

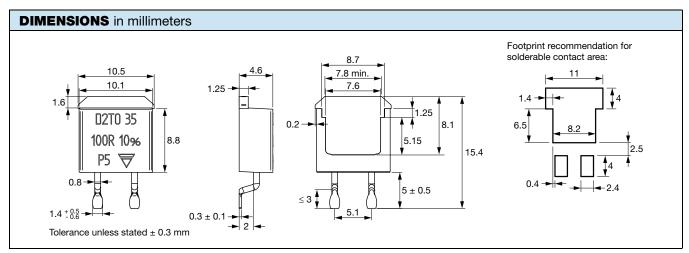
www.vishay.com

Vishay Sfernice

Surface Mount Power Resistor Multi-Pulses Capabilities

LINKS TO ADDITIONAL RESOURCES

For multiple and repetitive pulse use, Vishay develops D2TO35M.


FEATURES

- AEC-Q200 qualified
- 35 W at 25 °C case temperature
- Surface mounted resistor TO-263 (D²PAK) style package

- 100K pulses qualified
- Non inductive
- Resistor isolated from metal tab
- Solder reflow secure at 270 °C/10 s
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Notes

- For the assembly on board, we recommend the lead (Pb)-free thermal profile as per J-STD-020C
- Power dissipation is 3.5 W at an ambient temperature of 25 °C when mounted on a double sided copper board using FR4 HTG, 70 μm of copper, 39 mm x 30 mm x 1.6 mm, with thermal vias
- Planarity measurement has to be performed according to JEDEC TO-236D

STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	$\begin{array}{c} \textbf{RESISTANCE} \\ \textbf{RANGE} \\ \Omega \end{array}$	RATED POWER P _{25 °C} W	LIMITING ELEMENT VOLTAGE <i>U</i> L V	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C	$\begin{array}{c} \textbf{CRITICAL} \\ \textbf{RESISTANCE} \\ \Omega \end{array}$
D2TO35M	TO-263	10 to 10K	35	500	2, 5, 10	150	7.14K

MECHANICAL SPECIFICATIONS				
Mechanical Protection Molded				
Resistive Element	Thick film			
Substrate	Alumina			
Connections	Tinned copper			
Weight	2.2 g max.			

ENVIRONMENTAL SPECIFICATIONS			
Temperature Range	-55 °C to +175 °C		
	IEC 60695-11-5		
Flammability	Application time: $t_a = 10 \text{ s}$ Burning duration: $t_b < 30 \text{ s}$		

www.vishay.com

Vishay Sfernice

TECHNICAL SPECIFICATIONS				
Power Rating and Thermal Resistance of the Component	35 W at 25 °C (case temperature) R _{TH (j - c)} : 4.28 °C/W			
Temperature Coefficient	See Special Feature table			
Standard	± 150 ppm/°C			
Dielectric Strength IEC 60115-1	2000 V _{RMS} - 1 min - 10 mA max. (between terminals and board)			
Insulation Resistance	$\geq 10^4 \ \text{M}\Omega$			
Inductance	≤ 0.1 µH			

DIMENSIONS	
Standard Package	TO-263 style (D ² PAK)

SPECIAL FEATURES			
Resistance Values	≥ 10 Ω		
Tolerances	± 2 % at ± 10 %		
Requirement Temperature Coefficient (TCR) (-55 °C +150 °C) IEC 60115-1	± 150 ppm/°C		

PERFORMANCE				
TESTS	CONDITIONS	REQUIREMENTS		
Momentary Overload	IEC 60115-1 §4.13 1.4 Pr 5 s US < 1.5 UL	± (0.25 % + 0.05 Ω)		
Pulse	100K pulses: t_{on} = 500 ms / t_{off} = 11 s E = 18.9 J, P = 37.8 W	\pm (5 % + 0.05 Ω)		
High Temperature Exposure	AEC-Q200 rev. E conditions: MIL-STD-202 method 108 1000 h, +175 °C, unpowered	± (0.25 % + 0.05 Ω)		
Temperature Cycling	AEC-Q200 rev. E conditions: pre-conditioning 3 reflows according JESTD020D JESD22 method JA-104 1000 cycles, (-55 °C to +155 °C) dwell time 15 min	± (1 % + 0.5 Ω)		
Moisture Resistance	AEC-Q200 rev. E conditions: MIL-STD-202 method 106 10 cycles, 24 h, unpowered	± (0.5 % + 0.05 Ω)		
Humidity Bias	AEC-Q200 rev. E conditions: MIL-STD-202 method 103 1000 h, 85 °C, 85 % RH	± (0.5 % + 0.05 Ω)		
High Temperature Operating Life	AEC-Q200 rev. E conditions: Pre-conditioning 3 reflows according JESTD020D MIL-STD-202 method 108 1000 h, 90/30, powered, +25 °C	\pm (0.5 % + 0.05 Ω)		
ESD Human Body Model	AEC-Q200 rev. E conditions: AEC-Q200-002 25 kV _{AD}	$\pm~(0.5~\%~+~0.05~\Omega)$		
Vibration	AEC-Q200 rev. E conditions: MIL-STD-202 method 204 5 g's for 20 min, 12 cycles test from 10 Hz to 2000 Hz	± (0.2 % + 0.05 Ω)		
Mechanical Shock	AEC-Q200 rev. E conditions: MIL-STD-202 method 213 100 g's, 6 ms, 3.75 m/s 3 shocks/direction	± (0.2 % + 0.05 Ω)		
Board Flex	AEC-Q200 rev. E conditions: AEC-Q200-005 bending 2 mm, 60 s	\pm (0.25 % + 0.05 Ω)		
Terminal Strength	AEC-Q200 rev. E conditions: AEC-Q200-006 1.8 kgf, 60 s	$\pm (0.25 \% + 0.05 \Omega)$		

ASSEMBLY SPECIFICATIONS					
For the assembly on board, we recommend the lead (Pb)-free thermal profile as per J-STD-020C					
TESTS CONDITIONS REQUIREMENTS					
Resistance to Soldering Heat	IEC 60115-1 IEC 60068-2-58 Solder bath method: 270 °C/10 s	± (0.5 % + 0.05 Ω)			
Moisture Sensitivity Level (MSL)	IPC/JEDEC [®] J-STD-020C 85 °C / 85 % RH / 168 h	Level: 1 + pass requirements of TCR overload and dielectric strength after MSL			

www.vishay.com

Vishay Sfernice

CHOICE OF THE BOARD

The user must choose the board according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 175 °C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{R_{TH (j-c)} + R_{TH (c-h)} + R_{TH (h-a)}}$$
(1)

P: expressed in W

ΔT: difference between maximum working temperature and room temperature or fluid cooling temperature

R_{TH (j - c)}: thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: 4.28 °C/W.

R_{TH (C - h)}: thermal resistance value measured between outer side of the resistor and upper side of the board. This is the thermal resistance of the solder layer.

R_{TH (h - a)}: thermal resistance of the board.

Example:

 $R_{TH (c-h)} + R_{TH (h-a)}$ for D2TO35M power rating 3.5 W at ambient temperature +25 °C.

Thermal resistance R_{TH (j - c)}: 4.28 °C/W

Considering equation (1) we have:

$$\Delta T = 175 \, ^{\circ}\text{C} - 25 \, ^{\circ}\text{C} = 150 \, ^{\circ}\text{C}$$

$$R_{TH (j-c)} + R_{TH (c-h)} + R_{TH (h-a)} = \Delta T/P = 150/3.5 = 42.8 °C/W$$

$$R_{TH (c-h)} + R_{TH (h-a)} = 42.8 \text{ °C/W} - 4.28 \text{ °C/W} = 38.52 \text{ °C/W}$$

Multi-Pulse:

D2TO35M can go up to 100 000 pulses with a drift less than 5 %.

These informations are for a repetitive pulse at 25 °C room temperature.

$$t_{on} = 500 \text{ ms}$$

 $t_{off} = 11 s$

E = 18.9 J

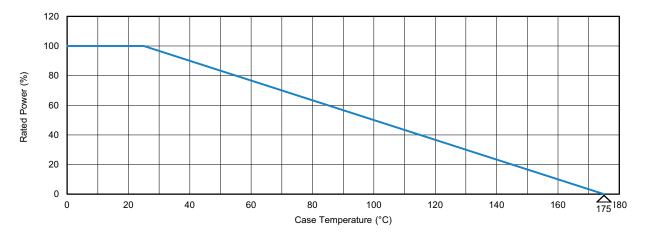
Resistor mounted on a double sided copper board using FR4 HTG, 70 µm of copper, 39 mm x 30 mm x 1.6 mm, with thermal vias.

The formula used to calculate E is:

$$E = P \times t = \frac{U^2}{R} \times t$$

with:

E (J): pulse energyP (W): pulse powert (s): pulse duration

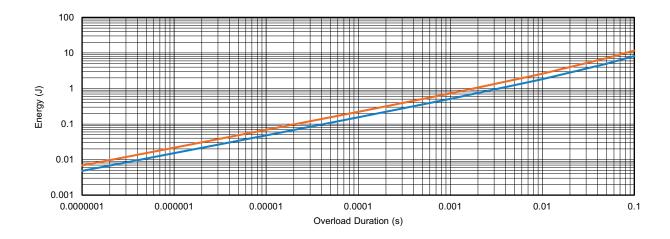

U (V): pulse voltage R (Ω): resistor

Vishay Sfernice

POWER RATING

The temperature of the case should be maintained within the limits specified.

OVERLOADS

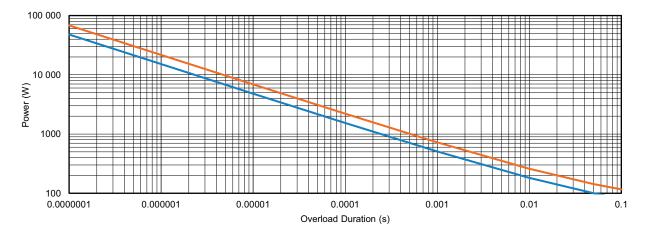

In any case the applied voltage must be lower than the maximum overload voltage of 750 V. The values indicated on the graph below are applicable to resistors in air or mounted onto a board.

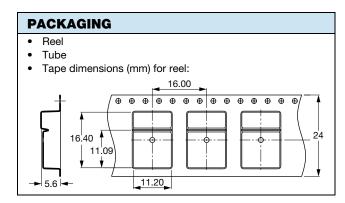
ENERGY CURVE

For single pulse, safe operation area for D2TO35M is given by device operation under the defined maximum energy orange curve below.

For repetitive pulse, safe operation area for D2TO35M is given by device operation under the defined maximum energy blue curve below.

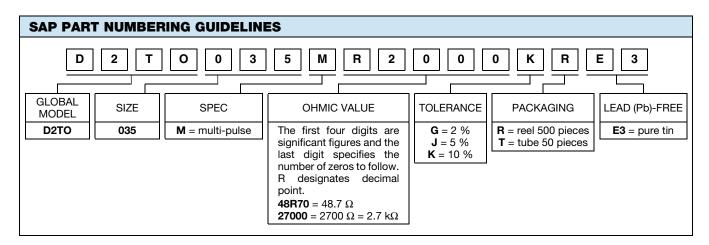
Maximum drift 2 % after 1000 pulses.





Vishay Sfernice

POWER CURVE



MARKING

Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, Vishay Sfernice trademark

ORDERING INFORMATION							
D2TO	35	M	10 k Ω	± 2 %	XXX	e3	
MODEL	STYLE	MULTI-PULSE	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	LEAD (Pb)-FREE	
				$G = \pm 2 \%$ $J = \pm 5 \%$ $K = \pm 10 \%$	Optional on request: shape, etc.		

