

Product Overview

LV8702V: PWM Current Control High-Efficiency Stepper Motor Driver

For complete documentation, see the data sheet.

The LV8702V is a 2-channel Full-bridge driver IC that can drive a stepper motor driver, which is capable of micro-step drive and supports quarter step. Current is controlled according to motor load and rotational speed at half step, half step full-torque and quarter step excitation, thereby highly efficient drive is realized. Consequently, the reduction of power consumption, heat generation, vibration and noise is achieved.

Features

- Built-in 1ch PWM current control stepper motor driver (bipolar type)
- Ron (High-side Ron: 0.3Ω , Low-side Ron: 0.25Ω , total: 0.55Ω , Ta = 25° C, IO = 2.5A)
- · Micro-step mode is configurable as follows: full step/half step full-torque/half step/quarter step
- · Excitation step moves forward only with step signal input
- · Built-in output short protection circuit (latch method)
- · Control power supply is unnecessary
- · Built-in high-efficient drive function (supports half step full-torque/half step/quarter step excitation mode)
- · Built-in step-out detection function (Step-out detection may not be accurate during high speed rotation)
- IO max=2.5A
- Built-in thermal shut down circuit
 For more features, see the data sheet

Applications

- Stepper
- · Computing & Peripherals
- Industrial

End Products

- Printer
- Scanner
- Surveillance camera(CCTV)
- · Textile machine

Part Electrical Specifications													
Product	Compliance	Status	V _M Min (V)	V _M Max (V)	V _{CC} Min (V)	V _{CC} Max (V)	I _o Max (A)	I _O Peak Max (A)	Step Resoluti on	Control Type	Current Sense	Fault Detectio n	Packag e Type
LV8702V-TLM-H	Pb-free Halide free	Active	9	32			2.5	3	1 1/4 1/2	Clock	External Resistor	Thermal	SSOP- 44J EP

Application Diagram

Calculation for each constant setting according to the above circuit diagram is as follows.

```
 \begin{array}{ll} \mbox{1) Constant current } (100\%) \mbox{ setting} & \mbox{2) Chopping frequency setting} \\ \mbox{VREF} = 5V \times 30 k \Omega/(68 k \Omega + 30 k \Omega) \approx 1.53 V & \mbox{Fchop} = Ichop/(Cchop \times Vtchop \times 2) \\ \mbox{When VREF} = 1.53 V : & = 10 \mu A/(150 pF \times 0.5 V \times 2) \\ \mbox{I}_{OUT} = VREF/5/0.22 \Omega \approx 1.39 A & \approx 66.7 kHz \end{array}
```

For more information please contact your local sales support at www.onsemi.com.

Created on: 11/26/2018