Photomicrosensor

EE-SX67/47

Photomicrosensor with 50 - to $100-\mathrm{mA}$
 Switching Capacity that can be Built into Equipment

- PNP output models newly added.

■ Standard, L-shaped, T-shaped, and Close-mounting: Five series of models available.

- Select from thirty output variations, including Light-ON or Dark-ON/Light-ON (selectable) models.
- Response frequency as high as 1 kHz .

■ Easy operation monitoring with bright light indicator.
■ Wide operating voltage range from 5 to 24 VDC.

- Models (EE-SX $\square \square \square$ A and EE-SX $\square \square \square R$) with operation indicators that are lit when sensing objects are detected (when light is interrupted) are available.

Ordering Information

Appearance	Sensing method	Sensing distance	Output configuration	Model		Weight
				NPN	PNP	
Standard	Through-beam type (slot type)	5 mm (slot width)	Dark-ON/Light-ON (selectable) *1	$\begin{aligned} & \hline \text { EE-SX670 } \\ & \text { EE-SX670A*2 } \end{aligned}$	$\begin{aligned} & \text { EE-SX670P } \\ & \text { EE-SX670R*3 } \end{aligned}$	Approx. 3.1 g
			Light-ON	EE-SX470	EE-SX470P	
L-shaped			Dark-ON/Light-ON (selectable) *1	$\begin{aligned} & \text { EE-SX671 } \\ & \text { EE-SX671A*2 } \end{aligned}$	$\begin{aligned} & \text { EE-SX671P } \\ & \text { EE-SX671R*3 } \end{aligned}$	Approx. 3.0 g
			Light-ON	EE-SX471	EE-SX471P	
T-shaped			Dark-ON/Light-ON (selectable) *1	$\begin{aligned} & \text { EE-SX672 } \\ & \text { EE-SX672A*2 } \end{aligned}$	$\begin{aligned} & \text { EE-SX672P } \\ & \text { EE-SX672R*3 } \end{aligned}$	Approx. 2.4 g
			Light-ON	EE-SX472	EE-SX472P	
Close-mounting			Dark-ON/Light-ON (selectable) *1	$\begin{aligned} & \text { EE-SX673 } \\ & \text { EE-SX673A*2 } \end{aligned}$	$\begin{aligned} & \text { EE-SX673P } \\ & \text { EE-SX673R*3 } \end{aligned}$	Approx. 2.3 g
			Light-ON	EE-SX473	EE-SX473P	
Close-mounting 4			Dark-ON/Light-ON (selectable) *1	$\begin{aligned} & \text { EE-SX674 } \\ & \text { EE-SX674A*2 } \end{aligned}$	$\begin{aligned} & \text { EE-SX674P } \\ & \text { EE-SX674R*3 } \end{aligned}$	Approx. 3.0 g
			Light-ON	EE-SX474	EE-SX474P	

Note: *1. The Dark-ON/Light-ON (selectable) models can be used as Light-ON models when the L terminal and positive (+) terminal are short-circuited. An L terminal and positive (+) terminal short-circuit connector (EE-1001-1) is available.
*2. Models with a suffix "A," such as EE-SX670A, have a Dark-ON indicator that is lit when light is interrupted.
*3. Models with a suffix "R," such as EE-SX670R, have a Dark-ON indicator that is lit when light is interrupted.

Application Example

Specifications

■ Ratings

Item	Output	Standard	L-shaped	T-shaped	Close-mounting	
	NPN	$\begin{aligned} & \text { EE-SX670 } \\ & \text { EE-SX670A } \\ & \text { EE-SX470 } \end{aligned}$	$\begin{aligned} & \text { EE-SX671 } \\ & \text { EE-SX671A } \\ & \text { EE-SX471 } \end{aligned}$	$\begin{aligned} & \text { EE-SX672 } \\ & \text { EE-SX672A } \\ & \text { EE-SX472 } \end{aligned}$	$\begin{aligned} & \text { EE-SX673 } \\ & \text { EE-SX673A } \\ & \text { EE-SX473 } \end{aligned}$	$\begin{aligned} & \hline \text { EE-SX674 } \\ & \text { EE-SX674A } \\ & \text { EE-SX474 } \end{aligned}$
	PNP	EE-SX670P EE-SX670R EE-SX470P	$\begin{aligned} & \hline \text { EE-SX671P } \\ & \text { EE-SX671R } \\ & \text { EE-SX471P } \end{aligned}$	$\begin{aligned} & \hline \text { EE-SX672P } \\ & \text { EE-SX672R } \\ & \text { EE-SX472P } \end{aligned}$	$\begin{aligned} & \hline \text { EE-SX673P } \\ & \text { EE-SX673R } \\ & \text { EE-SX473P } \end{aligned}$	$\begin{aligned} & \hline \text { EE-SX674P } \\ & \text { EE-SX674R } \\ & \text { EE-SX474P } \end{aligned}$
Sensing distance		5 mm (slot width)				
Standard sensing object		Opaque: $2 \times 0.8 \mathrm{~mm} \mathrm{~min}$.				
Differential travel		0.025 mm				
Light source (peak wave length)		GaAs infrared LED (940 nm)				
Receiver		Si phototransistor with a sensing wavelength of 850 nm max.				
Operation indicator (see note 1)		Operation indicator (red) lit with incident (Models with a suffix of "A" or "R" have Dark-ON indicators.)				
Power supply voltage		5 to 24 VDC $\pm 10 \%$, ripple (p-p): 10\% max.				
Current consumption		35 mA max. (NPN), 30 mA max. (PNP)				
Control output		NPN open collector output models: At 5 to 24 VDC : $100-\mathrm{mA}$ load current (I_{C}) with a residual voltage of 0.8 V max. $40-\mathrm{mA}$ load current (l_{C}) with a residual voltage of 0.4 V max. PNP open collector output models: At 5 to $24 \mathrm{VDC}: 50-\mathrm{mA}$ load current $\left(\mathrm{I}_{\mathrm{C}}\right)$ with a residual voltage of 1.3 V max.				
Response frequency (see note 2)		1 kHz max. (3 kHz average)				

Note: 1. The indicator is GaP red LED (peak emission wavelength: 690 nm).
2. The response frequency was measured by detecting the following rotating disks.

■ Characteristics

Item	Output	Standard	L-shaped	T-shaped		unting
	NPN	$\begin{aligned} & \text { EE-SX670 } \\ & \text { EE-SX670A } \\ & \text { EE-SX470 } \end{aligned}$	$\begin{aligned} & \text { EE-SX671 } \\ & \text { EE-SX671A } \\ & \text { EE-SX471 } \end{aligned}$	$\begin{aligned} & \text { EE-SX672 } \\ & \text { EE-SX672A } \\ & \text { EE-SX472 } \end{aligned}$	$\begin{aligned} & \text { EE-SX673 } \\ & \text { EE-SX673A } \\ & \text { EE-SX473 } \end{aligned}$	$\begin{aligned} & \text { EE-SX674 } \\ & \text { EE-SX674A } \\ & \text { EE-SX474 } \end{aligned}$
	PNP	$\begin{aligned} & \text { EE-SX670P } \\ & \text { EE-SX670R } \\ & \text { EE-SX470P } \end{aligned}$	EE-SX671P EE-SX671R EE-SX471P	$\begin{aligned} & \text { EE-SX672P } \\ & \text { EE-SX672R } \\ & \text { EE-SX472P } \end{aligned}$	$\begin{aligned} & \text { EE-SX673P } \\ & \text { EE-SX673R } \\ & \text { EE-SX473P } \end{aligned}$	$\begin{aligned} & \text { EE-SX674P } \\ & \text { EE-SX674R } \\ & \text { EE-SX474P } \end{aligned}$
Ambient illumination (on Receiver lens)		Fluorescent light: 1,000 ex max.				
Ambient temperature		Operating: -25° to $55^{\circ} \mathrm{C}$ Storage: -30° to $80^{\circ} \mathrm{C}$				
Ambient humidity		Operating: 5% to 85% Storage: 5% to 95%				
Vibration resistance		Destruction: 20 to $2,000 \mathrm{~Hz}$, (with a peak acceleration of 10G), $1.5-\mathrm{mm}$ double amplitude for 2 hrs (with 4 -minute cycles) each in X, Y, and Z directions				
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 50G) for 3 times each in X, Y, and Z directions				
Degree of protection		IEC60529 IP50				
Connection method		Connector type (direct soldering possible)				
Weight		Approx. 3.1 g	Approx. 3.0 g	Approx. 2.4 g	Approx. 2.3 g	Approx. 3.0 g
Material		Case: Polybutylene phthalate (PBT), Cover: Polycarbonate (PC), Emitter/receiver: Polycarbonate (PC)				

Engineering Data

Sensing Position Characteristics (Typical)

Repeated Sensing Position Characteristics (Typical)

$\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$
No. of repetitions: 20
$\Delta \mathrm{d} 1=0.002 \mathrm{~mm}$
$\Delta \mathrm{d} 2=0.004 \mathrm{~mm}$
$\Delta \mathrm{d} 3=0.005 \mathrm{~mm}$
$\Delta \mathrm{d} 4=0.02 \mathrm{~mm}$
$\Delta \mathrm{d} 5=0.04 \mathrm{~mm}$

Operation

■ Output Circuit Diagrams

Output configuration	Model	Output transistor operation	Timing Charts	Output Circuit
NPN Output	EE-SX670 EE-SX671 EE-SX672 EE-SX673 EE-SX674	Light-ON	(When terminals L and \oplus are short-circuited)	
	$\begin{aligned} & \text { EE-SX470 } \\ & \text { EE-SX471 } \\ & \text { EE-SX472 } \\ & \text { EE-SX473 } \\ & \text { EE-SX474 } \end{aligned}$	Light-ON	Incident Interrupted Operation indicator (red) \quad ON	Note: When using on voltage output, always insert a resistor in RL.
	EE-SX670A EE-SX671A EE-SX672A EE-SX673A EE-SX674A	Light-ON Dark-ON	(When terminals L and \oplus are short-circuited) (When terminals L and \oplus are open)	

Output configuration	Model	Output transistor operation	Timing Charts	Output Circuit
PNP Output	EE-SX670P EE-SX671P EE-SX672P EE-SX673P EE-SX674P	Light-ON		
	$\begin{aligned} & \text { EE-SX470P } \\ & \text { EE-SX471P } \\ & \text { EE-SX472P } \\ & \text { EE-SX473P } \\ & \text { EE-SX474P } \end{aligned}$	Light-ON	Incident Interrupted Operation indicator (red) ON Output OFF transistor ON Load (relay) OFF Operates Voltage output Releases H L	Note: When using on voltage output, always insert a resistor in RL.
	$\begin{aligned} & \text { EE-SX670R } \\ & \text { EE-SX671R } \\ & \text { EE-SX672R } \\ & \text { EE-SX673R } \\ & \text { E-SX674R } \end{aligned}$	Light-ON		

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Note: Not used in EE-SX470

Note: Not used in EE-SX472

EE-SX673/673P EE-SX673A/673R EE-SX473/473P

Terminal Arrangement

(1)	\oplus	Vcc
$\mathbf{(2)}$	L	L (see note)
(3)	OUT	OUT PUT
(4)	\ominus	GND (0 V)

Note: Not used in EE-SX473

Terminal Arrangement

(1)	\oplus	Vcc
(2)	L	L (see note)
(3)	OUT	OUT PUT
(4)	\ominus	GND (0 V)

Note: Not used in EE-SX474

Precautions

Do not use the EE-SX at voltage exceeding the rated voltage range, otherwise the EE-SX may be damaged.

Do not make mistakes in wiring, such as mistakes in polarity, otherwise the EE-SX may be damaged.

Do not short-circuit the load (i.e., do not connect a power supply directly to the Sensor) as shown below, otherwise the EE-SX may be damaged.

Caution

Mounting

The EE-SX is a Sensor to be built into equipment. Therefore, no special protective measures have been taken to protect the EE-SX from external light disturbance. Make sure that the EE-SX is not affected by incandescent lamps or other light sources that may cause external light disturbance, otherwise the EE-SX may malfunction.
Be sure to mount the Sensor securely to flat plates. The characteristics of the Through-beam Sensor change if the slot is deformed.
Use M3.0 screws when mounting the EE-SX. Be sure to use spring washers with the screws so that the screws will not loosen. The tightening torque applied to each screw must be no more than $0.59 \mathrm{~N} \cdot \mathrm{~m}(6 \mathrm{kgf} \cdot \mathrm{cm})$.
Make sure that nothing will come into contact with the sensing element of the Sensor. If the sensing element has scratch damage, the characteristics of the Sensor will decrease.
Make sure that the EE-SX is securely mounted and not loosened by vibration or shock.

Wiring

Countermeasures Against Surge

If the power supply has surge voltage, connect a Zener diode withstanding 30 to 35 V or 0.1 to $1-\mu \mathrm{F}$ capacitor in parallel to the power supply to absorb the surge voltage.

If the load is a relay or other small inductive load, connect the load to the EE-SX as shown below. Be sure to connect a diode for countervoltage absorption.

Do not wire power lines or high-tension lines alongside the lines of the EE-SX in the same conduit, otherwise the EE-SX may be damaged or malfunction due to induction. Be sure to wire the lines of the EE-SX separately from power lines or high-tension lines or lay them in an exclusive, shielded conduit.

Voltage Output

A Sensor with open collector output can be connected to a device with voltage-input specifications by connecting a resistor between the power supply and output terminals as shown in the following circuit diagram. The resistance of the resistor is normally $4.7 \mathrm{k} \Omega$ and must withstand a power of 0.5 W at 24 V and 0.25 W at 12 V .

EE-SX47/67 NPN Models with a 4.7-k Resistor High level:

$$
\text { Input voltage }\left(\mathrm{V}_{\mathrm{H}}\right)=\frac{\mathrm{Z}}{\mathrm{R}+\mathrm{Z}} \mathrm{~V}_{\mathrm{CC}}=\frac{4.7 \mathrm{k}}{4.7 \mathrm{k}+4.7 \mathrm{k}} \times 24 \mathrm{~V}=12 \mathrm{~V}
$$

Low level:

$$
\text { Input voltage }\left(\mathrm{V}_{\mathrm{L}}\right) \leqq 0.4 \mathrm{~V}
$$

$$
\text { Load current }\left(I_{C}\right)=\frac{V_{C C}}{R}=\frac{24 \mathrm{~V}}{R}=5.1 \mathrm{~mA} \leqq 50 \text { to } 100 \mathrm{~mA}
$$

EE-SX47/67 PNP Models with a 4.7-k Ω Resistor High level:

$$
\text { Input voltage } \begin{aligned}
\left(\mathrm{V}_{\mathrm{H}}\right) & =\mathrm{Vcc-residual} \mathrm{voltage} \\
& \approx 24 \mathrm{~V}-1.3 \mathrm{~V}=22.7 \mathrm{~V}
\end{aligned}
$$

Low level:

$$
\text { Input voltage }\left(\mathrm{V}_{\mathrm{L}}\right) \approx 0 \mathrm{~V}
$$

Note: Refer to the ratings of the Sensor for the relationship between the residual voltage and load current.

Others

Do not wire the EE-SX while power is applied, otherwise the EE-SX may be damaged.
Do not install the EE-SX in the following locations, otherwise the EESX may be damaged or malfunction.
Locations with excessive dust
Locations with corrosive gas
Locations where water, oil, or chemical is directly sprayed
Outdoors or locations exposed to direct sunlight
Make sure that the operating ambient temperature is within the rated range.
The Sensor may be soluble in organic solvent, acid, and alkaline, aromatic hydrocarbon, and chlorinated aliphatic hydrocarbon solvents. The characteristics of the Sensor may decrease as a result. Therefore, make sure that the Sensor is free from these solutions.

■ Additional Models (EE-SX77/87)

Ordering Information

Appearance	Sensing method	Sensing distance	Output configuration	Model	
				NPN	PNP
Standard	Through-beam (slot)		Dark ON	EE-SX770	EE-SX770P
				EE-SX770A	EE-SX770R
			Light ON	EE-SX870	EE-SX870P
				EE-SX870A	EE-SX870R
L-shaped			Dark ON	EE-SX771	EE-SX771P
				EE-SX771A	EE-SX771R
			Light ON	EE-SX871	EE-SX871P
				EE-SX871A	EE-SX871R
			Dark ON	EE-SX772	EE-SX772P
				EE-SX772A	EE-SX772R
			Light ON	EE-SX872	EE-SX872P
				EE-SX872A	EE-SX872R

Specifications

■ Ratings/Characteristics

Item	Through-beam models(slot)							
Output configuration	Dark ON				Light ON			
Output	NPN		PNP		NPN		PNP	
Model	$\begin{aligned} & \hline \text { EE-SX770 } \\ & \text { EE-SX771 } \\ & \text { EE-SX772 } \end{aligned}$	EE-SX770A EE-SX771A EE-SX772A	EE-SX770P EE-SX771P EE-SX772P	EE-SX770R EE-SX771R EE-SX772R	$\begin{aligned} & \hline \text { EE-SX870 } \\ & \text { EE-SX871 } \\ & \text { EE-SX872 } \end{aligned}$	EE-SX870A EE-SX871A EE-SX872A	EE-SX870P EE-SX871P EE-SX872P	EE-SX870R EE-SX871R EE-SX872R
Sensing distance	5 mm (slot width)							
Standard sensing object	Opaque: $2 \times 0.8 \mathrm{~mm} \mathrm{~min}$							
Operation indicator (see note)	Operation indicator (red) lit with incident (Models with a suffix of "A" or "R" have Dark-ON indicators.)							
Power supply voltage	5 to $24 \mathrm{VDC} \pm 10 \%$, ripple (p-p): 10% max.							
Current consumption	35 mA max. (NPN), 30 mA max. (PNP)							
Control output	NPN open collector output models: At 5 to 24 VDC : $100-\mathrm{mA}$ load current (I_{C}) with a residual voltage of 0.8 V max. $40-\mathrm{mA}$ load current (I_{C}) with a residual voltage of 0.4 V max. PNP open collector output models: At 5 to 24 VDC : $50-\mathrm{mA}$ load current $\left(\mathrm{I}_{\mathrm{C}}\right)$ with a residual voltage of 1.3 V max.							
Ambient illuminance	Sensing surface: 1,000 ex max. with fluorescent light							
Ambient temperature	$\begin{array}{ll}\text { Operating: } & -25^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\ \text { Storage: } & -30^{\circ} \mathrm{C} \text { to } 80^{\circ} \mathrm{C}\end{array}$							
Ambient humidity	Operating: 5% to 85% Storage: 5% to 95%							
Degree of protection	IEC60529 IP60							
Connection method (standard length)	Pre-wired: 2 m							
Weight	Approx. 20 g							

Note: The indicator is GaP red LED (peak emission wavelength: 690 nm).

Operation

■ Output Circuits

\begin{tabular}{|c|c|c|c|c|}
\hline Output configuration \& Model \& Output transistor operation \& Timing Charts \& Output Circuit \\
\hline NPN Output \& \begin{tabular}{l}
EE-SX770 \\
EE-SX771 \\
EE-SX772 \\
EE-SX770A \\
EE-SX771A \\
EE-SX772A \\
EE-SX870 \\
EE-SX871 \\
EE-SX872 \\
EE-SX870A \\
EE-SX871A \\
EE-SX872A
\end{tabular} \& Dark-ON \& \& \\
\hline PNP Output \& \begin{tabular}{l}
EE-SX770P \\
EE-SX771P \\
EE-SX772P \\
EE-SX770R \\
EE-SX771R \\
EE-SX772R \\
EE-SX870P \\
EE-SX871P \\
EE-SX872P \\
EE-SX870R \\
EE-SX871R \\
EE-SX872R
\end{tabular} \& Dark-ON

Light-ON \& \&

\hline
\end{tabular}

- Notice

Photomicrosensors (EE-SX67/47, 77/87 models) and Connectors
(EE-1001/1001-1/1006/1009/1010/1010-R) have been certified as products that conform to the following UL Standard.

Certified Date:
Certified Models:

File No.:
Standard Name:
Certification Method:
Applicable Lot No.:

The following Photomicrosensors have been certified as products conforming to the EMC Directives (CE marking).

CE Marking Date: April 1, 1998
Applicable Models: All EE-SX67/47 (A) models, EE-SX67/47 P, R models
All EE-SX77/87 (A) models, EE-SX77/87 P, R models
EE-SY671/672
EE-SPW311/411
EE-SPY311/312
EE-SPY301/302
EE-SPY401/402
EE-SPY411/412
EE-SPX302/304/306-W2A
EE-SPX402/404/406-W2A
EE-SPX303/403
EE-SPX301/401

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat. No. E303-E1-1 In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation

Industrial Sensors Division
Sensing Devices and Components Division H.Q.
28th FI., Crystal Tower Bldg.
1-2-27, Shiromi, Chuo-ku,
Osaka 540-6028 Japan
Phone: (81)6-949-6012 Fax: (81)6-949-6021

