EM-324-SAF is a positioning driver to be used with DC-motors. The solid state power stage operates with high efficiency as it is realized with FET-transistors. Its literally everlasting compared to relay solutions. Control and feedback is done with analog signal. Control signal can be a voltage in range of 0 to 11V or current from 0 to 20mA. Feedback signal can be in the range from 0 to 11V. Driver supports also a potentiometer feedback, with auxiliary voltage outputs of 0V and 5.5V to excite the potentiometer.

The max. accuracy available for positioning is 0.2% that is adequate for most actuator positioning applications.

The settings and adjustments are done with parameters as in all new generation Electromen products. Movement range can be modified from both ends with SW-limit parameters. Current limits and driving speeds can be set individually for both directions. Driver includes also many other dynamic adjustment possibilities like parameters for load compensation, dead-zone setting (positioning window), start and stop ramps for a smooth direction change and braking zone for well operating positioning.

The parameter setting and status monitoring is done with EM-236 Interface Unit. With EM-236 the right parameters can also be easily copied to other driver units. The on-board LED-light indicates the possible fault situations with blinking codes. If needed, the fault can be forwarded through combiport to other driver cards. Alternatively this port can be set to give out the "position OK" information or it can even indicate the position with an analog voltage signal. Device is EMC tested for industrial and household environment and operating temperature range is quite wide.

There are also some housing options available for EM-241-SAF driver card.
Positioning dynamics

Dead zone (par. 17) is to determine the accuracy of positioning. This parameter has the major effect to positioning accuracy. The smaller it is determined the more accurately the positioning is done. Notice. If it is set too small compared to accuracy level of the mechanics an oscillation or unstability in positioning will occur.

Braking zone (par. 18) is used to optimize the time needed for positioning. Too high value slows down too early, and too low value will cause a fast position passing and needs a corrective return driving.

Start and stop ramp (par. 19 & 20) are to smoothen the direction change. Often suitable value for stop ramp is half of start ramp. Too long stop ramp can make the direction change too time consuming and too short can cause mechanical stress and non desired aggressivity.

Load compensation (par. 11) when set to right value, will ensure the needed force to start driving and to taking the load in to the right position. With high load and too low load compensation value, the motor dont have force enough to reach the right position. Start testing with zero value and increase value until motor behaves unstable and twitching. Thumb rule in this point is to decrease the value with 25%.

Current limits (par. 6 and 7) should be set according to the motor nominal max. current or according to the required current of the application.

Feedback

Feedback range is always 0 to 5.5V as default. Setting the dip switch to "ON" the range can be multiplied to 0 - 11V.

Control range setting

Options for max. ranges are 0 to 5.5V, and 4 to 20mA if you place a 250ohm resistor to the resistor socket on the driver board. Using 0 to 11V range requires you to set the DIP switch to "ON" position.

An individual control scale you can either set with parameters 21 and 22 as Volts or you can let the driver to measure your min. and max. control values. If you choose to set the min. and max. as Volts, pls. notice that the values are in ratio to the lowest range 0-5.50V, and with 0-11V range you have to divide the actual voltage with two. With current signal you should use the 0-5.5V range, and the right value can be calculated I x 250. Eg: 4-20mA = 1.0 - 5.0V.

Start by checking and setting the hardware related parameters. After that the actuator can be connected and operation fine tuned with other parameters.

Control range setting

Options for max. ranges are 0 to 5.5V, and 4 to 20mA if you place a 250ohm resistor to the resistor socket on the driver board. Using 0 to 11V range requires you to set the DIP switch to "ON" position.

An individual control scale you can either set with parameters 21 and 22 as Volts or you can let the driver to measure your min. and max. control values. If you choose to set the min. and max. as Volts, pls. notice that the values are in ratio to the lowest range 0-5.50V, and with 0-11V range you have to divide the actual voltage with two. With current signal you should use the 0-5.5V range, and the right value can be calculated I x 250. Eg: 4-20mA = 1.0 - 5.0V.

Start by checking and setting the hardware related parameters. After that the actuator can be connected and operation fine tuned with other parameters.

Control range setting

Options for max. ranges are 0 to 5.5V, and 4 to 20mA if you place a 250ohm resistor to the resistor socket on the driver board. Using 0 to 11V range requires you to set the DIP switch to "ON" position.

An individual control scale you can either set with parameters 21 and 22 as Volts or you can let the driver to measure your min. and max. control values. If you choose to set the min. and max. as Volts, pls. notice that the values are in ratio to the lowest range 0-5.50V, and with 0-11V range you have to divide the actual voltage with two. With current signal you should use the 0-5.5V range, and the right value can be calculated I x 250. Eg: 4-20mA = 1.0 - 5.0V.

Start by checking and setting the hardware related parameters. After that the actuator can be connected and operation fine tuned with other parameters.

Control range setting

Options for max. ranges are 0 to 5.5V, and 4 to 20mA if you place a 250ohm resistor to the resistor socket on the driver board. Using 0 to 11V range requires you to set the DIP switch to "ON" position.

An individual control scale you can either set with parameters 21 and 22 as Volts or you can let the driver to measure your min. and max. control values. If you choose to set the min. and max. as Volts, pls. notice that the values are in ratio to the lowest range 0-5.50V, and with 0-11V range you have to divide the actual voltage with two. With current signal you should use the 0-5.5V range, and the right value can be calculated I x 250. Eg: 4-20mA = 1.0 - 5.0V.

Start by checking and setting the hardware related parameters. After that the actuator can be connected and operation fine tuned with other parameters.
Fault situations are indicated with coded blinking of a red LED. Fault alarm can be forwarded out through combiport (pin 13). Fault situation is reset with a short (<5s) command to RES/F-run input (pin 11). Some faults are reset automatically with a new position command to opposite direction. Instead of fault indication the combiport can be set to inform the status of the positioning as an "on position" output, or it can be set to give an analog position indication with 0-5V or 0-54-5V signal. Configuration of the combiport is done with par.9. Notice: If it is set to give analog information out (par.9 val=4), also the DIP-switch 3 should be set to ON position. If combiport (pin 13) is selected to be fault output (par 9 val=1), it will also work as fault-disable input when externally pulled down.

Adjustments and settings
Parameter setting is done with EM-236 Interface Unit which is connected to a powered controller unit trough the red connector. During the start up routine the Interface Unit will display information about itself and then the name and program version of the target device (driver which it was connected to). Then it will stay on displaying EDIT & LOAD. Pushing the "yes" button will up load and show the parameter list of the driver. Now the user can scroll the list with arrows, and make value changes with + and - buttons. Changed value is effective after few seconds when the display stops the blinking. But notice, that the change will not be saved until you give a long press (<5s) with the "save" button. This will save the changed list also to the EM-236s memory. Now it is easy to copy the same parameters to the next driver. Just connect the unit to the next powered driver and after start up routine just press a long "save". You can repeat this until all needed units have been set.

LIST OF PARAMETERS prog. v1.2 (defaults in parentheses)

1. No function (0)
2. Limit input logic (1)
 1 = PNP
 2 = NPN
 3 = NPN inverted

3 Speed FW: 20-100% / 0-100 (100)
4 Speed BW: 20-100% / 0-100 (100)
5 Speed for F-driving: 20-100% / 0-100 (60)
6 Current limit in, FW: 0.1-20A / 1 - 200 (30)
7 Current limit in, BW: 0.1-20A / 1 - 200 (30)
8 Current trip delay: 0-255ms / 0-255 (20)
(3-tripp not in use)

9 Combiport (pin 13) function: 1-4 (1)
 1 = used as Fault in/out
 2 = gives the "on position" information with 0V
 3 = gives position indication with 0-5V
 4 = gives position indication with 0-5.5V and fault =0V
10 Over voltage limit: 15-40V / 15-40 (35)
11 Load compensation: 0-255 / 0-255 (0)
12 Time out cut-off: 1-255s / 1-255 (0= not in use) (0)
13 Hour and start counter reset (0)
14 Forced run function with >5s command to pin 11 (1)
 1 = makes F-run to BW direction
 2 = makes F-run to FW direction
15 Fault reset conditions 0-1 (1)
 0 = reset with RESET-input or opposite direction request
 1 = fault reset can be done only with RESET-input (pin 11)
16 No function (0)
17 Dead zone: 0-25% / 0-250 (10)
18 Braking zone: 1-8 % / 1-8 (3)
19 Start ramp: 0.1-2.5s / 0-250 (10)
20 Stop ramp: 0.1-2.5s / 0-250 (3)
21 Set value min. 0...50%/0-551 (0)
22 Set value max. 0...50%/0-551 (550)
23 Inner (BW) SW-limit: 0...-50% / 0-500 (5)
24 Outer (FW) SW-limit: 0...-50% / 0-500 (5)

FAULT LED - blinking codes
1. I-trip 1 blink
2. time out trip 2 blinks
3. over temperature 3 blinks
4. over voltage trip 4 blinks

Pls. notice: when card is powered the LED-blinks once.

MONITOREABLE VALUES
1 fault code (see the fault code list)
2 motor current 0-20A (0-200)
3 target position 0-100,0% (0-1000)
4 realized positon 0-100,0% (0-1000)
5 hour counter 0-65535h
6 start counter (max.65535 starts)
7 start counters overflow counter (max. 65535)

ABOUT PARAMETERS
1. No function.
 This parameter position is not is use in this program.
2 Limit switch input terminals (pin 2 and 3) can be set to work with positive or negative logic. Positive =PNP, negative=NPN.
 The effect can also be inverted so that when signal is ON status is OK, and signal OFF status is "disable by limit".
3 & 4 are for speed setting of FW (out) and BW (in) directions.
5 the speed setting for "Forced run" (F-run).
6 & 7 current limit setting for FW (out) and BW (in) directions
8 determines the time the current is allowed to be on the limit value before driving is cut off (driver trips off). Value is in milliseconds and if set to "0", the current tripping feature is disabled.
9 Configuring the combiport functions (pin 13). This terminal can work as combined input-output for fault. Or it can give a "position OK" signal after successful positioning. It can also be used to indicate the position with a continuous voltage signal (position signal).
 If position signal is chosen (val 2 or 3) the DIP3 must be set to "ON".
10 Over voltage protection switches the motor to free wheel.
11 Load compensation (RxI-comp) enables good motor torque even with low speeds. It is good to start testing with zero value, but if the motor seems weak when starting with normal load, the value can be increased step by step until there is power enough to start.
 Notice: Too high value is recognized from oscillation and/or twiching.
 If it is not possible to see the behavior of the motor and test the effect with momentary loading of a freely running motor the safest value for this parameter is zero.
12 Time out trip will cut off the driving if continuous driving to the same direction exceeds the set value (statet in seconds).
13 This parameter is for resetting the start and hour counters.
 Saving value 1 will set to zero the drivers start and hour counters.
14 Parameter for choosing the forced run direction. F-run is started with long >5s command to RES/F-run terminal (pin 11)
15 Determines how the controller recovers from fault situation.
 Val 0. Recovers also with an opposite direction movement request.
 Val 1. fault requires a short (<5s) reset command to pin 11.
16 No function. Value of this parameter position has no effect.
17 Dead zone for determining the wanted positioning accuracy.
 If this window value is small the positioning is tended to be done more accurately. If value is too small the application is not capable to exceed this accuracy, and can not find or maintain the set position steadily. In this case the value should be increased.
18 Braking zone value is determined as a percentage of the full movement range. It determines how early driver starts to slow down before reaching the right position. Main rule is that small movement range. It determines how early driver starts to slow down before reaching the right position. Main rule is that small movement range.
19 & 20 Start and stop ramps are used to smoothen the speed and direction changes. The parameter value is the time from 0-100% and from 100%-0 speed.
21 & 22 are for determining the control signal range limits. Value can be given as Volts, 0 to 550 (0 to 5,5V).
 The values can also be measured automatically by setting the parameters to value 551. The card will then measure the range min. and range max. voltages on the POSITION SET input.
 Pls. read also the chapter "Control range setting".
23 & 24 Inner (BW) and outer (FW) SW-limits. With these adjustable limits the movement range can be limited to suite the application.
 Notice: the forced run will over drive these points.