

高精度可変シャントレギュレータ

概要

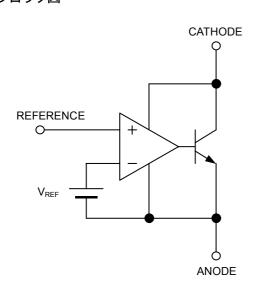
NJM1431A は、高精度可変シャントレギュレータです。 従来の431に比べ、±1%精度の高精度品対応、及び小型 ESON4 パッケージを追加し、電源機器の小型高精度ニーズに対応しました。幅広いアプリケーションにご使用いただけます。 外形

NJM1431AU

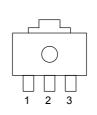
NJM1431AF

特徵

電源電圧範囲 V_{REF} ~ 36V 高精度基準電圧 2.465V±1%

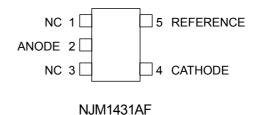

1.6mm × 1.2mm の ESON4 パッケージ搭載 2 本の外付け抵抗により出力電圧可変

バイポーラ構造


外形 NJM1431AU : SOT89 (3pin)

NJM1431AF : SOT-23-5 (MTP5) NJM1431AKF1 : ESON4-F1

ブロック図



ピン配置

- 1. REFERENCE
- 2. ANODE
- 3. CATHODE

NJM1431AU

REFERENCE 1 CATHODE 2

ANODE NC

Exposed PAD on backside connect to ANODE.

(Top View)

(Bottom View)

NJM1431AKF1

NJM1431A

絶対最大定格 (Ta=25°C)

項 目	記号	定格	単 位	
カソード電圧	V_{KA}	+37	V	
連続カソード電流範囲	I _K	-100 ~ 150	mA	
基準入力電流範囲	I _{REF}	-0.05 ~ 10	mA	
消費電力	P _D	SOT89 (3pin) 350 SOT-23-5 200 ESON4-F1 412 (*1) 1,150 (*2)	mW	
動作温度範囲	T _{OPR}	-40 ~ +85	°C	
保存温度範囲	T _{STG}	-40 ~ +150	°C	

(*1): 基板実装時 101.5x114.5x1.6mm(2層)で EIA/JEDEC 規格準拠による。

(*2): 基板実装時 101.5x114.5x1.6mm(4 層)で EIA/JEDEC 規格準拠による。(4 層基板内箔: 99.5x99.5mm)

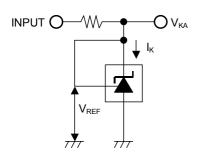
推奨動作条件 (Ta=25°C)

項目	記号	最小	標準	最大	単位
カソード電圧	V_{KA}	V_{REF}	-	36	V
カソード電流	Ι _κ	1	-	100	mA

電気的特性 (I_K=10mA, Ta=25°C)

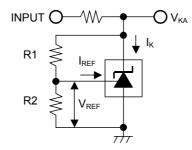
-EXMITTED (IV. 1611) (16. 25 5)								
項目	記号	条	件	最小	標準	最大	単位	
基準電圧	V_{REF}	V _{KA} =V _{REF}	(*3)	2.440	2.465	2.490	V	
基準電圧変動対	ΔV_{REF} /	V _{REF} V _{KA} 10V	(*4)	ı	±1.4	±2.7	mV/V	
カソード電圧変動	ΔV_{KA}	10V V _{KA} 36V	(*4)	ı	±1.0	±2.0	mV/V	
基準入力電流	I _{REF}	R1=10kΩ, R2=	(*4)	ı	2	4	μΑ	
最小カソード電流	I _{MIN}	$V_{KA}=V_{REF}, \Delta V_{REF}=1\%$	(*3)	ı	0.4	1.0	mA	
オフ時カソード電流	I _{OFF}	V_{KA} =36V, V_{REF} =0V	(*5)	-	0.1	1.0	μΑ	
ダイナミック インピーダンス	Z _{KA}	$V_{KA} = V_{REF}$, f 1kHz 1mA I_{K} 100mA	(*3)	-	0.2	0.5	Ω	

温度特性 (I_K=10mA, Ta=-40°C~85°C)

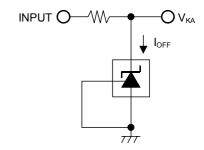

項目	記号	条	件	最小	標準	最大	単位
全動作温度範囲内 基準電圧変動	ΔV_{REF}	V _{KA} =V _{REF}	(*3)	-	8	17	mV
全動作温度範囲内 基準入力電流変動	ΔI_{REF}	R1=10kΩ, R2=	(*4)	1	0.4	1.2	μА

ダイナミックインピーダンス、全動作温度範囲内 基準電圧変動、全動作温度範囲内 基準入力電流変動の最大値は、初期5ロットからの抜き取り評価によって設定された規格であり、全数検査は行っておりません。 従って、本項目は保証項目ではありませんのでご注意ください。

|V_{REF}| :誤差を含めた基準電圧を示します。

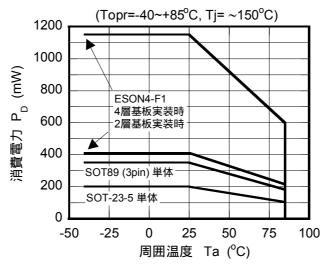

- (*3):測定回路1
- (*4):測定回路2
- (*5):測定回路3

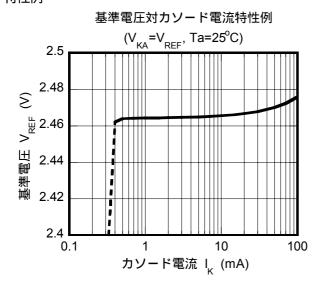
測定回路

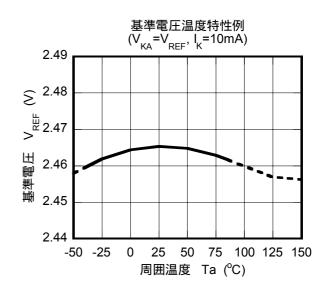

1. V_{KA}=V_{REF}の測定回路

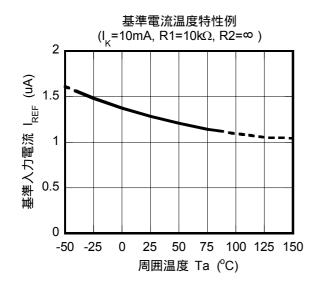
 $V_O = V_{KA} = V_{REF}$

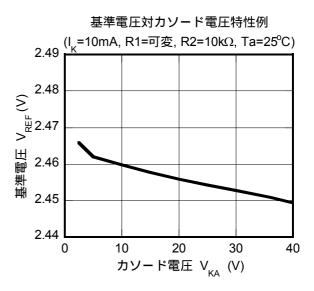
2. V_{KA} > V_{REF}の測定回路

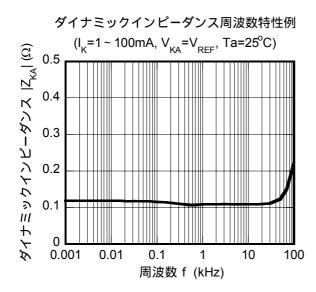

$$V_{\text{O}} = V_{\text{KA}} = V_{\text{REF}} \! \left(1 \! + \! \frac{R1}{R2} \right) \! + I_{\text{REF}} \! \times \! R1$$

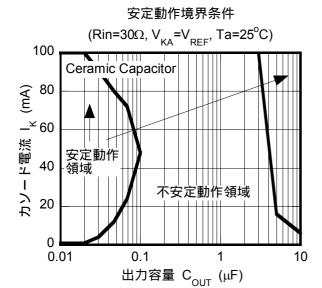

3. I_{OFF}測定回路

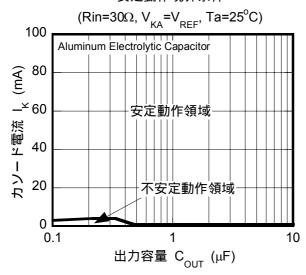

消費電力対周囲温度特性例

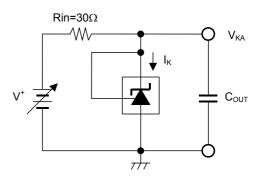

消費電力対周囲温度特性例




特性例






特性例

安定動作境界条件

安定動作境界条件 測定回路図

(注) 不安定動作領域では、発振する可能性があります。 使用に際しては、デバイスのバラツキを考慮して 十分なマージンを取りご使用ください。

MEMO

<注意事項>
このデータブックの掲載財容の正確さには
万全を期しておりますが、掲載財容について
何らかの活がな保証を行うものではありませ
ん。とくに応用回路については、製品の代表
的な応用例を説明するためのものです。また、
工業所有権その他の権利の実施権の許諾を伴
うものではなく、第三者の権利を侵害しない
ことを保証するものでもありません。