GU (General Use) Type SOP Series 2-Channel (Form A) Type # PhotoMOS RELAYS UL File No.: E43149 CSA File No.: LR26550 mm inch ### **FEATURES** # 1. 2 channels in super miniature design The device comes in a super-miniature SO package measuring (W) 4.4×(L) 9.37×(H) 2.1 mm (W) .173×(L) .369×(H) .083 inch—approx. 38% of the volume and 66% of the footprint size of DIP type PhotoMOS Relays. 2. Tape and reel The device comes standard in a tape and reel (1,000 pcs./reel) to facilitate automatic insertion machines. 3. Controls low-level analog signals PhotoMOS relays feature extremely low closed-circuit offset voltage to enable control of low-level analog signals without distortion. 4. Low-level off state leakage current In contrast to the SSR with an off state leakage current of several milliamps, the PhotoMOS relay features a very small off state leakage current of only 100 pA even with the rated load voltage of 400 V (AQW214S). ## TYPICAL APPLICATIONS - Telephones - Measuring instruments - Computer - Industrial robots - High-speed inspection machines **TYPES** | | Output rating* | | Par | Packing quantity | | |------------|----------------|--------------|----------------------------------|----------------------------------|------------------| | | Load voltage | Load current | Picked from the 1/2/3/4-pin side | Picked from the 5/6/7/8-pin side | in tape and reel | | | 350 V | 100 mA | AQW210SX | AQW210SZ | 1,000 pcs. | | AC/DC type | 400 V | 80 mA | AQW214SX | AQW214SZ | 1,000 pcs. | ^{*} Indicate the peak AC and DC values. Notes: (1) Tape package is the standard packing style. Also available in tube. (Part No. suffix "X" or "Z" is not needed when ordering; Tube: 50 pcs.; Case: 1,000 pcs.) (2) For space reasons, the package type indicator "X" and "Z" are omitted from the seal. #### RATING 1. Absolute maximum ratings (Ambient temperature: 25°C 77°F) | | 11 | tem | Symbol | AQW210S | AQW214S | Remarks | |-------------------------|-----------|------------------|-------------------|--|-------------------|---| | | LED forw | ard current | lF | 50 |) mA | | | | LED reve | erse voltage | VR | 3 | 3 V | | | Input | | ward current | lFP | 1 A
75 mW | | f = 100 Hz, Duty factor = 0.1% | | , | Power dis | ssipation | Pin | | | | | | Load volt | tage (peak AC) | VL | 350 V | 400 V | | | | Continuo | ous load current | IL | 0.1 A
(0.13 A) | 0.08 A
(0.1 A) | (): in case of using only 1 channel | | put | Peak load | d current | I _{peak} | 0.3 A | 0.24 A | A connection: 100ms (1 shot), V _L = DC | | 1 | Power dis | ssipation | Pout | 600 | 0 mW | | | Total power dissipation | | PT | 650 mW | | | | | I/O isolation voltage | | V _{iso} | 1,500 V AC | | | | | Temp | erature | Operating | Topr | -20°C to +80°€ | C -4°F to +176°F | Non-condensing at low temperatures | | limits | | Storage | T _{stq} | -40°C to +100°C -40°F to +212°F | | | ### 2. Electrical characteristics (Ambient temperature: 25°C 77°F) | | Item | | Sym-
bol | AQW210S | AQW214S | Condition | |-----------------------------|---------------------------------------|-------------------------------|-------------------|--|-------------------|--| | | Current | Minimum
Typical
Maximum | I _{Fon} | 0.9 mA
3 mA | | I _L = Max. | | Input | LED turn off current | Minimum
Typical
Maximum | I _{Foff} | 0.4 mA
0.8 mA | | I _L = Max. | | | LED dropout | Minimum
Typical
Maximum | VF | 1.14 V (1.25 V at I _F = 50 mA)
1.5 V | | I _F = 5 mA | | Outmout | On resistance | Minimum
Typical
Maximum | Ron | 16 Ω
35 Ω | 30 Ω
50 Ω | I _F = 5 mA
I _L = Max.
Within 1 s on time | | Output | Off state
leakage current | Minimum
Typical
Maximum | I _{Leak} | 1 μΑ | | I _F = 0 mA
I _L = Max. | | | Turn on time* | Minimum
Typical
Maximum | Ton | 0.23 ms
0.5 ms | 0.21 ms
0.5 ms | I _F = 5 mA
I _L = Max. | | Transfer
characteristics | Turn off time* | Minimum
Typical
Maximum | T _{off} | 0.04 ms
0.2 ms | | I _F = 5 mA
I _L = Max. | | | I/O capacitance | Minimum
Typical
Maximum | C _{iso} | 0.8 pF
1.5 pF | | f = 1 MHz
V _B = 0 | | | Initial I/O isola-
tion resistance | Minimum
Typical
Maximum | R _{iso} | 1,0 | 500 V DC | | #### *Turn on/Turn off time - For Dimensions, see Page 20. - For Schematic and Wiring Diagrams, see Page 23. - For Cautions for Use, see Page 27. ## REFERENCE DATA 1. Load current vs. ambient temperature characteristics Allowable ambient temperature: -20°C to +80°C -4°F to +176°F 2. On resistance vs. ambient temperature characteristics Measured portion: between terminals 5 and 6, 7 and 8; LED current: 5 mA; Load voltage: Max. (DC); Continuous load current: Max. (DC) 3. Turn on time vs. ambient temperature characteristics LED current: 5 mA; Load voltage: Max. (DC); Continuous load current: Max. (DC) 4. Turn off time vs. ambient temperature characteristics LED current: 5 mA; Load voltage: Max. (DC); Continuous load current: Max. (DC) 5. LED operate current vs. ambient temperature characteristics Sample: All types; Load voltage: Max. (DC); Continuous load current: Max. (DC) 6. LED turn off current vs. ambient temperature characteristics Sample: All types; Load voltage: Max. (DC); Continuous load current: Max. (DC) 7. LED dropout voltage vs. ambient temperature characteristics Sample: All types; LED current: 5 to 50 mA 8. Voltage vs. current characteristics of output at MOS portion Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: 25°C 77°F 9. Off state leakage current Measured portion: between terminals 5 and 6, 7 and 8: Ambient temperature: 25°C $77^\circ F$ # 10. LED forward current vs. turn on time characteristics Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: 25°C 77° F 11. LED forward current vs. turn off time characteristics Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: 25°C 77°F 12. Applied voltage vs. output capacitance characteristics Measured portion: between terminals 5 and 6, 7 and 8: Frequency: 1 MHz; Ambient temperature: 25°C 77 F 50 10 10 20 10 20 30 40 50 Applied voltage, V # Terminology | Term Syn | | Symbol | Description | |-------------------------------|---------------------------|------------------|--| | | LED forward current | lF | Current that flows between the input terminals when the input diode is forward biased. | | | LED reverse voltage | VR | Reverse breakdown voltage between the input terminals. | | | Peak forward current | IFP | Maximum instantaneous value of the forward current. | | Input | LED operate current | I _{FON} | Current when the output switches on (by increasing the LED current) with a designated supply voltage and load connected between the output terminals. | | | LED turn off current | lFoff | Current when the output switches off (by decreasing the LED current) after operating the relay with a designated supply voltage and load connected between the output terminals. | | | LED dropout voltage | V _F | Dropout voltage between the input terminals due to forward current. | | | Power dissipation | Pin | Allowable power dissipation between the input terminals. | | | Load voltage | VL | Supply voltage range at the output used to normally operate the PhotoMOS relay. Represents the peak value for AC voltages. | | Output | Continuous load current | ΙL | Maximum current value that flows continuously between the output terminals of the PhotoMOS relay under designated ambient temperature conditions. Represents the peak value for AC current. | | | On resistance | Ron | Obtained using the equation below from dropout voltage V_{DS} (on) between the output terminals (when a designated LED current is made to flow through the input terminals and the designated load current through the output terminals.) Ron = V_{DS} (on)/ I_L | | | Off state leakage current | lieak | Current flowing to the output when a designated supply voltage is applied between the output terminals with no LED current flow. | | | Power dissipation | Pout | Allowable power dissipation between the output terminals. | | | Turn on time | Ton | Delay time until the output switches on after a designated LED current is made to flow through the input terminals. | | | Turn off time | Toff | Delay time until the output switches off after the designated LED current flowing through the input terminals is cut off. | | | I/O capacitance | Ciso | Capacitance between the input and output terminals. | | | Output capacitance | Cout | Capacitance between output terminals when LED current does not flow. | | Electrical
characteristics | I/O isolation resistance | Riso | Resistance between terminals (input and output) when a specified voltage is applied between the input and output terminals. | | | Total power dissipation | PT | Allowable power dissipation in the entire circuit between the input and output terminals. | | | I/O isolation voltage | Viso | Critical value before dielectric breakdown occurs, when a high voltage is applied for 1 minute between the same terminals where the I/O isolation resistance is measured. | | | Operating temperature | Topr | Ambient temperature range in which the PhotoMOS relay can operate normally with a designated load current conditions. | | | Storage temperature | T _{Stg} | Ambient temperature range in which the PhotoMOS relay can be stored without applying voltage. | ### Reliability tests | Classification | Item | Condition | Purpose | | | |----------------------|---|---|---|--|--| | Life tests | High temperature storage test | T _{stg} (Max.) | Determines resistance to long term storage at high temperature. | | | | | Low temperature storage test | T _{stg} (Min.) | Determines resistance to long term storage at low temperature. | | | | | High temperature and high humidity storage test | 85°C 185°F, R.H. 85% | Determines resistance to long term storage at high temperature and high humidity. | | | | | Continuous operation life test | VL = Max., IL = Max., IF = LED operate current (Max.) | Determines resistance to electrical stress (voltage and current). | | | | Thermal | Temperature cycling test | Low storage temperature (T _{stg} Min.)
High storage temperature (T _{stg} Max.) | Determines resistance to exposure to both low temperatures and high temperatures. | | | | environment
tests | Thermal shock test | Low temperature (0°C) (32°F),
High temperature (100°C) (212°F) | Determines resistance to exposure to sudden changes in temperature. | | | | | Solder burning resistance | 260±5°C 500±41°F, 10 s | Determines resistance to thermal stress occurring while soldering. | | | | | Vibration test | 196 m/s² {20 G}, 20 to 2,000 Hz*1 | Determines the resistance to vibration sustained during shipment or operation. | | | | Mechanical | Shock test | 9,800 m/s ² {1,000 G} 0.5 ms* ² ;
4,900 m/s ² {500 G} 1 ms | Determines the mechanical and structural resistance to shock. | | | | environment
tests | Drop test | Dropped at a height of 80 cm on oak board | Determines the mechanical resistance to drops sustained during shipment or operation. | | | | | Terminal strength test | Determined from terminal shape and cross section | Determines the resistance to external force on the terminals of the PhotoMOS relay mounted on the PC board while wiring or operating. | | | | | Solderability | 230°C 446 F 5 s (with soldering flux) | Evaluates the solderability of the terminals. | | | ^{*1 10} to 55 Hz at double amplitude of 3 mm for Power PhotoMOS relays. *2 4,900 m/s², 1 ms for Power PhotoMOS relays. # PhotoMOS Relay Schematic and Wiring Diagrams | Туре | | Output
configura-
tion | Load | Con-
nection | Wiring diagram | |--|--|-------------------------------------|---|-----------------|--| | | | | AC/DC | A | E ₁ = 2 | | AQV21
AQV21 (SOP)
AQV22 | 1 6 6 2 5 5 5 | 1a | DC | B* | E1 F 2 5 L. VL(DC) 6 Load + 5 Load Load Load | | AQV22 (SOP)
AQV23
AQV25
Series | 2 5 4 4 | la la | | | E1 T | | | (AQV254R only) | 1 | . DC | С | E1 TE 2 G Load + Load + Load | | AQW21 | ¹———— | | | | (1) Two independent 1 Form A use E ₁ | | AQW21 (SOP)
AQW22
AQW25
AQW27
Series | 2 | 2a | AC/DC | - | (2) 2 Form A use Coad Coa | | AQW21OTS
Series | Relay portion (1,2,7,8 pins) Detector portion (3,4,5,6 pins) | Relay portion | Relay
portion
AC/DC
Detecte
portion
DC | | 8 Load 7 Lu 1 VL1(AC,DC) 8 Load 7 Lu 1 VL1(AC,DC) 8 Load 5 IF2 E2 | | AQW21OT2S
Series | Relay portion (1,2,11,12 pins) Detector portion (3,4,9,10 pins) (5,6,7,8 pins) | Relay portion 1a Detecte portion 2a | | er – | E ₁ | ^{*}Can be also connected as 2 Form A type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.) **Can be also connected as 2 Form B type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.) Notes: 1. E₁: Power source at input side; V_{IN}: Input voltage; I_F: LED forward current; V_L: Load voltage; I_L: Load current; R: Current limit resistor. 2. Method of connecting the load at the output is devided into 3 types.