Features

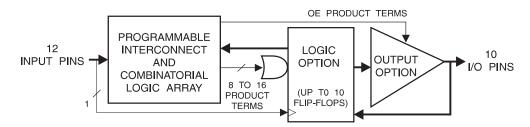
- Industry-standard Architecture
 - Low-cost, Easy-to-use Software Tools
- High-speed, Electrically Erasable Programmable Logic Devices - 5 ns Maximum Pin-to-pin Delay
- Latch Feature Holds Inputs to Previous Logic States
- Pin-controlled Standby Power (10 µA Typical)
- Advanced Flash Technology
 - Reprogrammable
 - 100% Tested
- High-reliability CMOS Process
 - 20-year Data Retention
 - 100 Erase/Write Cycles
 - 2,000V ESD Protection
 - 200 mA Latch-up Immunity
- Dual Inline and Surface Mount Packages in Standard Pinouts
- PCI-compliant
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available
- Full Military, Commercial and Industrial Temperature Ranges
- Backward-Compatible with ATF22V10B(Q) and AT22V10(L)

1. Description

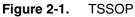
The ATF22V10C is a high-performance CMOS (electrically erasable) programmable logic device (PLD) that utilizes Atmel's proven electrically erasable Flash memory technology. Speeds down to 5 ns and power dissipation as low as 100 μ A are offered. All speed ranges are specified over the full 5V ± 10% range for military and industrial temperature ranges, and 5V ± 5% for commercial temperature ranges.

Several low-power options allow selection of the best solution for various types of power-limited applications. Each of these options significantly reduces total system power and enhances system reliability.

Highperformance EE PLD


ATF22V10C ATF22V10CQ

See separate datasheet for the ATF22V10CQZ.


Figure 1-1. Logic Diagram

2. Pin Configurations

Table 2-1.	Pin Configurations (All Pinouts Top	View)

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
GND	Ground
VCC	+5V Supply
PD	Power-down

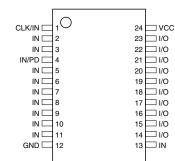


Figure 2-2. DIP/SOIC

		\bigcirc		
CLK/IN	1		24	D vcc
IN 🗆	2		23	□ I/O
IN 🗆	3		22	□ I/O
IN/PD	4		21	□ I/O
IN 🗆	5		20	□ I/O
IN 🗆	6		19	□ I/O
IN 🗆	7		18	□ I/O
IN 🗆	8		17	□ I/O
IN 🗆	9		16	□ I/O
IN 🗆	10		15	□ I/O
IN 🗆	11		14	□ I/O
GND 🗆	12		13	D IN

Figure 2-3. PLCC/LCC

		Ω Ω	2 D CLK/IN	1 □ VCC*		27 🛛 1/0		1	
IN/PD [5			0	N	N	~²25	Þ	I/O
IN E	6						24	Þ	I/O
IN E	7						23	Þ	I/O
GND*	8						22	Þ	GND*
IN E	9						21	Þ	I/O
IN E	10						20	Þ	I/O
IN E	¹¹ ₽	13	4	15	16	17	_≌ 19	þ	I/O
	Z	Z	GND	GND*	Z	0/1	0/1	-	

Note: For all PLCCs (except "-5"), pins 1, 8, 15 and 22 can be left unconnected. However, if they are connected, superior performance will be achieved.

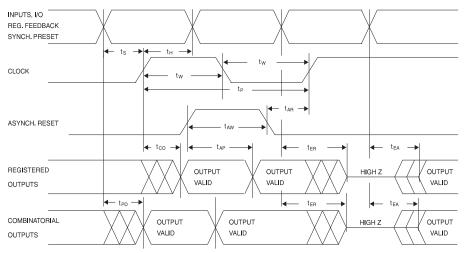
3. Absolute Maximum Ratings*

Temperature under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on Input Pins with Respect to Ground during Programming2.0V to +14.0V ⁽¹⁾
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

- *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: 1. Minimum voltage is -0.6V DC, which may under
 - shoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

4. DC and AC Operating Conditions

	Commercial	Industrial	Military
Operating Temperature (Ambient)	0°C - 70°C	-40°C - 85°C	-55°C - 125°C (case)
V _{CC} Power Supply	5V ± 5%	5V ± 10%	5V ± 10%



4.1 DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units		
I _{IL}	Input or I/O Low Leakage Current	$0 \le V_{IN} \le V_{IL}$ (Max)			-10.0	μA		
I _{IH}	Input or I/O High Leakage Current	$3.5 \leq V_{IN} \leq V_{CC}$					10.0	μA
			C-5, 7, 10	Com.		85.0	130.0	mA
			C-10	Ind., Mil.		90.0	140.0	mA
	Power Supply Current,	V _{CC} = Max,	C-15	Com.		65.0	90.0	mA
I _{CC}	Standby	V _{IN} = Max, Outputs Open	C-15	Ind., Mil.		65.0	115.0	mA
			CQ-15	Com.		35.0	55.0	mA
			CQ-15	Ind.		35.0	70.0	mA
	Clocked Power Supply Current		C-5, 7, 10	Com.			150.0	mA
		V _{CC} = Max, Outputs Open, f = 15 MHz	C-10	Ind., Mil.			160.0	mA
			C-15	Com.		70.0	90.0	mA
I _{CC2}			C-15	Ind., Mil.		70.0	90.0	mA
			CQ-15	Com.		40.0	60.0	mA
			CQ-15	Ind.		40.0	80.0	mA
	Power Supply Current,	V _{CC} = Max		Com.		10.0	100.0	μA
I _{PD}	PD Mode	V _{IN} = 0, Max		Ind.		10.0	100.0	μA
I _{OS} ⁽¹⁾	Output Short Circuit Current	V _{OUT} = 0.5V					-130.0	mA
V _{IL}	Input Low Voltage				-0.5		0.8	V
V _{IH}	Input High Voltage				2.0		V _{CC} +0.75	V
		$V_{IN} = V_{IH}$ or V_{IL} ,	I _{OL} = 16 mA	Com., Ind.			0.5	V
V _{OL}	Output Low Voltage	$V_{CC} = Min$	I _{OL} = 12 mA	Mil.			0.5	V
V _{OH}	Output High Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{CC} = Min$	I _{OH} = -4.0 mA		2.4			v

Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.

4.2 AC Waveforms ⁽¹⁾

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.

4.3 AC Characteristics⁽¹⁾

			5	-7		-10		-15			
Symbol	Parameter	Min	Max	Min	Мах	Min	Max	Min	Max	Units	
t _{PD}	Input or Feedback to Combinatorial Output	1.0	5.0	3.0	7.5	3.0	10.0	3.0	15.0	ns	
t _{CO}	Clock to Output	1.0	4.0	2.0	4.5 ⁽²⁾	2.0	6.5	2.0	8.0	ns	
t _{CF}	Clock to Feedback		2.5		2.5		2.5		2.5	ns	
t _S	Input or Feedback Setup Time	3.0		3.5		4.5		10.0		ns	
t _H	Hold Time	0		0		0		0		ns	
	External Feedback 1/(t _S + t _{CO})	142.0		125.0 ⁽³⁾		90.0		55.5		MHz	
f _{MAX}	Internal Feedback 1/(t _S + t _{CF})	166.0		142.0		117.0		80.0		MHz	
	No Feedback 1/(t _{WH} + t _{WL})	166.0		166.0		125.0		83.3		MHz	
t _w	Clock Width (t_{WL} and t_{WH})	3.0		3.0		3.0		6.0		ns	
t _{EA}	Input or I/O to Output Enable	2.0	6.0	3.0	7.5	3.0	10.0	3.0	15.0	ns	
t _{ER}	Input or I/O to Output Disable	2.0	5.0	3.0	7.5	3.0	9.0	3.0	15.0	ns	
t _{AP}	Input or I/O to Asynchronous Reset of Register	3.0	7.0	3.0	10.0	3.0	12.0	3.0	20.0	ns	
t _{AW}	Asynchronous Reset Width	5.5		7.0		8.0			15.0	ns	
t _{AR}	Asynchronous Reset Recovery Time	4.0		5.0		6.0			10.0	ns	
t _{SP}	Setup Time, Synchronous Preset	4.0		4.5		6.0			10.0	ns	
t _{SPR}	Synchronous Preset to Clock Recovery Time	4.0		5.0		8.0			10.0	ns	

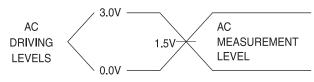
Notes: 1. See ordering information for valid part numbers.

2. 5.5 ns for DIP package devices.

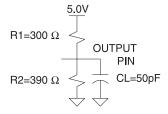
3. 111 MHz for DIP package devices.

4.4 Power-down AC Characteristics⁽¹⁾⁽²⁾⁽³⁾

			-5		-7		10	-'	15	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Мах	Units
t _{IVDH}	Valid Input before PD High	5.0		7.5		10.0		15.0		ns
t _{GVDH}	Valid OE before PD High	0		0		0		0		ns
t _{CVDH}	Valid Clock before PD High	0		0		0				ns
t _{DHIX}	Input Don't Care after PD High		5.0		7.0		10.0		15.0	ns
t _{DHGX}	OE Don't Care after PD High		5.0		7.0		10.0		15.0	ns
t _{DHCX}	Clock Don't Care after PD High		5.0		7.0		10.0		15.0	ns
t _{DLIV}	PD Low to Valid Input		5.0		7.5		10.0		15.0	ns
t _{DLGV}	PD Low to Valid OE		15.0		20.0		25.0		30.0	ns
t _{DLCV}	PD Low to Valid Clock		15.0		20.0		25.0		30.0	ns
t _{DLOV}	PD Low to Valid Output		20.0		25.0		30.0		35.0	ns


Notes: 1. Output data is latched and held.

2. High-Z outputs remain high-Z.


3. Clock and input transitions are ignored.

4.5 Input Test Waveforms

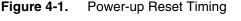
4.5.1 Input Test Waveforms and Measurement Levels

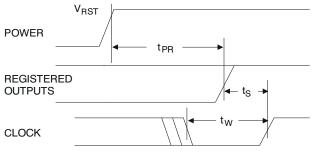
4.5.2 Commercial Output Test Loads

4.6 Pin Capacitance

Table 4-1. Pin Capacitance (f = 1 MHz, T = $25^{\circ}C^{(1)}$)

	Тур	Мах	Conditions	
C _{IN}	5	8	pF	$V_{IN} = 0V$
C _{OUT}	6	8	pF	V _{OUT} = 0V


Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.


4.7 Power-up Reset

The registers in the ATF22V10Cs are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1. The V_{CC} rise must be monotonic, and starts below 0.7V,
- 2. After reset occurs, all input and feedback setup times must be met before driving the clock pin high, and
- 3. The clock must remain stable during t_{PR} .

4.8 Preload of Registered Outputs

The ATF22V10C's registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

5. Electronic Signature Word

There are 64 bits of programmable memory that are always available to the user, even if the device is secured. These bits can be used for user-specific data.

6. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF22V10C fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

The security fuse should be programmed last, as its effect is immediate.

7. Programming/Erasing

Programming/erasing is performed using standard PLD programmers. See "CMOS PLD Programming Hardware & Software Support" for information on software/programming.

Table 7-1.	Programming/Erasing	

Parameter	Description	Тур	Max	Units
t _{PR}	Power-up Reset Time	600	1,000	ns
V _{RST}	Power-up Reset Voltage	3.8	4.5	V

8. Input and I/O Pin-keeper Circuits

The ATF22V10C contains internal input and I/O pin-keeper circuits. These circuits allow each ATF22V10C pin to hold its previous value even when it is not being driven by an external source or by the device's output buffer. This helps to ensure that all logic array inputs are at known valid logic levels. This reduces system power by preventing pins from floating to indeterminate levels. By using pin-keeper circuits rather than pull-up resistors, there is no DC current required to hold the pins in either logic state (high or low).

These pin-keeper circuits are implemented as weak feedback inverters, as shown in the Input Diagram below. These keeper circuits can easily be overdriven by standard TTL- or CMOS-compatible drivers. The typical overdrive current required is 40 μ A.

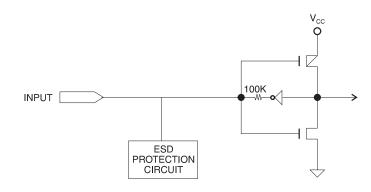
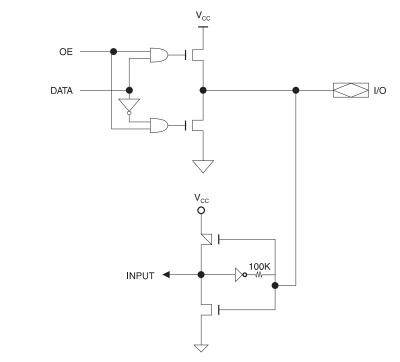



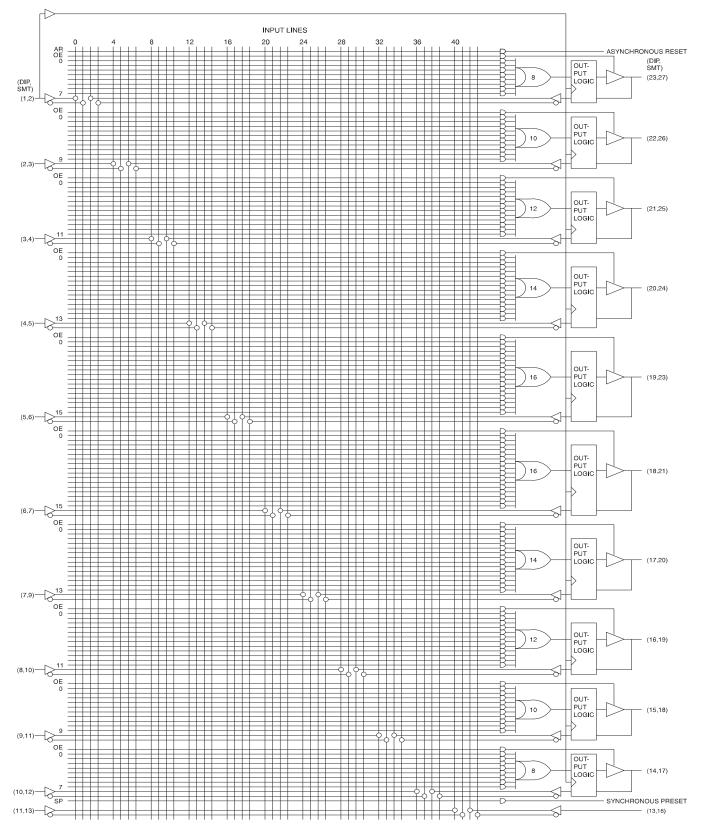
Figure 8-2. I/O Diagram

9. Power-down Mode

The ATF22V10C includes an optional pin-controlled power-down feature. When this mode is enabled, the PD pin acts as the power-down pin (Pin 4 on the DIP/SOIC packages and Pin 5 on the PLCC package). When the PD pin is high, the device supply current is reduced to less than 100 mA. During power-down, all output data and internal logic states are latched and held. Therefore, all registered and combinatorial output data remain valid. Any outputs that were in an undetermined state at the onset of power-down will remain at the same state. During power-down, all input signals except the power-down pin are blocked. Input and I/O hold latches remain active to ensure that pins do not float to indeterminate levels, further reducing system power. The power-down pin feature is enabled in the logic design file. Designs using the power-down pin may not use the PD pin logic array input. However, all other PD pin macrocell resources may still be used, including the buried feedback and foldback product term array inputs.

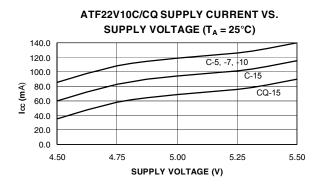
PD pin configuration is controlled by the design file, and appears as a separate fuse bit in the JEDEC file. When the power-down feature is not specified in the design file, the IN/PD pin will be configured as a regular logic input.

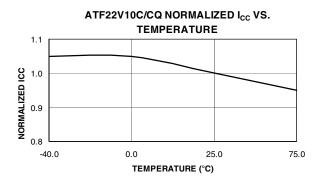
Note: Some programmers list the 22V10 JEDEC compatible 22V10C (no PD used) separately from the non-22V10 JEDEC compatible 22V10CEX (with PD used).

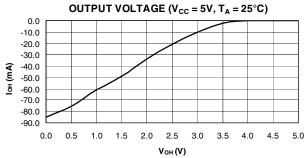


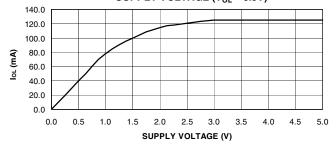
10. Compiler Mode Selection

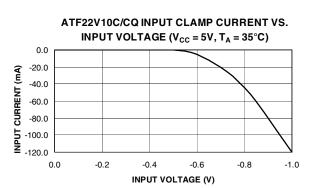
Table 10-1.	Compiler Mode Selection			
	PAL Mode	GAL Mode	Power-down Mode ⁽¹⁾	
	(5828 Fuses)	(5892 Fuses)	(5893 Fuses)	
Synario	ATF22V10C (DIP)	ATTF22V10C DIP (UES)	ATF22V10C DIP (PWD)	
	ATF22V10C (PLCC)	ATF22C10C PLCC (UES)	ATF22V10C PLCC (PWD)	
WINCUPL	P22V10	G22V10	G22V10CP	
	P22V10LCC	G22V10LCC	G22V10CPLCC	

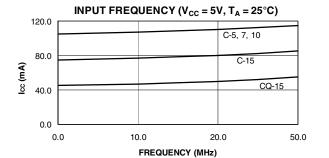

Note: 1. These device types will create a JEDEC file which when programmed in ATF22V10C devices will enable the power-down mode feature. All other device types have the feature disabled.


11. Functional Logic Diagram

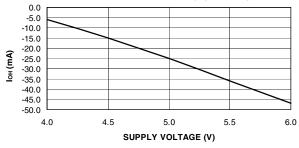


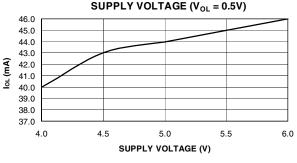


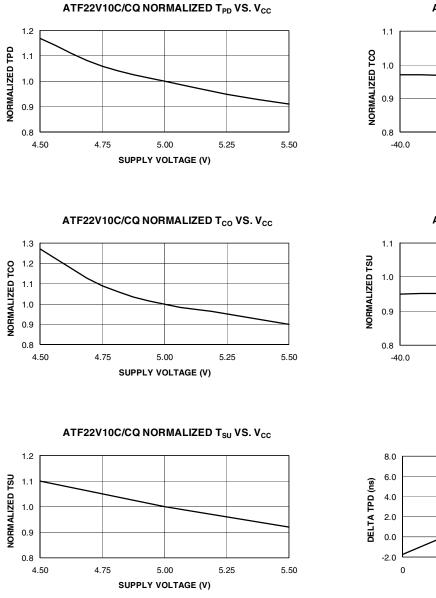


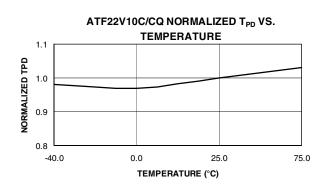

ATF22V10C/CQ OUTPUT SOURCE CURRENT VS.

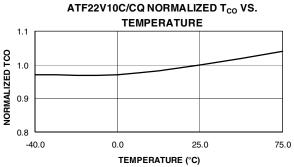
 $\label{eq:atf22V10C/CQ} \mbox{OUTPUT SINK CURRENT VS}. \\ \mbox{SUPPLY VOLTAGE (V_{OL} = 0.5V)} \end{array}$



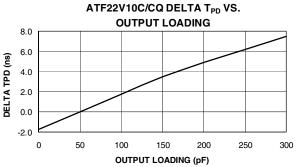


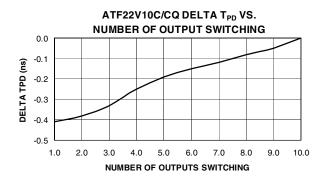

ATF22V10C/CQ SUPPLY CURRENT VS.

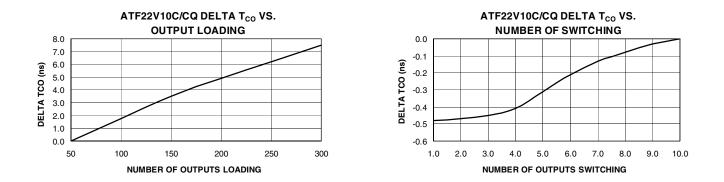

 $\label{eq:atf22V10C/CQ} \mbox{OUTPUT SOURCE CURRENT VS}. \\ \mbox{SUPPLY VOLTAGE } (V_{\rm OH} = 2.4V) \\ \label{eq:atf22V10C/CQ}$



ATF22V10C/CQ OUTPUT SINK CURRENT VS.






ATF22V10C/CQ NORMALIZED T_{SU} VS. TEMPERATURE 1.1 0.9 0.8 -40.0 0.0 25.0 75.0 TEMPERATURE (°C)

12. Ordering Information

t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
5	3	4	ATF22V10C-5JX	28J	Commercial (0°C to 70°C)
7.5	3.5	4.5	ATF22V10C-7PX ATF22V10C-7SX	24P3 24S	Commercial (0°C to 70°C)
7.5	3.5	4.5	ATF22V10C-7JU	28J	Industrial (-40 [°] C to 85°C)
10	4.5	6.5	ATF22V10C-10JU ATF22V10C-10PU ATF22V10C-10SU ATF22V10C-10XU	28J 24P3 24S 24X	Industrial (-40°C to 85°C)
15	10	8	ATF22V10C-15JU ATF22V10C-15PU ATF22V10CQ-15JU	28J 24P3 28J	Industrial (-40°C to 85°C) Industrial (-40°C to 85°C)

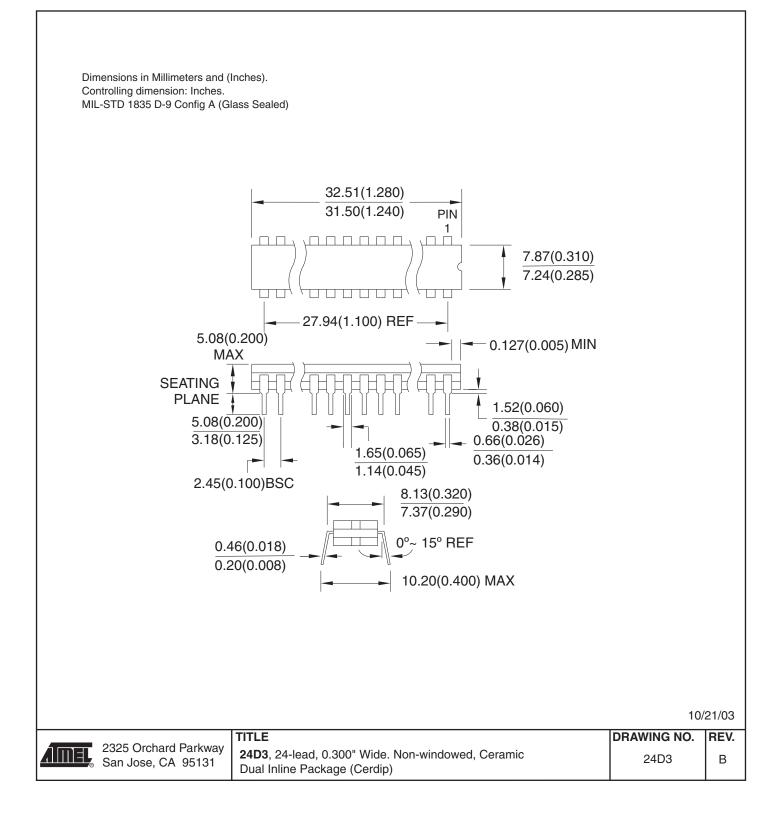
12.1 ATF22V10C(Q) Green Package Options (Pb/Halide-free/RoHS Compliant)

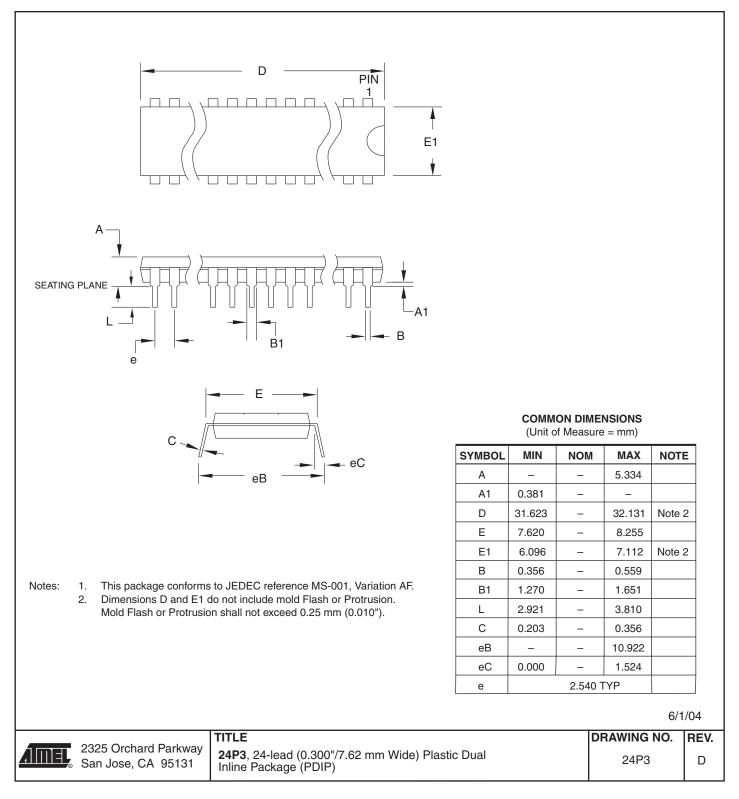
12.2 Using "C" Product for Industrial

To use commercial product for industrial temperature ranges, down-grade one speed grade from the industrial-grade to the commercial-grade device (e.g. 7 ns PX = 10 ns PU) and de-rate power by 30%.

12.3 Military Package Options (Lead-based)

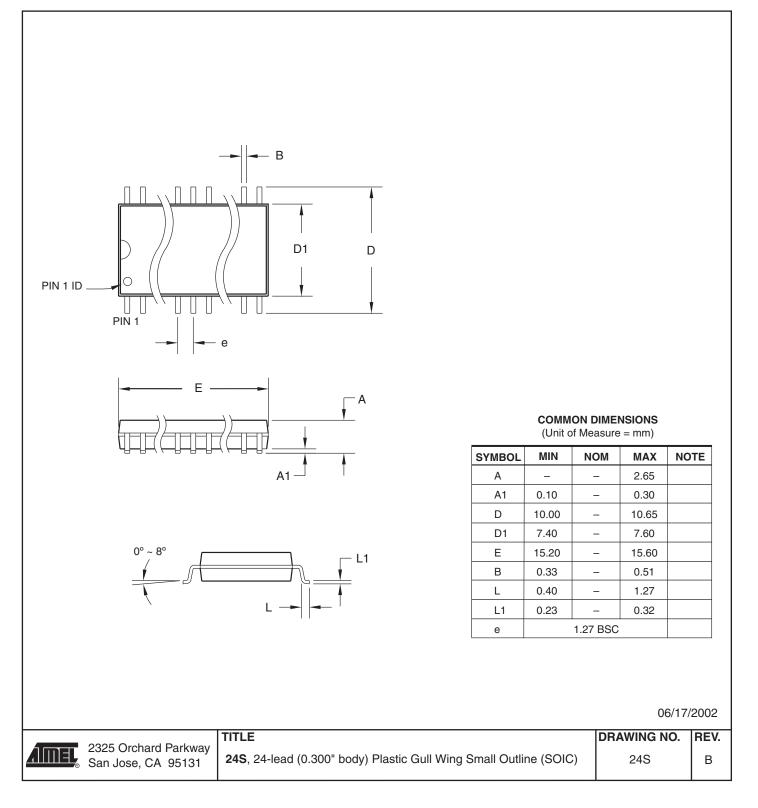
t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
10 15			ATF22V10C-10GM/883	24D3	
	0.5	ATF22V10C-10NM/883	28L	Military	
10	0 4.5	6.5	5962-8984116LA	24D3	 (-55°C to 125°C) Class B, Fully Compliant
			5962-89841163A	28L	Class B, Fully Compliant
15 10			ATF22V10C-15GM/883	24D3	
	8	ATF22V10C-15NM/883	28L	Military	
	10	10 0	5962-8984115LA	24D3	- (-55°C to 125°C) Class B, Fully Compliant
			5962-89841153A	28L	Class D, Fully Compliant

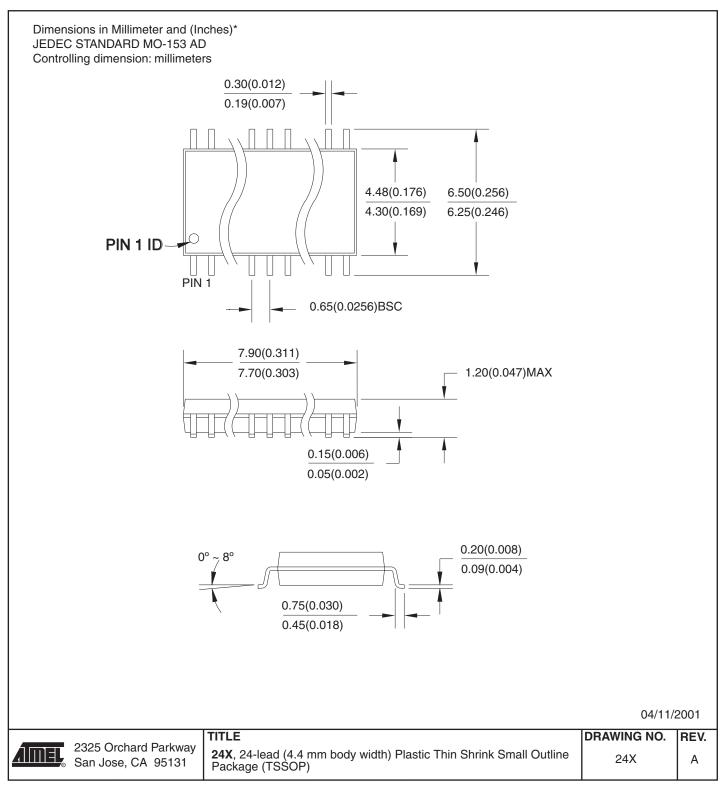

Package Type		
24D3	24-lead, 0.300" Wide, Non-windowed Ceramic Dual Inline Package (CERDIP)	
24P3	24-pin, 0.300" Wide, Plastic Dual Inline Package (PDIP)	
24S	24-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)	
24X	24-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)	
28J	28-lead, Plastic J-leaded Chip Carrier (PLCC)	
28L	28-lead, Ceramic Leadless Chip Carrier (LCC)	



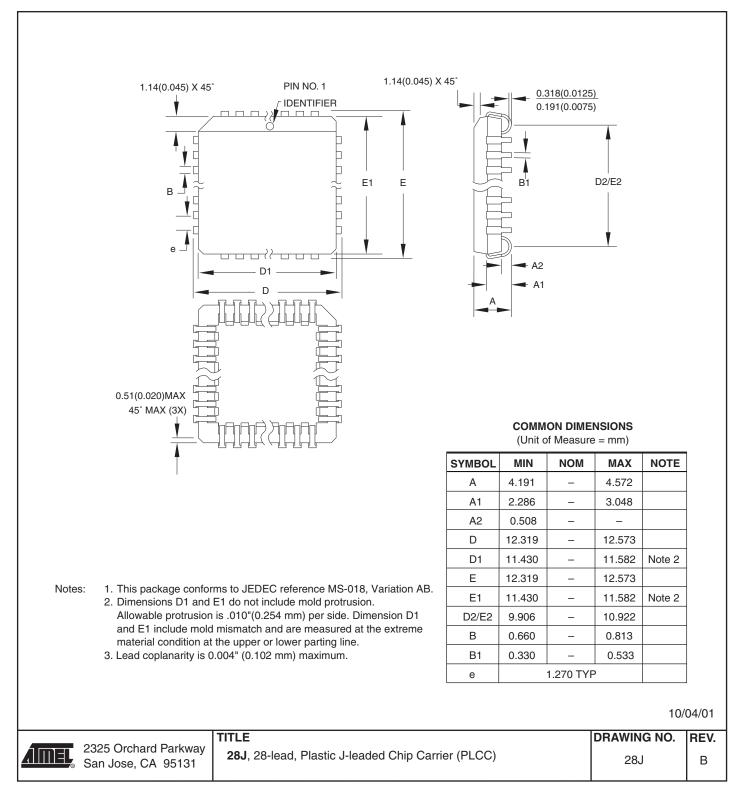
13. Packaging Information

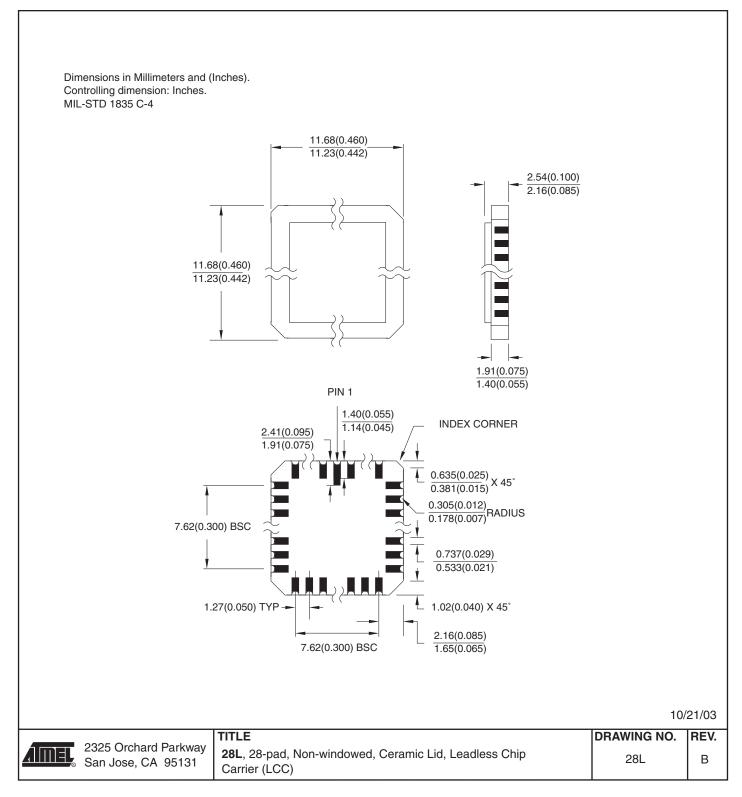
13.1 24D3 - CERDIP


13.2 24P3 - PDIP



13.3 24S - SOIC


13.4 24X – TSSOP



13.5 28J - PLCC

13.6 28L - LCC

14. Revision History

Revision Level – Revision Date	History
R – June 2006	Updated Green package options.
S – August 2008	Added new green part.
T – May 2009	Added military-grade packages and removed leaded parts.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support PLD@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.