INTEGRATED CIRCUITS

DATA SHEET

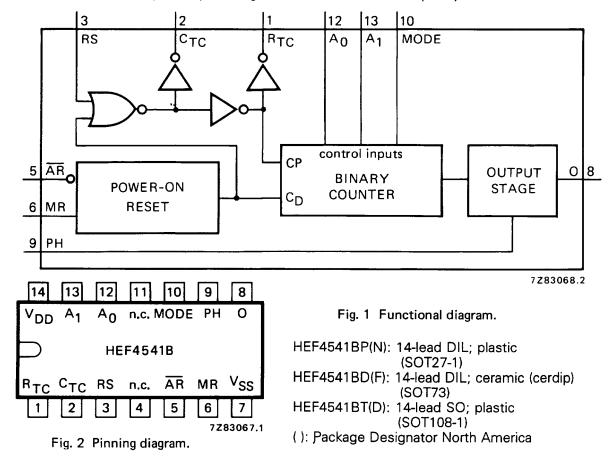
For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4541B MSI Programmable timer

Product specification
File under Integrated Circuits, IC04

January 1995

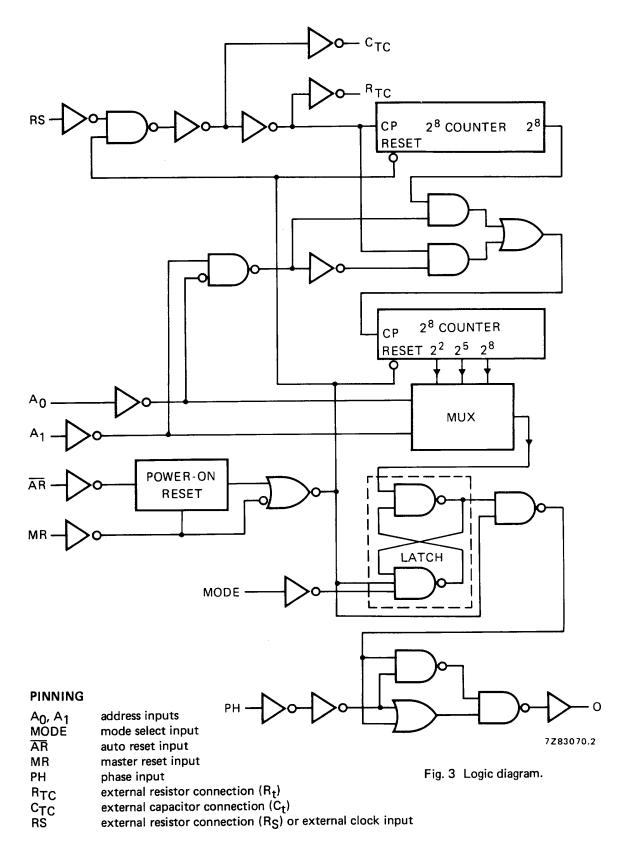


HEF4541B MSI

PROGRAMMABLE TIMER

The HEF4541B is a programmable timer which consists of a 16-stage binary counter, an integrated oscillator to be used with external timing components, an automatic power-on reset and output control logic. The frequency of the oscillator is determined by the external components R_t and C_t within the frequency range 1 Hz to 100 kHz. This oscillator may be replaced by an external clock signal at input RS, the timer advances on the positive-going transition of RS. A LOW on the auto reset input (\overline{AR}) and a LOW on the master reset input (MR) enables the internal power-on reset. A HIGH level at input MR resets the counter independent on all other inputs. Resetting disables the oscillator to provide no active power dissipation.

A HIGH at input \overline{AR} turns off the power-on reset to provide a low quiescent power dissipation of the timer. The 16-stage counter divides the oscillator frequency by 2^8 , 2^{10} , 2^{13} or 2^{16} depending on the state of the address inputs (A₀, A₁). The divided oscillator frequency is available at output 0. The phase input (PH) features a complementary output signal. If the mode select input (MODE) is LOW or HIGH the timer can be used respectively as a single transition timer or 2^n frequency divider.



FAMILY DATA

see Family Specifications

IDD LIMITS category MSI

HEF4541B MSI

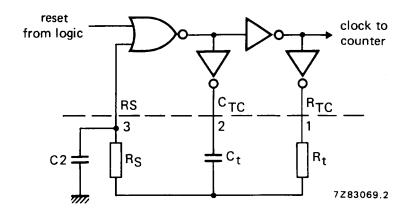
HEF4541B MSI

FREQUENCY SELECTION TABLE

A ₀	Α1	number of counter stages n	$\frac{f_{osc}}{f_{out}} = 2^n$
L	L	13	8 192
L	Н	10	1 024
Н	L	8	256
Н	Η	16	65 536

FUNCTION TABLE

		input	S			
ĀR	MR	PH	MODE	mode		
H L X	L H L	X X X	X X X H	auto reset disabled auto reset enabled ¹⁾ master reset active normal operation selected division to output		
X	L	Х	L	single-cycle mode ²⁾		
×	L	H	X	output initially LOW, after reset output initially HIGH, after reset		


H = HIGH state (the more positive voltage) L = LOW state (the less positive voltage)

X = state is immaterial

- 1. For correct power-on reset, the supply voltage should be above 8.5 V. For V_{DD} < 8.5 V, disable the autoreset and connect \overline{AR} to V_{DD} .
- 2. The timer is initialized on a reset pulse and the output changes state after 2ⁿ⁻¹ counts and remains in that state (latched). Reset of this latch is obtained by master reset or by a LOW to HIGH transition on the MODE input.

HEF4541B MSI

RC oscillator

Typical formula for oscillator frequency:

$$f_{\rm osc} = \frac{1}{2.3 \times R_{\rm t} \times C_{\rm t}}$$

Fig. 4 External component connection for RC oscillator; $R_S \approx 2R_t$.

Timing component limitations

The oscillator frequency is mainly determined by R_tC_t , provided $R_t << R_S$ and $R_SC2 << R_tC_t$. The function of R_S is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the LOCMOS 'ON' resistance in series with it, which typically is 500 Ω at V_{DD} = 5 V, 300 Ω at V_{DD} = 10 V and 200 Ω at V_{DD} = 15 V.

The recommended values for these components to maintain agreement with the typical oscillation formula are:

 $C_t \ge 100$ pF, up to any typical value, $10~k\Omega \le R_t \le 1~M\Omega$.

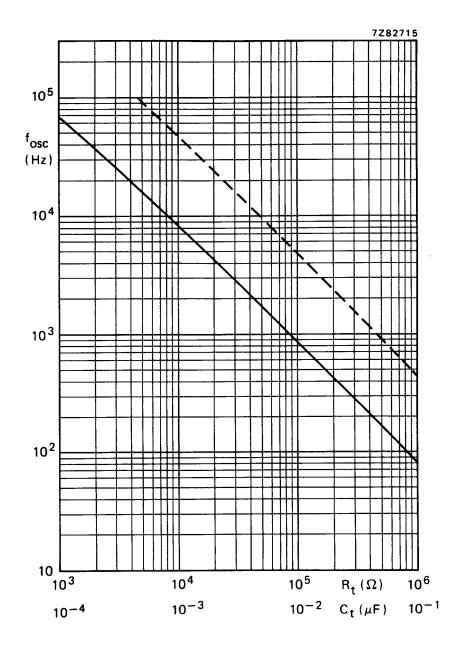


Fig. 5 RC oscillator frequency as a function of R_t and C_t at V_{DD} = 5 to 15 V; T_{amb} = 25 °C.

$$\begin{array}{ll} ---- & C_t \text{ curve at } R_t = 56 \text{ k}\Omega; \text{ R}_S = 120 \text{ k}\Omega. \\ --- & R_t \text{ curve at } C_t = 1 \text{ nF; R}_S = 2R_t. \end{array}$$

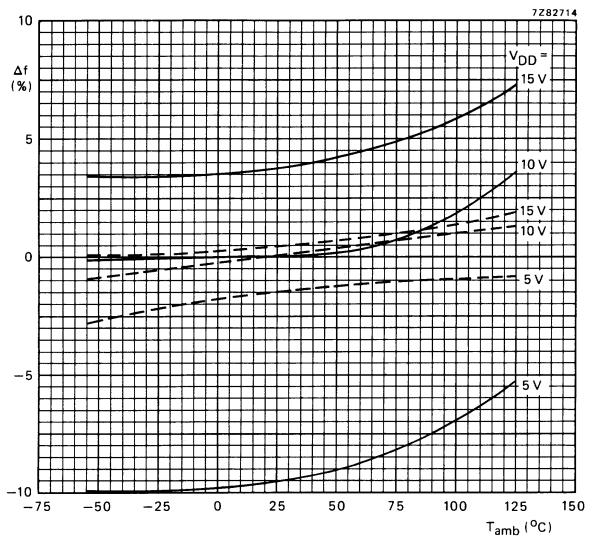


Fig. 6 Frequency deviation (Δf) as a function of ambient temperature; referenced at : f_{OSC} at T_{amb} = 25 °C and V_{DD} = 10 V.

$$\begin{array}{lll} & ----- & R_t = 56 \text{ k}\Omega; \ C_t = 1 \text{ nF; } R_S = 0. \\ & ---- & R_t = 56 \text{ k}\Omega; \ C_t = 1 \text{ nF; } R_S = 120 \text{ k}\Omega. \end{array}$$

HEF4541B MSI

D.C. CHARACTERISTICS

 $V_{SS} = 0 V$

	V-5-5	Vol	Vau	V		T _{amb} (°C)							
	V_{DD}	V _O L V	V _{OH}	symbol	–40		+ 25			+ 85			
				•	min.	max.	min.	typ.	max.	min.	max.		
Supply current	5				_	80	_	20	80	_	230		
power-on reset	10			ΙD	_	750		250	600	_	700		
enabled (note)	15				_	1600		500	1300	_	1500	μΑ	
Supply voltage for automatic reset initialization (note)				V _{DD}	_	-	8,5	5	-	-	_	V	
Output current	5		4,6		0,5	_	0,4	_	_	0,3	_	mΑ	
HIGH; C _{TC} , R _{TC}	10		9,5	-1он	1,4	_	1,2	_		0,95	_	mΑ	
	15		13,5		4,8	_	4,0	_	_	3,2		mΑ	
	5		2,5	-!он	1,4	_	1,2	_	_	0,95	_	mΑ	
Output current	5	0,4			0,33	_	0,27		_	0,20	_	mA	
LOW; CTC, RTC	10	0,5		IOL	1,00		0,85	_		0,68		mA	
	15	1,5			3,20		2,70			2,30		mΑ	

All inputs at 0 V or V_{DD} , except input \overline{AR} = input MR = 0 V (power-on reset active).

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	typical formula for P (μW)*
Dynamic power dissipation per package (P)	5 10 15	1 300 f _i + f _o C _L V _{DD} ² 5 300 f _i + f _o C _L V _{DD} ² 12 000 f _i + f _o C _L V _{DD} ²
Total power dissipation when using the on-chip oscillator (P)	5 10 15	$\begin{array}{c} 1300f_{osc} + f_{o}C_{L}V_{DD}^{2} + 2C_{t}V_{DD}^{2}f_{osc} + 10V_{DD} \\ 5300f_{osc} + f_{o}C_{L}V_{DD}^{2} + 2C_{t}V_{DD}^{2}f_{osc} + 100V_{DD} \\ 12000f_{osc} + f_{o}C_{L}V_{DD}^{2} + 2C_{t}V_{DD}^{2}f_{osc} + 400V_{DD} \end{array}$

* where:

f_i = input frequency (MHz)

f_O = output frequency (MHz)
C_L = load capacitance (pF)

V_{DD}= supply voltage (V)

 C_t = timing capacitance (pF)

f_{osc} = oscillator frequency (MHz)

HEF4541B MSI

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays RS → O 2 ⁸ selected HIGH to LOW LOW to HIGH	5 10	tpHL;		375 150	750 ns 300 ns	348 ns + (0,55 ns/pF) C _L 139 ns + (0,23 ns/pF) C _L
RS — O 2 ¹⁰ selected HIGH to LOW LOW to HIGH	5 10 15	tpHL;		110 425 165 120	220 ns 850 ns 330 ns 240 ns	102 ns + (0,16 ns/pF) C _L 398 ns + (0,55 ns/pF) C _L 154 ns + (0,23 ns/pF) C _L 112 ns + (0,16 ns/pF) C _L
RS → O 2 ¹³ selected HIGH to LOW LOW to HIGH	5 10 15	tpHL;		510 190 135	1020 ns 380 ns 270 ns	483 ns + (0,55 ns/pF) C _L 179 ns + (0,23 ns/pF) C _L 127 ns + (0,16 ns/pF) C _L
RS → O 2 ¹⁶ selected HIGH to LOW LOW to HIGH	5 10 15	tpHL;		575 210 150	1150 ns 420 ns 300 ns	548 ns + (0,55 ns/pF) C _L 199 ns + (0,23 ns/pF) C _L 142 ns + (0,16 ns/pF) C _L
Minimum clock pulse width; LOW	5 10 15	™RSL	60 30 24	30 15 12	ns ns ns	
Minimum reset pulse width; HIGH	5 10 15	^t wmrh	60 30 24	30 15 12	ns ns ns	·
Maximum clock pulse frequency	5 10 15	f _{max}	8 15 18	16 30 36	MHz MHz MHz	
Oscillator frequency	5 10 15	fosc		90 90 90	kHz kHz kHz	$\begin{cases} R_t = 5 k\Omega \\ C_t = 1 nF \\ R_S = 10 k\Omega \end{cases}$
Oscillator frequency	5 10 15	fosc		8 8 8	kHz kHz kHz	$\begin{cases} R_t = 56 \text{ k}\Omega \\ C_t = 1 \text{ nF} \\ R_S = 120 \text{ k}\Omega \end{cases}$