

Zinc Primer #823-2539

RS Components

Chemwatch: 5155-63
Version No: 2.1.1.1
Material Safety Data Sheet according to NOHSC and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 21/11/2014
Print Date: 25/11/2014
Initial Date: Not Available
S.Local.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Zinc Primer #823-2539
Chemical Name	Not Applicable
Synonyms	Manufacturer's Code: 823-2539
Proper shipping name	AEROSOLS
Chemical formula	Not Applicable
Other means of identification	Not Available
CAS number	Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack Paints.
--------------------------	--

Details of the manufacturer/importer

Registered company name	RS Components	RS Components
Address	25 Pavesi Street Smithfield 2164 NSW Australia	Units 30 & 31, 761 Great South Road Penrose 1006 Auckland New Zealand
Telephone	+1 300 656 636	+64 9 526 1600
Fax	+1 300 656 696	+64 9 579 1700
Website	Not Available	www.rsnewzealand.com
Email	Not Available	Not Available

Emergency telephone number

Association / Organisation	Not Available	Not Available
Emergency telephone numbers	1800 039 008 (24 hours), +61 3 9573 3112	Not Available
Other emergency telephone numbers	1800 039 008 (24 hours), +61 3 9573 3112	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

Poisons Schedule	Not Applicable	
	R20/21	Harmful by inhalation and in contact with skin.
	R52/53	Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
	R44	Risk of explosion if heated under confinement.
	R36	Irritating to eyes.
	R40(3)	Limited evidence of a carcinogenic effect.
	R12	Extremely flammable.

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Relevant risk statements are found in section 2

Indication(s) of danger	F+, Xn
-------------------------	--------

SAFETY ADVICE

S07	Keep container tightly closed.
-----	--------------------------------

Continued...

S09	Keep container in a well ventilated place.
S13	Keep away from food, drink and animal feeding stuffs.
S15	Keep away from heat.
S16	Keep away from sources of ignition. No smoking.
S23	Do not breathe gas/fumes/vapour/spray.
S25	Avoid contact with eyes.
S26	In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.
S29	Do not empty into drains.
S33	Take precautionary measures against static discharges.
S35	This material and its container must be disposed of in a safe way.
S36	Wear suitable protective clothing.
S37	Wear suitable gloves.
S38	In case of insufficient ventilation, wear suitable respiratory equipment.
S39	Wear eye/face protection.
S40	To clean the floor and all objects contaminated by this material, use water and detergent.
S41	In case of fire and/or explosion, DO NOT BREATHE FUMES.
S43	In case of fire use...
S46	If swallowed, seek medical advice immediately and show this container or label.
S51	Use only in well ventilated areas.
S53	Avoid exposure - obtain special instructions before use.
S56	Dispose of this material and its container at hazardous or special waste collection point.
S57	Use appropriate container to avoid environmental contamination.
S64	If swallowed, rinse mouth with water (only if the person is conscious).

Other hazards

May produce discomfort of the respiratory system and skin*.
Possible skin sensitizer*.
Ingestion may produce health damage*.
Cumulative effects may result following exposure*.
May be harmful to the foetus/ embryo*.
Vapours potentially cause drowsiness and dizziness*.
Repeated exposure potentially causes skin dryness and cracking*.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1330-20-7	<12.5	xylene
108-10-1	5-10	methyl isobutyl ketone
100-41-4	1-5	ethylbenzene
107-98-2	1-5	propylene glycol monomethyl ether - alpha isomer
95-63-6	<2.5	1,2,4-trimethyl benzene
108-67-8	<2.5	1,3,5-trimethyl benzene
7779-90-0	<2.5	zinc phosphate
96-29-7	<1	methyl ethyl ketoxime
1314-13-2	<1	zinc oxide
115-10-6	30-60	dimethyl ether

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If aerosols come in contact with the eyes: ► Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. ► Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. ► Transport to hospital or doctor without delay. ► Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: ► Flush skin and hair with running water (and soap if available). ► Remove any adhering solids with industrial skin cleansing cream. ► DO NOT use solvents. ► Seek medical attention in the event of irritation.

Continued...

Inhalation	If aerosols, fumes or combustion products are inhaled: <ul style="list-style-type: none"> ► Remove to fresh air. ► Lay patient down. Keep warm and rested. ► Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. ► If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor.
Ingestion	<ul style="list-style-type: none"> ► Avoid giving milk or oils. ► Avoid giving alcohol. ► Not considered a normal route of entry. ► If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.
for lower alkyl ethers:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock.
- Anticipate and treat, where necessary, for seizures.
- **DO NOT use emetics.** Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated.
- Haemodialysis might be considered in patients with impaired renal function.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRENCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- SMALL FIRE:**
 - Water spray, dry chemical or CO₂**LARGE FIRE:**
 - Water spray or fog.

Special hazards arising from the substrate or mixture

- | | |
|-----------------------------|--|
| Fire Incompatibility | <ul style="list-style-type: none"> ► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result |
|-----------------------------|--|

Advice for firefighters

Fire Fighting	<ul style="list-style-type: none"> ► Alert Fire Brigade and tell them location and nature of hazard. ► May be violently or explosively reactive. ► Wear breathing apparatus plus protective gloves. ► Prevent, by any means available, spillage from entering drains or water course. ► If safe, switch off electrical equipment until vapour fire hazard removed. ► Use water delivered as a fine spray to control fire and cool adjacent area. ► DO NOT approach containers suspected to be hot. ► Cool fire exposed containers with water spray from a protected location. ► If safe to do so, remove containers from path of fire. ► Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	<ul style="list-style-type: none"> ► Liquid and vapour are highly flammable. ► Severe fire hazard when exposed to heat or flame. ► Vapour forms an explosive mixture with air. ► Severe explosion hazard, in the form of vapour, when exposed to flame or spark. ► Vapour may travel a considerable distance to source of ignition. ► Heating may cause expansion or decomposition with violent container rupture. ► Aerosol cans may explode on exposure to naked flames. ► Rupturing containers may rocket and scatter burning materials. ► Hazards may not be restricted to pressure effects. ► May emit acrid, poisonous or corrosive fumes. ► On combustion, may emit toxic fumes of carbon monoxide (CO). <p>Combustion products include: carbon dioxide (CO₂), formaldehyde, other pyrolysis products typical of burning organic material</p> <p>Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.</p> <p>WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides.</p>

Continued...

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills	<ul style="list-style-type: none"> ▶ Clean up all spills immediately. ▶ Avoid breathing vapours and contact with skin and eyes. ▶ Wear protective clothing, impervious gloves and safety glasses. ▶ Shut off all possible sources of ignition and increase ventilation. ▶ Wipe up. ▶ If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. ▶ Undamaged cans should be gathered and stowed safely.
Major Spills	<ul style="list-style-type: none"> ▶ Clear area of personnel and move upwind. ▶ Alert Fire Brigade and tell them location and nature of hazard. ▶ May be violently or explosively reactive. ▶ Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water courses ▶ No smoking, naked lights or ignition sources. ▶ Increase ventilation. ▶ Stop leak if safe to do so. ▶ Water spray or fog may be used to disperse / absorb vapour. ▶ Absorb or cover spill with sand, earth, inert materials or vermiculite. ▶ If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. ▶ Undamaged cans should be gathered and stowed safely. ▶ Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	<p>The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe</p> <ul style="list-style-type: none"> ▶ DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential. ▶ Any static discharge is also a source of hazard. ▶ Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina. ▶ Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage. ▶ Add inhibitor to any distillate as required. ▶ When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely. ▶ DO NOT allow clothing wet with material to stay in contact with skin <p>The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.</p> <p>Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.</p> <ul style="list-style-type: none"> ▶ A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. ▶ The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date. ▶ Unopened containers received from the supplier should be safe to store for 18 months. ▶ Opened containers should not be stored for more than 12 months. ▶ Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs. ▶ Use in a well-ventilated area. ▶ Prevent concentration in hollows and sumps. ▶ DO NOT enter confined spaces until atmosphere has been checked. ▶ Avoid smoking, naked lights or ignition sources. ▶ Avoid contact with incompatible materials. ▶ When handling, DO NOT eat, drink or smoke. ▶ DO NOT incinerate or puncture aerosol cans. ▶ DO NOT spray directly on humans, exposed food or food utensils. ▶ Avoid physical damage to containers. ▶ Always wash hands with soap and water after handling. ▶ Work clothes should be laundered separately. ▶ Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS. ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	<ul style="list-style-type: none"> ▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can ▶ Store in original containers in approved flammable liquid storage area. ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. ▶ No smoking, naked lights, heat or ignition sources. ▶ Keep containers securely sealed. Contents under pressure. ▶ Store away from incompatible materials. ▶ Store in a cool, dry, well ventilated area. ▶ Avoid storage at temperatures higher than 40 deg C. ▶ Store in an upright position. ▶ Protect containers against physical damage. ▶ Check regularly for spills and leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container	<ul style="list-style-type: none"> ▶ Aerosol dispenser. ▶ Check that containers are clearly labelled.
---------------------------	---

Storage incompatibility

- Dimethyl ether:
- is a peroxidisable gas
 - may be heat and shock sensitive
 - is able to form unstable peroxides on prolonged exposure to air
 - reacts violently with oxidisers, aluminium hydride, lithium aluminium hydride
 - is incompatible with strong acids, metal salts
 - Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

PACKAGE MATERIAL INCOMPATIBILITIES

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	350 mg/m3 / 80 ppm	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	methyl isobutyl ketone	Methyl isobutyl ketone	205 mg/m3 / 50 ppm	307 mg/m3 / 75 ppm	Not Available	Not Available
Australia Exposure Standards	ethylbenzene	Ethyl benzene	434 mg/m3 / 100 ppm	543 mg/m3 / 125 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether - alpha isomer	Propylene glycol monomethyl ether	369 mg/m3 / 100 ppm	553 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	zinc phosphate	Fume (thermally generated) (respirable dust)(g)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	zinc oxide	Zinc oxide (dust) (a) / Zinc oxide (fume)	10 mg/m3 / 5 mg/m3	10 mg/m3	Not Available	Not Available
Australia Exposure Standards	dimethyl ether	Dimethyl ether	760 mg/m3 / 400 ppm	950 mg/m3 / 500 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
xylene	Xylenes	Not Available	Not Available	Not Available
methyl isobutyl ketone	Methyl isobutyl ketone; (Hexone)	75 ppm	75 ppm	3000 ppm
ethylbenzene	Ethyl benzene	Not Available	Not Available	Not Available
propylene glycol monomethyl ether - alpha isomer	Propylene glycol monomethyl ether; (Ucar Triol HG-170)	150 ppm	150 ppm	470 ppm
1,2,4-trimethyl benzene	Trimethylbenzene, 1,2,4-; (Pseudocumene)	Not Available	Not Available	360 ppm
1,3,5-trimethyl benzene	Mesitylene; (1,3,5-Trimethylbenzene)	Not Available	Not Available	360 ppm
zinc phosphate	Zinc phosphate (3:2)	1.8 mg/m3	20 mg/m3	120 mg/m3
methyl ethyl ketoxime	Butanone oxime; (Ethyl methyl ketoxime)	10 ppm	10 ppm	52 ppm
zinc oxide	Zinc oxide	10 mg/m3	15 mg/m3	2500 mg/m3
dimethyl ether	Methyl ether; (Dimethyl ether)	1,000 ppm	1000 ppm	7200 ppm

Ingredient	Original IDLH	Revised IDLH
xylene	1,000 ppm	900 ppm
methyl isobutyl ketone	3,000 ppm	500 ppm
ethylbenzene	2,000 ppm	800 [LEL] ppm
propylene glycol monomethyl ether - alpha isomer	Not Available	Not Available
1,2,4-trimethyl benzene	Not Available	Not Available
1,3,5-trimethyl benzene	Not Available	Not Available
zinc phosphate	Not Available	Not Available
methyl ethyl ketoxime	Not Available	Not Available
zinc oxide	2,500 mg/m3	500 mg/m3
dimethyl ether	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

Continued...

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.
 Provide adequate ventilation in warehouse or closed storage areas.
 Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- ▶ Safety glasses with side shields.
- ▶ Chemical goggles.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- ▶ Neoprene gloves
- ▶ No special equipment needed when handling small quantities.
- ▶ **OTHERWISE:**
- ▶ For potentially moderate exposures:
- ▶ Wear general protective gloves, eg. light weight rubber gloves.
- ▶ For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

See Other protection below

No special equipment needed when handling small quantities.

OTHERWISE:

- ▶ Overalls.
 - ▶ Skin cleansing cream.
 - ▶ Eyewash unit.
 - ▶ Do not spray on hot surfaces.
 - ▶ The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
 - ▶ Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.
- BRETHICK: Handbook of Reactive Chemical Hazards.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the **computer-generated** selection:

Zinc Primer #823-2539

Material	CPI
BUTYL	C
BUTYL/NEOPRENE	C
HYPALON	C
NAT+NEOPR+NITRILE	C
NATURAL RUBBER	C
NATURAL+NEOPRENE	C
NEOPRENE	C

Respiratory protection

Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AX-AUS / Class 1 P2	-	AX-PAPR-AUS / Class 1 P2
up to 25 x ES	Air-line*	AX-2 P2	AX-PAPR-2 P2
up to 50 x ES	-	AX-3 P2	-
50+ x ES	-	Air-line**	-

* - Continuous-flow; ** - Continuous-flow or positive pressure demand

^ - Full-face

Continued...

Zinc Primer #823-2539

NEOPRENE/NATURAL	C
NITRILE	C
NITRILE+PVC	C
PE/EVAL/PE	C
PVA	C
PVC	C
PVDC/PE/PVDC	C
TEFLON	C
VITON	C
##dimethyl	ether
##propylene glycol monomethyl ether - alpha	isomer
##methyl isobutyl	ketone

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO₂), G = Agricultural chemicals, K = Ammonia(NH₃), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Coloured flammable liquid aerosol with a characteristic odour; insoluble in water.		
Physical state	Liquid	Relative density (Water = 1)	1.08 @ 20 deg.C
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>200
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	15 (CC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	618 g/l (VOC)
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution(1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	► Elevated temperatures. ► Presence of open flame. ► Product is considered stable. ► Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	<p>Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.</p> <p>Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.</p> <p>Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals,</p>
---------	---

Continued...

following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Ethers produce narcosis following inhalation.

Inhalation of lower alkyl ethers may result in central nervous system depression or stimulation, intoxication, headache, dizziness, weakness, blurred vision, seizures and possible coma. Cardiovascular involvement may produce hypotension, bradycardia and cardiovascular collapse, whilst respiratory symptoms might include irritation of nose and throat, cough, laryngeal spasm, pharyngitis, irregular respiration, depression, pulmonary oedema and respiratory arrest. Nausea, vomiting and salivation might also indicate overexposure.

Convulsions, respiratory distress or paralysis, asphyxia, pneumonitis, and unconsciousness are all serious manifestations of poisoning. Fatalities have been reported. Kidney and liver damage with interstitial cystitis may result from massive exposures.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

The primary physiological effect which follows exposure to diethyl ether is acute narcosis.

Inhalation at about 7.5% in air, produces mild intoxication in about 12 minutes. Longer exposures and exposure to higher concentrations produces incoordination, blurring of vision, headache, dizziness and unconsciousness (20% produces unconsciousness in about 20 minutes). Heavy exposures may be lethal and deaths occur due to depression of the respiratory system. Dimethyl ether is a weak cardiac sensitisier in dogs.

Accidental ingestion of the material may be damaging to the health of the individual.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Ingestion of alkyl ethers may produce symptoms similar to those produced following inhalation.

Skin contact with the material may be harmful; systemic effects may result following absorption.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Spray mist may produce discomfort

Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system depression.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures.

Eye contact with alkyl ethers (vapours or liquid) may produce irritation, redness and lacrimation.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Principal route of occupational exposure to the gas is by inhalation.

Chronic exposure to alkyl ethers may result in loss of appetite, excessive thirst, fatigue, and weight loss

Experiments with rats exposed to MIBK have shown nerve changes characteristic of neuropathy (disease of the peripheral nerves usually causing weakness and numbness).

Chronic occupational exposure to 500 ppm MIBK in air (20-30 mins/day, and 80 ppm for the remainder of the workday resulted in nausea, headache, burning eyes, and weakness in over half the workers. Some workers reported somnolence, insomnia and intestinal pain, and 4/19 appeared to have enlarged livers. This study was continued 5 years after MIBK concentrations had been reduced to 100-105 ppm for the 20-30 minutes exposures and 50 ppm for the general exposure. A few workers still experienced gastrointestinal and neurological problems and slight liver enlargement was found in two individuals.

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia.

Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mixed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms.

Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers.

Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

Zinc Primer #823-2539

TOXICITY | IRRITATION

Not Available | Not Available

xylene

TOXICITY | IRRITATION

Inhalation (rat) LC50: 5000 ppm/4h | Eye (human): 200 ppm irritant

Zinc Primer #823-2539

Intraperitoneal (Mouse) LD50: 1548 mg/kg	Eye (rabbit): 5 mg/24h SEVERE
Intraperitoneal (Rat) LD50: 2459 mg/kg	Eye (rabbit): 87 mg mild
Oral (Mouse) LD50: 2119 mg/kg	Skin (rabbit): 500 mg/24h moderate
Oral (rat) LD50: 4300 mg/kg	
Subcutaneous (Rat) LD50: 1700 mg/kg	
Not Available	Not Available

methyl isobutyl ketone

TOXICITY	IRRIGATION
Oral (rat) LD50: 2080 mg/kg	Eye (human): 200 ppm/15m
Oral (rat) LD50: 2460 mg/kg	Eye (rabbit): 40 mg - SEVERE
	Eye (rabbit): 500 mg/24h - mild
	Skin (rabbit): 500 mg/24h - mild
Not Available	Not Available

ethylbenzene

TOXICITY	IRRIGATION
Dermal (rabbit) LD50: 17800 mg/kg	Eye (rabbit): 500 mg - SEVERE
Intraperitoneal (mouse) LD50: 2642 mg/kg	Skin (rabbit): 15 mg/24h mild
Oral (rat) LD50: 3500 mg/kg	
Not Available	Not Available

propylene glycol monomethyl ether - alpha isomer

TOXICITY	IRRIGATION
Dermal (rabbit) LD50: 13000 mg/kg	Eye (rabbit) 230 mg mild
Inhalation (rat) LC50: 10000 ppm/5 h.	Eye (rabbit) 500 mg/24 h. - mild
Oral (rat) LD50: 3739 mg/kg	Eye (rabbit): 100 mg SEVERE
	Skin (rabbit) 500 mg open - mild
Not Available	Not Available

1,2,4-trimethyl benzene

TOXICITY	IRRIGATION
Inhalation (rat) LC50: 18000 mg/m3/4h	
Not Available	Not Available

1,3,5-trimethyl benzene

TOXICITY	IRRIGATION
Inhalation (rat) LC50: 24000 mg/m3/4h	Eye (rabbit): 500 mg/24h mild
	Skin (rabbit): 20 mg/24h moderate
Not Available	Not Available

zinc phosphate

TOXICITY	IRRIGATION
Oral (rat) LD50: 15000 mg/kg	
Not Available	Not Available

methyl ethyl ketoxime

TOXICITY	IRRIGATION
Dermal (rabbit) LD50: >1000 mg/kg *	Eye (rabbit): 0.1 ml - SEVERE
Inhalation (rat) LC50: >4.83 mg/l *	
Inhalation (Rat) LC50: 20 mg/l/4h **	
Intraperitoneal (mouse) LD50: 200 mg/kg	
Oral (Rat) LD50: >2400 mg/kg **	
Oral (rat) LD50: 930 mg/kg	
Subcutaneous (rat) LD50: 2702 mg/kg	
Not Available	Not Available

zinc oxide

TOXICITY	IRRIGATION
Oral (mouse) LD50: 7950 mg/kg	Eye (rabbit) : 500 mg/24 h - mild
Oral (Rat) LD50: >8437 mg/kg	Skin (rabbit) : 500 mg/24 h - mild
Not Available	Not Available

dimethyl ether

TOXICITY	IRRITATION
Inhalation (rat) LC50: 308000 mg/m3	
Not Available	Not Available

* Value obtained from manufacturer's msds

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating

None are skin sensitizers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The major routes of excretion of 1,2,4-trimethylbenzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1) . 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA) . Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethylbenzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches,

Continued...

drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis.

Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (not times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella typhimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethylbenzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m³ for C9 aromatic naphtha and 18,000 to 24,000 mg/m³ for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m³). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neurobehavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m³, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m³) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m³. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m³). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m³ (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m³ for respiratory irritation and 250 ppm or 1230 mg/m³ for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with *Salmonella typhimurium* and *Escherichia coli* bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In *in vivo* bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m³) 6 hr/day, for 5 days. No evidence of *in vivo* somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m³, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m³).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in

the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m³). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m³), which excludes analysis of the highest concentration due to excessive mortality.

Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m³) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

XYLENE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Reproductive effector in rats

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For methyl isobutyl ketone (MIBK):

MIBK is primarily absorbed by the lungs in animals and humans; it can however be absorbed by the gastrointestinal system and through skin.

In two cases involving individuals exposed to the vapour MIBK was found in the brain, liver, lung, vitreous fluid, kidney and blood.

Experiments in guinea pigs show that MIBK is metabolised to 4-hydroxy-4-methyl-2-pentanone and 4-methyl-2-pentanol. Ketones are generally excreted rapidly in expired air. Small amounts of MIBK are also excreted in the urine. Humans excreted less than 0.1% of the dose as unmetabolised MIBK in the urine within the first 3 hours post exposure. Serum half-life in guinea pigs is about 55 minutes with a clearance time of 6 hours. In animal studies, the acute systemic toxicity of MIBK, via the oral and inhalation routes of exposure, is low. In a 90-day gavage study on rats, a no-observed-effect level (NOEL) of 50 mg/kg per day was found. In 90-day inhalation studies on rats and mice, concentrations of up to 4100 mg/m³ (1000 ppm) did not result in significant toxicity, though compound-related reversible morphological changes were reported in the liver and kidney. Evidence of central nervous system depression was seen in animals exposed to a level of 4100 mg/m³ (1000 ppm). In a number of studies, exposure to MIBK concentrations as low as 1025 mg/m³ (250 ppm) resulted in an increase in liver size and induced hepatic microsomal metabolism. This may be responsible for the exacerbation of haloalkane toxicity and for the potentiation of the neurotoxicity of *n*-hexane. MIBK was also found to potentiate the cholestatic effects of manganese given with, or without, bilirubin. In 90-day studies on mice, rats, dogs, and monkeys, only male rats developed hyaline droplets in the proximal tubules of the kidney. Effects on behaviour were reported in baboons exposed for 7 days to 205 mg/m³ (50 ppm). At a concentration of 4100 mg/m³ (1000 ppm), MIBK was not embryotoxic, foetotoxic, or teratogenic in rats or mice. Foetotoxicity was only observed at concentrations of MIBK that caused maternal toxicity. MIBK did not induce gene mutations in *in vitro* bacterial test systems with, or without, metabolic activation. Negative results were also obtained *in vitro* with, or without, metabolic activation, in tests for mitotic gene conversion in yeast, and for gene mutation in cultured mammalian cells. The results of *in vitro* assays for unscheduled DNA synthesis in primary rat hepatocytes and for structural chromosome damage in cultured rat liver cells were negative. An *in vivo* micronucleus test on mice was negative. These data indicate that MIBK is not genotoxic. No long-term or carcinogenicity studies are available. The toxicity of MIBK for aquatic organisms and microorganisms is low.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylglyoxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances.

Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys.

Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene.

In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular syncytial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland.

In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose studies indicate that the reproductive organs are not a target for ethylbenzene toxicity.

Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular

DNA.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.
Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded.

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m³ for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m³. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m³), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating.

None are skin sensitizers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m³ (600 ppm) for PnB and 2,010 mg/m³ (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m³ (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m³ (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m³) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m³). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m³), with decreased body weights occurring at 3000 ppm (11058 mg/m³). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

NOTE: For PGE - mixed isomers: Exposure of pregnant rats and rabbits to the substance did not give rise to teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rats but not in rabbits at this concentration; maternal toxicity was noted in both species.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The major routes of excretion of 1,2,4-trimethylbenzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and

PROPYLENE GLYCOL MONOMETHYL ETHER - ALPHA ISOMER

1,2,4-TRIMETHYL BENZENE

Continued...

drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethylbenzenes at 1700 ppm for 10 to 21 days.

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes.

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis.

Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene.

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella typhimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study.

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethylbenzenes, 4-6 hours/day, 5 days/week over one generation.

CHEMWATCH 2325 1,3,5-trimethylbenzene

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption. 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethylbenzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1).

Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethylbenzenes at 1700 ppm for 10 to 21 days.

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes.

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene.

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella typhimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study.

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethylbenzenes, 4-6 hours/day, 5 days/week over one generation.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce

Continued...

conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

CHEMWATCH 12171 1,2,4-trimethylbenzene

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

For methyl ethyl ketoxime (MEKO)

Carcinogenicity: Increased incidences of liver tumours were observed in rat and mouse lifetime studies and there was also an increased incidence of mammary gland tumours in female rats, however, this was only seen at mid- and/or high concentrations of MEKO. Consideration of the available information regarding genotoxicity indicate that MEKO is not likely to be genotoxic. Accordingly, although the mode of induction of tumours is not fully elucidated, the tumours observed are not considered to have resulted from direct interaction with genetic material.

The European Commission (2000) considered that a possible mechanism for the increased incidences of liver tumours in male rats and mice was the metabolism of MEKO to a carcinogenic agent, mediated by sulfotransferase. The sex and organ specificity of tumour formation correlated with the typically higher activity of this enzyme in male rodents.

Genotoxicity: The *in vitro* and *in vivo* genotoxicity results for MEKO were mostly negative, including an *in vivo* study that utilized inhalation exposure and was found to be negative for DNA adducts in rat liver cells. Therefore, based on the available data, MEKO appears to lack mutagenic potential.

Repeat dose toxicity: Non-neoplastic effects were also observed in the nasal cavity of rats and/or mice in inhalation studies of short-term through to chronic exposure. Also, repeated dose studies based on oral exposure showed effects in the spleen, liver and kidney of rats as well as haematological effects in both rats and rabbits.

Reproductive toxicity: In a one-generation oral rat study, the LOAEL for reproductive toxicity was 100 mg/kg-bw per day, the highest dose, based on a statistically significant decrease in female delivery index (%), whereas no treatment-related effects on reproductive parameters were observed in a two-generation study in which rats were dosed by gavage at 0-200 mg/kg-bw per day. In both the one-generation and two-generation rat studies, a parental LOAEL of 10 mg/kg-bw per day, the lowest dose tested, was established, based on histopathological effects in the spleen and liver (and in the kidney in the one-generation study).

Developmental toxicity: Teratogenicity was not observed in pregnant rats and rabbits dosed orally with MEKO during gestation. The lowest oral LOAEL for developmental toxicity was 40 mg/kg-bw per day, the highest dose, based on abortions in 3 of 10 adult females in pregnant rabbits dosed by gavage during gestation. The lowest oral LOAEL for maternal toxicity was 10 mg/kg-bw per day, based on signs of anemia (increased reticulocytes and methaemoglobin) in rabbits dosed at 0-80 mg/kg-bw per day in a range-finding developmental study

Mammalian lymphocyte mutagen *Huls Canada ** Merck

METHYL ETHYL KETOXIME

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

ZINC OXIDE

Other Toxicity data is available for

1,2,4-TRIMETHYL BENZENE, 1,3,5-TRIMETHYL BENZENE

CHEMWATCH 12172 1,2,3-trimethylbenzene

Acute Toxicity

Carcinogenicity

Skin Irritation/Corrosion

Reproductivity

Serious Eye Damage/Irritation

STOT - Single Exposure

Respiratory or Skin sensitisation

STOT - Repeated Exposure

Mutagenicity

Aspiration Hazard

Legend:

✓ – Data required to make classification available

✗ – Data available but does not fill the criteria for classification

∅ – Data Not Available to make classification

CMR STATUS

REPROTOXIN

xylene

ILO Chemicals in the electronics industry that have toxic effects on reproduction

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
methyl isobutyl ketone	HIGH (Half-life = 7001 days)	LOW (Half-life = 1.9 days)
ethylbenzene	HIGH (Half-life = 228 days)	LOW (Half-life = 3.57 days)
propylene glycol monomethyl ether - alpha isomer	LOW (Half-life = 56 days)	LOW (Half-life = 1.7 days)

Continued...

1,2,4-trimethyl benzene	LOW (Half-life = 56 days)	LOW (Half-life = 0.67 days)
1,3,5-trimethyl benzene	HIGH	HIGH
methyl ethyl ketoxime	LOW	LOW
dimethyl ether	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
xylene	MEDIUM (BCF = 740)
methyl isobutyl ketone	LOW (LogKOW = 1.31)
ethylbenzene	LOW (BCF = 79.43)
propylene glycol monomethyl ether - alpha isomer	LOW (BCF = 2)
1,2,4-trimethyl benzene	LOW (BCF = 275)
1,3,5-trimethyl benzene	LOW (BCF = 342)
methyl ethyl ketoxime	LOW (BCF = 6)
zinc oxide	LOW (BCF = 217)
dimethyl ether	LOW (LogKOW = 0.1)

Mobility in soil

Ingredient	Mobility
methyl isobutyl ketone	LOW (KOC = 10.91)
ethylbenzene	LOW (KOC = 517.8)
propylene glycol monomethyl ether - alpha isomer	HIGH (KOC = 1)
1,2,4-trimethyl benzene	LOW (KOC = 717.6)
1,3,5-trimethyl benzene	LOW (KOC = 703)
methyl ethyl ketoxime	LOW (KOC = 130.8)
dimethyl ether	HIGH (KOC = 1.292)

SECTION 13 DISPOSAL CONSIDERATIONS**Waste treatment methods**

Product / Packaging disposal	Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
	<ul style="list-style-type: none"> ▶ Reduction ▶ Reuse ▶ Recycling ▶ Disposal (if all else fails)
	This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.
	Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
	<ul style="list-style-type: none"> ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. ▶ It may be necessary to collect all wash water for treatment before disposal. ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. ▶ Where in doubt contact the responsible authority. ▶ Consult State Land Waste Management Authority for disposal. ▶ Discharge contents of damaged aerosol cans at an approved site. ▶ Allow small quantities to evaporate. ▶ DO NOT incinerate or puncture aerosol cans. ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION**Labels Required**

Marine Pollutant	NO
HAZCHEM	2YE

Land transport (ADG)

UN number	1950
Packing group	Not Applicable
UN proper shipping name	AEROSOLS
Environmental hazard	No relevant data

Transport hazard class(es)	Class 2.1 Subrisk Not Applicable
Special precautions for user	Special provisions 63 190 277 327 344 Limited quantity See SP 277
Air transport (ICAO-IATA / DGR)	
UN number	1950
Packing group	Not Applicable
UN proper shipping name	Aerosols, flammable
Environmental hazard	No relevant data
Transport hazard class(es)	ICAO/IATA Class 2.1 ICAO / IATA Subrisk Not Applicable ERG Code 10L
Special precautions for user	Special provisions A145A167A802 Cargo Only Packing Instructions 203 Cargo Only Maximum Qty / Pack 150 kg Passenger and Cargo Packing Instructions 203 Passenger and Cargo Maximum Qty / Pack 75 kg Passenger and Cargo Limited Quantity Packing Instructions Y203 Passenger and Cargo Limited Maximum Qty / Pack 30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	1950
Packing group	Not Applicable
UN proper shipping name	AEROSOLS
Environmental hazard	No relevant data
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk See SP63
Special precautions for user	EMS Number F-D , S-U Special provisions 63 190 277 327 344 959 Limited Quantities See SP277

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	xylene	Y
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	methyl isobutyl ketone	Z
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	ethylbenzene	Y
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	propylene glycol monomethyl ether - alpha isomer	Z
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	1,2,4-trimethyl benzene	Y; X
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	1,3,5-trimethyl benzene	Y; X
IMO MARPOL 73/78 (Annex III) - List of Noxious Liquid Substances Carried in Bulk	methyl ethyl ketoxime	Y

SECTION 15 REGULATORY INFORMATION**Safety, health and environmental regulations / legislation specific for the substance or mixture**

xylene(1330-20-7) is found on the following regulatory lists	"Australia Exposure Standards", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
--	--

Continued...

methyl isobutyl ketone(108-10-1) is found on the following regulatory lists	"Australia Exposure Standards", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
ethylbenzene(100-41-4) is found on the following regulatory lists	"Australia Exposure Standards", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
propylene glycol monomethyl ether - alpha isomer(107-98-2) is found on the following regulatory lists	"Australia Exposure Standards", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
1,2,4-trimethyl benzene(95-63-6) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
1,3,5-trimethyl benzene(108-67-8) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
zinc phosphate(7779-90-0) is found on the following regulatory lists	"Australia Exposure Standards", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
methyl ethyl ketoxime(96-29-7) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
zinc oxide(1314-13-2) is found on the following regulatory lists	"Australia Exposure Standards", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
dimethyl ether(115-10-6) is found on the following regulatory lists	"Australia Exposure Standards", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.