
Data sheet
1.40 (January 2025)

X20(c)AI2438

Translation of the original documentation

Publishing information

B&R Industrial Automation GmbH

B&R Strasse 1

5142 Eggelsberg

Austria

Telephone: +43 7748 6586-0

Fax: +43 7748 6586-26

office@br-automation.com

Disclaimer

All information in this document is current as of its creation. The contents of this document are subject to
change without notice. B&R Industrial Automation GmbH assumes unlimited liability in particular for tech-
nical or editorial errors in this document only (i) in the event of gross negligence or (ii) for culpably inflicted
personal injury. Beyond that, liability is excluded to the extent permitted by law. Liability in cases in which
the law stipulates mandatory unlimited liability (such as product liability) remains unaffected. Liability for
indirect damage, consequential damage, business interruption, loss of profit or loss of information and
data is excluded, in particular for damage that is directly or indirectly attributable to the delivery, perfor-
mance and use of this material.

B&R Industrial Automation GmbH notes that the software and hardware designations and brand names
of the respective companies used in this document are subject to general trademark, brand or patent pro-
tection.

Hardware and software from third-party suppliers referenced in this document is subject exclusively to the
respective terms of use of these third-party providers. B&R Industrial Automation GmbH assumes no lia-
bility in this regard. Any recommendations made by B&R Industrial Automation GmbH are not contractual
content, but merely non-binding information for which no liability is assumed. When using hardware and
software from third-party suppliers, the relevant user documentation of these third-party suppliers must
additionally be consulted and, in particular, the safety guidelines and technical specifications contained
therein must be observed. The compatibility of the products from B&R Industrial Automation GmbH de-
scribed in this document with hardware and software from third-party suppliers is not contractual content
unless this has been separately agreed in individual cases; in this respect, warranty for such compatibility is
excluded in any case, and it is the sole responsibility of the customer to verify this compatibility in advance.

Version history

B&R makes every effort to keep documents as current as possible. The most current versions are available
for download on the B&R website (www.br-automation.com).

2 X20(c)AI2438 Data sheet V 1.40

mailto:office@br-automation.com
https://www.br-automation.com

 General information

1 General information

1.1 Other applicable documents

For additional and supplementary information, see the following documents.

Other applicable documents
Document name Title
MAX20 X20 System user's manual

1.2 Coated modules

Coated modules are X20 modules with a protective coating for the electronics component. This coating
protects X20c modules from condensation and corrosive gases.
The modules' electronics are fully compatible with the corresponding X20 modules.

For simplification purposes, only images and module IDs of uncoated modules are used in
this data sheet.

The coating has been certified according to the following standards:

• Condensation: BMW GS 95011-4, 2x 1 cycle
• Corrosive gas: EN 60068-2-60, method 4, exposure 21 days

1.2.1 Starting temperature

The starting temperature describes the minimum permissible ambient temperature in a voltage-free state
at the time the coated module is switched on. This is permitted to be as low as -40°C. During operation, the
conditions as specified in the technical data continue to apply.

Information:
It is important to absolutely ensure that there is no forced cooling by air currents in the
closed control cabinet, e.g. due to the use of a fan or ventilation slots.

 X20(c)AI2438 Data sheet V 1.40 3

https://www.br-automation.com/download/10000017209

General information

1.3 Order data

Order number Short description Figure
Analog inputs

X20AI2438 X20 analog input module, 2 inputs, 4 to 20 mA, 16-bit con-
verter resolution, single-channel galvanically isolated and
with own sensor power supply, supports HART protocol,
NetTime function

X20cAI2438 X20 analog input module, coated, 2 inputs, 4 to 20 mA, 16-
bit converter resolution, single-channel galvanically isolated
and with own sensor power supply, supports HART proto-
col, NetTime function
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O power supply
connected through

X20BM15 X20 bus module, with node number switch, 24 VDC keyed,
internal I/O power supply connected through

X20cBM11 X20 bus module, coated, 24 VDC keyed, internal I/O power
supply connected through
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20AI2438, X20cAI2438 - Order data

1.4 Module description

The module is equipped with 2 current measurement inputs with 16-bit digital converter resolution. It sup-
ports the HART communication standard for data transfer, parameter configuration and diagnostics.

Each current measurement input has its own sensor supply. The two channels with their respective sensor
supplies are electrically isolated from each other. The user can select between the two measurement ranges
4 to 20 mA and 0 to 25 mA.

Functions:

• Configurable conversion rate / filter time
• Monitoring the input signal
• HART
• NetTime Technology
• Flatstream communication

Conversion rate and filter time

The sampling time of the A/D converter can be configured individually for each channel together with the
filter time.

Monitoring the input signal

The input signal is monitored for upper and lower limit values, open circuit and the status of the power
supply. In addition to the status information, user-defined limit values can be defined as well as replacement
values that are output if the limit values are overshot or undershot.

HART

Highway Addressable Remote Transducer (HART) is a protocol for communicating with intelligent field de-
vices. The procedure was designed to make more efficient use of infrastructures for the transfer of analog
signals.

In exceptional cases, error messages may occur when connecting specific DTM devices. For details, see
"Limitations" on page 14.

NetTime timestamp of the measurement

For many applications, not only the measured value is important, but also the exact time of the measure-
ment. The module is equipped with a NetTime timestamp function for this that supplies a timestamp for
the recorded position and trigger time with microsecond accuracy.

Flatstream communication

"Flatstream" was designed for X2X and POWERLINK networks and allows data transfer to be adapted to
individual demands. This allows data to be transferred more efficiently than with standard cyclic polling.

4 X20(c)AI2438 Data sheet V 1.40

 Technical description

2 Technical description

2.1 Technical data

Order number X20AI2438 X20cAI2438
Short description
I/O module 2 analog inputs 4 to 20 mA or 0 to 25 mA
General information
B&R ID code 0xB3A9 0xE1EE
Status indicators I/O function per channel, operating state, module status, sensor power supply per channel, HART
Diagnostics

Module run/error Yes, using LED status indicator and software
Inputs Yes, using LED status indicator and software
Sensor power supply Yes, using LED status indicator and software
HART link Yes, using LED status indicator and software
HART error Yes, using LED status indicator and software

Power consumption
Bus 0.05 W
Internal I/O 1.15 W 1)

Additional power dissipation caused by actua-
tors (resistive) [W]

-

Certifications
CE Yes
UKCA Yes
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

DNV Temperature: B (0 to 55°C)
Humidity: B (up to 100%)

Vibration: B (4 g)
EMC: B (bridge and open deck)

CCS Yes -
LR ENV1
KR Yes
ABS Yes
BV EC33B

Temperature: 5 - 55°C
Vibration: 4 g

EMC: Bridge and open deck
KC Yes -

Analog inputs
Input 4 to 20 mA or 0 to 25 mA configurable using software
Input type Differential input
Digital converter resolution 16-bit
Data output rate

With HART 4.7 to 10 samples per second, configurable using software
Analog 4.7 to 100 samples per second, configurable using software

Output format INT
Output format

4 to 20 mA INT 0x0000 - 0x7FFF / 1 LSB = 0x0001 = 488.281 nA
0 to 25 mA INT 0x0000 - 0x7FFF / 1 LSB = 0x0001 = 762.939 nA
0 to 25000 µA INT 0x0000 - 0x61A8 / 1 LSB = 0x0001 = 1000 nA

Load I_IN ≥ 0.1 mA: R < 8000 Ω
I_IN ≥ 1 mA: R < 1100 Ω
I_IN ≥ 4 mA: R < 510 Ω

Input protection Up to 30 VDC, reverse polarity protection (max. 0.1 A)
Open-circuit detection Yes, using software
Permissible input signal 0 to 25 mA
Output of digital value during overload Configurable
Conversion procedure Sigma-delta

Table 2: X20AI2438, X20cAI2438 - Technical data

 X20(c)AI2438 Data sheet V 1.40 5

Technical description

Order number X20AI2438 X20cAI2438
Max. error

Gain
0 to 25 mA <0.046% 2)

4 to 20 mA <0.046% 2)

Offset
0 to 25 mA <0.004% 3)

4 to 20 mA <0.013% 3)

Common-mode rejection
DC 80 dB
50 Hz Depends on the sampling rate: e.g. >130 dB for 50 samples per second

Common-mode range 0 to 7 V
Nonlinearity <0.003% 3)

Input filter
Hardware First-order low-pass filter / cutoff frequency 100 Hz
Software Sinc4 filter

Max. gain drift
0 to 25 mA 0.003 %/°C 2)

4 to 20 mA 0.003 %/°C 2)

Max. offset drift
0 to 25 mA 0.0002 %/°C 3)

4 to 20 mA 0.0007 %/°C 3)

Test voltage
Channel - Channel 1000 VAC
Channel - Bus 1000 VAC
Channel - Ground 1000 VAC

Sensor power supply
Power consumption 0.75 W per channel
Nominal voltage 25 V ±2%
Nominal output current Max. 30 mA
Short-circuit proof Yes, continuous
Max. voltage ripple

Up to 100 kHz ≤2.2 mV
Up to 1 MHz ≤22 mV
Higher ≤100 mV

Short-circuit current
Typical <50 mA
Maximum 60 mA

Behavior on short circuit Current limiting
HART
Transfer rate 1200 bit/s
Operating frequencies 1200 Hz / 2200 Hz
Multi-drop operation

Possible Yes
Stations 5 nodes (when using HART slaves with a nominal current of 4 mA)

Up to 15 (taking into account the maximum permissible input signal of 25 mA)
Burst operation possible Yes
Transmission amplitude

Minimum 400 mVpp

Typical 500 mVpp

Maximum 600 mVpp

Receiving amplitude
Minimum 120 mVpp

Maximum 800 mVpp

Electrical properties
Electrical isolation Channel isolated from channel and bus

Sensor power supply isolated from sensor power supply
Sensor power supply not isolated from channel

Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20

Table 2: X20AI2438, X20cAI2438 - Technical data

6 X20(c)AI2438 Data sheet V 1.40

 Technical description

Order number X20AI2438 X20cAI2438
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating -
Starting temperature - Yes, -40°C
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%, non-condensing Up to 100%, condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB12 separately.

Order 1x bus module X20BM11 separately.
Order 1x terminal block X20TB12 separately.
Order 1x bus module X20cBM11 separately.

Pitch 12.5+0.2 mm

Table 2: X20AI2438, X20cAI2438 - Technical data

1) To reduce power dissipation, B&R recommends leaving unused inputs open.
2) Based on the current measured value.
3) Based on the 25 mA measurement range.

2.2 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs"
in the X20 System user's manual.

Figure LED Color Status Description
Operating state

Off No power to module
Single flash UNLINK mode
Double flash BOOT mode (during firmware update)1)

Blinking quickly SYNC mode
Blinking slowly Mode PREOPERATIONAL

r Green

On RUN mode
Module status

Off No power to module or everything OK
Single flash A conversion error has occurred. This status is output along with a double

flash on the channel LED of the analog input where the error occurs.

e Red

On Error or reset status
Sensor supply

Off Module supply not connected or overloadV Yellow
On Sensor supply in its normal operating range

Analog input
Off Indicates one of the following cases:

• No power to module
• Channel disabled
• Open line

Single flash Input signal overflow or underflow
Double flash A conversion error has occurred. A single flash is output on the red "e"

module status LED.

1 - 2 Green

On Analog/digital converter running, value OK
HART link

Off Indicates one of the following cases:

• No power to module
• HART disabled for the respective channel

L Green

Flickering Carrier signal active (DCD or RTS)
HART error

Off Indicates one of the following cases:

• Communication taking place without errors
• No power to module
• HART disabled for the respective channel

e Red

On Communication error

1) Depending on the configuration, a firmware update can take up to several minutes.

 X20(c)AI2438 Data sheet V 1.40 7

Technical description

2.3 Pinout

Shielded twisted pair cables should be used to minimize coupling disturbances. Use either one cable for
each channel or a multiple twisted pair cable for both channels.

r
V
1
L
e

e

e

V
2
L

X
20

 A
I 2

43
8

Sensor supply 1 +

Sensor supply 1 −

Sensor supply 2 +

Channel 1 +

Channel 1 −

Channel 2 +

Sensor supply 2 − Channel 2 −

2.4 Connection examples

2-wire connections

A 2-wire connection can be implemented as follows:

• 2-wire transducer
• Active current source

GND
+24 VDC

GND
+24 VDC

AI

2-wire
transducer
(passive)

Current source

8 X20(c)AI2438 Data sheet V 1.40

 Technical description

4-wire connections

A 4-wire connection can be implemented as follows:

• 4-wire transducer with external supply
• 4-wire transducer supplied by the module

4-wire
transducer

(active)

4-wire
transducer

(active)

GND
+24 VDC

GND
+24 VDC

AI 1)

2)

1) With external power supply.
2) With internal power supply. The internal power supply is only permitted to be loaded with max. 30 mA.

2.5 Input circuit diagram

Sensor power supply x +

Sensor power supply x -

Channel x +

Channel x -

Processor

RTS (Request to Send)

25 V

DC-to-DC
28 V

DC-to-DC
3.3 V

Galvanic isolation

18 - 30 V

Sh
un

t

GND x

GND x GND I/O

GND x

Output
protection

Input
protection Protection

and
filter

HART
modem

A/D
converter

I/O
power supply

DC-to-DC
converter

2.6 Behavior in the event of short circuit

In the event of a short circuit, the output current for the sensor supply is limited according to the following
diagram.

Current [mA]

0
0

5

10

15

20

25

302010 40 50

Vo
lta

ge
 [V

]

 X20(c)AI2438 Data sheet V 1.40 9

Technical description

2.7 Usage after the X20IF1091-1

If this module is operated after X2X Link module X20IF1091-1, delays may occur during the Flatstream trans-
fer. For detailed information, see section "Data transfer on the Flatstream" in X20IF1091-1.

10 X20(c)AI2438 Data sheet V 1.40

 Function description

3 Function description

3.1 Analog inputs

The module is equipped with 2 independent galvanically isolated channels with integrated HART modems.
Both channels can be used to read in an analog signal as well as for HART communication. All the necessary
registers are duplicated so that the channels can be configured and operated independently of each other.

The current input signals (0 to 25 mA) can be displayed in various formats and used as conventional analog
inputs:

Values Information
0 to 25000 Normalization option 0 to 25 mA
0 to 32767 Normalization option 0 to 25 mA

-8192 to 32767 Normalization option 4 to 20 mA (value 0 corresponds to 4 mA)
0 to 65535 Normalization option 0 to 25 mA

Predefining values and timing
If a replacement value strategy has been configured, value "0" (zero) is output at the beginning until a valid
measured value has been calculated.

The timing of the measured value acquisition is determined by the converter hardware and the set sampling
rate. The two channels are converted independently and not synchronized with the X2X Link network.

Conversion time
Sampling rate of channel 0x

Information:
The register is described in "Analog input values" on page 54.

3.1.1 Configurable conversion rate / filter time

The sampling time of the A/D converter is configured together with the filter time. A conversion rate can
be configured independently for the two analog inputs. Based on the desired sampling frequency, the fol-
lowing formula results for this parameter:

Conversion rate for A/D converter = (4920000 / 1024) / Sampling frequency

Values Filter time in milliseconds Conversion rate in s-1

4 1 1000
9 2 500

48 10 100
80 16.7 60
96 20 (bus controller default setting) 50
160 33.3 30
192 40 25
320 66.7 15
480 100 10
960 200 5

Information:
The fastest sampling time of 10 ms for the analog inputs is specified by the cutoff frequen-
cy of the hardware filter. When using HART communication, however, a sampling rate no
faster than 100 ms should be used.

Information:
The register is described in "Sample rate" on page 51.

 X20(c)AI2438 Data sheet V 1.40 11

Function description

3.2 Monitoring the input signal

The input signal is monitored against the upper and lower limit values as well as for open circuit. The status
of the power supply can also be read out. Some error information is delayed according to the previously
set condition.

Packed status information

Setting "Format status information" in Automation Studio makes it possible to specify whether the status
information is transferred as USINT or bit by bit.

The following values are monitored:

Name Value Information
0 No errorUnderflowAnalogInput

Depending on the configuration, the error state of the sig-
nal undershoot is mapped here. 1)

1 Lower limit value undershot

0 No errorOverflowAnalogInput
Depending on the configuration, the error state of the sig-
nal overshoot is mapped here. 1)

1 Upper limit value overshot

0 No errorOpenLineAnalogInput
Depending on the configuration, the measurement infor-
mation is checked for <2 mA for the failure signal. Open-
circuit detection takes place by means of a configurable
hysteresis (default: 100 µA). It is possible to disable open-
circuit monitoring in order to suppress alarm generation if
hardware is missing. 1)

1 Open circuit detected

0 No errorConversionErrorAnalogInput
The error state triggered by a hardware conversion time-
out is displayed here.

1 Conversion error detected

0 No errorSumErrorAnalogInput
This error information is derived from the status of the in-
dividual errors and is only enabled after a configurable de-
lay time [ms]. Linking this error information in the applica-
tion makes it possible to hide temporary overshoots or un-
dershoots of the temperature value, for example.

1 Composite error detected

0 Sensor voltage OKSensorErrorAnalogInput
This error information is derived from the status of the in-
dividual errors and is only enabled after a configurable de-
lay time [ms]. Linking this error information in the applica-
tion makes it possible to hide temporary overshoots or un-
dershoots of the temperature value, for example.

1 Sensor load too high

0 I/O power supply OKIoSuppErrorAnalogInput
This error is enabled immediately after a supply voltage
undershoot (<20 VDC) is detected.

1 I/O power supply error detected

1) This error information is only enabled after a configurable delay as a multiple of the conversion cycles.

Information:
The register is described in "Status of the inputs" on page 55.

3.2.1 Limit and replacement values

3.2.1.1 Limit value monitoring

In addition to the qualitative assessment of the input, the module is also equipped with the function of
adjusting the permissible range of values to the requirements of the application. In addition, the permissi-
ble upper and lower limits can be further limited. In this case, the set replacement value strategy is applied
sooner.

If user-specific limit values are used, a hysteresis range should also be defined. This configures how far the
limit value must be overshot in order to trigger a reaction.

12 X20(c)AI2438 Data sheet V 1.40

 Function description

3.2.1.2 Replacement value strategy

To ensure the quality of the read-in value, the detected voltage is assessed. If a logically impermissible
voltage value or open circuit is detected, for example, limit value monitoring is triggered.

The reaction to this is determined by the user via the replacement value strategy. With option "Use replace-
ment values in the event of error", the user defines two values for the overshoot or undershoot that are
used to replace the converted value in the event of a limit value violation. With the alternative "Keep last
valid converted value", the last value deemed good is retained. The assessment takes more time, however.
Depending on the defined preparation interval, the current read-in value is delayed.

Information:
The registers are described in "Configuring the limit values" on page 52.

3.2.1.3 Receiving the measured value

If the last valid measured value should be kept when violating the limit value, then PreparationInterval must
be defined. The measured values continue to be acquired and converted according to the configured I/O
update time. They are then checked and discarded if they do not meet the specifications. When an error
does not occur, therefore, the measured value acquired 2 preparation intervals ago is constantly output.

"Application"
Value being measured (analog)

↓
Condition:
- Conversion interval (A/D convert-
er) elapsed

"Measured value memory"
Measured value (digital)

↓
Condition:
- PreparationInterval elapsed
- Measured value permissible

"Buffer"
Last valid value

↓
Condition:
- PreparationInterval elapsed
- Measured value permissible

Functionality:
Depending on the configured input filter, measured values are continuously converted and stored in
the measured value memory. The current content of the measured value memory is checked within the
set interval time. If a permissible value is present, the content of the temporary memory is transferred
to the output memory and the content of the measured value memory is transferred to the temporary
memory.
If the check results in an impermissible value, the content of the measured value memory is discarded.
The copy direction between the output memory and temporary memory is reversed, and the next-to-last
valid value is still output.

Information:
With the "Hold last valid value" configuration, the delay from measurement to the
output of the value is at least twice the time of the preparation interval. In the
worst case, however, it can also take twice the interval time plus the configured
conversion cycle of the A/D converter.

"Output memory"
Next-to-last valid/

displayed value

Information:
The register is described in "Preparation time for the measured values" on page 54.

3.3 HART

HART (Highway Addressable Remote Transducer) is a protocol for communicating with intelligent field de-
vices. It was developed in order to more efficiently use the infrastructure for transferring analog signals.
The digital HART notifications are modulated to the analog signal using Frequency Shift Keying (FSK). HART
can thus use the same physical line as the analog signal without influencing the original function.
HART slaves are able to determine different process data independently and prepare HART concordantly.
This protocol supports polling of the value of a process variable as well as its unit and status. Field devices
usually supply their information after the master requests it. In newer revisions, it is also possible to transfer
configuration data.

There are 2 different types of HART networks. In a point-to-point network, only one slave is connected to a
HART master. Here, the analog signal and the HART signal can be transferred over the same line. Managing
several slaves with HART requires what is known as a multidrop network. Here, each HART slave is assigned
and identified by a unique address. Classic analog signals cannot be clearly traced in bus systems. As a
result, the HART protocol does not support analog information transfers in multidrop networks up to and
including HART Revision 5.

 X20(c)AI2438 Data sheet V 1.40 13

Function description

3.3.1 General information

The module is equipped with 2 independent galvanically isolated channels with integrated HART modems.
The integrated HART modems physically use the same lines as the analog inputs. Digital information can
be retrieved from the memory of the HART slave using additional higher frequency signals.

The module is designed as a HART master interface for 2 channels (loops) in the form of a 0 to 25 mA current
input with FSK modulation of the HART protocol and sensor power supply for up to 15 slaves per channel.

A distinction is made between the following connection variants for each channel.
• Connection of a HART node (point-to-point) with evaluation of the analog signal and output of the

4 HART process variables, or
• Connection of up to 15 HART nodes in multidrop mode with output of the primary HART variable of

the enabled nodes

Specific features
• Channels electrically isolated
• Up to 15 HART input variables per channel
• Configurable sampling rate (input filter) to transfer HART and analog signal without interference (de-

fault: 50 Hz or 20 ms)
• Internal supply with short circuit protection <30 mA per channel
• Selective line monitoring can be enabled for: open line (<2 mA), underflow (<3.6 mA) or overflow

(>21 mA) of a configurable threshold
• Selectable error strategy (static replacement value or retention of the last permissible value)
• Cyclic "HART status" polling (HART command 0), the status information received is made available for

channel diagnostics
• Compatible with an additional secondary master in the HART network (module acts as the primary

master)
• "HART communication error bit" (shows loss of HART connection if a connection had already been es-

tablished successfully)
• Optional: Burst mode for one node per channel
• Optional: Cyclic polling of "HART variables" (HART command 3 or 9)
• Optional: Sensor power supply for max. 15 nodes per channel in the multidrop variant
• Optional: Flatstream functionality (module acts as bridge for HART packets)

Information:
Maximum number of HART nodes per channel:

• 5 nodes (when using HART nodes with a nominal current of 4 mA)
• Up to 15 HART nodes (taking into account the maximum permissible input signal or

nominal output current of the sensor power supply of 25 mA)

3.3.1.1 Limitations

In exceptional cases, the following error message may appear in Automation Studio when connecting spe-
cific DTM devices:

• "Error connecting DTM device <Device name>. (The persistency operation InvokePersistSave() failed!)"

This error can be corrected by adding the registry entries required to find the necessary COM interface.
To do this, a new text file with file extension ".reg" must be created on the affected PC and the following
content added:

(Windows Registry Editor Version 5.00)

 [HKEY_CLASSES_ROOT\WOW6432Node\CLSID\{0000000c-0000-0000-C000-000000000046}]
 @="IStream"
[HKEY_CLASSES_ROOT\WOW6432Node\CLSID\{0000000c-0000-0000-C000-000000000046}\InprocServer32]
 @="combase.dll"
 "ThreadingModel"="Both"

After saving, the values must be imported into the registry by double-clicking on the .reg file. A confirmation
prompt must be answered with "Yes" or "OK". Automation Studio must then be restarted.

14 X20(c)AI2438 Data sheet V 1.40

 Function description

3.3.2 HART - Configuration

HART modules are analog modules equipped with a HART modem. For each channel, a separate HART net-
work can be managed by the module, which acts as a primary master. Once configured successfully, the
HART information is stored in the module where it can then be used by the PLC.

The number of HART slaves must be specified in the configuration.
If only one slave is connected to the HART channel, then it is part of a point-to-point network. The module
can then prepare up to 4 process variables from the connected slave.
Multidrop mode allows up to 15 HART slaves to be connected. The primary process variable from each slave
is then retrieved.

In addition to the type of network, the user can choose between 2 different communication behaviors.

• Polling
The principles of polling are used in conventional HART communication. The module queries the data
of the HART slave individually and receives the corresponding information from the slave in response.

• Burst mode
If a HART node should be queried at short intervals, the user can configure burst mode for one node per
channel. In this case, the slave sends the information from this node cyclically without a new prompt
from the master.

Extended configuration

The additional configuration registers are pre-assigned with values when the module is started. In many sys-
tems, the user does not have to make any adjustments to them. The register values should only be changed
if communication in the HART network is not running satisfactorily.

Information:
The registers are described in "HART configuration" on page 55.

 X20(c)AI2438 Data sheet V 1.40 15

Function description

3.3.3 HART - Communication

After the configuration is completed, the information is retrieved automatically and transferred to the mod-
ule registers. A separate register is implemented in the module for each piece of information. HART mod-
ules are designed to query up to 15 pieces of information per channel. The module reads in the data, stores
it in temporary memory and prepares it for retrieval. When the X2X master accesses the module registers,
it is irrelevant whether the HART data originates from a point-to-point or multidrop network.

Overview of internal module mapping
Point-to-point network (1 HART slave) Multidrop network (2 to 15 HART slaves)

(Pv)Input_01 Primary piece of information from HART node 1 Primary piece of information from HART node 1
(Pv)Input_02 Secondary piece of information from HART node 1 Primary piece of information from HART node 2
...
(Pv)Input_04 Quaternary piece of information from HART node 1 Primary piece of information from HART node 4
(Pv)Input_05 Reserved Primary piece of information from HART node 5
...
(Pv)Input_15 Reserved Primary piece of information from HART node 15

The HART specifications stipulates that information from a HART node be split into various pieces. The
value of a process variable is stored to the respective "PvInput" on page 56 register and has a size of
4 bytes (REAL) per the HART specification. Due to the length limitation of 30 bytes on the X2X Link network,
there are limitations to the number of possible cyclic variables. It is recommended to transfer a maximum
of 2 "PvInput" on page 56 registers cyclically to the X2X master. All other information should be read in
a different way. To access HART information, the user can choose between the following methods:

• Acyclic - If library AsIOAcc is used, information is queried acyclically only when it is needed, i.e. commu-
nication can be adapted to the program sequence of the X2X master. In this way, all of the necessary
module registers on the X2X Link network can be queried despite the length limitation.
This type of information exchange is not real-time capable.

• Cyclic: Data points configured for cyclic transfer are read once per bus cycle. This procedure allows
real-time capable information exchange between the module and X2X master. The length limitation
may prevent all data from being queried within one cycle, however.

• Multiplexed - A runtime driver can be used to transfer the HART data points in the I/O mapping. In this
case, the HART process data is transmitted alternately (time multiplexed). Communication remains
real-time capable. Multiple bus cycles are needed to update all data points, however.

Information:
This mode cannot be used when using the module after a bus controller.

"Multiplexed" data transfer is used exclusively for HART data points.

Information from the analog inputs/outputs is always transferred cyclically (see
above).

• Flatstream - HART modules are equipped with a Flatstream interface. When using Flatstream commu-
nication, the module is used as a bridge between the X2X master and HART slave, i.e. the X2X master
communicates directly with the HART slave (see "Flatstream communication" on page 22).
Flatstream communication is also not real-time capable. It allows unrestricted access to the HART
slave. The user must have sufficient knowledge of the HART protocol command set as well as the ca-
pabilities of the corresponding HART slave.

Information:
The registers are described in "HART communication" on page 56.

16 X20(c)AI2438 Data sheet V 1.40

 Function description

3.3.4 HART - Status information

The status information can be used to check whether a read-in value is valid. Per the HART specification, this
type of status register consists of 2 parts. The "response code" is stored in the high byte; the "field device
status" is stored in the low byte. This makes it possible to check the current state of a read process variable.

The status information can be checked before cached process information is processed further. If the cur-
rent value is 0x0000, no errors were detected during the HART transfer and the information of the checked
node can be used. If a different value is present, the situation in the HART network should be checked. The
extension registers can be used for this purpose, for example.

HART-specific response code
0x82 … Receive buffer overflow
0x88 … Incorrect checksum
0x90 … Invalid protocol structure
0xA0 … Overflow
0xC0 … Impermissible parity
0xFF … Timeout

If an error occurs during HART communication, the response code is writ-
ten.

Retrieving the read-in information

After the node data has been successfully transferred to the module registers, the information can be re-
trieved from the module. Separate registers have been implemented in the module for each piece of infor-
mation.

Information:
The register is described in "Status of the process variables" on page 57.

 X20(c)AI2438 Data sheet V 1.40 17

Function description

3.3.5 HART to Flatstream

When using Flatstream communication, the module acts as a bridge between the X2X master and an intelli-
gent field device connected to the module. Flatstream mode can be used for either point-to-point connec-
tions as well as for multidrop systems. Specific algorithms such as timeout and checksum monitoring are
usually managed automatically. During normal operation, the user does not have access to these details.

HART is considered a master-slave network where half-duplex communication takes place asynchronously.
Various features have been included to ensure that signals are transmitted without errors.
For example, the user can increase the length of the preamble, thus making the transmission more secure.
However, this also has an effect on the percentage of payload data and overhead.

Additional information about HART can be found at www.HARTcomm.org.

How it works

The module has 2 independent channels. When using Flatstream , the channel number must therefore be
specified. The general structure of a Flatstream frame is extended as follows.

Input/Output sequence Tx/Rx bytes
(unchanged) Control byte

(unchanged)
Channel number HART frame

(without preamble and checksum)

HART frame with Flatstream
Startup ADDR CMD BCNT (STS) (DATA)

Startup Start identification
ADDR Address within the HART network
CMD HART command
BCNT Byte counters (number of remaining bytes)
*STS Status of the last command received. Information about the operating mode of the HART slave and com-

munication errors (if supported, returns from the HART slave)
*DATA Data (if necessary for the command)

Examples of HART commands
Command Function
0x00 Read slave ID
0x03 Read current value and up to 4 variables
0x09 Read in up to 4 variables including status
0x21 Read variables

18 X20(c)AI2438 Data sheet V 1.40

http://www.HARTcomm.org

 Function description

3.4 NetTime Technology

NetTime refers to the ability to precisely synchronize and transfer system times between individual com-
ponents of the controller or network (controller, I/O modules, X2X Link, POWERLINK, etc.).

This allows the moment that events occur to be determined system-wide with microsecond precision. Up-
coming events can also be executed precisely at a specified moment.

3.4.1 Time information

Various time information is available in the controller or on the network:

• System time (on the PLC, Automation PC, etc.)
• X2X Link time (for each X2X Link network)
• POWERLINK time (for each POWERLINK network)
• Time data points of I/O modules

The NetTime is based on 32-bit counters, which are increased with microsecond resolution. The sign of the
time information changes after 35 min, 47 s, 483 ms and 648 µs; an overflow occurs after 71 min, 34 s, 967
ms and 296 µs.

The initialization of the times is based on the system time during the startup of the X2X Link, the I/O mod-
ules or the POWERLINK interface.

Current time information in the application can also be determined via library AsIOTime.

3.4.1.1 Controller data points

The NetTime I/O data points of the controller are latched to each system clock and made available.

3.4.1.2 X2X Link - Reference time point

X2X Link

Full cycle Half cycle

SI AO AISOAIAOSISOAIAO

Full cycle Full cycleHalf cycle

Task class Task class Task class

System time System time System timeX2X Link
time

X2X Link
time

23000 24000 25000 26000 27000

System cycle time = 2 ms
X2X cycle time = 2 ms

The reference time point on the X2X Link network is always calculated at the half cycle of the X2X Link
cycle. This results in a difference between the system time and the X2X Link reference time point when the
reference time is read out.

In the example above, this results in a difference of 1 ms, i.e. if the system time and X2X Link reference time
are compared at time 25000 in the task, then the system time returns the value 25000 and the X2X Link
reference time returns the value 24000.

 X20(c)AI2438 Data sheet V 1.40 19

Function description

3.4.1.3 POWERLINK - Reference time point

Full cycle

PReqSoC

Full cycle Full cycle

Task class Task class Task class

System time System time System time

POWERLINK
NetTime SoC

23000 25000 27000

System cycle time = 2 ms
POWERLINK system cycle time = 2 ms

POWERLINK
NetTime SoC

POWERLINK
NetTime SoC

PRes PReq PReqSoC PRes PReq... ...

The POWERLINK reference time point is always calculated at the start of cycle (SoC) of the POWERLINK net-
work. The SoC starts 20 µs after the system clock due to the system. This results in the following difference
between the system time and the POWERLINK reference time:

POWERLINK reference time = System time - POWERLINK cycle time + 20 µs

In the example above, this means a difference of 1980 µs, i.e. if the system time and POWERLINK reference
time are compared at time 25000 in the task, then the system time returns the value 25000 and the POW-
ERLINK reference time returns the value 23020.

3.4.1.4 Synchronization of system time/POWERLINK time and I/O module

Time

X2X Link cycle

(E)

(S)

C
ou

nt
er

 v
al

ue

(1)

(2)
Counter PLC/POWERLINK
Counter I/O module

(E)

(S)

At startup, the internal counters for the controller/POWERLINK (1) and the I/O module (2) start at different
times and increase the values with microsecond resolution.

At the beginning of each X2X Link cycle, the controller or POWERLINK network sends time information to
the I/O module. The I/O module compares this time information with the module's internal time and forms
a difference (green line) between the two times and stores it.

When a NetTime event (E) occurs, the internal module time is read out and corrected with the stored dif-
ference value (brown line). This means that the exact system moment (S) of an event can always be deter-
mined, even if the counters are not absolutely synchronous.

Note

The deviation from the clock signal is strongly exaggerated in the picture as a red line.

20 X20(c)AI2438 Data sheet V 1.40

 Function description

3.4.2 Timestamp functions

NetTime-capable modules provide various timestamp functions depending on the scope of functions. If a
timestamp event occurs, the module immediately saves the current NetTime. After the respective data is
transferred to the controller, including this precise moment, the controller can then evaluate the data using
its own NetTime (or system time), if necessary.
For details, see the respective module documentation.

3.4.2.1 Time-based inputs

NetTime Technology can be used to determine the exact moment of a rising edge at an input. The rising
and falling edges can also be detected and the duration between 2 events can be determined.

Information:
The determined moment always lies in the past.

3.4.2.2 Time-based outputs

NetTime Technology can be used to specify the exact moment of a rising edge on an output. The rising and
falling edges can also be specified and a pulse pattern generated from them.

Information:
The specified time must always be in the future, and the set X2X Link cycle time must be
taken into account for the definition of the moment.

3.4.2.3 Time-based measurements

NetTime Technology can be used to determine the exact moment of a measurement that has taken place.
Both the starting and end moment of the measurement can be transmitted.

 X20(c)AI2438 Data sheet V 1.40 21

Function description

3.5 Flatstream communication

3.5.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transfer to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard
cyclic polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R PLC

B&R PLC

B&R PLC
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a
bridge. The module is used to pass controller requests directly on to the field device.

22 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus
cycle. With Flatstream communication, all messages are viewed as part of a continuous data stream. Long
data streams must be broken down into several fragments that are sent one after the other. To understand
how the receiver puts these fragments back together to get the original information, it is important to
understand the difference between a message, a segment, a sequence and an MTU.

Message

A message refers to information exchanged between 2 communicating partner stations. The length of a
message is not restricted by the Flatstream communication method. Nevertheless, module-specific limita-
tions must be considered.

Segment (logical division of a message):

A segment has a finite size and can be understood as a section of a message. The number of segments
per message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each
segment is preceded by a byte with additional information. This control byte contains information such as
the length of a segment and whether the approaching segment completes the message. This makes it
possible for the receiving station to interpret the incoming data stream correctly.

Sequence (how a segment must be arranged physically):

The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written suc-
cessively to the MTU and transferred to the receiving station where they are lined up together again. The
receiver stores the incoming sequences in a receive array, obtaining an image of the data stream in the
process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred se-
quences must be acknowledged by the receiving station to ensure the integrity of the transfer.

MTU (Maximum Transmission Unit) - Physical transport:

MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one
sequence and transfer it to the receiving station. A separate MTU is defined for each direction of commu-
nication. OutputMTU defines the number of Flatstream Tx bytes, and InputMTU specifies the number of
Flatstream Rx bytes. The MTUs are transported cyclically via the X2X Link network, increasing the load with
each additional enabled USINT register.

Properties

Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed
to transfer a particular message. Although the Rx and Tx registers are exchanged between the transmitter
and the receiver cyclically, they are only processed further if explicitly accepted by register "InputSequence"
or "OutputSequence".

Behavior in the event of an error (brief summary)

The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can
generally be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by
the receiver must be acknowledged. If Forward functionality is not used, then subsequent communication
is delayed for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is incre-
mented twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station
uses SequenceAck to determine that the transfer was faulty and that all affected sequences must be re-
peated.

 X20(c)AI2438 Data sheet V 1.40 23

Function description

3.5.3 The Flatstream principle

Requirements

Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both
communication partners cyclically query the sequence counter on the remote station. This checks to see if
there is new data that should be accepted.

Communication

If a communication partner wants to transmit a message to its remote station, it should first create a trans-
mit array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very
efficiently without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

Controller fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure

The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the
corresponding control bytes are created. The data is formed into a data stream made up of one control
bytes per associated segment. This data stream can be written to the transmit array. The maximum size of
each array element matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be re-
filled. It then copies the first element of the array or the first sequence to the Tx byte registers. The MTU is
transported to the receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal
that the data should be accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the remote station detects the incremented Sequence-
Counter. The current sequence is appended to the receive array and acknowledged by SequenceAck. This
acknowledgment signals to the transmitter that the MTU can now be refilled.

If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit
array. During the transfer, the receiving station must detect and evaluate the incoming control bytes. A
separate receive array should be created for each message. This allows the receiver to immediately begin
further processing of messages that are completely transferred.

24 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small
amounts of data relatively easily.

Information:
The controller communicates directly with the field device via registers "OutputSequence"
and "InputSequence" as well as the enabled Tx and RxBytes bytes. For this reason, the user
must have sufficient knowledge of the communication protocol being used on the field
device.

3.5.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines
must be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to
ensure data consistency.

At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled
in with default values at the beginning and can be used immediately. These registers are used for additional
options, e.g. to transfer data in a more compact way or to increase the efficiency of the general procedure.

The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for
substantially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating
the program sequence.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the
registers names. Instead, they are used as synonyms for the currently enabled Tx or Rx
bytes.

Information:
The registers are described in "Flatstream registers" on page 60.

Registers are described in section "Flatstream communication" in the respective data
sheets.

3.5.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module
(output direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control or secure communication, i.e. the
transmitter uses them to give instructions to apply data and the receiver confirms a successfully transferred
sequence.

Information:
The registers are described in "Flatstream registers" on page 60.

Registers are described in section "Flatstream communication" in the respective data
sheets.

3.5.4.2.1 Format of input and output bytes

Name:

"Format of Flatstream" in Automation Studio

On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx
bytes) are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

 X20(c)AI2438 Data sheet V 1.40 25

Function description

3.5.4.2.2 Transporting payload data and control bytes

The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "In-
putMTU", respectively.
In the user program, only the Tx and Rx bytes from the controller can be used. The corresponding counter-
parts are located in the module and are not accessible to the user. For this reason, the names were chosen
from the point of view of the controller.

• "T" - "Transmit" → Controller transmits data to the module.
• "R" - "Receive" → Controller receives data from the module.

3.5.4.2.2.1 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control
bytes contain additional information about the data stream so that the receiver can reconstruct the original
message from the transferred segments.

Bit structure of a control byte
Bit Name Value Information

0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)
0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength

The segment length lets the receiver know the length of the coming segment. If the set segment length is
insufficient for a message, then the information must be distributed over several segments. In these cases,
the actual end of the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The
segment length is only derived from the bytes of payload data.

nextCBPos

This bit indicates the position where the next control byte is expected. This information is especially im-
portant when using option "MultiSegmentMTU".
When using Flatstream communication with MultiSegmentMTUs, the next control byte is no longer expect-
ed in the first Rx byte of the subsequent MTU, but transferred directly after the current segment.

MessageEndBit

"MessageEndBit" is set if the subsequent segment completes a message. The message has then been com-
pletely transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold
the entire message. The module will only process a message internally if this identifier is
detected.
The size of the message being transferred can be calculated by adding all of the message's
segment lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB
with ME) ME MessageEndBit

26 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.4.2.3 Communication status

The communication status is determined via registers "OutputSequence" and "InputSequence".

• OutputSequence contains information about the communication status of the controller. It is written
by the controller and read by the module.

• InputSequence contains information about the communication status of the module. It is written by
the module and should only be read by the controller.

3.5.4.2.3.1 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the controller

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers OutputSequence and InputSequence are logically composed of 2 half-bytes. The low part indi-
cates to the remote station whether a channel should be opened or whether data should be accepted. The
high part is to acknowledge that the requested action was carried out.

SyncBit and SyncAck

If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchro-
nized", i.e. it is possible to send messages in this direction. The status bit of the remote station must be
checked cyclically. If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new
data can be transferred, the channel must be resynchronized.

SequenceCounter and SequenceAck

The communication partners cyclically check whether the low nibble on the remote station changes. When
one of the communication partners finishes writing a new sequence to the MTU, it increments its Sequence-
Counter. The current sequence is then transmitted to the receiver, which acknowledges its receipt with
SequenceAck. In this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All
messages that were transferred completely are processed.

 X20(c)AI2438 Data sheet V 1.40 27

Function description

3.5.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is
present and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication direc-
tions can be handled separately. They must be synchronized independently so that simplex communication
can theoretically be carried out as well.

Synchronization in the output direction (controller as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this,
Flatstream cannot be used at this point in time to transfer messages from the controller to the module.

Algorithm

1) The controller must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The controller must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the controller registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The controller continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyn-
cAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the controller registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The controller continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyn-
cAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely syn-
chronized before transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the controller can transmit data to the module.

Synchronization in the input direction (controller as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flat-
stream cannot be used at this point in time to transfer messages from the module to the controller.

Algorithm

The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The controller is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The controller must match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The controller is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The controller must match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The controller is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged
(see also "Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the controller.

28 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.4.4 Transmitting and receiving

If a channel is synchronized, then the remote station is ready to receive messages from the transmitter.
Before the transmitter can send data, it must first create a transmit array in order to meet Flatstream
requirements.

The transmitting station must also generate a control byte for each segment created. This control byte
contains information about how the subsequent part of the data being transferred should be processed.
The position of the next control byte in the data stream can vary. For this reason, it must be clearly defined
at all times when a new control byte is being transmitted. The first control byte is always in the first byte
of the first sequence. All subsequent positions are determined recursively.

Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of
7 bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

 X20(c)AI2438 Data sheet V 1.40 29

Function description

The messages must first be split into segments. In the default configuration, it is important to ensure that
each sequence can hold an entire segment, including the associated control byte. The sequence is limited
to the size of the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.

MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

30 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.4.4.1 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are
then transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most com-
pact transfers in the output direction, it is recommended to use the same design for the
transfer arrays in both communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Controller fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU

The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient
to transfer the entire message and the necessary control byte.

Algorithm

Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The controller must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The controller must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The controller must split up the message into valid segments and create the necessary control bytes.
- The controller must add the segments and control bytes to the transmit array.
2) Transmit:
- The controller transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The controller must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The controller must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect poten-
tial transfer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In
this way, the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold,
then the sequence can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

 X20(c)AI2438 Data sheet V 1.40 31

Function description

Message larger than OutputMTU

The transmit array, which must be created in the program sequence, consists of several elements. The user
must arrange the control and data bytes correctly and transfer the array elements one after the other. The
transfer algorithm remains the same and is repeated starting at the point Cyclic checks.

General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

32 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.4.4.2 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must
then be reproduced in the receive array. The structure of the incoming data stream can be set with the
mode register. The algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm

0) Cyclic status query:
- The controller must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The controller must apply data from InputMTU and append it to the end of the receive array.
- The controller must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

 X20(c)AI2438 Data sheet V 1.40 33

Function description

General flowchart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

34 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.4.4.3 Details

It is recommended to store transferred messages in separate receive arrays.

After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array.
The message is then complete and can be passed on internally for further processing. A new/separate array
should be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to
be part of one sequence. In the program, it is important to make sure that a sufficient
number of receive arrays can be managed. The acknowledge register is only permitted to
be adjusted after the entire sequence has been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with
the correct SequenceCounter is retried. This response prevents the transmitter from receiving any more
acknowledgments for transmitted sequences. The transmitter can identify the last successfully transferred
sequence from the remote station's SequenceAck and continue the transfer from this point.

Information:
This situation is very unlikely when operating without "Forward" functionality.

Acknowledgments must be checked for validity.

If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the val-
ue of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter
reads SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence
that has not yet been dispatched, then the transfer must be interrupted and the channel resynchronized.
The synchronization bits are reset and the current/incomplete message is discarded. It must be sent again
after the channel has been resynchronized.

 X20(c)AI2438 Data sheet V 1.40 35

Function description

3.5.4.5 Flatstream mode

In the input direction, the transmit array is generated automatically. Flatstream mode offers several options
to the user that allow an incoming data stream to have a more compact arrangement. These include:

• Standard
• MultiSegmentMTU allowed
• Large segments allowed:

Once enabled, the program code for evaluation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "Mul-
tiSegmentMTU" in the output direction. Compact transfer must be explicitly allowed only
in the input direction.

Standard

By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each se-
quence begins with a control byte so that the data stream is clearly structured and relatively easy to
evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently
does not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer
cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

36 X20(c)AI2438 Data sheet V 1.40

 Function description

MultiSegmentMTU allowed

With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes
transfer the next control bytes and their segments. This allows the enabled Rx bytes to be used more effi-
ciently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTU)

Large segments allowed:

When transferring very long messages or when enabling only very few Rx bytes, then a great many segments
must be created by default. The bus system is more stressed than necessary since an additional control
byte must be created and transferred for each segment. With option "Large segments", the segment length
is limited to 63 bytes independently of InputMTU. One segment is permitted to stretch across several se-
quences, i.e. it is possible for "pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is
used and messages with more than 63 bytes occur, for example, then messages can still
be split up among several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

 X20(c)AI2438 Data sheet V 1.40 37

Function description

Using both options

Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTU)

3.5.4.6 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged
is also different. The following changes apply to the example given earlier.

MultiSegmentMTU

If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" oc-
cur if the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits
to be used to transfer the subsequent control bytes and segments. In the program sequence, the "nextCB-
Pos" bit in the control byte is set so that the receiver can correctly identify the next control byte.

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of
7 bytes. The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/Receive array (MultiSegmentMTU)

38 X20(c)AI2438 Data sheet V 1.40

 Function description

The messages must first be split into segments. As in the default configuration, it is important for each
sequence to begin with a control byte. The free bits in the MTU at the end of a message are filled with data
from the following message, however. With this option, the "nextCBPos" bit is always set if payload data
is transferred after the control byte.

MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been
completely processed. In this example, there are 3 different segments within the second
sequence, i.e. the program must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

 X20(c)AI2438 Data sheet V 1.40 39

Function description

Large segments

Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These
large segments are divided among several sequences when transferred. It is possible for sequences to be
completely filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data
packet does not also have to be limited to 63 bytes.

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width
of 7 bytes. The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

The messages must first be split into segments. The ability to form large segments means that messages
are split up less frequently, which results in fewer control bytes generated.

Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

40 X20(c)AI2438 Data sheet V 1.40

 Function description

Large segments and MultiSegmentMTU

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of
7 bytes. The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/Receive array (large segments and MultiSegmentMTU)

The messages must first be split into segments. If the last segment of a message does not completely fill
the MTU, it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set
if the control byte belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer
control bytes generated. Control bytes are generated in the same way as with option "Large segments".

Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

 X20(c)AI2438 Data sheet V 1.40 41

Function description

3.5.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The
basic principle is also used in other technical areas such as "pipelining" for microprocessors.

3.5.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus
cycles are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase Sequence-
Counter

Cyclic synchronization of
MTU and module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Recipients
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences
are executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition
for enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the
timing. The transmitting station no longer waits for an acknowledgment from SequenceAck, which means
that the available bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver must still acknowl-
edge every sequence received. Only when SequenceAck has been changed and checked by the transmitter
is the sequence considered as having been transferred successfully.

42 X20(c)AI2438 Data sheet V 1.40

 Function description

3.5.5.2 Configuration

The Forward function must only be enabled for the input direction. Flatstream modules have been opti-
mized in such a way that they support this function. In the output direction, the Forward function can be
used as soon as the size of OutputMTU is specified.

Information:
The registers are described in "Flatstream registers" on page 60.

Registers are described in section "Flatstream communication" in the respective data
sheets.

3.5.5.2.1 Delay time

The delay time is specified in microseconds. This is the amount of time the module must wait after sending
a sequence until it is permitted to write new data to the MTU in the following bus cycle. The program routine
for receiving sequences from a module can therefore be run in a task class whose cycle time is slower than
the bus cycle.

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the controller is processing all of the incoming InputSe-
quences and InputMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction
and delayed reception in the input direction. In this way, the controller has more time to process the incom-
ing InputSequence or InputMTU.

 X20(c)AI2438 Data sheet V 1.40 43

Function description

3.5.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up
to 7 unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait
for the previous message to be acknowledged. Since the delay between writing and response is eliminated,
a considerable amount of additional data can be transferred in the same time window.

Algorithm for transmitting

Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The controller must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The controller must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The controller must split up the message into valid segments and create the necessary control bytes.
- The controller must add the segments and control bytes to the transmit array.
2) Transmit:
- The controller must transfer the current part of the transmit array to OutputMTU.
- The controller must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The controller is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The controller must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect poten-
tial transfer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In
this way, the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold,
then the sequence can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be de-
termined individually).

Algorithm for receiving

0) Cyclic status query:
- The controller must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The controller must apply data from InputMTU and append it to the end of the receive array.
- The controller must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

44 X20(c)AI2438 Data sheet V 1.40

 Function description

Details/Background

1. Illegal SequenceCounter size (counter offset)
Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than per-
mitted, a transfer error occurs. In this case, all unacknowledged sequences must be repeated with the
old SequenceCounter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence
has been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple
times, a severe error occurs. The channel must be closed and resynchronized (same behavior as when
not using Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1
when using Forward.
An error does not occur in this case. The controller is permitted to consider all se-
quences up to the one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are cre-
ated and must be evaluated in the same way.

3.5.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are
being used side by side. The electrical and/or electromagnetic properties of these technical devices can
sometimes cause them to interfere with one another. These kinds of situations can be reproduced and
protected against in laboratory conditions only to a certain point.

Precautions have been taken for transfer via X2X Link in case such interference should occur. For example, if
an invalid checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives
the last valid data once more. With conventional (cyclic) data points, this error can often be ignored. In the
following cycle, the same data point is again retrieved, adjusted and transferred.

Using Forward functionality with Flatstream communication makes this situation more complex. The re-
ceiver receives the old data again in this situation as well, i.e. the previous values for SequenceAck/Se-
quenceCounter and the old MTU.

Loss of acknowledgment (SequenceAck)

If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is
permitted to continue processing with the next sequence. The SequenceAck is aligned with the associated
SequenceCounter and sent back to the transmitter. Checking the incoming acknowledgments shows that
all sequences up to the last one acknowledged have been transferred successfully (see sequences 1 and 2
in the image).

 X20(c)AI2438 Data sheet V 1.40 45

Function description

Loss of transmission (SequenceCounter, MTU):

If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no
data reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-
controlled MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive
array to be put together correctly, the receiver is only permitted to process transmissions whose Sequence-
Counter has been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and
no longer transmits back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are re-
turned, the transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3
and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment

In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowl-
edged in Step V of sequence 2.

Loss of transmission

In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends
back any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of
unacknowledged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully
sent transmissions.

46 X20(c)AI2438 Data sheet V 1.40

 Commissioning

4 Commissioning

4.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other
bus controllers can use other registers and functions depending on the fieldbus used.

For detailed information, see section "Additional information - Using I/O modules on the bus controller" in
the X20 user's manual (version 3.50 or later).

4.1.1 CAN I/O bus controller

The module occupies 2 analog logical slots on CAN I/O.

 X20(c)AI2438 Data sheet V 1.40 47

Register description

5 Register description

5.1 General data points

In addition to the registers described in the register description, the module has additional general data
points. These are not module-specific but contain general information such as serial number and hardware
variant.

General data points are described in section "Additional information - General data points" in the X20 Sys-
tem user's manual.

5.2 Register overview - Function model 0 (standard)

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Analog signal - Configuration
386
426

AnMode_1
AnMode_2

UINT ●

390
430

Samplerate_1
Samplerate_2

UINT ●

394
434

OpenLoopLimit_1
OpenLoopLimit_2

(U)INT ●

398
438

LowerLimit_1
LowerLimit_2

(U)INT ●

402
442

UpperLimit_1
UpperLimit_2

(U)INT ●

406
446

Hysteres_1
Hysteres_2

(U)INT ●

410
450

ReplacementLower_1
ReplacementLower_2

(U)INT ●

414
454

ReplacementUpper_1
ReplacementUpper_2

(U)INT ●

418
458

ErrorDelay_1
ErrorDelay_2

UINT ●

422
462

SumErrorDelay_1
SumErrorDelay_2

UINT ●

466
482

PreparationInterval_1
PreparationInterval_2

UINT ●

Analog signal - Communication
266
270

AnalogInput01 (if replacement value strategy on)
AnalogInput02 (if replacement value strategy on)

(U)INT ●

258
262

AnalogInput01 (if replacement value strategy off)
AnalogInput02 (if replacement value strategy off)

(U)INT ●

282
290

AnalogSampletime01 (16-bit)
AnalogSampletime02 (16-bit)

INT ●

284
292

AnalogSampletime01 (32-bit)
AnalogSampletime02 (32-bit)

DINT ●

AnalogStatus01
AnalogStatus02

USINT

UnderflowAnalogInput01 or 02 Bit 0
OverflowAnalogInput01 or 02 Bit 1
OpenLineAnalogInput01 or 02 Bit 2
ConversionErrorAnalogInput01 or 02 Bit 3
SumErrorAnalogInput01 or 02 Bit 4
SensorErrorAnalogInput01 or 02 Bit 6

30
31

IoSuppErrorAnalogInput01 or 02 Bit 7

●

HART - Configuration
1537
1665

HartNodeCnt_1
HartNodeCnt_2

USINT ●

1539
1667

HartMode_1
HartMode_2

USINT ●

1541
1669

HartBurstNode_1
HartBurstNode_2

USINT ●

HART - Extended configuration
1558
1686

HartNodeDisable_1
HartNodeDisable_2

UINT ●

1546
1674

HartProtTimeOut_1
HartProtTimeOut_2

UINT ●

1550
1678

HartProtRetry_1
HartProtRetry_2

UINT ●

48 X20(c)AI2438 Data sheet V 1.40

 Register description

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

1554
1682

HartPreamble_1
HartPreamble_2

UINT ●

HART - Communication (P2P)
612 + N*24
1124 + N*24

PvInput01_0N (index N = 1 to 4)
PvInput02_0N (index N = 1 to 4)

REAL ● ●

617 + N*24
1129 + N*24

PvUnit01_0N (index N = 1 to 4)
PvUnit02_0N (index N = 1 to 4)

USINT ● ●

628
1140

PvSampleTime01
PvSampleTime02

DINT ● ●

626
1138

PvSampleTime01
PvSampleTime02

INT ●

566
1078

PvNodeComStatus01
PvNodeComStatus02

DINT ●

HART - Communication (multidrop)
612 + N*24
1124 + N*24

PvInput01_N (index N = 01 to 15)
PvInput02_N (index N = 01 to 15)

REAL ● ●

617 + N*24
1129 + N*24

PvUnit01_N (index N = 01 to 15)
PvUnit02_N (index N = 01 to 15)

USINT ● ●

604 + N*24
1116 + N*24

PvSampleTime01_N (index N = 01 to 15)
PvSampleTime02_N (index N = 01 to 15)

DINT ● ●

602 + N*24
1114 + N*24

PvSampleTime01_N (index N = 01 to 15)
PvSampleTime02_N (index N = 01 to 15)

INT ●

562 + N*4
1074 + N*4

PvNodeComStatus01_N (index N = 01 to 15)
PvNodeComStatus02_N (index N = 01 to 15)

DINT ●

HART - Extended communication
522

1034
PvCountHartRequest01
PvCountHartRequest02

UINT ●

530
1042

PvCountHartTimeout01
PvCountHartTimeout02

UINT ●

538
1050

PvCountHartRxError01
PvCountHartRxError02

UINT ●

546
1058

PvCountHartFrameError01
PvCountHartFrameError02

UINT ●

554
1066

PvNodeFound01
PvNodeFound02

UINT ●

558
1070

PvNodeError01
PvNodeError02

UINT ●

Flatstream - Configuration
1793 OutputMTU USINT ●
1795 InputMTU USINT ●
1797 FlatstreamMode USINT ●
1799 Forward USINT ●
1801 ForwardDelay UINT ●

Flatstream - Communication
1857 InputSequence USINT ●

1857 + N*2 RxByteN (index N = 1 to 15) USINT ●
1889 OutputSequence USINT ●

1889 + N*2 TxByteN (index N = 1 to 15) USINT ●

5.3 Register overview - Function model 254 (bus controller)

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

Analog signal - Configuration
386
426

-
-

AnMode_1
AnMode_2

UINT ●

390
430

-
-

Samplerate_1
Samplerate_2

UINT ●

394
434

-
-

OpenLoopLimit_1
OpenLoopLimit_2

(U)INT ●

398
438

-
-

LowerLimit_1
LowerLimit_2

(U)INT ●

402
442

-
-

UpperLimit_1
UpperLimit_2

(U)INT ●

406
446

-
-

Hysteres_1
Hysteres_2

(U)INT ●

410
450

-
-

ReplacementLower_1
ReplacementLower_2

(U)INT ●

414
454

-
-

ReplacementUpper_1
ReplacementUpper_2

(U)INT ●

418
458

-
-

ErrorDelay_1
ErrorDelay_2

UINT ●

422
462

-
-

SumErrorDelay_1
SumErrorDelay_2

UINT ●

466
482

-
-

PreparationInterval_1
PreparationInterval_2

UINT ●

Analog signal - Communication

 X20(c)AI2438 Data sheet V 1.40 49

Register description

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

266
270

0
8

AnalogInput01 (if replacement value strate-
gy on)
AnalogInput02 (if replacement value strate-
gy on)

(U)INT ●

258
262

-
-

AnalogInput01 (if replacement value strate-
gy off)
AnalogInput02 (if replacement value strate-
gy off)

(U)INT ●

AnalogStatus01
AnalogStatus02

USINT

UnderflowAnalogInput01 or 02 Bit 0
OverflowAnalogInput01 or 02 Bit 1
OpenLineAnalogInput01 or 02 Bit 2
ConversionErrorAnalogInput01 or 02 Bit 3
SumErrorAnalogInput01 or 02 Bit 4
SensorErrorAnalogInput01 or 02 Bit 6

30
31

-
-

IoSuppErrorAnalogInput01 or 02 Bit 7

●

HART - Configuration
1537
1665

-
-

HartNodeCnt_1
HartNodeCnt_2

USINT ●

1539
1667

-
-

HartMode_1
HartMode_2

USINT ●

1541
1669

-
-

HartBurstNode_1
HartBurstNode_2

USINT ●

HART - Extended configuration
1558
1686

-
-

HartNodeDisable_1
HartNodeDisable_2

UINT ●

1546
1674

-
-

HartProtTimeOut_1
HartProtTimeOut_2

UINT ●

1550
1678

-
-

HartProtRetry_1
HartProtRetry_2

UINT ●

1554
1682

-
-

HartPreamble_1
HartPreamble_2

UINT ●

HART - Communication (P2P)
636

1148
4
12

PvInput01_01
PvInput02_01

REAL ●

612 + N*24
1124 + N*24

-
-

PvInput01_0N (index N = 2 to 4)
PvInput02_0N (index N = 2 to 4)

REAL ●

641
1153

2
10

PvUnit01_01
PvUnit02_01

USINT ●

617 + N*24
1129 + N*24

-
-

PvUnit01_0N (index N = 2 to 4)
PvUnit02_0N (index N = 2 to 4)

USINT ●

566
1078

-
-

PvNodeComStatus01
PvNodeComStatus02

DINT ●

HART - Communication (multidrop)
636

1148
4
12

PvInput01_01
PvInput02_01

REAL ●

612 + N*24
1124 + N*24

-
-

PvInput01_N (index N = 02 to 15)
PvInput02_N (index N = 02 to 15)

REAL ●

641
1153

2
10

PvUnit01_01
PvUnit02_01

USINT ●

617 + N*24
1129 + N*24

-
-

PvUnit01_N (index N = 02 to 15)
PvUnit02_N (index N = 02 to 15)

USINT ●

562 + N*4
1074 + N*4

-
-

PvNodeComStatus01_N (index N = 01 to 15)
PvNodeComStatus02_N (index N = 01 to 15)

DINT ●

HART - Extended communication
522

1034
-
-

PvCountHartRequest01
PvCountHartRequest02

UINT ●

530
1042

-
-

PvCountHartTimeout01
PvCountHartTimeout02

UINT ●

538
1050

-
-

PvCountHartRxError01
PvCountHartRxError02

UINT ●

546
1058

-
-

PvCountHartFrameError01
PvCountHartFrameError02

UINT ●

554
1066

-
-

PvNodeFound01
PvNodeFound02

UINT ●

558
1070

-
-

PvNodeError01
PvNodeError02

UINT ●

1) The offset specifies the position of the register within the CAN object.

50 X20(c)AI2438 Data sheet V 1.40

 Register description

5.4 Analog signal - Configuration

How the analog signal is displayed can be adapted to the requirements of the application. Separate con-
figuration registers per channel are available to aid in this.

5.4.1 Channel parameters

Name:
AnMode_1 to AnMode_2

These registers are used to specify the operating parameters that the module uses for the associated chan-
nel. Each channel must be enabled individually and can be configured and operated independently of the
other.

Information:
Different limit values must be configured for any display normalizing that needs to take
place.

Data type Values Bus controller default setting
UINT See bit structure. 29

Bit structure:

Bit Name Value Information

0 Channel 0x turned off0 Channel
1 Channel 0x enabled (bus controller default setting)
0 Open line monitoring turned off1 Open line detection
1 Open circuit monitoring enabled (bus controller default

setting)
0 Underflow detection turned off2 Underflow detection
1 Underflow detection enabled (bus controller default set-

ting)
0 Use replacement values in the event of error (bus con-

troller default setting)
3 Replacement value strategy

1 Keep the last valid converted value
00 Displays 0 to 25 mA as 0 to 32767
01 Display 0 to 25 mA as 0 to 25000 [µA]

(bus controller default setting)
10 Displays 4 to 20 mA as 0 to 32767

4 - 5 Normalization

11 Displays 0 to 25 mA as 0 to 65535
6 - 15 Reserved -

5.4.2 Sample rate

Name:
Samplerate_1 to Samplerate_2

A conversion rate can be configured independently for the two analog inputs. Based on the desired sampling
frequency, the following formula results for this parameter:

Sampling rate for A/D converter = (4920000 / 1024) / Sampling frequency

Data type Value Information
UINT 4 to 1023 Sample rate

Examples of configurable values
Val-
ue Time Frequency

960 ... 200 ms ... 5 Hz
480 ... 100 ms ... 10 Hz
320 ... 66.7 ms ... 15 Hz
192 ... 40 ms ... 25 Hz
160 ... 33.3 ms ... 30 Hz
96 ... 20 ms ... 50 Hz (bus controller default setting)
80 ... 16.7 ms ... 60 Hz
48 ... 10 ms ... 100 Hz
9 ... 2 ms ... 500 Hz
4 ... 1 ms ... 1000 Hz

The fastest sample rate of 10 ms for the analog inputs is predefined by the cutoff frequency of the hardware
filter. When using HART communication, however, a sample rate not faster than 100 ms is recommended.

 X20(c)AI2438 Data sheet V 1.40 51

Register description

5.4.3 Delaying error messages

Name:
ErrorDelay_1 to ErrorDelay_2

This register describes the number of consecutive conversion operations for which an error must be pend-
ing until the corresponding single error status bit is set. The delay acts on underflow, overflow and open
circuit errors. This delay can be used to hide short-term deviations of the measured value, for example.

Data type Value Information
UINT 0 to 10 Error formation delay in conversion cycles.

Bus controller default setting: 2

5.4.4 Time for composite error bit

Name:
SumErrorDelay_1 to SumErrorDelay_2

This register specifies the time in milliseconds that one of the individual error bits must be pending until
the composite error status bit is set.

Data type Value Information
UINT 0 to 65535 Composite error bit delay in ms.

Bus controller default setting: 4000

5.5 Configuring the limit values

5.5.1 Limit value for open line detection

Name:
OpenLoopLimit_1 to OpenLoopLimit_2

The limit value for the respective analog input must be set when open circuit monitoring is enabled and if
required by the configured normalization.

Data type Value Information
INT -32767 to 32767 Open circuit limit value.

Bus controller default setting: 2621
UINT 0 to 65535 Open circuit limit value

If limit value monitoring is enabled and after a set delay, the corresponding error state is calculated if this
value is undershot. Based on default value 2000 µA, the following values and formulas result for this para-
meter:

• Displays 0 to 25 mA as 0 to 25000: 2000
• Displays 0 to 25 mA as 0 to 32767: 2621, limit value = ([µA] * 32767) / 25000
• Displays 4 to 20 mA as 0 to 32767: -4096, limit value = (([µA] * 1.31068) - 5242.72) * 1.5625
• Displays 0 to 25 mA as 0 to 65535: 5243, limit value = ([µA] * 65535) / 25000

5.5.2 Lower limit value

Name:
LowerLimit_1 to LowerLimit_2

If the value range needs to be restricted further, this register can be used to enter new user-specific lower
limit values.

Data type Value Information
INT -32767 to 32767
UINT 0 to 65535

Bus controller default setting: 4718

Depending on the set normalization, the limit value must be set for the respective analog input. After a set
delay, the corresponding error state is generated if this value is overshot or undershot. If this error state
occurs, channel "AnalogInput0x" on page 54 is assessed according to the replacement value strategy.
Based on default value 3600 µA, the following values and formulas result for this parameter:

• Displays 0 to 25 mA as 0 to 25000: 3600
• Displays 0 to 25 mA as 0 to 32767: 4718, limit value = ([µA] * 32767) / 25000
• Displays 4 to 20 mA as 0 to 32767: -819, limit value = (([µA] * 1.31068) - 5242.72) * 1.5625
• Displays 0 to 25 mA as 0 to 65535: 9437, limit value = ([µA] * 65535) / 25000

52 X20(c)AI2438 Data sheet V 1.40

 Register description

5.5.3 Upper limit value

Name:
UpperLimit_1 to UpperLimit_2

If the value range needs to be restricted further, this register can be used to enter new user-specific upper
limit values.

Data type Value Information
INT -32767 to 32767
UINT 0 to 65535

Bus controller default setting: 27524

Depending on the set normalization, the limit value must be set for the respective analog input. After a set
delay, the corresponding error state is generated if this value is overshot or undershot. If this error state
occurs, channel "AnalogInput0x" on page 54 is assessed according to the replacement value strategy.
Based on default value 21000 µA, the following values and formulas result for this parameter:

• Displays 0 to 25 mA as 0 to 25000: 21000
• Displays 0 to 25 mA as 0 to 32767: 27524, limit value = ([µA] * 32767) / 25000
• Displays 4 to 20 mA as 0 to 32767: 32767, limit value = (([µA] * 1.31068) - 5242.72) * 1.5625
• Displays 0 to 25 mA as 0 to 65535: 55049, limit value = ([µA] * 65535) / 25000

5.5.4 Lower replacement value

Name:
ReplacementLower_1 to ReplacementLower_2

This register is used to define the lower static values to be displayed instead of the current measured value
when the lower limit is violated.

Data type Value Information
INT -32767 to 32767
UINT 0 to 65535

Bus controller default setting: 4718

If replacement value strategy "Use replacement values in the event of error" is enabled and depending on
the normalization set, the replacement value must be set for the respective analog input. If the overflow or
underflow error state occurs, channel "AnalogInput0x" on page 54 is replaced with the corresponding
value. Based on default value 3600 µA, the following values and formulas result for this parameter:

• Displays 0 to 25 mA as 0 to 25000: 3600
• Displays 0 to 25 mA as 0 to 32767: 4718, limit value = ([µA] * 32767) / 25000
• Displays 4 to 20 mA as 0 to 32767: -819, limit value = (([µA] * 1.31068) - 5242.72) * 1.5625
• Displays 0 to 25 mA as 0 to 65535: 9437, limit value = ([µA] * 65535) / 25000

5.5.5 Upper replacement value

Name:
ReplacementUpper_1 to ReplacementUpper_2

These registers are used to specify the upper static values that are displayed instead of the current mea-
sured value when a limit value is exceeded.

Data type Value Information
INT -32767 to 32767
UINT 0 to 65535

Bus controller default setting: 27524

If replacement value strategy "Use replacement values in the event of error" is enabled and depending on
the normalization set, the replacement value must be set for the respective analog input. If the overflow or
underflow error state occurs, channel "AnalogInput0x" on page 54 is replaced with the corresponding
value. Based on default value 21000 µA, the following values and formulas result for this parameter:

• Displays 0 to 25 mA as 0 to 25000: 21000
• Displays 0 to 25 mA as 0 to 32767: 27524, limit value = ([µA] * 32767) / 25000
• Displays 4 to 20 mA as 0 to 32767: 32767, limit value = (([µA] * 1.31068) - 5242.72) * 1.5625
• Displays 0 to 25 mA as 0 to 65535: 55049, limit value = ([µA] * 65535) / 25000

 X20(c)AI2438 Data sheet V 1.40 53

Register description

5.5.6 Hysteresis

Name:
Hysteres_1 to Hysteres_2

These registers are used to configure how far the limit value must be overshot in order to trigger a reaction.

Data type Value Information
INT -32767 to 32767
UINT 0 to 65535

Bus controller default setting: 131

The hysteresis value must be set for the respective analog input depending on the configured normaliza-
tion. The error status is cleared if the actual analog value changes by at least this hysteresis value from the
limit value in the allowed direction. Using a default value of 100 µA, the following values and formulas result
for this parameter:

• Displays 0 to 25 mA as 0 to 25000: 100
• Displays 0 to 25 mA as 0 to 32767: 131, limit value = ([µA] * 32767) / 25000
• Displays 4 to 20 mA as 0 to 32767: 156, limit value = [µA] * 1.5625
• Displays 0 to 25 mA as 0 to 65535: 262, limit value = ([µA] * 65535) / 25000

5.5.7 Preparation time for the measured values

Name:
PreparationInterval01 to PreparationInterval02

If the last valid measured value should be retained in the event of a limit value violation, the preparation
interval must be defined. For details, see "Monitoring the input signal" on page 12.

Data type Value Information
UINT 0 to 65535 In 0.1 ms steps

Bus controller default setting: 0

5.6 Analog signal - Communication

5.6.1 Analog input values

Name:
AnalogInput01 to AnalogInput02

The analog input value is mapped in this register.

Data type Value Information
0 to 25000 Normalizing option 0 to 25 mA
0 to 32,767 Normalizing option 0 to 25 mA

INT

-8192 to 32767 Normalizing option 4 to 20 mA (value 0 corresponds to 4 mA)
UINT 0 to 65535 Normalizing option 0 to 25 mA

5.6.2 Sample time

Name:
AnalogSampletime01 to AnalogSampletime02

These registers return the timestamp for when the module reads the current channel mapping. The values
are provided as signed 2-byte or 4-byte values.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 19.

Data type Values Information
INT -32,768 to 32767 NetTime timestamp of the current input value in microseconds
DINT -2147483648 to 2147483647 NetTime timestamp of the current input value in microseconds

54 X20(c)AI2438 Data sheet V 1.40

 Register description

5.6.3 Status of the inputs

Name:
AnalogStatus01 to AnalogStatus02
UnderflowAnalogInput01 to UnderflowAnalogInput02
OverflowAnalogInput01 to OverflowAnalogInput02
OpenLineAnalogInput01 to OpenLineAnalogInput02
ConversionErrorAnalogInput01 to ConversionErrorAnalogInput02
SumErrorAnalogInput01 to SumErrorAnalogInput02
SensorErrorAnalogInput01 to SensorErrorAnalogInput02
IoSuppErrorAnalogInput01 to IoSuppErrorAnalogInput02

The current error state of the module channels is indicated in this register regardless of the configured
replacement value strategy. Some error information is delayed according to the previously configured con-
dition.

Setting "Format status information" in Automation Studio makes it possible to specify whether the status
information is transferred as USINT or bit by bit.

Data type Values
USINT See bit structure.

Bit structure:

Bit Name Values Information

0 No error0 UnderflowAnalogInput01 or 02
1 Lower limit value undershot
0 No error1 OverflowAnalogInput01 or 02
1 Upper limit value overshot
0 No error2 OpenLineAnalogInput01 or 02
1 Open circuit determined
0 No error3 ConversionErrorAnalogInput01 or 02
1 Conversion error determined
0 No error4 SumErrorAnalogInput01 or 02
1 Composite error determined

5 Reserved -
0 Sensor voltage OK6 SensorErrorAnalogInput01 or 02
1 Sensor load too high
0 I/O power supply OK7 IoSuppErrorAnalogInput01 or 02
1 Error in I/O power supply determined

5.7 HART

5.7.1 HART configuration

5.7.1.1 Node number for burst mode

Name:
HartBurstNode_1 to HartBurstNode_2

The node numbers (short address) whose information should be queried in burst mode are entered channel
by channel in the "HartBurstNode" registers. Burst mode is enabled via register "HartMode" on page 56.

Data type Value Information
USINT 0 to 15 Point-to-point.

Bus controller default setting: 0

 X20(c)AI2438 Data sheet V 1.40 55

Register description

5.7.1.2 Communication behavior

Name:
HartMode_1 to HartMode_2

The user can use these registers to configure the communication behavior of each of the HART channels.
Generally, the HART nodes are polled individually. This register can still be used to start or stop burst mode
when needed.
In burst mode, a node transmits its information cyclically instead of continuously. As a result, the HART
standard allows the simultaneous usage of both burst mode and polling.

Information:
Register "HartBurstNode" on page 55 must be configured correctly for burst queries.

Data type Values Bus controller default setting
UINT See bit structure. 0

Bit structure:

Bit Name Value Information
0 Polling mode enabled (bus controller default setting)0 Slave polling mode
1 Polling mode disabled
0 No response to burst (bus controller default setting)1 Start slave burst mode
1 Enables burst mode in the "HartBurstNode" on page 55

node
0 No response to burst (bus controller default setting)2 Stop slave burst mode
1 Disables burst mode, if enabled

3 - 7 Reserved -

5.7.1.3 Number of HART slaves

Name:
HartNodeCnt_1 to HartNodeCnt_2

These registers tell the module how many HART slaves are connected to a channel.

Information:
If a slave is not connected to one of the HART channels, the value "0" should be defined in
this register. This shortens the I/O update time and avoids superfluous error messages.

Data type Value Information
0 HART communication disabled for this channel
1 Point-to-point Standard HART communication (bus controller default setting)

USINT

2 to 15 Multidrop Number of HART slave nodes

5.7.2 HART communication

5.7.2.1 Current value

Name:
PvInput01_01 to PvInput01_15
PvInput02_01 to PvInput02_15

These registers return the current value of the process variable that has been read.

Information:
These registers are of data type REAL, which means that the available bytes on the X2X Link
are filled more quickly when operated cyclically. If information from several slave nodes is
needed, it must be retrieved acyclically or using Flatstream .

Data type Value Information
IEEE745 SPF 32-bit data type with valid valueREAL
0x7FA00000 Not a number (NaN) with invalid value

56 X20(c)AI2438 Data sheet V 1.40

 Register description

5.7.2.2 Unit of the measured value

Name:
PvUnit01_01 to PvUnit01_15
PvUnit02_01 to PvUnit02_15

These registers provide a HART-specific code to describe the unit of the measured value. The encoding is
precisely defined in the HART specification.

Data type Value
USINT See description of the HART slave

See HART specification

5.7.2.3 Timestamp

Name:
PvSampleTime01 to PvSampleTime02
PvSampleTime01_01 to PvSampleTime01_15
PvSampleTime02_01 to PvSampleTime02_15

These registers return the timestamp for when the module reads the current channel mapping. The values
are provided as signed 2-byte or 4-byte values.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 19.

Data type Values Information
INT -32,768 to 32767 NetTime timestamp of the current input value in microseconds
DINT -2147483648 to 2147483647 NetTime timestamp of the current input value in microseconds

This is the time at which the HART master receives the slave response. In this way, it is possible to check
whether new HART information has been read in since the last X2X cycle.

Information:
The cycle times of a HART network are relatively long so that it is not possible to reliably
determine when the measured value is retrieved with just this information.

5.7.2.4 Status of the process variables

Name:
PvNodeComStatus01 to PvNodeComStatus02
PvNodeComStatus01_01 to PvNodeComStatus01_15
PvNodeComStatus02_01 to PvNodeComStatus02_15

These registers provide information about whether a read value is valid. Per the HART specification, this
type of status register consists of 2 parts. The "response code" is stored in the high byte; the "field device
status" is stored in the low byte. This makes it possible to check the current state of a read process variable.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 Digital measured value okay0 Quality - Node information 2 to n
1 Measured value outside the permissible operating range
0 Digital measured value okay1 Quality - Node information 1
1 Measured value outside the permissible operating range
0 Parameter okay2 Limit violation
1 Invalid measured value(s) or encoder supply value
0 Normal value change/fluctuation3 Static analog signal
1 Constant analog value of Node 1 slave
0 Not available4 Additional status information

(only supported by a few slaves) 1 Available (only using Flatstream command #48)
0 Normal operation5 Restart
1 Field device restarts
0 Unchanged6 Device ID
1 Changed
0 Measured value okay7 Device error
1 Doubtful measured value information

8 - 14 Response code, if relevant x See HART-specific response code .
0 Error-free communication (response code irrelevant)15 Error - Communication
1 Faulty communication (response code relevant)

 X20(c)AI2438 Data sheet V 1.40 57

Register description

5.7.2.5 PvCountHartRequest

Name:
PvCountHartRequest01 to PvCountHartRequest02

This register is increased as soon as the module is ready to transmit a message on the corresponding chan-
nel.

Data type Value
UINT 0 to 65535

5.7.2.6 PvCountHartTimeout

Name:
PvCountHartTimeout01 to PvCountHartTimeout02

This register is increased if the slave exceeds the maximum permissible time to respond a request from
the module.

Data type Value
UINT 0 to 65535

5.7.2.7 PvCountHartRxError

Name:
PvCountHartRxError01 to PvCountHartRxError02

This register is increased if communication errors occur on layer 1 of the OSI model (e.g. transfer error
according to the parity bit).

Data type Value
UINT 0 to 65535

5.7.2.8 PvCountHartFrameError

Name:
PvCountHartFrameError01 to PvCountHartFrameError02

This register is increased if communication errors occur on layer 2 of the OSI model (e.g. invalid telegram
structure).

Data type Value
UINT 0 to 65535

5.7.2.9 Detected nodes

Name:
PvNodeFound01 to PvNodeFound02

These registers provide information about which nodes were detected on which channel (slave identified
successfully).

Data type Values
UINT See the bit structure.

Bit structure:

Bit Name Value Information
0 Not detected as valid0 Node 0 (default mode)

Node 1 (multidrop mode) 1 Detected as valid
0 Not detected as valid1 Node 2 (multidrop mode)
1 Detected as valid

... ...
0 Not detected as valid13 Node 14 (multidrop mode)
1 Detected as valid
0 Not detected as valid14 Node 15 (multidrop mode)
1 Detected as valid

15 Reserved -

58 X20(c)AI2438 Data sheet V 1.40

 Register description

5.7.2.10 HART communication error bits

Name:
PvNodeError01 to PvNodeError02

These registers contain the HART communication error bits. These bits are set if the connection to a node
has been successfully established and then this node no longer responds correctly (e.g. HART slave exceeds
configured timeout or configured number of attempts).

Data type Values
UINT See the bit structure.

Bit structure:

Bit Name Value Information
0 Detected as having no errors0 Node 0 (default mode)

Node 1 (multidrop mode) 1 Detected as having errors
0 Detected as having no errors1 Node 2 (multidrop mode)
1 Detected as having errors

... ...
0 Detected as having no errors13 Node 14 (multidrop mode)
1 Detected as having errors
0 Detected as having no errors14 Node 15 (multidrop mode)
1 Detected as having errors

15 Reserved -

5.7.3 Extended configuration

5.7.3.1 Disconnecting HART nodes

Name:
HartNodeDisable_1 to HartNodeDisable_2

These registers are intended for things like maintenance. They make it possible to cut off configured HART
nodes to suppress error messages for a certain period of time. During normal operation, the configured
nodes must be switched active to guarantee that the procedure runs smoothly.

Data type Values Bus controller default setting
UINT See bit structure. 0x3FFF

Bit structure:

Bit Name Value Information
0 Enabled (bus controller default setting)0 Node 0 (default mode)

Node 1 (multidrop mode) 1 Disabled
0 Enabled1 Node 2 (multidrop mode)
1 Disabled (bus controller default setting)

... ...
0 Enabled13 Node 14 (multidrop mode)
1 Disabled (bus controller default setting)
0 Enabled14 Node 15 (multidrop mode)
1 Disabled (bus controller default setting)

15 Reserved -

5.7.3.2 Time period for response

Name:
HartProtTimeOut_1 to HartProtTimeOut_2

The time period within which a slave must react in order to give a valid response is defined in these registers.

Data type Values [ms] Information
UINT 0 to 65535 Bus controller default setting: 256 [ms]

5.7.3.3 Request repetitions

Name:
HartProtRetry_1 to HartProtRetry_2

These registers determine how many times the master retries a request if it receives an invalid response
or no response at all.

Data type Value Information
UINT 0 to 65535 Bus controller default setting: 3 attempts

 X20(c)AI2438 Data sheet V 1.40 59

Register description

5.7.3.4 Length of the preamble

Name:
HartPreamble_1 to HartPreamble_2

The length of the preamble can be set in these registers. The preamble is used to synchronize the receiver
to the transmitter. The longer the declared preamble, the less chance that a communication error will occur.
Nevertheless, a useful signal is not transmitted during synchronization so the preamble should be kept as
short as possible.

Data type Value Information
UINT 5 to 20 Bus controller default setting: 20

5.8 Flatstream registers

At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled
in with default values at the beginning and can be used immediately. These registers are used for additional
options, e.g. to transfer data in a more compact way or to increase the efficiency of the general procedure.

Information:
For detailed information about Flatstream, see "Flatstream communication" on page 22.

5.8.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU

These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence.
The user must consider that the more bytes made available also means a higher load on the bus system.

Data type Values
USINT See the register overview.

5.8.2 Transporting payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN

(The value the number N is different depending on the bus controller model used.)

The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "In-
putMTU", respectively.

• "T" - "Transmit" → Controller transmits data to the module.
• "R" - "Receive" → Controller receives data from the module.

Data type Values
USINT 0 to 255

60 X20(c)AI2438 Data sheet V 1.40

 Register description

5.8.3 Communication status of the controller

Name:
OutputSequence

This register contains information about the communication status of the controller. It is written by the
controller and read by the module.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction

0 Output direction (disable)3 OutputSyncBit
1 Output direction (enable)

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter

The OutputSequenceCounter is a continuous counter of sequences that have been issued by the controller.
The controller uses OutputSequenceCounter to direct the module to accept a sequence (the output direc-
tion must be synchronized when this happens).

OutputSyncBit

The controller uses OutputSyncBit to attempt to synchronize the output channel.

InputSequenceAck

InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the con-
troller has received a sequence successfully.

InputSyncAck

The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates
that the controller is ready to receive data.

 X20(c)AI2438 Data sheet V 1.40 61

Register description

5.8.4 Communication status of the module

Name:
InputSequence

This register contains information about the communication status of the module. It is written by the mod-
ule and should only be read by the controller.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction

0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter

The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The
module uses InputSequenceCounter to direct the controller to accept a sequence (the input direction must
be synchronized when this happens).

InputSyncBit

The module uses InputSyncBit to attempt to synchronize the input channel.

OutputSequenceAck

OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the
module has received a sequence successfully.

OutputSyncAck

The OutputSyncAck bit acknowledges the synchronization of the output channel for the controller. This
indicates that the module is ready to receive data.

5.8.5 Flatstream mode

Name:
FlatstreamMode

A more compact arrangement can be achieved with the incoming data stream using this register.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

62 X20(c)AI2438 Data sheet V 1.40

 Register description

5.8.6 Number of unacknowledged sequences

Name:
Forward

With register "Forward", the user specifies how many unacknowledged sequences the module is permitted
to transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7

Data type Values
USINT 1 to 7

Default: 1

5.8.7 Delay time

Name:
ForwardDelay

This register is used to specify the delay time in microseconds.

Data type Values
UINT 0 to 65535 [µs]

Default: 0

5.9 Minimum cycle time

The minimum cycle time defines how far the bus cycle can be reduced without causing a communication
error or impaired functionality. It should be noted that very fast cycles decrease the idle time available for
handling monitoring, diagnostics and acyclic commands.

Minimum cycle time
200 μs

5.10 Minimum I/O update time

The minimum I/O update time defines how far the bus cycle can be reduced while still allowing an I/O update
to take place in each cycle.

Minimum I/O update time
Analog inputs 1 ms

Minimum I/O update time for HART communication
Point-to-point 500 ms
Multidrop 500 ms * Number of stations

 X20(c)AI2438 Data sheet V 1.40 63

	1 General information
	1.1 Other applicable documents
	1.2 Coated modules
	1.2.1 Starting temperature

	1.3 Order data
	1.4 Module description

	2 Technical description
	2.1 Technical data
	2.2 LED status indicators
	2.3 Pinout
	2.4 Connection examples
	2.5 Input circuit diagram
	2.6 Behavior in the event of short circuit
	2.7 Usage after the X20IF1091-1

	3 Function description
	3.1 Analog inputs
	3.1.1 Configurable conversion rate / filter time

	3.2 Monitoring the input signal
	3.2.1 Limit and replacement values
	3.2.1.1 Limit value monitoring
	3.2.1.2 Replacement value strategy
	3.2.1.3 Receiving the measured value

	3.3 HART
	3.3.1 General information
	3.3.1.1 Limitations

	3.3.2 HART - Configuration
	3.3.3 HART - Communication
	3.3.4 HART - Status information
	3.3.5 HART to Flatstream

	3.4 NetTime Technology
	3.4.1 Time information
	3.4.1.1 Controller data points
	3.4.1.2 X2X Link - Reference time point
	3.4.1.3 POWERLINK - Reference time point
	3.4.1.4 Synchronization of system time/POWERLINK time and I/O module

	3.4.2 Timestamp functions
	3.4.2.1 Time-based inputs
	3.4.2.2 Time-based outputs
	3.4.2.3 Time-based measurements

	3.5 Flatstream communication
	3.5.1 Introduction
	3.5.2 Message, segment, sequence, MTU
	3.5.3 The Flatstream principle
	3.5.4 Registers for Flatstream mode
	3.5.4.1 Flatstream configuration
	3.5.4.2 Flatstream operation
	3.5.4.2.1 Format of input and output bytes
	3.5.4.2.2 Transporting payload data and control bytes
	3.5.4.2.2.1 Control bytes

	3.5.4.2.3 Communication status
	3.5.4.2.3.1 Relationship between OutputSequence and InputSequence

	3.5.4.3 Synchronization
	3.5.4.4 Transmitting and receiving
	3.5.4.4.1 Transmitting data to a module (output)
	3.5.4.4.2 Receiving data from a module (input)
	3.5.4.4.3 Details

	3.5.4.5 Flatstream mode
	3.5.4.6 Adjusting the Flatstream

	3.5.5 Example of function "Forward" with X2X Link
	3.5.5.1 Function principle
	3.5.5.2 Configuration
	3.5.5.2.1 Delay time

	3.5.5.3 Transmitting and receiving with Forward
	3.5.5.4 Errors when using Forward

	4 Commissioning
	4.1 Using the module on the bus controller
	4.1.1 CAN I/O bus controller

	5 Register description
	5.1 General data points
	5.2 Register overview - Function model 0 (standard)
	5.3 Register overview - Function model 254 (bus controller)
	5.4 Analog signal - Configuration
	5.4.1 Channel parameters
	5.4.2 Sample rate
	5.4.3 Delaying error messages
	5.4.4 Time for composite error bit

	5.5 Configuring the limit values
	5.5.1 Limit value for open line detection
	5.5.2 Lower limit value
	5.5.3 Upper limit value
	5.5.4 Lower replacement value
	5.5.5 Upper replacement value
	5.5.6 Hysteresis
	5.5.7 Preparation time for the measured values

	5.6 Analog signal - Communication
	5.6.1 Analog input values
	5.6.2 Sample time
	5.6.3 Status of the inputs

	5.7 HART
	5.7.1 HART configuration
	5.7.1.1 Node number for burst mode
	5.7.1.2 Communication behavior
	5.7.1.3 Number of HART slaves

	5.7.2 HART communication
	5.7.2.1 Current value
	5.7.2.2 Unit of the measured value
	5.7.2.3 Timestamp
	5.7.2.4 Status of the process variables
	5.7.2.5 PvCountHartRequest
	5.7.2.6 PvCountHartTimeout
	5.7.2.7 PvCountHartRxError
	5.7.2.8 PvCountHartFrameError
	5.7.2.9 Detected nodes
	5.7.2.10 HART communication error bits

	5.7.3 Extended configuration
	5.7.3.1 Disconnecting HART nodes
	5.7.3.2 Time period for response
	5.7.3.3 Request repetitions
	5.7.3.4 Length of the preamble

	5.8 Flatstream registers
	5.8.1 Number of enabled Tx and Rx bytes
	5.8.2 Transporting payload data and control bytes
	5.8.3 Communication status of the controller
	5.8.4 Communication status of the module
	5.8.5 Flatstream mode
	5.8.6 Number of unacknowledged sequences
	5.8.7 Delay time

	5.9 Minimum cycle time
	5.10 Minimum I/O update time

