OmROn

PCB Relay

Miniature Single-pole Relay with 80-A

Surge Current and 20-A Switching

Current
■ Ideal for motor switching.

- Miniature, relay with high switching capacity built-in applications.

■ Creepage distance conforms to UL and CSA standards.

- Highly noise-resistive insulation materials employed.
- Standard model available with flux protection construction.

Ordering Information

Contact form	Terminals	Coil terminals	Rated voltage	Model
SPST-NO	\#250 tab terminals	PCB terminals	$5,12,24$ VDC	G4A-1A
				GCB terminals

Note: When ordering, add the rated coil voltage to the model number.
Example: G4A-1A 12 VDC
Rated coil voltage
Model Number Legend:

1. Number of Poles

1: 1 pole
2. Contact Form

A: SPST-NO
3. Terminals

None:Relays with \#250 tab/PCB
P: Straight PCB
4. Rated Coil Voltage

5, 12, 24 VDC

Specifications

■ Coil Ratings

Rated voltage	5 VDC	12 VDC	24 VDC
Rated current	180 mA	75 mA	37.5 mA
Coil resistance	27.8Ω	160Ω	640Ω
Coil inductance (ref. value)	Armature OFF	---	0.8 H
Must operate voltage	Armature ON	---	1.1 H
Must release voltage	70% of rated voltage max.	4.8 H	
Max. voltage	10% of rated voltage min.		
Power consumption	110% of rated voltage		

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

■ Contact Ratings

Rated load	20 A at 250 VAC
Rated carry current	20 A
Max. switching voltage	250 VAC
Max. switching current	20 A
Max. switching capacity	$5,000 \mathrm{VA}$
Min. permissible load	100 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation (with an operating frequency of 120 operations $/ \mathrm{min}$)

Life Expectancies

With Motor Load

Load conditions	Switching frequency	Electrical life expectancy
250 VAC: Inruch current: $80 \mathrm{~A}, 0.3 \mathrm{~s}(\cos \phi=0.7)$ Break current: $20 \mathrm{~A}(\cos \phi=0.9)$	ON: 1.5 s	100,000 operations

With Overload

Load conditions	Switching frequency	Electrical life expectancy
250 VAC:	ON: 1.5 s	1,500 operations
Inruch current: $80 \mathrm{~A}(\cos \phi=0.7)$	OFF: 1.5 s	
Break current: $80 \mathrm{~A}(\cos \phi=0.7)$		

With Inverter Load

Load conditions	Switching frequency	Electrical life expectancy
$100 \mathrm{VAC} ;$	ON: 3 s	30,000 operations
Inrush current: $200 \mathrm{~A}(0-\mathrm{P})$	OFF: 5 s	
Break current: 20 A		

■ Characteristics

Contact resistance	$30 \mathrm{~m} \Omega \mathrm{max}$.
Operate time	20 ms max.
Release time	10 ms max.
Max. operating frequency	Mechanical: 18,000 operations/hr
Insulation resistance	$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength	$4,500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contact
	$1,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 20G)
Life expectancy	Mechanical: $2,000,000$ operations min. (at 18,000 operations/hr) Motor load: 100,000 operations min. (ON/OFF: 1.5 s$)$ Inverter load: 30,000 operations min. (ON: $3 \mathrm{~s}, \mathrm{OFF}: 5 \mathrm{~s}$)
Ambient temperature	Operating: $-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35% to 85%
Weight	Approx. 23 g

Note: The data shown above are initial values.

Engineering Data

Max. Switching Capacity

Life Expectancy

Dimensions

Note: All units are in millimeters unless otherwise indicated; dimensions shown in parentheses are in inches.

G4A-1A-P

Mounting Holes (Bottom View)
Four, $1.8{ }_{0}^{0.1}$ dia.

Terminal Arrangement
/Internal Connections
(Top View) (Bottom View)

Mounting Holes
(Bottom View)
Four, $1.8{ }_{0}^{+0.1}$ dia.

Terminal Arrangement /Internal Connections (Bottom View)

Precautions

Mounting

When mounting two or more relays side by side, provide a minimum space of 3 mm between relays.

Terminal Connection

The terminals fit FASTON receptacle 250 and are suitable for positive-lock mounting.
Do not apply excessive force on the terminals when mounting or dismounting the relay.
The following positive-lock connectors made by AMP are recommended.

Type	Receptacle terminals	Positive housing
\#250 terminals (width: 6.35 mm)	AMP 170333-1 (170327-1)	AMP 172076-1 natural color
	AMP 170334-1 (170328-1)	AMP 172076-4 yellow
	AMP 170335-1 (170329-1)	AMP 172076-5 green
		AMP 172076-6 blue

Note: The numbers shown in parentheses are for air-feeding.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

