TOSHIBA

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX574F,TC74LCX574FW,TC74LCX574FT,TC74LCX574FK

Low-Voltage Octal D-Type Flip-Flop with 5-V Tolerant Inputs and Outputs

The TC74LCX574F/FW/FT/FK is a high-performance CMOS octal D-type flip-flop. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) V_{CC} applications, but it could be used to interface to 5 V supply environment for both inputs and outputs.

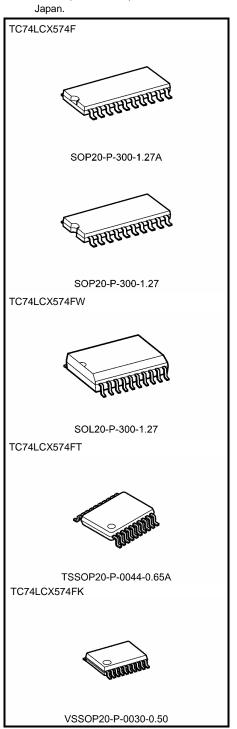
This 8-bit D-type flip-flop is controlled by a clock input (CK) and an output enable input (\overline{OE}). When the \overline{OE} input is high, the eight outputs are in a high-impedance state.

All inputs are equipped with protection circuits against static discharge.

Features

- Low-voltage operation: $V_{CC} = 2.0$ to 3.6 V ٠
- High-speed operation: $t_{pd} = 8.5 \text{ ns} (max) (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$ •
- Output current: |IOH|/IOL = 24 mA (min) (VCC = 3.0 V)
- Latch-up performance: ±500 mA •
- Available in JEDEC SOP, JEITA SOP and TSSOP
- Power-down protection provided on all inputs and outputs •

Weight


SOP20-P-300-1.27A

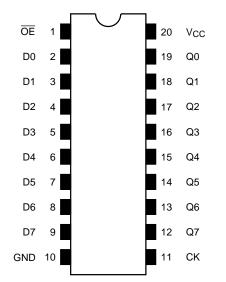
TSSOP20-P-0044-0.65A : 0.08 g (typ.) VSSOP20-P-0030-0.50 : 0.03 g (typ.)

SOP20-P-300-1.27

SOL20-P-300-1.27

Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 574 type

Note: xxxFW (JEDEC SOP) is not available in


: 0.22 g (typ.)

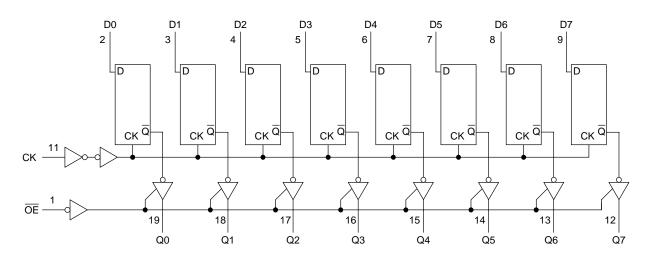
: 0.22 g (typ.)

: 0.46 g (typ.)

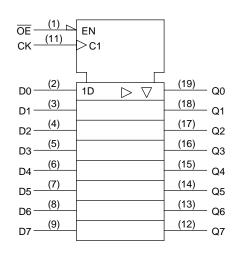
TOSHIBA

Pin Assignment (top view)

Truth Table


	Inputs	Outputs	
ŌE	СК	D	Outputs
н	Х	Х	Z
L		Х	Qn
L		L	L
L		Н	н

X: Don't care


Z: High impedance

Qn: No change

System Diagram

IEC Logic Symbol

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5 to 7.0	V	
DC input voltage	V _{IN}	-0.5 to 7.0	V	
		-0.5 to 7.0 (Note 2)		
DC output voltage	V _{OUT}	–0.5 to V _{CC} + 0.5 (Note 3)	V	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note 4)	mA	
DC output current	IOUT	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: Output in OFF state

- Note 3: High or low state. IOUT absolute maximum rating must be observed.
- Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	Vcc	2.0 to 3.6	V	
rower supply voltage	vcc	1.5 to 3.6 (Note 2)	v	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	V _{OUT}	0 to 5.5 (Note 3)	V	
Output voltage		0 to V _{CC} (Note 4)	v	
Output current	1//	±24 (Note 5)	mA	
	IOH/IOL	±12 (Note 6)	IIIA	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: Output in OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.7$ to 3.0 V

Note 7: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Characte	eristics	Symbol	Test Condition			Min	Мах	Unit
Character		Cynize.			V _{CC} (V)		max	Onit
Input voltage	H-level	V _{IH}	-	_	2.7 to 3.6	2.0		V
input voltage	L-level	VIL	-	_	2.7 to 3.6		0.8	v
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		
	H-level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
				I _{OH} = -18 mA	3.0	2.4	_	
Output voltage				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
			V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \ \mu A$	2.7 to 3.6	_	0.2	
		level V _{OL}		$I_{OL} = 12 \text{ mA}$	2.7	_	0.4	
	L-level			$I_{OL} = 16 \text{ mA}$	3.0	_	0.4	
			$I_{OL} = 24 \text{ mA}$	3.0	_	0.55		
Input leakage currer	nt	I _{IN}	$V_{IN} = 0$ to 5.5 V	V _{IN} = 0 to 5.5 V		_	±5.0	μA
3-state output off-sta	ate current	I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 5.5 V		2.7 to 3.6	_	±5.0	μA
Power off leakage c	urrent	I _{OFF}	$V_{IN}/V_{OUT} = 5.5 V$		0	_	10.0	μΑ
Quiescent supply current	1	$V_{IN} = V_{CC}$ or GND		2.7 to 3.6		10.0		
Quiescent supply cu		Icc	$V_{IN}/V_{OUT} = 3.6 \text{ to } 5.5 \text{ V}$		2.7 to 3.6	_	±10.0	μA
Increase in I _{CC} per i	nput	Δl _{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	500	

AC Characteristics (Ta = -40 to 85°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
			2.7	_		N 41 I-
Maximum clock frequency	f _{max}	Figure 1, Figure 2	$\textbf{3.3}\pm\textbf{0.3}$	150	_	MHz
Propagation delay time	t _{pLH}	Figure 4. Figure 2	2.7	_	9.5	
(CK-Q)	t _{pHL}	Figure 1, Figure 2	$\textbf{3.3}\pm\textbf{0.3}$	1.5	8.5	ns
Output apphla time	t _{pZL}	Figure 1 Figure 2	2.7	_	9.5	
Output enable time	t _{pZH}	Figure 1, Figure 3	$\textbf{3.3}\pm\textbf{0.3}$	1.5	8.5	ns
Output disable time	t _{pLZ}		2.7	_	7.0	ns
	tput disable time Figure 1, Figure 3		$\textbf{3.3}\pm\textbf{0.3}$	1.5	6.5	
Minimum pulse width	t _w (H)	Figure 1, Figure 2	2.7	3.3	_	ns
(CK)	t _w (L)		$\textbf{3.3}\pm\textbf{0.3}$	3.3	—	115
Minimum act un timo		Figure 1, Figure 2	2.7	2.5	_	20
Minimum set-up time	ts		$\textbf{3.3}\pm\textbf{0.3}$	2.5	—	ns
Minimum hold time	+.		2.7	1.5	_	ns
	t _h	Figure 1, Figure 2	$\textbf{3.3}\pm\textbf{0.3}$	1.5	—	115
Output to output skew tosLH tosHL	t _{osLH}	(Nete)	2.7	_	_	ns
	(Note)	$\textbf{3.3}\pm\textbf{0.3}$		1.0	115	

Note: Parameter guaranteed by design.

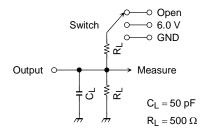
 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V_{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet output minimum dynamic V_{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	CIN		3.3	7	pF
Output capacitance	COUT		3.3	8	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (Note)	3.3	25	pF


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

Average operating current can be obtained by the equation:

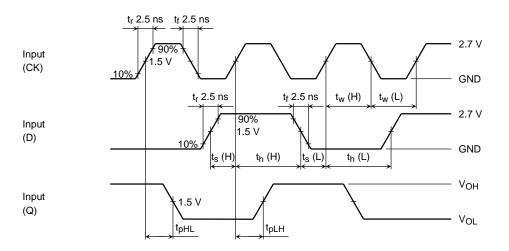
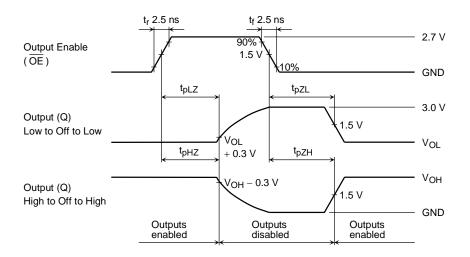
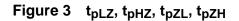
 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

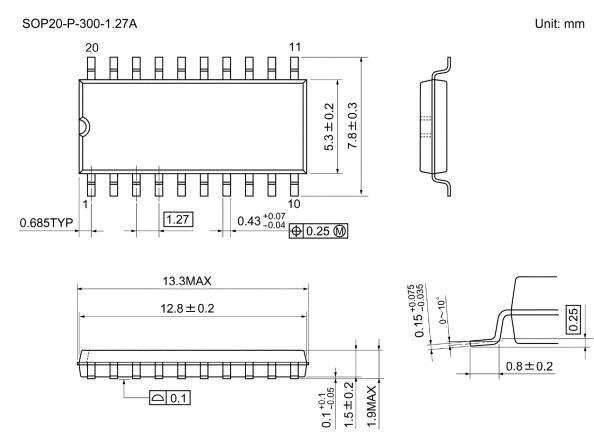
<u>TOSHIBA</u>

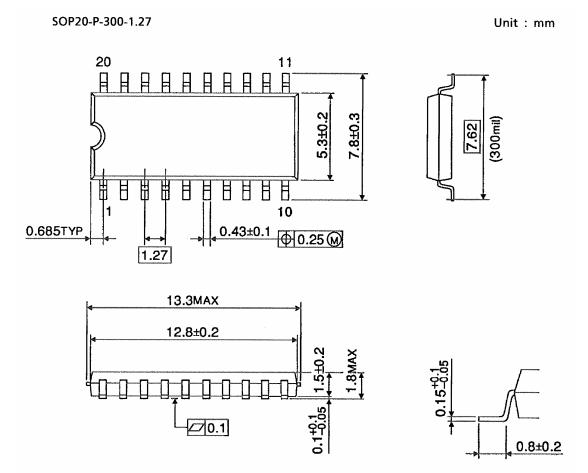
AC Test Circuit

Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{pLZ} , t _{pZL}	6.0 V
t _{pHZ} , t _{pZH}	GND
t _w , t _s , t _h , f _{max}	Open

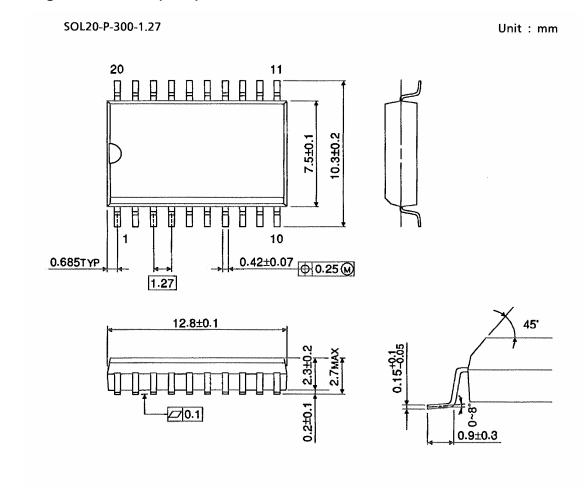
AC Waveform


Figure 2 t_{pLH}, t_{pHL}, t_w, t_s, t_h


TOSHIBA

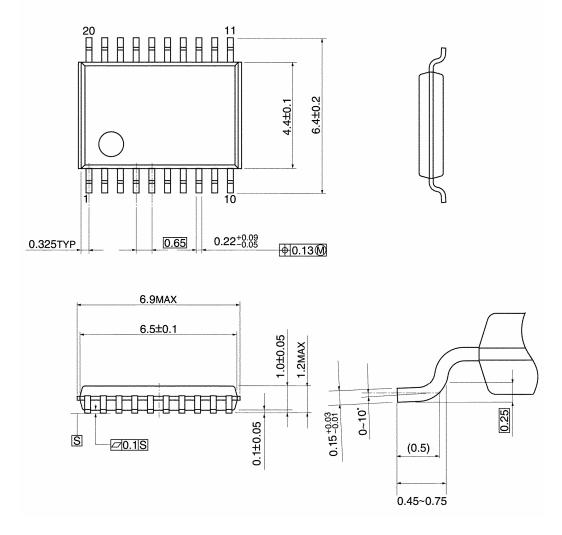
Package Dimensions


Weight: 0.22 g (typ.)

Package Dimensions

Weight: 0.22 g (typ.)

Package Dimensions (Note)

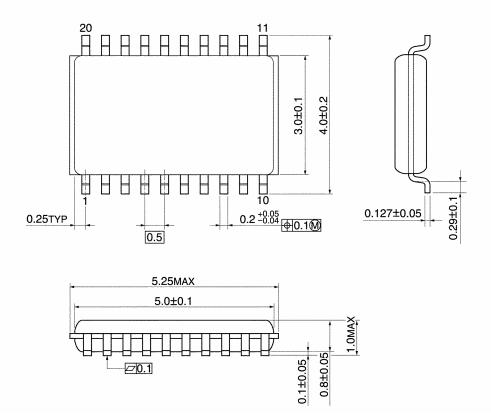

Note: This package is not available in japan.

Weight: 0.46 g (typ.)

Package Dimensions

TSSOP20-P-0044-0.65A

Unit: mm



Weight: 0.08 g (typ.)

Package Dimensions

VSSOP20-P-0030-0.50

Unit: mm

Weight: 0.03 g (typ.)

Note: Lead (Pb)-Free Packages

SOP20-P-300-1.27A TSSOP20-P-0044-0.65A VSSOP20-P-0030-0.50

RESTRICTIONS ON PRODUCT USE

Handbook" etc. 021023_A

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk, 021023 B

- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E