FAN3216 / FAN3217
Dual 2-A, High-Speed, Low-Side Gate Drivers

Features
- Industry-Standard Pinouts
- 4.5-V to 18-V Operating Range
- 3-A Peak Sink/Source at VDD = 12 V
- 2.4-A Sink / 1.6-A Source at VOUT = 6 V
- Inverting Configuration (FAN3216) and Non-Inverting Configuration (FAN3217)
- Internal Resistors Turn Driver Off If No Inputs
- 12-ns / 9-ns Typical Rise/Fall Times (1 nF Load)
- 20-ns Typical Propagation Delay Time Matched within 1 ns to the Other Channel
- TTL Input Thresholds
- MillerDrive™ Technology
- Double Current Capability by Paralleling Channels
- Standard SOIC-8 Package
- Rated from –40°C to +125°C Ambient
- Automotive Qualified to AEC-Q100 (F085 Versions)

Applications
- Switch-Mode Power Supplies
- High-Efficiency MOSFET Switching
- Synchronous Rectifier Circuits
- DC-to-DC Converters
- Motor Control
- Automotive-Qualified Systems (F085 Versions)

Description
The FAN3216 and FAN3217 dual 2 A gate drivers are designed to drive N-channel enhancement-mode MOSFETs in low-side switching applications by providing high peak current pulses during the short switching intervals. They are both available with TTL input thresholds. Internal circuitry provides an under-voltage lockout function by holding the output LOW until the supply voltage is within the operating range. In addition, the drivers feature matched internal propagation delays between A and B channels for applications requiring dual gate drives with critical timing, such as synchronous rectifiers. This also enables connecting two drivers in parallel to effectively double the current capability driving a single MOSFET.

The FAN3216/17 drivers incorporate MillerDrive™ architecture for the final output stage. This bipolar-MOSFET combination provides high current during the Miller plateau stage of the MOSFET turn-on / turn-off process to minimize switching loss, while providing rail-to-rail voltage swing and reverse current capability.

The FAN3216 offers two inverting drivers and the FAN3217 offers two non-inverting drivers. Both are offered in a standard 8-pin SOIC package.
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Logic</th>
<th>Input Threshold</th>
<th>Package</th>
<th>Packing Method</th>
<th>Quantity per Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN3216TMX</td>
<td>Dual Inverting Channels</td>
<td>TTL</td>
<td>SOIC-8</td>
<td>Tape & Reel</td>
<td>2,500</td>
</tr>
<tr>
<td>FAN3216TMX_F085(1)</td>
<td>Dual Inverting Channels</td>
<td>TTL</td>
<td>SOIC-8</td>
<td>Tape & Reel</td>
<td>2,500</td>
</tr>
<tr>
<td>FAN3217TMX</td>
<td>Dual Non-Inverting Channels</td>
<td>TTL</td>
<td>SOIC-8</td>
<td>Tape & Reel</td>
<td>2,500</td>
</tr>
<tr>
<td>FAN3217TMX_F085(1)</td>
<td>Dual Non-Inverting Channels</td>
<td>TTL</td>
<td>SOIC-8</td>
<td>Tape & Reel</td>
<td>2,500</td>
</tr>
</tbody>
</table>

All standard Fairchild Semiconductor products are RoHS compliant and many are also “Green” or going green. Green means the products are RoHS compliant AND they have limits on additional substances of Chlorine, Bromine and Antimony. For additional information on Fairchild’s “green” Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Note:
1. Qualified to AEC-Q100

Package Outlines

![Figure 3. SOIC-8 (Top View)](image)

Thermal Characteristics(2)

<table>
<thead>
<tr>
<th>Package</th>
<th>Θ_{JL}(^{(3)})</th>
<th>Θ_{JT}(^{(4)})</th>
<th>Θ_{JA}(^{(5)})</th>
<th>Ψ_{JB}(^{(6)})</th>
<th>Ψ_{JT}(^{(7)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin Small Outline Integrated Circuit (SOIC)</td>
<td>40</td>
<td>31</td>
<td>89</td>
<td>43</td>
<td>3.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:
2. Estimates derived from thermal simulation; actual values depend on the application.
3. Θ_{JL} (Θ_{JT}): Thermal resistance between the semiconductor junction and the bottom surface of all the leads (including any thermal pad) that are typically soldered to a PCB.
4. Θ_{JT} (Θ_{JA}): Thermal resistance between the semiconductor junction and the top surface of the package, assuming it is held at a uniform temperature by a top-side heatsink.
5. Θ_{JA} (Ψ_{JB}): Thermal resistance between junction and ambient, dependent on the PCB design, heat sinking, and airflow. The value given is for natural convection with no heatsink using a 2S2P board, as specified in JEDEC standards JESD51-2, JESD51-5, and JESD51-7, as appropriate.
6. Ψ_{JB} (Ψ_{JT}): Thermal characterization parameter providing correlation between semiconductor junction temperature and an application circuit board reference point for the thermal environment defined in Note 5. For the SOIC-8 package, the board reference is defined as the pcb copper adjacent to pin 6.
7. Ψ_{JT}: Thermal characterization parameter providing correlation between the semiconductor junction temperature and the center of the top of the package for the thermal environment defined in Note 5.
Pin Configurations

![Pin Configurations Diagram]

Pin Definitions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>No Connect. This pin can be grounded or left floating.</td>
</tr>
<tr>
<td>2</td>
<td>INA</td>
<td>Input to Channel A.</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground. Common ground reference for input and output circuits.</td>
</tr>
<tr>
<td>4</td>
<td>INB</td>
<td>Input to Channel B.</td>
</tr>
<tr>
<td>5</td>
<td>OUTB</td>
<td>Gate Drive Output B (inverted from the input): Held LOW unless required input is present and VDD is above UVLO threshold.</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>Supply Voltage. Provides power to the IC.</td>
</tr>
<tr>
<td>7</td>
<td>OUTA</td>
<td>Gate Drive Output A (inverted from the input): Held LOW unless required input is present and VDD is above UVLO threshold.</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>No Connect. This pin can be grounded or left floating.</td>
</tr>
</tbody>
</table>

Output Logic

<table>
<thead>
<tr>
<th>FAN3216 (x=A or B)</th>
<th>FAN3217 (x=A or B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INx</td>
<td>OUTx</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1<sup>(b)</sup></td>
<td>0</td>
</tr>
</tbody>
</table>

Note:

8. Default input signal if no external connection is made.
Figure 6. FAN3216 Block Diagram

Figure 7. FAN3217 Block Diagram
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>VDD to PGND</td>
<td>-0.3</td>
<td>20.0</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>INA and INB to GND</td>
<td>GND - 0.3</td>
<td>VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>OUTA and OUTB to GND</td>
<td>GND - 0.3</td>
<td>VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>TL</td>
<td>Lead Soldering Temperature (10 Seconds)</td>
<td>+260</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>Junction Temperature</td>
<td>-55</td>
<td>+150</td>
<td>ºC</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>-65</td>
<td>+150</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply Voltage Range</td>
<td>4.5</td>
<td>18.0</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>Input Voltage INA and INB</td>
<td>0</td>
<td>VDD</td>
<td>V</td>
</tr>
<tr>
<td>TA</td>
<td>Operating Ambient Temperature</td>
<td>-40</td>
<td>+125</td>
<td>ºC</td>
</tr>
</tbody>
</table>
Electrical Characteristics

Unless otherwise noted, \(V_{DD} = 12 \text{ V} \), \(T_J = -40^\circ \text{C} \) to \(+125^\circ \text{C} \). Currents are defined as positive into the device and negative out of the device.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Operating Range</td>
<td></td>
<td>4.5</td>
<td>18.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Supply Current, Inputs Not Connected</td>
<td></td>
<td>0.75</td>
<td>1.20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(V_{ON})</td>
<td>Turn-On Voltage (\text{INA}=V_{DD}, \text{INB}=0 \text{ V})</td>
<td></td>
<td>3.45</td>
<td>3.90</td>
<td>4.35</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OFF})</td>
<td>Turn-Off Voltage (\text{INA}=V_{DD}, \text{INB}=0 \text{ V})</td>
<td></td>
<td>3.25</td>
<td>3.70</td>
<td>4.15</td>
<td>V</td>
</tr>
</tbody>
</table>

FAN3216TMX_F085, FAN3217TMX_F085 (Automotive-Qualified Versions)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ON})</td>
<td>Turn-On Voltage (^{(11)}) (\text{INA}=V_{DD}, \text{INB}=0 \text{ V})</td>
<td></td>
<td>3.40</td>
<td>3.90</td>
<td>4.60</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OFF})</td>
<td>Turn-Off Voltage (^{(11)}) (\text{INA}=V_{DD}, \text{INB}=0 \text{ V})</td>
<td></td>
<td>3.20</td>
<td>3.70</td>
<td>4.30</td>
<td>V</td>
</tr>
</tbody>
</table>

Inputs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IL,T})</td>
<td>INx Logic Low Threshold</td>
<td></td>
<td>0.8</td>
<td>1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH,T})</td>
<td>INx Logic High Threshold</td>
<td></td>
<td>1.6</td>
<td>2.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{HYS,T})</td>
<td>TTL Logic Hysteresis Voltage</td>
<td></td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>V</td>
</tr>
</tbody>
</table>

FAN3216TMX, FAN3217TMX

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{INx})</td>
<td>Non-inverting Input Current</td>
<td>(\text{IN from 0 to } V_{DD})</td>
<td>-1.0</td>
<td>175</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{INx})</td>
<td>Inverting Input Current</td>
<td>(\text{IN from 0 to } V_{DD})</td>
<td>-175.0</td>
<td>1.0</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
</tbody>
</table>

FAN3216TMX_F085, FAN3217TMX_F085 (Automotive-Qualified Versions)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{INx,T})</td>
<td>Non-inverting Input Current (^{(11)})</td>
<td>(\text{IN}=0 \text{ V})</td>
<td>-1.5</td>
<td>1.5</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{INx,T})</td>
<td>Non-inverting Input Current (^{(11)})</td>
<td>(\text{IN}=V_{DD})</td>
<td>90</td>
<td>120</td>
<td>175.0</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{INx,T})</td>
<td>Inverting Input Current (^{(11)})</td>
<td>(\text{IN}=0 \text{ V})</td>
<td>-175.0</td>
<td>-120</td>
<td>-90</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{INx,T})</td>
<td>Inverting Input Current (^{(11)})</td>
<td>(\text{IN}=V_{DD})</td>
<td>-1.5</td>
<td>1.5</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{SINK})</td>
<td>OUT Current, Mid-Voltage, Sinking (^{(9)})</td>
<td>(\text{OUTx at } V_{DD}/2, \text{C}_{LOAD}=0.22 \mu \text{F}, f=1 \text{ kHz})</td>
<td>2.4</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(I_{SOURCE})</td>
<td>OUT Current, Mid-Voltage, Sourcing (^{(9)})</td>
<td>(\text{OUTx at } V_{DD}/2, \text{C}_{LOAD}=0.1 \mu \text{F}, f=1 \text{ kHz})</td>
<td>-1.6</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(I_{PK,SINK})</td>
<td>OUT Current, Peak, Sinking (^{(9)})</td>
<td>(\text{C}_{LOAD}=0.1 \mu \text{F}, f=1 \text{ kHz})</td>
<td>3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(I_{PK,SOURCE})</td>
<td>OUT Current, Peak, Sourcing (^{(9)})</td>
<td>(\text{C}_{LOAD}=0.1 \mu \text{F}, f=1 \text{ kHz})</td>
<td>-3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(t_{RISE})</td>
<td>Output Rise Time (^{(10)})</td>
<td>(\text{C}_{LOAD}=1000 \text{ pF})</td>
<td>12</td>
<td>22</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{FALL})</td>
<td>Output Fall Time (^{(10)})</td>
<td>(\text{C}_{LOAD}=1000 \text{ pF})</td>
<td>9</td>
<td>17</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{D1, D2})</td>
<td>Output Propagation Delay, TTL Inputs (^{(10)})</td>
<td>(0 \sim 5 \text{ V}_{IN}, 1 \text{V/ns Slew Rate})</td>
<td>10</td>
<td>19</td>
<td>34</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RP, RP})</td>
<td>Propagation Matching Between Channels</td>
<td>(\text{INA}=\text{INB}, \text{OUTA and OUTB at 50% Point})</td>
<td>1</td>
<td>2</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(I_{REV})</td>
<td>Output Reverse Current Withstand (^{(9)})</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Continued on the following page…
Electrical Characteristics (Continued)

Unless otherwise noted, $V_{DD}=12\, \text{V}$, $T_J=-40^\circ\text{C}$ to $+125^\circ\text{C}$. Currents are defined as positive into the device and negative out of the device.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{D1}, t_{D2}</td>
<td>Output Propagation Delay, TTL Inputs(^{(11)})</td>
<td>0 – 5 V_{IN}, 1 V/ns Slew Rate</td>
<td>4.5</td>
<td>19.0</td>
<td>34.0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Propagation Matching Between Channels(^{(11)})</td>
<td>$INA=INB$, OUTA and OUTB at 50% Point</td>
<td>2</td>
<td>4</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High Level Output Voltage(^{(11)})</td>
<td>$V_{OH} = V_{DD} - V_{OUT}$, $I_{OUT} = -1, \text{mA}$</td>
<td>15</td>
<td>35</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low Level Output Voltage(^{(11)})</td>
<td>$I_{OUT} = 1, \text{mA}$</td>
<td>10</td>
<td>25</td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

Notes:
10. See Timing Diagrams of Figure 8 and Figure 9.
11. Apply to only F085 Version

![Figure 8. Non-Inverting Timing Diagram](image1)

![Figure 9. Inverting Timing Diagram](image2)
Typical Performance Characteristics

Typical characteristics are provided at $T_A=25^\circ C$ and $V_{DD}=12$ V unless otherwise noted.

- **Figure 10.** I_{DD} (Static) vs. Supply Voltage\(^{(12)}\)
- **Figure 11.** I_{DD} (Static) vs. Temperature\(^{(12)}\)
- **Figure 12.** I_{DD} (No-Load) vs. Frequency
- **Figure 13.** I_{DD} (1 nF Load) vs. Frequency
- **Figure 14.** Input Thresholds vs. Supply Voltage
- **Figure 15.** Input Thresholds vs. Temperature

\(^{(12)}\) See page 8 for more details.
Typical Performance Characteristics

Typical characteristics are provided at $T_A=25^\circ C$ and $V_{DD}=12$ V unless otherwise noted.

![Figure 16. UVLO Threshold vs. Temperature](image)

![Figure 17. Propagation Delay vs. Supply Voltage](image)

![Figure 18. Propagation Delay vs. Supply Voltage](image)

![Figure 19. Propagation Delays vs. Temperature](image)

![Figure 20. Propagation Delays vs. Temperature](image)
Typical Performance Characteristics

Typical characteristics are provided at TA=25°C and VDD=12 V unless otherwise noted.

![Figure 21. Fall Time vs. Supply Voltage](image1)

![Figure 22. Rise Time vs. Supply Voltage](image2)

![Figure 23. Rise and Fall Times vs. Temperature](image3)

![Figure 24. Rise/Fall Waveforms with 2.2 nF Load](image4)

![Figure 25. Rise/Fall Waveforms with 10 nF Load](image5)
Typical Performance Characteristics

Typical characteristics are provided at $T_A=25^\circ C$ and $V_{DD}=12$ V unless otherwise noted.

![Figure 26. Quasi-Static Source Current with $V_{DD}=12$ V](image)

![Figure 27. Quasi-Static Sink Current with $V_{DD}=12$ V](image)

![Figure 28. Quasi-Static Source Current with $V_{DD}=8$ V](image)

![Figure 29. Quasi-Static Sink Current with $V_{DD}=8$ V](image)

Notes:
12. For any inverting inputs pulled low, non-inverting inputs pulled high, or outputs driven high; static IDD increases by the current flowing through the corresponding pull-up/down resistor shown in Figure 6 and Figure 7.
13. The initial spike in each current waveform is a measurement artifact caused by the stray inductance of the current-measurement loop.

Test Circuit

![Figure 30. Quasi-Static I_{OUT} / V_{OUT} Test Circuit](image)
Applications Information

Input Thresholds
The FAN3216 and the FAN3217 drivers consist of two identical channels that may be used independently at rated current or connected in parallel to double the individual current capacity.

The input thresholds meet industry-standard TTL-logic thresholds independent of the \(V_{DD} \) voltage, and there is a hysteresis voltage of approximately 0.4 V. These levels permit the inputs to be driven from a range of input logic signal levels for which a voltage over 2 V is considered logic HIGH. The driving signal for the TTL inputs should have fast rising and falling edges with a slew rate of 6 V/\(\mu \)s or faster, so a rise time from 0 to 3.3 V should be 550 ns or less. With reduced slew rate, circuit noise could cause the driver input voltage to exceed the hysteresis voltage and retrigger the driver input, causing erratic operation.

Static Supply Current
In the \(I_{DD} \) (static) typical performance characteristics shown in Figure 10 and Figure 11, each curve is produced with both inputs floating and both outputs LOW to indicate the lowest static \(I_{DD} \) current. For other states, additional current flows through the 100k\(\Omega \) resistors on the inputs and outputs shown in the block diagram of each part (see Figure 6 and Figure 7). In these cases, the actual static \(I_{DD} \) current is the value obtained from the curves plus this additional current.

MillerDrive™ Gate Drive Technology
FAN3216 and FAN3217 gate drivers incorporate the MillerDrive™ architecture shown in Figure 31. For the output stage, a combination of bipolar and MOS devices provide large currents over a wide range of supply voltage and temperature variations. The bipolar devices carry the bulk of the current as \(OUT \) swings between 1/3 to 2/3 \(V_{DD} \) and the MOS devices pull the output to the HIGH or LOW rail.

The purpose of the MillerDrive™ architecture is to speed up switching by providing high current during the Miller plateau region when the gate-drain capacitance of the MOSFET is being charged or discharged as part of the turn-on / turn-off process.

For applications with zero voltage switching during the MOSFET turn-on or turn-off interval, the driver supplies high peak current for fast switching even though the Miller plateau is not present. This situation often occurs in synchronous rectifier applications because the body diode is generally conducting before the MOSFET is switched ON.

The output pin slew rate is determined by \(V_{DD} \) voltage and the load on the output. It is not user adjustable, but a series resistor can be added if a slower rise or fall time at the MOSFET gate is needed.

Under-Voltage Lockout
The FAN321x startup logic is optimized to drive ground-referenced N-channel MOSFETs with an under-voltage lockout (UVLO) function to ensure that the IC starts up in an orderly fashion. When \(V_{DD} \) is rising, yet below the 3.9 V operational level, this circuit holds the output LOW, regardless of the status of the input pins. After the part is active, the supply voltage must drop 0.2 V before the part shuts down. This hysteresis helps prevent chatter when low \(V_{DD} \) supply voltages have noise from the power switching. This configuration is not suitable for driving high-side P-channel MOSFETs because the low output voltage of the driver would turn the P-channel MOSFET on with \(V_{DD} \) below 3.9 V.

\(V_{DD} \) Bypass Capacitor Guidelines
To enable this IC to turn a device ON quickly, a local high-frequency bypass capacitor, \(C_{BYP} \), with low ESR and ESL should be connected between the VDD and GND pins with minimal trace length. This capacitor is in addition to bulk electrolytic capacitance of 10 \(\mu \)F to 47 \(\mu \)F commonly found on driver and controller bias circuits.

A typical criterion for choosing the value of \(C_{BYP} \) is to keep the ripple voltage on the \(V_{DD} \) supply to ≤ 5%. This is often achieved with a value ≥ 20 times the equivalent load capacitance \(C_{EQV} \), defined here as \(Q_{GATE/VDD} \). Ceramic capacitors of 0.1 \(\mu \)F to 1 \(\mu \)F or larger are common choices, as are dielectrics, such as X5R and X7R, with good temperature characteristics and high pulse current capability.

If circuit noise affects normal operation, the value of \(C_{BYP} \) may be increased, to 50-100 times the \(C_{EQV} \), or \(C_{BYP} \) may be split into two capacitors. One should be a larger value, based on equivalent load capacitance, and the other a smaller value, such as 1-10 nF mounted closest to the VDD and GND pins to carry the higher-frequency components of the current pulses. The bypass capacitor must provide the pulsed current from both of the driver channels and, if the drivers are switching simultaneously, the combined peak current sourced from the \(C_{BYP} \) would be twice as large as when a single channel is switching.
Layout and Connection Guidelines

The FAN3216 and FAN3217 gate drivers incorporate fast-reacting input circuits, short propagation delays, and powerful output stages capable of delivering current peaks over 2 A to facilitate voltage transition times from under 10 ns to over 150 ns. The following layout and connection guidelines are strongly recommended:

- Keep high-current output and power ground paths separate from logic input signals and signal ground paths. This is especially critical for TTL-level logic thresholds at driver input pins.

- Keep the driver as close to the load as possible to minimize the length of high-current traces. This reduces the series inductance to improve high-speed switching, while reducing the loop area that can radiate EMI to the driver inputs and surrounding circuitry.

- If the inputs to a channel are not externally connected, the internal 100 kΩ resistors indicated on block diagrams command a low output. In noisy environments, it may be necessary to tie inputs of an unused channel to VDD or GND using short traces to prevent noise from causing spurious output switching.

- Many high-speed power circuits can be susceptible to noise injected from their own output or other external sources, possibly causing output re-triggering. These effects can be obvious if the circuit is tested in breadboard or non-optimal circuit layouts with long input or output leads. For best results, make connections to all pins as short and direct as possible.

- FAN3216 and FAN3217 are pin-compatible with many other industry-standard drivers.

- The turn-on and turn-off current paths should be minimized, as discussed in the following section.

Figure 32 shows the pulsed gate drive current path when the gate driver is supplying gate charge to turn the MOSFET on. The current is supplied from the local bypass capacitor, C\text{BYP}, and flows through the driver to the MOSFET gate and to ground. To reach the high peak currents possible, the resistance and inductance in the path should be minimized. The localized C\text{BYP} acts to contain the high peak current pulses within this driver-MOSFET circuit, preventing them from disturbing the sensitive analog circuitry in the PWM controller.

Figure 33 shows the current path when the gate driver turns the MOSFET OFF. Ideally, the driver shunts the current directly to the source of the MOSFET in a small circuit loop. For fast turn-off times, the resistance and inductance in this path should be minimized.
Operational Waveforms

At power-up, the driver output remains LOW until the V_{DD} voltage reaches the turn-on threshold. The magnitude of the OUT pulses rises with V_{DD} until steady-state V_{DD} is reached. The non-inverting operation illustrated in Figure 34 shows that the output remains LOW until the UVLO threshold is reached, then the output is in-phase with the input.

The inverting configuration of startup waveforms are shown in Figure 35. With IN+ tied to VDD and the input signal applied to IN–, the OUT pulses are inverted with respect to the input. At power-up, the inverted output remains LOW until the V_{DD} voltage reaches the turn-on threshold, then it follows the input with inverted phase.

Figure 34. Non-Inverting Startup Waveforms

Figure 35. Inverting Startup Waveforms
Thermal Guidelines

Gate drivers used to switch MOSFETs and IGBTs at high frequencies can dissipate significant amounts of power. It is important to determine the driver power dissipation and the resulting junction temperature in the application to ensure that the part is operating within acceptable temperature limits.

The total power dissipation in a gate driver is the sum of two components, \(P_{\text{Gate}} \) and \(P_{\text{Dynamic}} \):

\[
P_{\text{TOTAL}} = P_{\text{Gate}} + P_{\text{Dynamic}} \quad (1)
\]

Gate Driving Loss: The most significant power loss results from supplying gate current (charge per unit time) to switch the load MOSFET on and off at the switching frequency. The power dissipation that results from driving a MOSFET at a specified gate-source voltage, \(V_{GS} \), with gate charge, \(Q_{G} \), at switching frequency, \(f_{SW} \), is determined by:

\[
P_{\text{Gate}} = Q_{G} \cdot V_{GS} \cdot f_{SW} \cdot n \quad (2)
\]

where \(n \) is the number of driver channels in use (1 or 2).

Dynamic Pre-Drive / Shoot-through Current: A power loss resulting from internal current consumption under dynamic operating conditions, including pin pull-up / pull-down resistors, can be obtained using the graphs in Typical Performance Characteristics to determine the current \(I_{\text{Dynamic}} \) drawn from \(V_{DD} \) under actual operating conditions:

\[
P_{\text{Dynamic}} = I_{\text{Dynamic}} \cdot V_{DD} \cdot n \quad (3)
\]

Once the power dissipated in the driver is determined, the driver junction rise with respect to circuit board can be evaluated using the following thermal equation, assuming \(\psi_{JB} \) was determined for a similar thermal design (heat sinking and air flow):

\[
T_{J} = P_{\text{TOTAL}} \cdot \psi_{JB} + T_{B} \quad (4)
\]

where:

\(T_{J} \) = driver junction temperature;
\(\psi_{JB} \) = (psi) thermal characterization parameter relating temperature rise to total power dissipation; and
\(T_{B} \) = board temperature in location as defined in the Thermal Characteristics table.

In the forward converter with synchronous rectifier shown in the typical application diagrams, the FDMS8660S is a reasonable MOSFET selection. The gate charge for each SR MOSFET would be 60 nC with \(V_{GS} = V_{DD} = 7 \) V. At a switching frequency of 500 kHz, the total power dissipation is:

\[
P_{\text{Gate}} = 60 \text{ nC} \cdot 7 \text{ V} \cdot 500 \text{ kHz} \cdot 2 = 0.42 \text{ W} \quad (5)
\]

\[
P_{\text{Dynamic}} = 3 \text{ mA} \cdot 7 \text{ V} \cdot 2 = 0.042 \text{ W} \quad (6)
\]

\[
P_{\text{TOTAL}} = 0.46 \text{ W} \quad (7)
\]

The SOIC-8 has a junction-to-board thermal characterization parameter of \(\psi_{JB} = 43 \text{°C/W} \). In a system application, the localized temperature around the device is a function of the layout and construction of the PCB along with airflow across the surfaces. To ensure reliable operation, the maximum junction temperature of the device must be prevented from exceeding the maximum rating of 150°C; with 80% derating, \(T_{J} \) would be limited to 120°C. Rearranging Equation 4 determines the board temperature required to maintain the junction temperature below 120°C:

\[
T_{B} = T_{J} - P_{\text{TOTAL}} \cdot \psi_{JB} \quad (8)
\]

\[
T_{B} = 120 \text{°C} - 0.46 \text{ W} \cdot 43 \text{°C/W} = 100 \text{°C} \quad (9)
\]
Typical Application Diagrams

Figure 36. Forward Converter with Synchronous Rectification

Figure 37. Primary-Side Dual Driver in a Push-Pull Converter

Figure 38. Phase-Shifted Full-Bridge with Two Gate Drive Transformers (Simplified)
<table>
<thead>
<tr>
<th>Type</th>
<th>Part Number</th>
<th>Gate Drive $^{(14)}$ (Sink/Src)</th>
<th>Input Threshold</th>
<th>Logic</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single 1 A</td>
<td>FAN3111C</td>
<td>+1.1 A / -0.9 A</td>
<td>CMOS</td>
<td>Single Channel of Dual-Input/Single-Output</td>
<td>SOT23-5, MLP6</td>
</tr>
<tr>
<td>Single 1 A</td>
<td>FAN3111E</td>
<td>+1.1 A / -0.9 A</td>
<td>External $^{(15)}$</td>
<td>Single Non-Inverting Channel with External Reference</td>
<td>SOT23-5, MLP6</td>
</tr>
<tr>
<td>Single 2 A</td>
<td>FAN3100C</td>
<td>+2.5 A / -1.8 A</td>
<td>CMOS</td>
<td>Single Channel of Two-Input/One-Output</td>
<td>SOT23-5, MLP6</td>
</tr>
<tr>
<td>Single 2 A</td>
<td>FAN3100T</td>
<td>+2.5 A / -1.8 A</td>
<td>TTL</td>
<td>Single Channel of Two-Input/One-Output</td>
<td>SOT23-5, MLP6</td>
</tr>
<tr>
<td>Single 2 A</td>
<td>FAN3180</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Single Non-Inverting Channel + 3.3-V LDO</td>
<td>SOT23-5</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3216T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Dual Inverting Channels</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3217T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Dual Non-Inverting Channels</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3226C</td>
<td>+2.4 A / -1.6 A</td>
<td>CMOS</td>
<td>Dual Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3226T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Dual Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3227C</td>
<td>+2.4 A / -1.6 A</td>
<td>CMOS</td>
<td>Dual Non-Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3227T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Dual Non-Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3228C</td>
<td>+2.4 A / -1.6 A</td>
<td>CMOS</td>
<td>Dual Channels of Two-Input/One-Output, Pin Config.1</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3228T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Dual Channels of Two-Input/One-Output, Pin Config.1</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3229C</td>
<td>+2.4 A / -1.6 A</td>
<td>CMOS</td>
<td>Dual Channels of Two-Input/One-Output, Pin Config.2</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3229T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>Dual Channels of Two-Input/One-Output, Pin Config.2</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3268T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>20 V Non-Inverting Channel (NMOS) and Inverting Channel (PMOS) + Dual Enables</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 2 A</td>
<td>FAN3278T</td>
<td>+2.4 A / -1.6 A</td>
<td>TTL</td>
<td>30 V Non-Inverting Channel (NMOS) and Inverting Channel (PMOS) + Dual Enables</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3213T</td>
<td>+2.5 A / -1.8 A</td>
<td>TTL</td>
<td>Dual Inverting Channels</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3214T</td>
<td>+2.5 A / -1.8 A</td>
<td>TTL</td>
<td>Dual Non-Inverting Channels</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3223C</td>
<td>+4.3 A / -2.8 A</td>
<td>CMOS</td>
<td>Dual Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3223T</td>
<td>+4.3 A / -2.8 A</td>
<td>TTL</td>
<td>Dual Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3224C</td>
<td>+4.3 A / -2.8 A</td>
<td>CMOS</td>
<td>Dual Non-Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3224T</td>
<td>+4.3 A / -2.8 A</td>
<td>TTL</td>
<td>Dual Non-Inverting Channels + Dual Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3225C</td>
<td>+4.3 A / -2.8 A</td>
<td>CMOS</td>
<td>Dual Channels of Two-Input/One-Output</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 4 A</td>
<td>FAN3225T</td>
<td>+4.3 A / -2.8 A</td>
<td>TTL</td>
<td>Dual Channels of Two-Input/One-Output</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Single 9 A</td>
<td>FAN3121C</td>
<td>+9.7 A / -7.1 A</td>
<td>CMOS</td>
<td>Single Inverting Channel + Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Single 9 A</td>
<td>FAN3121T</td>
<td>+9.7 A / -7.1 A</td>
<td>TTL</td>
<td>Single Inverting Channel + Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Single 9 A</td>
<td>FAN3122C</td>
<td>+9.7 A / -7.1 A</td>
<td>CMOS</td>
<td>Single Non-Inverting Channel + Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Single 9 A</td>
<td>FAN3122T</td>
<td>+9.7 A / -7.1 A</td>
<td>TTL</td>
<td>Single Non-Inverting Channel + Enable</td>
<td>SOIC8, MLP8</td>
</tr>
<tr>
<td>Dual 12 A</td>
<td>FAN3240</td>
<td>+12.0 A</td>
<td>TTL</td>
<td>Dual-Coil Relay Driver, Timing Config. 0</td>
<td>SOIC8</td>
</tr>
<tr>
<td>Dual 12 A</td>
<td>FAN3241</td>
<td>+12.0 A</td>
<td>TTL</td>
<td>Dual-Coil Relay Driver, Timing Config. 1</td>
<td>SOIC8</td>
</tr>
</tbody>
</table>

Notes:
14. Typical currents with OUTx at 6 V and VDD=12 V.
15. Thresholds proportional to an externally supplied reference voltage.
Physical Dimensions

![Diagram of 8-Lead Small Outline Integrated Circuit (SOIC)](image)

Figure 39. 8-Lead Small Outline Integrated Circuit (SOIC)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- 2Cool™
- AccuPower™
- AX-CAP™
- BISTIC™
- Build It Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTM™
- Current Transfer Logic™
- DEUXSPEED™
- Dual Cool™
- EcoSPARK™
- EfficientMax™
- ESBCTM
- FastCore™
- FETBridges™
- FFS™
- FFPS™
- FFET™
- Global Power Resource™
- GreenBridge™
- Green FPSP™
- Green FPSS™ e-Series™
- Green M™
- GTO™
- IntellMAX™
- ISOLFLANK™
- Making Small Speakers Sound Louder and Better™
- MegaBus™
- MICROCOMPLIANT™
- MicroFET™
- MicroFak™
- Millivolt™
- MotionMax™
- mWAS™
- OptiLogic™
- OPTOPLANAR™
- PowerTrench™
- PowerKSTM
- Programmable Active Drive™
- QFET™
- QST™
- Quiet Series™
- RapidConfigure™
- Saving our world, 1mW/AMM at a time™
- SignalMax™
- SmartMax™
- SMARTSTART™
- Solutions for Your Success™
- SPM™
- STEALTH™
- SuperFET™
- SuperSOT™ 3
- SuperSOT™ 8
- SuperSOT™ 9
- Supreme MOS™
- SyncFET™
- SyncLock™
- SYSTEMGENERAL™
- TinyBridge™
- TinyBrick™
- TinyCal™
- TinyLogic™
- TinyOPTO™
- TinyPad™
- TinyPAX™
- TinyMire™
- Trifault Detect™
- TRUECURRENT™
- TrueSil™
- UHC™
- UltraFFET™
- UniFET™
- VX™
- VoltMax™
- VoltagePlus™
- XST™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESIGNED HEREIN. NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, if (a) are intended for surgical implant into the body; or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our website cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and its Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Format / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

© 2009 Fairchild Semiconductor Corporation
FAN3216 / FAN3217 • Rev. 1.0.3
www.fairchildsemi.com