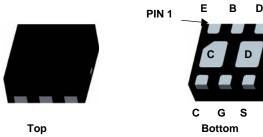


March 2013

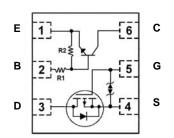
FDMA1430JP

Integrated P-Channel PowerTrench® MOSFET and BJT -30 V, -2.9 A, 90 m Ω

Features


- Max $r_{DS(on)}$ = 90 m Ω at V_{GS} = -4.5 V, I_D = -2.9 A
- Max $r_{DS(on)}$ = 130 m Ω at V_{GS} = -2.5 V, I_D = -2.6 A
- Max $r_{DS(on)} = 170 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -1.7 \text{ A}$
- Max $r_{DS(on)} = 240 \text{ m}\Omega$ at $V_{GS} = -1.5 \text{ V}$, $I_D = -1 \text{ A}$
- Low profile 0.8 mm maximum in the new package MicroFET 2x2
- HBM ESD protection level > 2 kV typical (Note 3)
- RoHS Compliant

General Description


This device is designed specifically as a single package solution for loadswitching in cellular handset and other ultra-portable applications. It features a 50 V NPN BJT and a 30 V P-ch Trench MOSFET in the space saving MicroFET 2x2 package that offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

Application

■ Loadswitching

Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Para	Parameter			
V _{DS}	Drain to Source Voltage			-30	V
V _{GS}	Gate to Source Voltage			±8	V
1	Drain Current -Continuous	T _A = 25°C	(Note 1a)	-2.9	۸
I _D	-Pulsed			-12	A
V _{CBO}	Collector-Base Voltage		(Note 4)	50	V
V _{CEO}	Collector-Emitter Voltage		(Note 5)	50	V
V _{EBO}	Emitter-Base Voltage			10	V
I _C	Collector Current			100	mA
P _C	Collector Power Dissipation			200	mW
TJ	Junction Temperature			150	°C
D	Power Dissipation	T _A = 25°C	(Note 1a)	1.5	W
P_{D}		T _A = 25°C	(Note 1b)	0.7	VV
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range		-55 to +150	°C

Thermal Characteristics

I	$R_{ heta JA}$	Thermal Resistance, Junction to Ambient(MOSFET)	(Note 1a)	86	°C/W
I	$R_{ heta JA}$	Thermal Resistance, Junction to Ambient(MOSFET)	(Note 1b)	173	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
143	FDMA1430JP	MicroFET 2x2	7"	8 mm	5000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	ncteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		-23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±1	μΑ

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-0.4	-0.6	-1	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		2.4		mV/°C
		$V_{GS} = -4.5 \text{ V}, I_D = -2.9 \text{ A}$		67	90	
		$V_{GS} = -2.5 \text{ V}, I_D = -2.6 \text{ A}$		81	130	mΩ
rno()	Static Drain to Source On Resistance	$V_{GS} = -1.8 \text{ V}, I_D = -1.7 \text{ A}$		98	170	
r _{DS(on)}	Static Brain to Gource On Nesistance	$V_{GS} = -1.5 \text{ V}, I_D = -1 \text{ A}$		114	240	11122
		$V_{GS} = -4.5 \text{ V}, I_{D} = -2.9 \text{ A},$ $T_{J} = 125 \text{ °C}$		102	133	
9 _{FS}	Forward Transconductance	V _{DS} = -5 V, I _D = -2.9 A		11		S

Dynamic Characteristics

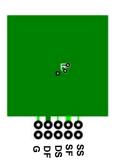
C _{iss}	Input Capacitance	V 45.V.V 0.V	438	580	pF
Coss	Output Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$	47	70	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 101112	41	60	pF

Switching Characteristics

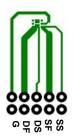
	•					
t _{d(on)}	Turn-On Delay Time	45.77.1		4.8	10	ns
t _r	Rise Time	V_{DD} = -15 V, I_{D} = -1 A, V_{GS} = -4.5 V, R_{GEN} = 6 Ω		4.4	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		67	107	ns
t _f	Fall Time			21	33	ns
Q_g	Total Gate Charge	V 45.V.L 20.A		7.2	10	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -15 \text{ V}, I_{D} = -2.9 \text{ A},$ $V_{GS} = -4.5 \text{ V}$		0.7		nC
Q _{gd}	Gate to Drain "Miller" Charge	VGS = 4.5 V		1.6		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.1 \text{ A}$ (Note 2)	-0.7	-1.2	٧
t _{rr}	Reverse Recovery Time	$I_{\rm E} = -2.9 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$	16	29	ns
Q _{rr}	Reverse Recovery Charge	F = -2.9 A, αι/αι = 100 A/μs	5	10	nC


BJT Characteristics

I _{CBO}	Collector Cut-off Current	V _{CB} = 40 V, I _E = 0 A			0.1	μΑ
h _{FE}	DC Current Gain	$V_{CE} = 5 \text{ V}, I_{C} = 5 \text{ mA}$	68			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$			0.3	V
f_{T}	Current Gain Bandwidth Product	$V_{CE} = 10 \text{ V}, I_{C} = 5 \text{ mA}$		250		MHz
C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0 \text{ A}, f = 1 \text{ MHz}$		3.7		pF
V _I (off)	Input Off Voltage	$V_{CE} = 5 \text{ V}, I_{C} = 100 \mu\text{A}$	0.5			V
V _I (on)	Input On Voltage	$V_{CE} = 0.2 \text{ V}, I_{C} = 5 \text{ mA}$			1.3	V
R1	Input Resistor			4.7		kΩ
R1/R2	Resistor Ratio			0.1		


Electrical Characteristics

Notes:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a. 86 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 173 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
- 4. Guaranteed by Icbo
- 5. Guaranteed by Iceo

.

Typical Characteristics T_J = 25 °C unless otherwise noted

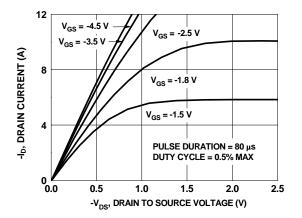


Figure 1. On-Region Characteristics

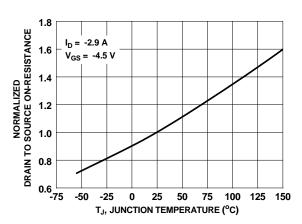


Figure 3. Normalized On-Resistance vs Junction Temperature

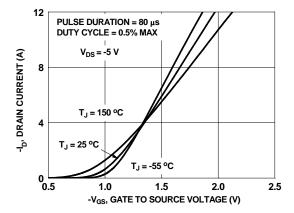


Figure 5. Transfer Characteristics

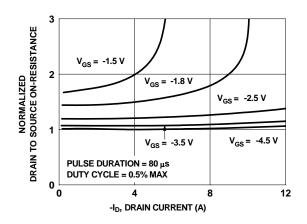


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

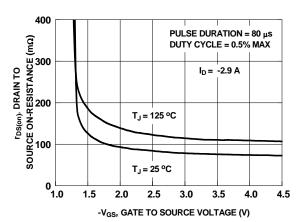


Figure 4. On-Resistance vs Gate to Source Voltage

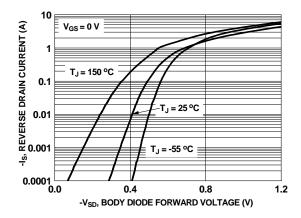


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25$ °C unless otherwise noted

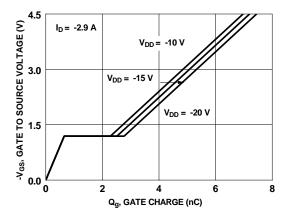


Figure 7. Gate Charge Characteristics

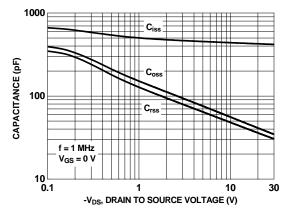


Figure 8. Capacitance vs Drain to Source Voltage

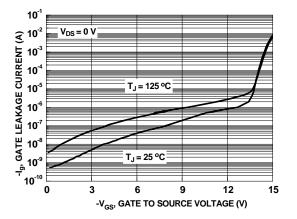


Figure 9. Gate Leakage vs Gate to Source Voltage

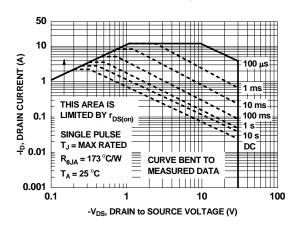


Figure 10. Forward Bias Safe Operating Area

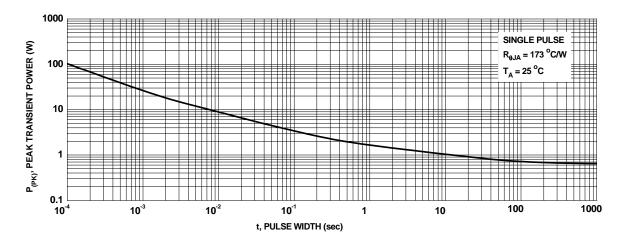


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25 °C unless otherwise noted

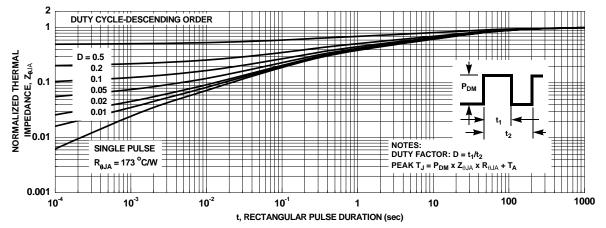
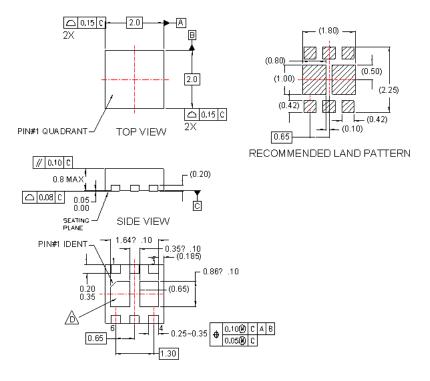



Figure 12. Junction-to-Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

BOTTOM VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VCCC EXCEPT AS NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER

ASME Y 14.5M, 1994 A NON-JEDEC DUAL DAP

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ FPS™ AccuPower™ AX-CAP®* F-PFS™ FRFET®

Global Power ResourceSM BitSiC™ Build it Now™ Green Bridge™ CorePLUS™ Green FPS™

CorePOWER™ CROSSVOLT™

CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Marking Small Speakers Sound Louder

Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

MotionMax™ mWSaver™ FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

(1)_® PowerTrench® PowerXS™

Programmable Active Droop™

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6

SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

SYSTEM®' TinvBoost^T TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™

TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Green FPS™ e-Series™

Gmax™

and Better™

MegaBuck™

MicroFET™

MicroPak™ MicroPak2™

MillerDrive™

MICROCOUPLER™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164