Seal material	Coil insulation

Nil	Brass	NBR	Class B
A		FKM	
G	Stainless steel	NBR	
H		FKM	
$L^{\text {Note) }}$		FKM	

Note) For pure water: Armature assembly is a corrosion resistant construction.

Nil	Rc
\mathbf{F}	G
\mathbf{N}	NPT

Standard Specifications

	Valve construction	Direct operated poppet
	Fluid Note 2)	Water (except waste water or agricultural water), Air, Low vacuum
	Withstand pressure MPa	2.0
	Ambient temperature ${ }^{\circ} \mathrm{C}$	-10 to 50
	Fluid temperature ${ }^{\circ} \mathrm{C}$	1 to 50 (with no freezing)
	Environment	Location without corrosive or explosive gases
	Valve leakage cm3/min	0 (with water pressure)
	Mounting orientation	Unrestricted
	Vibration/lmpact m/s2 ${ }^{\text {Note 4) }}$	30/150
	Rated voltage	24VDC, 12VDC
	Allowable voltage fluctuation \%	$\pm 10 \%$ of rated voltage
	Coil insulation type	Class B
	Enclosure ${ }^{\text {Note 5) }}$	Dust proof (equivalent to IP40)
	Power consumption W Note 3)	2.5 (VDW10), 3 (VDW20/30)

Note 1) Consult SMC when used under conditions which may cause condensation on the exterior of the product.
Note 2) When used with pure water, select "L" (stainless steel, FKM) for the material type.
Note 3) Since AC coil specifications include a rectifying device, there is no difference in power consumption for starting and holding.
In case of $110 / 220$ VAC, VDW10 is $3 W$ and VDW20/30 is $3.5 W$.
Note 4) Vibration resistance ... No malfunction when tested with one sweep of 5 to 200 Hz in the axial direction and at a right angle to the armature, in both energized and deenergized states.
Impact resistance ... No malfunction when tested with a drop tester in the axial direction and at a right angle to the armature, one time each in energized and deenergized states
Note 5) Consult SMC regarding drip-proof specifications (equivalent to IP54).

Characteristic Specifications

Model	Port size	Orifice size mm	Maximum pres differential	operating sure MPa Note 1) Pressure port 2	Operating pressure range MPa Note 2)	$\begin{gathered} \text { Effective area } \\ \mathrm{mm}^{2} \\ (\mathrm{Ne} / \mathrm{min}) \end{gathered}$	Weight kg
VDW10	M5	$\varnothing 1$	0.9	0.4	0 to 1.0	0.54 (29.50)	0.08
		$\varnothing 1.6$	0.4	0.2		1.2 (68.70)	
VDW20	$\begin{gathered} \text { M5 } \\ 1 / 8(6 A) \end{gathered}$	$\varnothing 1.6$	0.7	0.2		1.2 (68.70)	0.1
		ø2.3	0.4	0.1		3.2 (176.67)	
		ø3.2	0.2	0.05		5.8 (29.50)	
VDW30	$\begin{aligned} & 1 / 8(6 A) \\ & 1 / 4(8 A) \end{aligned}$	$\varnothing 2$	0.8	0.2		2.8 (157.04)	$\begin{aligned} & \text { 1/8: } 0.23 \\ & \text { 1/4: } 0.26 \end{aligned}$
		ø3	0.4	0.1		5.0 (274.82)	
		$\varnothing 4$	0.2	0.05		8.0 (431.86)	

Note 1) The maximum operating pressure differential changes depending on the flow direction of the fluid. Refer to page 4.4-20 for details.

Note 2) For low vacuum specifications, the operating pressure range is $1 \mathrm{Torr}\left(1.33 \times 10^{2} \mathrm{~Pa}\right)$ to 1.0 MPa . Consult SMC if used below 1Torr ($1.33 \times 10^{2} \mathrm{~Pa}$).

VDW11

Parts list				VX
				VN \square
				VQ
No.	Description	Material		VDW
		Standard	Optional	
1	Body	Brass	Stainless steel	VC
2	Tube assembly	Stainless steel	-	
3	Coil assembly	-	-	LV
4	Amature assembly	VDW11/21 Stainless steel, PPS	VDW11/21: Stainless steel, PPS, FKM	
		VDW31: Stainless steel, NBR	VDW31: Stainless steel, FKM	
5	O-ring (body)	NBR	FKM	
6	Return spring	Stainless steel	-	
7	Cover	SPCE	-	
8	clip	Stainless steel	-	

Series VDW10/20/30

Dimensions

VDW11

VDW31

Dimensions inside () are for port size 1/8.

Bracket assembly part no.

- Types 10, 20

- Type 30

VCW2O-12-01A

How to Order Valves (for Manifold)

$\mathbf{1}$	$100 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{2}$	$200 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{3}$	$110 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{4}$	$220 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
$\mathbf{5}$	24 VDC
$\mathbf{6}$	12 VDC

- Orifice size

Manifold Options

Blanking plate assembly

- Types 10, 20

		Materials
Symbol	Plate material	Seal material
\mathbf{G}	Stainless	NBR
\mathbf{H}	steel	FKM

* Plate material is stainless steel only.
- Type 30

Symbol	Plate material	Seal material
Nil	Brass	NBR
\mathbf{A}		FKM
\mathbf{G}	Stainless steel	NBR
		FKM

L dimensions

Dimensions	n (stations)								
	2	3	4	5	6	7	8	9	10
L1	35	52.5	70	87.5	105	122.5	140	157.5	175
L2	45	62.5	80	97.5	115	132.5	150	167.5	185
L3	52	69.5	87	104.5	122	139.5	157	174.5	192
Manifold composition	2 stns. $\times 1$	3 stns. $\times 1$	2 stns. $\times 2$	2 stns. +3 stns.	3 stns. $\times 2$	2 stns. $\times 2+3$ stns. 2 stns. +3 stns. $\times 2$	3 stns. $\times 3$	2 stns. $\times 2+3$ stns. $\times 2$	

VV2DW2

L dimensions

Dimensions	n (stations)								
	2	3	4	5	6	7	8	9	10
L1	44	66	88	110	132	154	176	198	220
L2	53	75	97	119	141	163	185	207	229
L3	62	84	106	128	150	172	194	216	238
Manifold composition	2 stns. x 1	3 stns. x 1	2 stns. $\times 2$	2 stns. +3 stns.	3 stns. $\times 2$	2 stns. $\times 2+3$ stns.	2 stns. +3 stns. $\times 2$	3 stns. $\times 3$	2 stns. $\times 2+3$ stns. $\times 2$

[^0]Refer to pages 4.4-11 and 4.4-12 regarding manifold additions.

Series VDW10/20/30

Dimensions

VV2DW3

D side
Stations
-1
(2)
(3)
(4)
(5)
(n) Uside

L dimensions

Dimensions	n (stations)								
	2	3	4	5	6	7	8	9	10
L1	69	103.5	138	172.5	207	241.5	276	310.5	345
L2	81	115.5	150	184.5	219	253.5	288	322.5	357
L3	93	127.5	162	196.5	231	265.5	300	334.5	369
Manifold composition	2 stns. $\times 1$	3 stns. $\times 1$	2 stns. $\times 2$	2 stns. +3 stns.	3 stns. $\times 2$	2 stns. $\times 2+3$ stns. 2 stns. +3 stns. $\times 2$	3 stns. $\times 3$	2 stns. $\times 2+3$ stns. $\times 2$	

[^1]Refer to pages 4.4-11 and 4.4-12 regarding manifold additions.

Manifold Exploded View

Manifold additions

[^2]Note) Manifold station additions can be made in units of 2 or 3 stations.
Order one set each of manifold base, connection plate assembly and passage pipe assembly.
<Manifold bases>

- Types 10, 20

-Type 30

$\mathbf{1}$	For 2 stations
$\mathbf{2}$	For 3 stations

- OUT port size

Symbol	Port size
$\mathbf{0 1}$	$1 / 8(6 \mathrm{~A})$
$\mathbf{0 2}$	$\mathbf{1} / 4(8 \mathrm{~A})$

<Connecting plate assembly>
Note) Two sets of connecting plate and mounting screws.

- Types 10, 20

VVDW 20 - 4A
Series 6

$\mathbf{1}$	10
$\mathbf{2}$	20

- Type 30

VVCW20-4A
<Passage pipe assembly>

- Types 10, 20

- Type 30

VVCW20 - 6A - $\square_{\varrho_{\text {Materials }}}$

Symbol	Pipe material	Seal material
Nil	Brass	NBR
\mathbf{A}		FKM
\mathbf{G}	Stainless steel	NBR
$\mathbf{n n}$		

<Bracket assembly>

Note) Consists of a set for the D and U sides.

- Types 10, 20

VVDW 20-5A

Series	
$\mathbf{1}$	10
$\mathbf{2}$	20

- Type 30

VVCW20-5A

Compact Direct Operated
 3 Port Solenoid Valve for Water and Air Series VDW200/300

How to Order Valves (Single Type)

Standard Specifications

	Valve construction	Direct operated poppet
	Fluid Note 2)	Water (except waste water or agricultural water), Air, Low vacuum
	Withstand pressure MPa	2.0
	Ambient temperature ${ }^{\circ} \mathrm{C}$	-10 to 50
	Fluid temperature ${ }^{\circ} \mathrm{C}$	1 to 50 (with no freezing)
	Environment	Location without corrosive or explosive gases
	Valve leakage cm $3 /$ min	0 (with water pressure)
	Mounting orientation	Unrestricted
	Vibration/lmpact m/s2 ${ }^{\text {Note 4) }}$	30/150
	Rated voltage	24VDC, 12VDC
	Allowable voltage fluctuation \%	$\pm 10 \%$ of rated voltage
	Coil insulation type	Class B
	Enclosure ${ }^{\text {Note } 5)}$	Dust proof (equivalent to IP40)
	Power consumption W ${ }^{\text {Note }}$ 3)	3

Note 1) Consult SMC when used under conditions which may cause condensation on the exterior of the product.
Note 2) When used with pure water, select "L" (stainless steel, FKM) for the material type.
Note 3) Since AC coil specifications include a rectifying device, there is no difference in power consumption for starting and holding.
3.5 W in case of $110 / 220 \mathrm{VAC}$.

Note 4) Vibration resistance ...No malfunction when tested with one sweep of 5 to 200 Hz in the axial direction and at a right angle to the armature, in both energized and deenergized states.
Impact resistance No malfunction when tested with a drop tester in the axial direction and at a right angle to the armature, one time each in energized and deenergized states.
Note 5) Consult SMC regarding drip-proof specifications (equivalent to IP54).

Characteristic Specifications

Model	Port size	Orifice size mm	Maximum operating pressure differential MPa Note 3)		Operating pressure range MPa Note 4)	$\begin{gathered} \text { Effective area } \\ \mathrm{mm}{ }^{2} \\ \text { (Ne/min) } \\ \text { Note } 1 \text {) } \end{gathered}$	Weight kg
			Pressure port 1	$\begin{array}{\|l\|l\|} \hline \text { Pressure ports } 2,3 \\ \hline \end{array}$			
VDW200	$\begin{gathered} \text { M5 } \\ 1 / 8(6 A) \end{gathered}$	$\varnothing 1$	0.9	0.3	0 to 1.0	0.54 (29.50)	0.12
		$\varnothing 1.6$	0.7	0.1		1.2 (68.70)	
VDW300	$\begin{aligned} & 1 / 8(6 A) \\ & 1 / 4(8 A) \end{aligned}$	ø2	0.8	0.2		2.8 (157.04)	$\begin{aligned} & 1 / 8: 0.27 \\ & 1 / 4: 0.30 \end{aligned}$
		ø3	0.4	0.1		5.0 (274.82)	
		$\varnothing 4$	0.2	0.05		8.0 (431.86)	

Note 1) Effective area is for the case when IN is normally closed (N.C.).
Note 2) Indicates the maximum operating pressure differential of pressure ports 2 and 3.
Note 3) The maximum operating pressure differential changes depending on the flow direction of the fluid. Refer to page 4.4-20 for details
Note 4) For low vacuum specifications, the operating pressure range is $1 \mathrm{Torr}\left(1.33 \times 10^{2} \mathrm{~Pa}\right)$ to 1.0 MPa . Consult SMC if used below 1Torr ($\left.1.33 \times 10^{2} \mathrm{~Pa}\right)$.

VDW350

Parts list
VQ

No.	Description	Material	
		Standard	
$\mathbf{1}$	Body	Optional	
$\mathbf{2}$	Tube assembly	Stainless steel	Stainless steel
$\mathbf{3}$	Coil assembly	-	-
$\mathbf{4}$	Amature assembly	VDW250: Stainless steel, PPS, NBR	VDW250: Stainless steel, PPS, FKM
		VDW350: Stainless steel, NBR	VDW350: Stainless steel, FKM
		NBR	FKM
$\mathbf{6}$	Return spring	Stainless steel	-
$\mathbf{7}$	Cover	SPCE	-
$\mathbf{8}$	Socket	Brass	Stainless steel
$\mathbf{9}$	O-ring	NBR	FKM
$\mathbf{1 0}$	Plate	SPCC	-
$\mathbf{1 1}$	Wave washer	Stainless steel	-

VDW250

VDW350

Bracket part no.

- Type 200

VDW20-15A-1

- Type 300

VCW20-12-01A

For air

Viewing The sonic range pressure to generate a flow rate of 300e/min (ANR) the graph for orifice ø2.3 (VDW20) is P 1 approx. 0.77 MPa , for orifice ø3 (VDW30) is P_{1} approx. 0.45 MPa , for orifice ø4 (VDW30) is P 1 approx. 0.24 MPa .
How to find the flow rate for air

1. For subsonic range
Where $\mathrm{P}_{1}+0.1013=(1$ to 1.8941$)\left(\mathrm{P}_{2}+0.1013\right)$
• Formula based on Cv factor
$\mathrm{Q}=4073.4 \cdot \mathrm{Cv} \cdot \sqrt{\Delta \mathrm{P}\left(\mathrm{P}_{2}+0.1013\right)} \ldots \mathrm{e} / \mathrm{min}(\mathrm{ANR})$
• Formula based on effective area
$\mathrm{Q}=226.3 \cdot \mathrm{~S} \cdot \sqrt{\Delta \mathrm{P}\left(\mathrm{P}_{2}+0.1013\right)} \ldots \ldots \mathrm{e} / \mathrm{min}(\mathrm{ANR})$
2. For sonic range
Where $\mathrm{P}_{1}+0.1013 \geq 1.8941(\mathrm{P} 2+0.1013)$
• Formula based on Cv factor
$\mathrm{Q}=1972.8 \cdot \mathrm{Cv} \cdot\left(\mathrm{P}_{1}+0.1013\right) \ldots \mathrm{e} / \mathrm{min}(\mathrm{ANR})$
• Formula based on effective area
$\mathrm{Q}=109.6 \cdot \mathrm{~S} \cdot\left(\mathrm{P}_{1}+0.1013\right) \ldots \ldots . \mathrm{e} / \mathrm{min}(\mathrm{ANR})$

For water

Viewing To generate a water flow of $4 \ell / \mathrm{min}$ at a differential pressure of the graph 0.1 MPa , an effective area with Cv factor 0.28 (VDW30ø3) or more is required.
How to find the flow rate for water

•Formula based on Cv factor
$\mathrm{Q}=14.2 \cdot \mathrm{Cv} \cdot \sqrt{10.2 \cdot \Delta \mathrm{P}} \ldots$ e/min
\bullet Formula based on effective area $\left(\mathrm{Smm}^{2}\right)$
$\mathrm{Q}=0.8 \cdot \mathrm{~S} \cdot \sqrt{10.2 \cdot \Delta \mathrm{P}} \ldots \ldots$ e/min

Q: Flow rate (e/min), $\Delta \mathrm{P}:$ Pressure differential $\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right), \mathrm{P} 1:$ Upstream pressure (MPa)
P2: Downstream pressure $(\mathrm{MPa}), \mathrm{S}:$ Effective area $\left(\mathrm{mm}^{2}\right), \mathrm{Cv}: \mathrm{Cv}$ factor

$$
\mathrm{Q}=14.2 \cdot \mathrm{Cv} \cdot \sqrt{10.2 \cdot \Delta \mathrm{P}} \ldots e / \mathrm{min}
$$

$$
\text { Formula based on effective area }\left(\mathrm{Smm}^{2}\right)
$$

$$
\mathrm{Q}=0.8 \cdot \mathrm{~S} \cdot \sqrt{10.2 \cdot \Delta \mathrm{P} \ldots \ldots e / \mathrm{min}}
$$

Explanation of Terminology

Pressure Terminology

1. Maximum operating pressure differential

This indicates the maximum pressure differential (upstream and downstream pressure differential) which can be allowed for operation with the valve closed or open. When the downstream pressure is 0 MPa , this becomes the maximum operating pressure.

2. Maximum operating pressure

This indicates the limit of pressure that can be applied inside the pipelines. (line pressure)
(The pressure differential of the solenoid valve unit must be no more than the maximum operating pressure differential.)

3. Withstand pressure

The pressure which must be withstood without a drop in performance after returning to the operating pressure range. (the value under the prescribed conditions)

Electrical Terminology

1. Surge voltage

A high voltage which is momentarily generated in the shut-off unit by shutting off the power.

Other	
1. Materials	VX

NBR: Nitrile rubber
FKM: Fluoro rubber - Trade names: Viton®, Dai-el, etc.

Series VDW
2/3 Port Solenoid Valve for Fluid Control
Be sure to read before handling.

Wiring

Caution

1. As a rule, use electrical wire of 0.5 to $1.25 \mathrm{~mm}^{2}$ or more.
Furthermore, do not allow excessive force to be applied to the lines.
2. Use electrical circuits which do not generate chattering in their contacts.
3. Use voltage which is within $\pm 10 \%$ of the rated voltage. In cases of a DC power supply where emphasis is placed on responsiveness, stay within $\pm 5 \%$ of the rated value. The voltage drop is the value in the lead wire section connecting the coil.

Electrical Connections

\triangle Caution

Rated voltage	Lead wire color	
	(1)	
DC	Black	

* DC does not have polarity.

Electrical Circuits

\triangle Caution

DC circuit

Operating Environment

Warning

1. Do not use valves in atmospheres of corrosive gases, chemicals, salt water, water or steam, or where there is direct contact with same.
2. Do not use in explosive atmospheres.
3. Do not use in locations subject to vibration or impact.
4. Do not use in locations where radiated heat will be received from nearby heat sources.
5. Employ suitable protective measures in locations where there is contact with water droplets, oil or welding spatter, etc.

Maintenance

Warning

1. Perform maintenance in accordance with the procedures in the instruction manual.
Improper handling can cause damage or malfunction of equipment and devices, etc.
2. Demounting of the product
3. Shut off the fluid supply and release the fluid pressure in the system.
4. Shut off the power supply.
5. Demount the product
6. Low frequency operation

Switch valves at least once every 30 days to prevent malfunction. In addition, perform maintenance inspections once every six months to ensure optimum performance.

\triangle Caution

1. Filters and strainers

1. Be careful regarding clogging of filters and strainers.
2. Replace filter elements after one year of use, or earlier if the amount of pressure drop reaches 0.1 MPa .
3. Clean strainers when the amount of pressure drop reaches 0.1 MPa .
4. Flush drainage from filters periodically.

2. Storage

In case of long term (approx. one month or more) storage after use with water, first thoroughly remove all moisture to prevent rust and deterioration of rubber materials, etc.

Series VDW/Specific Product Precautions 1
Be sure to read before handling.

Replacement of the Solenoid Coil

\triangle Caution

Tube assembly groove

After replacing the coil, insert the clip into the tube assembly groove from direction (3). After inserting it into the groove, confirm the position and condition of the clip.

Inserted condition

3 port valve

After removing the socket with a wrench, etc., lift off the plate, wave washer and cover, and replace the coil assembly. After replacing the coil, first tighten the socket by hand while holding down the plate and wave washer, and then tighten it further with a torque of 0.8 to $1 \mathrm{~N} \cdot \mathrm{~m}$.

* Precautions when attaching and removing the socket
- Be careful that the O-ring installed on the bottom (plate side) of the socket does not fall out or become chewed up, etc.
- Be sure to hold the body with a wrench, etc., and tighten the socket within the tightening torque range given above. If excessive torque is applied, there is a danger of damaging the threads.

Series VDW/Specific Product Precautions 2
Be sure to read before handling.

Replacement Parts

Solenoid coil part numbers

Note 1) In case of a type C coil (for 10, 30, 300), the cover will be an integrated type.
To have a label on the cover, enter the part number below together with the coil part number.
AZ-T-VDW
How to Order Valves (Refer to pages 4.4-3, 4.4-7 and 4.4-13.)

Clip part numbers (2 port)
VDW
2-10

Series

$\mathbf{2}$	10,20
$\mathbf{3}$	30

Piping to 3 Port Valve N.O. Port

\triangle Caution

When piping to an N.O. port, be sure to perform piping work while holding the socket with a wrench or other tool.

Fluid Flow Direction
 \triangle Caution

The maximum operating pressure differential differs depending on the flow direction of the fluid. If the pressure differential at each port exceeds the values in the table below, valve leakage may occur.

Model	Orifice size mm	Maximum operating pressure differential MPa	
		Pressure port 2 Note 1)	
VDW10	$\varnothing 1$	0.9	0.4
	$\varnothing 1.6$	0.4	0.2
VDW20	$\varnothing 1.6$	0.7	0.2
	$\varnothing 2.3$	0.4	0.1
	$\varnothing 3.2$	0.2	0.05
VDW30	$\varnothing 2$	0.8	0.2
	$\varnothing 3$	0.4	0.1
	$\varnothing 4$	0.2	0.05

Note) When applying pressure from port 2, be careful to avoid vibration and impacts, etc.

in

Model	Orifice size mm	Maximum operating pressure differential MPa	
		Pressure port 1	Pressure ports 2, 3 Note 1 \& 2)
VDW200	$\varnothing 1$	0.9	0.3
	$\varnothing 1.6$	0.7	0.1
VDW300	$\varnothing 2$	0.8	0.2
	ø3	0.4	0.1
	$\varnothing 4$	0.2	0.05

Note 1) Indicates the maximum operating pressure differential for pressure ports 2 and 3. Note 2) When the port 2 pressure is the higher pressure, be careful to avoid vibration and impacts, etc.

[^0]: Note) Manifold bases are composed by connecting 2 station and 3 station bases

[^1]: Note) Manifold bases are composed by connecting 2 station and 3 station bases

[^2]: 1 Install a passage pipe assembly in between the manifold bases to be added.
 \downarrow
 2 Connect the respective manifold bases with a connecting plate assembly. (Tightening torque: $0.9 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$)
 \downarrow
 3 Attach brackets to the manifold bases. \{when equipped with brackets\} (Tightening torque: $0.9 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$)

