Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326, 547-332, 547-338, 547-344, 547-354, 547-360 (NZ)

RS Components

Chemwatch: 5417-34

Chemwatch Hazard Alert Code: 4

Issue Date: 18/07/2022 Print Date: 20/07/2022 L.GHS.NZL.EN.E

Version No: 2.1 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product name	Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-310, 547-310, 547-312, 547-322, 547-326, 547-332, 547-338, 547-344, 547-354, 547-360 (NZ)	
Chemical Name	Not Applicable	
Synonyms	Product Codes: 547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326, 547-332, 547-338, 547-344, 547-354, 547-360, 547-366, 547-372, 547-376, Product Code: 547-243; 547-253; 547-259; 547-265; 547-269; 547-271; 547-275; 547-297; 547-297; 547-300	
Chemical formula	Not Applicable	
Other means of identification	Not Available	
elevant identified uses of the Relevant identified uses	substance or mixture and uses advised against Soft soldering.	
etails of the supplier of the s	afety data sheet	
Registered company name	RS Components	
Address	PO Box 12-127 Penrose, Auckland New Zealand	
Telephone	+64 27 4747122	
Fax	+64 9 579 1700	
Website	www.nz.rs-online.com	
Email	Not Available	
mergency telephone number		
Association / Organisation	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+64 800 700 112	

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods.

ChemWatch Hazard Ratings			
	Min	Max	
Flammability	0	- !	
Toxicity	2		0 = Minimum
Body Contact	1	1	1 = Low
Reactivity	1		2 = Moderate
Chronic	4		3 = High 4 = Extreme

numbers

Classification [1]	Acute Toxicity (Oral) Category 3, Serious Eye Damage/Eye Irritation Category 2, Acute Toxicity (Inhalation) Category 4, Germ Cell Mutagenicity Category 2, Carcinogenicity Category 1, Reproductive Toxicity Category 1, Reproductive Toxicity Effects on or via Lactation, Specific Target Organ Toxicity - Repeated Exposure Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
Determined by Chemwatch using GHS/HSNO criteria	6.1C (oral), 6.1D (inhalation), 6.4A, 6.6B, 6.7A, 6.8A, 6.8C, 6.9A, 9.1A	

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

Issue Date: 18/07/2022 Print Date: 20/07/2022

e:~	nal	wor	ᅬ
SIU	mai	wor	u

Danger

Hazard statement(s)

H301	Toxic if swallowed.
H319	Causes serious eye irritation.
H332	Harmful if inhaled.
H341	Suspected of causing genetic defects.
H350	May cause cancer.
H360	May damage fertility or the unborn child.
H362	May cause harm to breast-fed children.
H372	Causes damage to organs through prolonged or repeated exposure.
H410	Very toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe dust/fume.
P263	Avoid contact during pregnancy and while nursing.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.	
P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P330	Rinse mouth.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P391	Collect spillage.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

MIXILIES		
CAS No	%[weight]	Name
Not Available		soldering wire consisting of
7439-92-1	35-94	lead
7440-31-5	4-63	<u>tin</u>
65997-06-0	0-3	rosin, hydrogenated
124-04-9	0-1	adipic acid
Not Available		in use product produces soldering volatile as
Not Available	>60	welding fumes
Not Available		rosin core solder decomposition products
7439-92-1.	NotSpec	lead fumes

Chemwatch: **5417-34** Page **3** of **15** Issue Date: **18/07/2022**

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

CAS No	%[weight]	Name
7440-50-8.	NotSpec	copper fume
7440-31-5	NotSpec	tin fume
Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures Particulate bodies from welding spatter may be removed carefully. DO NOT attempt to remove particles attached to or embedded in eye Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. For "arc eye", i.e. welding flash or UV light burns to the eye: **Eye Contact** Place eye pads or light clean dressings over both eyes. Seek medical assistance. For THERMAL burns: Do NOT remove contact lens Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye Seek urgent medical assistance, or transport to hospital. If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) Cool the burn by immerse in cold running water for 10-15 minutes. Use compresses if running water is not available. Do NOT apply ice as this may lower body temperature and cause further damage. Do NOT break blisters or apply butter or ointments; this may cause infection. **Skin Contact** ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. ► Elevate feet about 12 inches. ▶ Elevate burn area above heart level, if possible. ▶ Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings. ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. ► To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up Check pulse and breathing to monitor for shock until emergency help arrives. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary Transport to hospital, or doctor.

Indication of any immediate medical attention and special treatment needed

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract

- P Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

Ingestion

For carbon monoxide intoxications

Administer pure oxygen by the best means possible. An oro-nasal mask is usually best. Artificial respiration is necessary wherever breathing is inadequate. Apnoeic patients have often been saved by persistent and efficient artificial ventilation. A patent airway must be carefully maintained. Patients with 40% carboxyhaemoglobin or more and an uncompensated metabolic acidosis (arterial pH less than 7.4) should be managed aggressively with ventilatory support/ hyperbaric oxygenation.

Chemwatch: 5417-34 Page 4 of 15 Issue Date: 18/07/2022 Print Date: 20/07/2022

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-259, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

- Gastric aspiration and lavage early in the course of therapy may prevent aspiration pneumonitis and reveal the presence of ingested intoxicants.
- Avoid stimulant drugs including carbon dioxide. DO NOT inject methylene blue
- Hypothermia has been employed to reduce the patient's oxygen requirement.
- Consider antibiotics as prophylaxis against pulmonary infection.
- A whole blood transfusion may be useful if it can be given early in the treatment program.
- Infuse sodium bicarbonate and balanced electrolyte solutions if blood analyses indicate a significant metabolic acidosis.
- Ancillary therapy for brain oedema may be necessary if hypoxia has been severe.
- Ensure absolute rest in bed for at least 48 hours; in severe poisonings, 2 to 4 weeks in bed may prevent sequelae.
- Watch for late neurological, psychiatric and cardiac complications. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products 5th Ed. **BIOLOGICAL EXPOSURE INDEX (BEI)**

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Sampling time Index Comments 3.5% of haemoglobin Carboxyhaemoglobin in blood end of shift B NS B NS Carbon monoxide in end-exhaled air end of shift 20 ppm

B: Background levels occur in specimens collected from subjects NOT exposed NS: Non-specific determinant; also observed after exposure to other material

SECTION 5 Firefighting measures

Extinguishing media

Advice for firefighters

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
----------------------	--

Alert Fire Brigade and tell them location and nature of hazard.

- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- ► DO NOT approach containers suspected to be hot.
 - ▶ Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.
 - Equipment should be thoroughly decontaminated after use.
- Fire/Explosion Hazard
- Non combustible.
- Not considered to be a significant fire risk, however containers may burn.
- In a fire may decompose on heating and produce toxic / corrosive fumes.

SECTION 6 Accidental release measures

Fire Fighting

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Clean up all spills immediately. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust. Place in suitable containers for disposal.			
Major Spills	Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services.			

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

Earth all lines and equipment.

- Limit all unnecessary personal contact.
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Avoid contact with incompatible materials.
 - ▶ When handling, DO NOT eat, drink or smoke
 - ▶ Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.

Page 5 of 15 Issue Date: 18/07/2022

Print Date: 20/07/2022

Chemwatch: **5417-34**Version No: **2.1**

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-310, 547-310, 547-316, 547-322, 547-326,

Observe manufacturer's storage and handling recommendations contained within this SDS.
 Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

 Store in original containers.
 Keep containers securely sealed.
 Store in a cool, dry, well-ventilated area.
 Store away from incompatible materials and foodstuff containers.
 Protect containers against physical damage and check regularly for leaks.
 Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Packaging as recommended by manufacturer. Check that containers are clearly labelled
Storage incompatibility	Welding electrodes should not be allowed to come into contact with strong acids or other substances which are corrosive to metals. • Avoid reaction with oxidising agents • Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	lead	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead	Particulates not otherwise classified respirable dust	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead	Particulates not otherwise classified	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead	Lead, inorganic dusts and fumes, as Pb	0.05 mg/m3	Not Available	Not Available	(bio)-Exposure can also be estimated by biological monitoring. 6.7B-Suspected carcinogen
New Zealand Workplace Exposure Standards (WES)	tin	Tin metal	2 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	rosin, hydrogenated	Particulates not otherwise classified respirable dust	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	rosin, hydrogenated	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	rosin, hydrogenated	Particulates not otherwise classified	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	rosin, hydrogenated	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead fumes	Lead, inorganic dusts and fumes, as Pb	0.05 mg/m3	Not Available	Not Available	(bio)-Exposure can also be estimated by biological monitoring. 6.7B-Suspected carcinogen
New Zealand Workplace Exposure Standards (WES)	lead fumes	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead fumes	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead fumes	Particulates not otherwise classified	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead fumes	Particulates not otherwise classified respirable dust	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	copper fume	Copper fume Dusts and mists, as Cu	0.2; 1 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	tin fume	Tin metal	2 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
lead	0.15 mg/m3	120 mg/m3	700 mg/m3
tin	6 mg/m3	67 mg/m3	400 mg/m3
lead fumes	0.15 mg/m3	120 mg/m3	700 mg/m3
copper fume	3 mg/m3	33 mg/m3	200 mg/m3
tin fume	6 mg/m3	67 mg/m3	400 mg/m3

Ingredient	Original IDLH	Revised IDLH
lead	Not Available	Not Available
tin	Not Available	Not Available

Chemwatch: **5417-34** Page **6** of **15** Issue Date: **18/07/2022**

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-310, 547-310, 547-316, 547-322, 547-326,

Ingredient	Original IDLH	Revised IDLH
rosin, hydrogenated	Not Available	Not Available
adipic acid	Not Available	Not Available
welding fumes	Not Available	Not Available
rosin core solder decomposition products	Not Available	Not Available
lead fumes	Not Available	Not Available
copper fume	100 mg/m3	Not Available
tin fume	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
adipic acid	E	≤ 0.01 mg/m³	
welding fumes	E	≤ 0.01 mg/m³	
rosin core solder decomposition products	D	> 0.1 to ≤ 1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a		

MATERIAL DATA

for welding fume:

In addition to complying with any individual exposure standards for specific contaminants, where current manual welding processes are used, the fume concentration inside the welder's helmet **should not** exceed 5 mg/m3, when collected in accordance with the appropriate standard (AS 3640, for example). ES* TWA: 5 mg/m3

range of exposure concentrations that are expected to protect worker health.

TLV* TWA: 5 mg/m3, B2 (a substance of variable composition)

OES* TWA: 5 mg/m3

Most welding, even with primitive ventilation, does not produce exposures inside the welding helmet above 5 mg/m3. That which does should be controlled (ACGIH). Inspirable dust concentrations in a worker s breathing zone shall be collected and measured in accordance with AS 3640, for example. Metal content can be analytically determined by OSHA Method ID25 (ICP-AES) after total digestion of filters and dissolution of captured metals. Sampling of the Respirable Dust fraction requires cyclone separator devices (elutriators) and procedures to comply with AS 2985 (for example).

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Special ventilation requirements apply for processes which result in the generation of aluminium, copper, fluoride, manganese or zinc fume.

- For work conducted outdoors and in open work spaces, the use of mechanical (general exhaust or plenum) ventilation is required as a minimum. (Open work spaces exceed 300 cubic meters per welder)
- For indoor work, conducted in limited or confined work spaces, use of mechanical ventilation by local exhaust systems is mandatory. (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium)

 Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

If risk of inhalation or overexposure exists, wear SAA approved respirator or work in fume hood.

Personal protection

Eye and face protection

- Goggles or other suitable eye protection shall be used during all gas welding or oxygen cutting operations. Spectacles without side shields, with suitable filter lenses are permitted for use during gas welding operations on light work, for torch brazing or for inspection.
- For most open welding/brazing operations, goggles, even with appropriate filters, will not afford sufficient facial protection for operators. Where possible use welding helmets or handshields corresponding to EN 175, ANSI Z49:12005, AS 1336 and AS 1338 which provide the

Chemwatch: **5417-34** Page **7** of **15** Issue Date: **18/07/2022**

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

maximum possible facial protection from flying particles and fragments. [WRIA-WTIA Technical Note 7] An approved face shield or welding helmet can also have filters for optical radiation protection, and offer additional protection against debris and sparks. UV blocking protective spectacles with side shields or welding goggles are considered primary protection, with the face shield or welding helmet considered secondary protection The optical filter in welding goggles, face mask or helmet must be a type which is suitable for the sort of work being done. A filter suitable for gas welding, for instance, should not be used for arc welding. Face masks which are self dimming are available for arc welding, MIG, TIG and plasma cutting, and allow better vision before the arc is struck and after it is extinguished. Welding helmet with suitable filter. Welding hand shield with suitable filter. Skin protection See Hand protection below Welding gloves conforming to Standards such as EN 12477:2001, ANSI Z49.1, AS/NZS 2161:2008 produced from leather, rubber, treated cotton, or alumininised ▶ These gloves protect against mechanical risk caused by abrasion, blade cut, tear and puncture Definition of the Other gloves which protect against thermal risks (heat and fire) might also be considered - these comply with different standards to those Hands/feet protection mentioned above. ▶ One pair of gloves may not be suitable for all processes. For example, gloves that are suitable for low current Gas Tungsten Arc Welding (GTAW) (thin and flexible) would not be proper for high-current Air Carbon Arc Cutting (CAC-A) (insulated, tough, and durable) Welding Gloves Safety footwear **Body protection** See Other protection below Overalls Eyewash unit. Other protection Aprons, sleeves, shoulder covers, leggings or spats of pliable flame resistant leather or other suitable materials may also be required in positions where these areas of the body will encounter hot metal.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-*

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326, 547-332, 547-338, 547-344, 547-354, 547-360 (NZ)

Material	СРІ
BUTYL	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
PE	A
PE/EVAL/PE	A
PVC	A
TEFLON	A
VITON	A
NATURAL RUBBER	В
NATURAL+NEOPRENE	В

^{*} CPI - Chemwatch Performance Index

A: Best Selection

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Print Date: 20/07/2022

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Solid; insoluble in water.		
Physical state	Manufactured	Relative density (Water = 1)	8.65-8.9
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Applicable

B: Satisfactory; may degrade after 4 hours continuous immersion

Issue Date: 18/07/2022 Print Date: 20/07/2022 Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269,

Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Applicable
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Available

547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

nformation on toxicological effects		
Inhaled	Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful. Fumes evolved during welding operations may be irritating to the upper-respiratory tract and may be harmful if inhaled. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Shielding gases may act as simple asphyxiants if significant levels are allowed to accumulate. Oxygen monitoring may be necessary. Lead fume is toxic and acts as a cumulative poison. Regular blood testing should be considered for workers who are regularly exposed.	
Ingestion	Not normally a hazard due to physical form of product.	
Skin Contact	Ultraviolet radiation (UV) is generated by the electric arc in the welding process. Skin exposure to UV can result in severe burns, in many cases without prior warning. Exposure to infrared radiation (IR), produced by the electric arc and other flame cutting equipment may heat the skin surface and the tissues immediately below the surface. Except for this effect, which can progress to thermal burns in some situations, infrared radiation is not dangerous to welders. Most welders protect themselves from IR (and UV) with a welder's helmet (or glasses) and protective clothing. Skin contact does not normally present a hazard, though it is always possible that occasionally individuals may be found who react to substance usually regarded as inert.	
Еуе	Ultraviolet (UV) radiation can also damage the lens of the eye. Many arc welders are aware of the condition known as "arc-eye," a sensation of sand in the eyes. This condition is caused by excessive eye exposure to UV. Exposure to ultraviolet rays may also increase the skin effects of some industrial chemicals (coal tar and cresol compounds, for example). Exposure of the human eye to intense visible light can produce adaptation, pupillary reflex, and shading of the eyes. Such actions are protective mechanisms to prevent excessive light from being focused on the retina. In the arc welding process, eye exposure to intense visible light is prevented for the most part by the welder's helmet. However, some individuals have sustained retinal damage due to careless "viewing" of the arc. At no time should the arc be observed without eye protection. Fumes from welding/brazing operations may be irritating to the eyes.	
Chronic	On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer. Principal route of exposure is inhalation of welding fumes from electrodes and workpiece. Reaction products arising from electrode core and flux appear as welding fume depending on welding conditions, relative volatilities of metal oxides and any coatings on the workpiece. Studies of lung cancer among welders indicate that they may experience a 30-40% increased risk compared to the general population. Since smoking and exposure to other cancer-causing agents, such as asbestos fibre, may influence these results, it is not clear whether welding, in fact, represents a significant lung cancer risk. Whilst mild steel welding represents little risk, the stainless steel welder, exposed to chromium and nickel fume, may be at risk and it is this factor which may account for the overall increase in lung cancer incidence among welders. Cold isolated electrodes are relatively harmless. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders. Silica and silicates in welding fumes are non-crystalline and believed to be non-harmful. Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shock The welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported. Metal oxides generated by industrial processes such as welding, give rise to a number of potential health problems. Particles smaller than 5 micron (respirables) articles may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on	

nature of the particle, may give rise to further serious health consequences.

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

Lead Resin Solder Wires: Tin -Lead - Copper #547-243. 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, TOXICITY IRRITATION 547-293, 547-297, 547-300, Not Available Not Available 547-304, 547-310, 547-316, 547-322, 547-326, 547-332, 547-338, 547-344, 547-354, 547-360 (NZ) TOXICITY IRRITATION Not Available dermal (rat) LD50: >2000 mg/kg[1] lead Inhalation(Rat) LC50; >5.05 mg/l4h^[1] Oral (Rat) LD50; >2000 mg/kg[1] TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg[1] Eye: no adverse effect observed (not irritating)^[1] tin Inhalation(Rat) LC50; >4.75 mg/l4h^[1] Skin: no adverse effect observed (not irritating)^[1] Oral (Rat) LD50; >2000 mg/kg[1] IRRITATION TOXICITY Eye: no adverse effect observed (not irritating) $^{[1]}$ rosin, hydrogenated dermal (rat) LD50: >2000 mg/kg^[1] Oral (Rat) LD50; >1000 mg/kg[1] Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Dermal (rabbit) LD50: >7940 mg/kg^[2] Eye (rabbit): 20 mg/24h-moderate adipic acid Inhalation(Rat) LC50; >7.7 mg/l4h^[2] Oral (Mouse) LD50; 1900 $mg/kg^{[2]}$ TOXICITY IRRITATION welding fumes Not Available Not Available TOXICITY IRRITATION rosin core solder decomposition products Not Available Not Available TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg^[1] Not Available lead fumes Inhalation(Rat) LC50; >5.05 mg/l4h^[1] Oral (Rat) LD50; >2000 mg/kg^[1] TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg^[1] Eye: no adverse effect observed (not irritating)^[1] copper fume Inhalation(Rat) LC50; 0.733 mg/l4h^[1] Skin: no adverse effect observed (not irritating) $^{[1]}$ Oral (Mouse) LD50; 0.7 $mg/kg^{[2]}$ TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg[1] Eye: no adverse effect observed (not irritating)^[1] tin fume Inhalation(Rat) LC50; >4.75 mg/l4h^[1] Skin: no adverse effect observed (not irritating)^[1] Oral (Rat) LD50; >2000 mg/kg[1] 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise Leaend: specified data extracted from RTECS - Register of Toxic Effect of chemical Substances WARNING: Lead is a cumulative poison and has the potential to cause abortion and intellectual impairment to unborn children of pregnant LEAD workers Non-mutagenic* Draize Eye Irritation Test: Rabbit, Score 18.2/110 - moderately irritating. Skin irritation (rabbit): 4 hr (FSHA); 0.0 on an scale of 8.0 - non-irritating.* Non-sensitising to rabbit skin * * Supreme Resources MSDS Adipic acid: Acute toxicity: In limited studies in animals and humans it was shown that adipic acid is absorbed after oral administration, partially metabolized to various metabolites and CO2 which are excreted via urine and breath, respiration. None of the studies was conducted according to GLP. Adipic acid is of very low acute toxicity. Clinical signs at lethal doses included acute dilatation of the heart and acute congestive hyperaemia,

ADIPIC ACID

Acute toxicity: In limited studies in animals and humans it was shown that adipic acid is absorbed after oral administration, partially metabolized to various metabolites and CO2 which are excreted via urine and breath, respiration. None of the studies was conducted according to GLP. Adipic acid is of very low acute toxicity. Clinical signs at lethal doses included acute dilatation of the heart and acute congestive hyperaemia, ulceration of glandular stomach (bleeding-corrosive gastritis), intestinal atony, pale liver and reddening of intestinal mucosa. In an inhalation test similar to OECD TG 403 in rats neither mortality nor symptoms were observed during and after 4 hour exposure to 7700 mg/m3 of adipic acid.

Reduced appetite and activity were the only effects reported following occlusive dermal administration of 7940 mg/kg bw of adipic acid to 2 rabbits for 24 hours

In rabbits, 50 % adipic acid suspensions were slightly irritating to the intact skin and moderately irritating to scarified skin. The neat material was a severe eye irritant in rabbits, with symptoms being reversible within 16 days.

Issue Date: 18/07/2022

Chemwatch: 5417-34 Page 10 of 15 Issue Date: 18/07/2022 Print Date: 20/07/2022

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269. 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

Respiratory irritation in animals is not sufficiently examined.

Workers exposed over an extensive period (average. 9.2 years) complained of respiratory irritation at adipic acid concentrations of 0.47-0.79 mg/m3. Due to the acidic character of the substance, a local irritation potential is plausible.

Despite the wide dispersive use of adipic acid, only very few cases of skin or respiratory tract sensitisation reactions are reported in humans. A sensitisation study in animals according to validated guidelines is not available. Overall, sensitisation is not expected for adipic acid.

Repeat dose toxicity: There is no repeated inhalation toxicity study with histopathological examination of the nose available. Systemic effects after repeated inhalation have not been investigated in fully valid studies. There are no studies on repeated dermal application available. In a limited 2-year oral study adipic acid was of low repeated dose toxicity, however it was not tested according to modern standards. The NOAEL was 1 % for male rats (approx. 750 mg/kg bw/day) and higher doses (3 and 5 %) caused body weight retardation with no indication of specific target organ toxicity. The NOAEL for female rats was 1 % (approx. 750 mg/kg bw/day), the highest dose tested in females. In one volunteer no overt toxic symptoms were seen after oral administration of 7 q adipic acid per day for 10 days.

Genotoxicity: A variety of mutagenicity tests in vitro and in vivo have failed to demonstrate that adipic acid possesses genotoxic potential. A number of good quality Ames tests in Salmonella typhimurium similar to OECD TG 471 and an examination of chromosome damage in human lung cells in culture produced negative results. In gavage studies in

male rats it did not induce chromosome damage in the bone marrow or dominant lethal mutations in a dose-response or time-trend pattern. Carcinogenicity: Adipic acid was not carcinogenic in a limited two-years feeding study where male rats were fed with up to 5 % (3750 mg/kg bw/day) adipic acid and female rats with 1 % (750 mg/kg bw/day).

Reproductive toxicity: No specific studies on fertility have been conducted. In a two-year feeding study in rats histopathological examination of testes, ovaries, and uterus revealed no evidence of an adverse effect on the reproductive organs up to the highest doses tested (males approx. 3750 mg/kg bw/day, females approx. 750 mg/kg bw/day). Based on the available data there is no reason to expect specific reproductive toxicity of adipic acid.

Developmental toxicity: Adipic acid was not embryo- or foetotoxic and not teratogenic up to the highest tested doses of 288, 263, and 250 mg/kg bw/day via oral administration to rats, mice, and rabbits, respectively. In none of these studies signs of maternal toxicity have been observed and the highest dose was well below the limit dose of 1000 mg/kg bw which would be a precondition for a fully valid negative study. In view of the low systemic toxicity of the compound, however, this endpoint seems to be adequately covered despite the limitations of the studies The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

Most welding is performed using electric arc processes - manual metal arc, metal inert gas (MIG) and tungsten inert gas welding (TIG) - and most welding is on mild steel.

In 2017, an IARC working group has determined that "sufficient evidence exists that welding fume is a human lung carcinogen (Group 1). A complicating factor in classifying welding fumes is its complexity. Generally, welding fume is a mixture of metal fumes (i.e., iron, manganese, chromium, nickel, silicon, titanium) and gases (i.e., carbon monoxide, ozone, argon, carbon dioxide). Welding fume can contain varying concentrations of individual components that are classified as human carcinogens, including hexavalent chrome and nickel. However the presence of such metals and the intensity of exposure to each differ significantly according to a number of variables, including the type of welding technique used and the composition of the base metal and consumable. Nonetheless, IARC did not differentiate between these variables in its decision.

There has been considerable evidence over several decades regarding cancer risks in relation to welding activities. Several case-control studies reported excess risks of ocular melanoma in welders. This association may be due to the presence in some welding environments of fumes of thorium-232, which is used in tungsten welding rods

Different welding environments may present different and complex profiles of exposures. In one study to characterise welding fume aerosol nanoparticles in mild steel metal active gas welding showed a mass median diameter (MMMD) of 200-300 nm. A widespread consensus seems to have formed to the effect that some welding environments, notably in stainless steel welding, do carry risks of lung cancer. This widespread consensus is in part based on empirical evidence regarding risks among stainless steel welders and in part on the fact that stainless steel welding entails moderately high exposure to nickel and chromium VI compounds, which are recognised lung carcinogens. The corollary is that welding without the presence of nickel and chromium VI compounds, namely mild-steel welding, should not carry risk. But it appears that this line of reasoning in not supported by the accumulated body of epidemiologic evidence. While there remained some uncertainty about possible confounding by smoking and by asbestos, and some possible publication bias, the overwhelming evidence is that there has been an excess risk of lung cancer among welders as a whole in the order of 20%-40%. The most begrudging explanation is that there is an as-yet unexplained common reason for excess lung cancer risks that applies to all types of welders. It has been have proposed that iron fumes may play such a role, and some Finnish data appear to support this hypothesis, though not conclusively. This hypothesis would also imply that excess lung cancer risks among welders are not unique to welders, but rather may be shared among many types of metal working occupations.

Welders are exposed to a range of fumes and gases (evaporated metal, metal oxides, hydrocarbons, nanoparticles, ozone, oxides of nitrogen (NOx)) depending on the electrodes, filler wire and flux materials used in the process, but also physical exposures such as electric and magnetic fields (EMF) and ultraviolet (UV) radiation. Fume particles contain a wide variety of oxides and salts of metals and other compounds, which are produced mainly from electrodes, filler wire and flux materials. Fumes from the welding of stainless-steel and other alloys contain nickel compounds and chromium[VI] and [III].

WELDING FUMES

Ozone is formed during most electric arc welding, and exposures can be high in comparison to the exposure limit, particularly during metal inert gas welding of aluminium. Oxides of nitrogen are found during manual metal arc welding and particularly during gas welding. Welders who weld painted mild steel can also be exposed to a range of organic compounds produced by pyrolysis.

In one study particle elemental composition was mainly iron and manganese. Ni and Cr exposures were very low in the vicinity of mild steel welders, but much higher in the background in the workshop where there presumably was some stainless steel welding.

Personal exposures to manganese ranged from 0.01-4.93 mg/m3 and to iron ranged from 0.04-16.29 mg/m3 in eight Canadian welding companies. Types of welding identified were mostly (90%) MIG mild steel, MIG stainless steel, and TIG

aluminum. Carbon monoxide levels were less than 5.0 ppm (at source) and ozone levels varied from 0.4-0.6 ppm (at source). Welders, especially in shipyards, may also be exposed to asbestos dust. Physical exposures such as electric and magnetic fields (EMF) and ultraviolet (UV) radiation are also common.

In all, the in vivo studies suggest that different welding fumes cause varied responses in rat lungs in vivo, and the toxic effects typically correlate with the metal composition of the fumes and their ability to produce free radicals. In many studies both soluble and insoluble fractions of the stainless steel welding fumes were required to produce most types of effects, indicating that the responses are not dependent exclusively on the

Lung tumourigenicity of welding fumes was investigated in lung tumour susceptible (A/J) strain of mice. Male mice were exposed by pharyngeal aspiration four times (once every 3 days) to 85 ug of gas metal arc-mild steel (GMA-MS),

GMA-SS, or manual metal arc-SS (MMA-SS) fume. At 48 weeks post-exposure, GMA-SS caused the greatest increase in tumour multiplicity and incidence, but did not differ from sham exposure. Tumour incidence in the GMA-SS group versus sham control was close to significance at 78 weeks post exposure. Histopathological analysis of the lungs of these mice showed the GMA-SS group having an increase in

preneoplasia/tumour multiplicity and incidence compared to the GMA-MS and sham groups at 48 weeks. The increase in incidence in the GMA-SS exposed mice was significant compared to the GMA-MS group but not to the sham-exposed animals, and the difference in incidence between the GMA-SS and MMA-SS groups was of border-line significance (p = 0.06). At 78 week s post-exposure, no statistically significant differences

A significantly higher frequency of micronuclei in peripheral blood lymphocytes (binucleated cell assay) and higher mean levels of both centromere-positive and centromere-negative micronuclei was observed in welders (n=27) who worked without protective device compared to controls (n=30). The rate of micronucleated cells did not correlate with the duration of exposure

WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS. Not available. Refer to individual constituents.

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

Issue Date: **18/07/2022**Print Date: **20/07/2022**

rosin core solder decomposition products

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of

breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

LEAD FUMES

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

TIN & ROSIN, HYDROGENATED & TIN FUME

No significant acute toxicological data identified in literature search.

ADIPIC ACID & rosin core solder decomposition products

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	✓
•	×	<u> </u>	
Skin Irritation/Corrosion		Reproductivity	Y
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	X
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	~
Mutagenicity	✓	Aspiration Hazard	×

Legend:

💢 – Data either not available or does not fill the criteria for classification

🏏 – Data available to make classification

SECTION 12 Ecological information

Toxicity

Lead Resin Solder Wires: Tin -
Lead - Copper #547-243,
547-253, 547-259, 547-265,
547-269, 547-271, 547-275,
547-293, 547-297, 547-300,
547-304, 547-310, 547-316,
547-322, 547-326, 547-332,
547-338, 547-344, 547-354,
547-360 (NZ)

Endpoint	Test Duration (hr)	Species	Value	Source
Not Available	Not Available	Not Available	Not Available	Not Available

	Endpoint	lest Duration (hr)	Species	Value	Source
	NOEC(ECx)	Not Available	Crustacea	0.051mg/L	5
lead	EC50	72h	Algae or other aquatic plants	1.191mg/L	4
	EC50	96h	Algae or other aquatic plants	0.282-0.864mg/l	4
	LC50	96h	Fish	1.17mg/l	4

Endpoint	Test Duration (hr)	Species	Value	Source
Not Available	Not Available	Not Available	Not Available	Not Available

rosin, hydrogenated

tin

Endpoint	Test Duration (hr)	Species	Value	Source
EC50	72h	Algae or other aquatic plants	>10<20mg/l	2
NOEC(ECx)	96h	Algae or other aquatic plants	0.013mg/l	2
EC50	48h	Crustacea	3.8mg/l	2
EC50	96h	Algae or other aquatic plants	0.031mg/l	2
LC50	96h	Fish	1.5mg/l	2

	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	31.3mg/l	1
adipic acid	NOEC(ECx)	504h	Crustacea	6.3mg/l	2
	EC50	48h	Crustacea	85.7mg/l	1

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

EC50 96h Algae or other aquatic plants 26.6mg/l 1 2 LC50 96h Fish 97mg/l **Endpoint** Test Duration (hr) **Species** Value Source welding fumes Not Not Not Available Not Available Available Available Available **Endpoint** Test Duration (hr) **Species** Source rosin core solder Not Not Not decomposition products Not Available Not Available Available Available Available Test Duration (hr) **Endpoint** Species Source NOEC(ECx) Not Available Crustacea 0.051ma/L 5 EC50 72h Algae or other aquatic plants 1.191mg/L 4 lead fumes EC50 96h Algae or other aquatic plants 0.282-0.864mg/l 4 LC50 96h Fish 1.17mg/l 4 Test Duration (hr) Species Value Source Endpoint EC50(ECx) 24h Algae or other aquatic plants <0.001mg/L EC50 72h Algae or other aquatic plants 0.011-0.017mg/L copper fume EC50 48h Crustacea < 0.001 mg/L4 EC50 96h Algae or other aquatic plants 0.03-0.058mg/l 4 0.005-0.06mg/l LC50 96h Fish 4 Endpoint Test Duration (hr) Species Value Source tin fume Not Not Not Not Available Not Available Available Available Available Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan)

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
adipic acid	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
adipic acid	LOW (LogKOW = 0.08)

Mobility in soil

Ingredient	Mobility
adipic acid	LOW (KOC = 21.48)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal
- Bury residue in an authorised landfill.

- Bioconcentration Data 8. Vendor Data

Recycle containers if possible, or dispose of in an authorised landfill.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Labels Required

Issue Date: 18/07/2022

Page 13 of 15

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-259, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

Issue Date: 18/07/2022

Print Date: 20/07/2022

Marine Pollutant

HAZCHEM

Not Applicable

Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group	
lead	Not Available	
tin	Not Available	
rosin, hydrogenated	Not Available	
adipic acid	Not Available	
welding fumes	Not Available	
rosin core solder decomposition products	Not Available	
lead fumes	Not Available	
copper fume	Not Available	
tin fume	Not Available	

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
lead	Not Available
tin	Not Available
rosin, hydrogenated	Not Available
adipic acid	Not Available
welding fumes	Not Available
rosin core solder decomposition products	Not Available
lead fumes	Not Available
copper fume	Not Available
tin fume	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002625	N.O.S. Acutely Toxic Carcinogenic Group Standard 2020
HSR100425	Pharmaceutical Active Ingredients Group Standard 2020
HSR100757	Veterinary Medicines Limited Pack Size Finished Dose Group Standard 2020
HSR100758	Veterinary Medicines Non dispersive Closed System Application Group Standard 2020
HSR100759	Veterinary Medicines Non dispersive Open System Application Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

lead is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for

Manufactured Nanomaterials (MNMS)

tin is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

Chemwatch: **5417-34** Page **14** of **15** Issue Date: **18/07/2022**

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

rosin, hydrogenated is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Inventory of Chemicals (NZIoC)

adipic acid is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

of Chemicals

welding fumes is found on the following regulatory lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

rosin core solder decomposition products is found on the following regulatory lists Not Applicable

lead fumes is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

copper fume is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

tin fume is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

Print Date: 20/07/2022

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Compliance Certificate)	Quantity (Compliance Certificate - Farms >4 ha)
6.1C	1000 kg or 1000 L	3500 kg or 3500 L

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities		
Not Applicable	Not Applicable		

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
6.1C	120	1	3	

Tracking Requirements

Not Applicable

National Inventory Status

-	
National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (lead; tin; rosin, hydrogenated; adipic acid; lead fumes; copper fume; tin fume)

Chemwatch: **5417-34** Page **15** of **15**

Version No: 2.1

Lead Resin Solder Wires: Tin - Lead - Copper #547-243, 547-253, 547-259, 547-265, 547-269, 547-271, 547-275, 547-293, 547-297, 547-300, 547-304, 547-310, 547-316, 547-322, 547-326,

National Inventory Status China - IECSC Yes Europe - EINEC / ELINCS / NLP Yes Japan - ENCS No (lead; tin; lead fumes; copper fume; tin fume) Korea - KECI Yes New Zealand - NZIoC Yes Philippines - PICCS Yes USA - TSCA Yes Taiwan - TCSI Yes Mexico - INSQ Yes Vietnam - NCI Russia - FBEPH No (rosin, hydrogenated) Yes = All CAS declared ingredients are on the inventory Leaend: No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	18/07/2022
Initial Date	28/07/2020

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard
OSF: Odour Safety Factor

OSF: Odour Safety Factor

NOAEL: No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Issue Date: 18/07/2022