SSMC.

Low Profile Air Gripper Series MHF2

Low profile air gripper with space-saving design is newly released.

Low Profile Air Gripper Series MHF2

Height is approximately $1 / 3$ the size of an equivalent Series MHZ2.

Bore size	Height
8	19
12	25
16	33
20	41

MHF2-12D

The low profile design saves space and reduces bending moments.
Improved accuracy with smooth operation

- Reduced bending moment and vibration

Stroke selection is available.

3 standard stroke lengths are available for each bore size.
Stroke can be selected to suit the work piece.

High degree of mounting flexibility

As no brackets are required, mounting height can be minimized.

Strong holding force

Double piston construction achieves compact design with strong holding force.

Model	Bore size	Holding force (N)
MHF2-8D \square	8	19
MHZ2-10D \square	10	11
MHF2-12D \square	12	48
MHZ2-20D \square	20	42
MHF2-16D \square	16	90
MHZ2-25D \square	25	65
MHF2-20D \square	20	141
MHZ2-32D \square	32	158

Series MHF2
 Model Selection

Model Selection
Selection procedure

Step 1 Confirmation of gripping force

Model selection illustration

Gripping force at least 10 to $\mathbf{2 0}$ times the work piece weight The "10 to 20 times or more of the work piece weight" recommended by SMC is calculated with the safety margin of $a=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=0.2$	When $\mu=0.1$
$\begin{aligned} F & =\frac{\mathrm{mg}}{2 \times 0.2} \times 4 \\ & =10 \times \mathrm{mg} \end{aligned}$	$\begin{aligned} F & =\frac{\mathrm{mg}}{2 \times 0.1} \times 4 \\ & =20 \times \mathrm{mg} \end{aligned}$
\uparrow	\uparrow
10 x work piece weight	$20 \times$ work piece weight

When gripping a work piece as in the figure to the left and with the following definitions,
F: Gripping force (N)
μ : Coefficient of friction between attachments and work piece
m : Work piece mass (kg)
g : Gravitational acceleration (= $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Work piece weight (N)
the conditions under which the work piece will not drop are
$2 \mu \mathrm{~F}>\mathrm{mg}$
$\stackrel{\uparrow}{ } \quad$ Number of fingers
and therefore,
F $>\frac{\mathrm{mg}}{\mathbf{2 \times \mu}}$
With "a" as the safety margin, F is determined as follows:

$$
\mathbf{F}=\frac{\mathbf{m g}}{2 \times \mu} \times \mathbf{a}
$$

(Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for safety reasons, SMC recommends selecting a gripping force which is at least 10 to 20 times the work piece weight.
If is necessary to allow a greater safety margin for high accelerations and strong impacts, etc.

Step 1 Effective gripping force: Series MHF2
-Expressing the effective gripping force
The effective gripping force shown in the graphs to the right is expressed as F , which is the thrust of one finger when both fingers and attachments are in full contact with the work piece as shown in the figure below.

External gripping

Internal gripping

MHF2-8D \square

MHF2-16D \square

MHF2-12D \square

MHF2-20D \square

Series MHF2

Model Selection

Step 2 Effective gripping force: Series MHF2

External gripping

Internal gripping

The air gripper should be operated so that the amount of overhang " H " will stay within the range given in the graphs below.
olf the work piece gripping point goes beyond the range limits, this will have an adverse effect on the life of the air gripper.

MHF2-8D \square

MHF2-16D \square

MHF2-12D \square

MHF2-20D \square

Step 3 Confirmation of external force on fingers: Series MHF2

L: Distance to the point at which the load is applied (mm)

	Allowable vertical load Fv (N)	Maximum allowable moment		
MHF2-8D \square		Pitch moment $\mathbf{M p}(\mathbf{N} \cdot \mathbf{m})$	Yaw moment $\mathbf{M y (N} \cdot \mathbf{m})$	Roll moment $\mathbf{M r}(\mathbf{N} \cdot \mathbf{m})$
MHF2-12D \square	98	0.26	0.26	0.53
MHF2-16D \square	176	0.68	0.68	1.4
MHF2-20D \square	294	1.4	1.4	2.8

Note) The load and moment values in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\begin{array}{r} \text { Allowable load } \mathrm{F}(\mathrm{~N})=\frac{\mathrm{M}(\text { Maximum allowable moment) }(\mathrm{N} \cdot \mathrm{~m})}{\mathrm{L} \times \frac{10^{-3}}{*}} \\ (* \text { Unit converted invariable number) } \end{array}$	When a load off $=10 \mathrm{~N}$ is operating, which applies pitch moment to point $L=30 \mathrm{~mm}$ from the end of the MHF2-12D finger. $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } \mathrm{f}=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$ Therefore, it can be used.

Low Profile Air Gripper Series MHF2

How to Order

Applicable auto switches

Type	Special function	Electrical entry	Indicator light	Wiring (Output)	Load voltage			Auto switch type		Lead wire length (m)*			Note2) Flexible lead wire (-61)	Applicable loads	Applicable model Bore size (mm)				
					DC		AC	Electrical entry direction		$\begin{aligned} & 0.5 \\ & \text { (Nil) } \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$							
							Perpendicular	In-line	8						12	16	20		
		Grommet	Yes	3-wire (NPN)	24 V	12V		-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Relay PLC	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	-			3-wire (PNP)			M9PV		M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
				2-wire			M9BV		M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
	Note 1) Diagnostic indication (2-colour display)			3-wire (NPN)			M9NWV		M9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
				3-wire (PNP)			M9PWV		M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
				2-wire			M9BWV		M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	

*Lead wire length symbol: $0.5 \mathrm{~m} \cdots$....Nil (Example) M9N
$3 \mathrm{~m} \cdots \cdots \cdots \mathrm{~L}$ (Example) M9NL $5 \mathrm{~m} \cdots \cdots \cdots \mathrm{Z}$ (Example) M9NWZ
*Auto switches marked "O" are produced upon receipt of order. Note 1) Be careful for the differential of 2-color display type.

Refer to "Auto Switch Hysteresis" on page 5-101

Note2) For the flexible wire specification, enter-61 after the part number. Example: When ordering with an air chuck

MHF2-12D-M9NVS 61

When ordering only an auto switch
D-M9PL 61 ${ }^{61}$ Flexible wire

Specifications

Fluid		Air
Operating pressure		$ø 8: 0.15$ to 0.7 MPa
		$\varnothing 12$ to 20: 0.1 to 0.7 MPa
Ambient and fluid temperature		-10 to $60^{\circ} \mathrm{C}$ (with no condensation)
Repeatability		$\pm 0.05 \mathrm{~mm}$ Note1)
Maximum operating frequency	Short stroke	120c.p.m.
	Middle stroke	120c.p.m.
	Long stroke	60c.p.m.
Lubrication		Not required
Action		Double acting
Auto switch (Optional) ${ }^{\text {Note2) }}$		Solid state switch (3-wire, 2-wire)

Note 1) This is the value when no offset load is applied to the finger.
When an offset load is applied to the finger, the maximum value is $\pm 0.15 \mathrm{~mm}$ due to the influence of backlash of the rack and pinion.
Note 2) Refer to page 6-15 for further information on auto switch specifications.

Model

Action	Model	Cylinder bore (mm)	Gripping force ${ }^{\text {Note1 })}$ Effective holding force per finger N	Opening /closing stroke (Both sides) mm	Note2 Weight g	Unobstructed capacity (cm^{3})	
						Finger open side	Finger close side
Double acting	MHF2-8D	8	19	8	65	0.7	0.6
	MHF2-8D1			16	85	1.1	1.0
	MHF2-8D2			32	120	2.0	1.9
	MHF2-12D	12	48	12	155	1.9	1.6
	MHF2-12D1			24	190	3.3	3.0
	MHF2-12D2			48	275	6.1	5.8
	MHF2-16D	16	90	16	350	4.9	4.1
	MHF2-16D1			32	445	8.2	7.4
	MHF2-16D2			64	650	14.9	14.0
	MHF2-20D	20	141	20	645	8.7	7.3
	MHF2-20D1			40	850	15.1	13.7
	MHF2-20D2			80	1,225	28.0	26.6

[^0]
Construction

MHF2-8D, MHF2-8D1

MHF2-8D2

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Hard anodized
$\mathbf{2}$	Piston	Stainless steel	
$\mathbf{3}$	Joint	Stainless steel	Heat treatment
$\mathbf{4}$	Guide rail	Stainless steel	Heat treatment
$\mathbf{5}$	Finger	Stainless steel	Heat treatment
$\mathbf{6}$	Roller stopper	Stainless steel	
$\mathbf{7}$	Pinion	Carbon steel	Nit riding
$\mathbf{8}$	Cap A	Aluminium alloy	Clear anodized
9	Cap B	Aluminium alloy	Clear anodized
$\mathbf{1 0}$	Cap C	Aluminium alloy	Clear anodized

Parts list

No.	Description	Material	Note
$\mathbf{1 1}$	Head damper	Urethane rubber	
$\mathbf{1 2}$	Clip	Stainless steel wire	
$\mathbf{1 3}$	Rack	Stainless steel	Nit riding
$\mathbf{1 4}$	Magnet	Rare earth magnet	Nickel plated
15	Steel balls	High carbon chromium bearing steel	
16	Wear ring	Synthetic resin	
17	Roller	High carbon chromium bearing steel	
18	Needle roller	High carbon chromium bearing steel	
19	Parallel pin	Stainless steel	
20	Piston seal	NBR	
21	Gasket	NBR	

Replaceable parts list

Description	Kit No.			Contents
	MHF2-8D	MHF2-8D1	MHF2-8D2	
Seal kit	MHF8-PS	MHF8-PS	MHF8-PS-2	12, 20, 21
Finger assembly	MHF-A0802	MHF-A0802-1	MHF-A0802-2	$3,4,5,6,15,17,19$ Mounting screw

Bolts for body through hole mounting

Part No.	Number of pieces	
MHF-B08	MHF2-8D	2 pieces/unit
	MHF2-8D1	2 pieces/unit
	MHF2-8D2	4 pieces/unit

*The bolts for body through hole mounting are attached to the product. They are also provided at an order of 1 piece or more with the above part numbers.

Construction

MHF2-12D \square to 20D \square

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Hard anodized
$\mathbf{2}$	Piston	Aluminium alloy	Clear anodized
$\mathbf{3}$	Joint	Stainless steel	Heat treatment
$\mathbf{4}$	Guide rail	Stainless steel	Heat treatment
$\mathbf{5}$	Finger	Stainless steel	Heat treatment
$\mathbf{6}$	Roller stopper	Stainless steel	
$\mathbf{7}$	Pinion	Carbon steel	Nit riding
$\mathbf{8}$	Cap A	Aluminium alloy	Clear anodized
$\mathbf{9}$	Cap B	Aluminium alloy	Clear anodized
$\mathbf{1 0}$	Cap C	Aluminium alloy	Clear anodized
$\mathbf{1 1}$	Head damper	Urethane rubber	
$\mathbf{1 2}$	Rack	Stainless steel	Nit riding

Parts list

Parts list			
No.	Description	Material	Note
$\mathbf{1 3}$	Magnet	Tare earth magnet	Nickel plated
$\mathbf{1 4}$	Steel balls	High carbon chromium bearing steel	
$\mathbf{1 5}$	Wear ring	Synthetic resin	
$\mathbf{1 6}$	ø12: Roller	High carbon chromium bearing steel	
	ø16 to 20: Parallel pin	Stainless steel	
$\mathbf{1 7}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{1 8}$	ø12: R shape snap ring	Carbon steel	Nickel plated
	ه16 to 20: C type snap ring		
19	Parallel pin	Stainless steel	
20	Piston seal	NBR	
$\mathbf{2 1}$	Gasket	NBR	
22	Gasket	NBR	

Replaceable parts list

Description	Kit No.			Contents
	MHF2-12D	MHF2-12D1	MHF2-12D2	
Seal kit	MHF12-PS	MHF12-PS	MHF12-PS	20, 21, 22
Finger assembly	MHF-A1202	MHF-A1202-1	MHF-A1202-2	$3,4,5,6,14,16,19$ Mounting screw
Description	Kit No.			
	MHF2-16D	MHF2-16D1	MHF2-16D2	Contents
Seal kit	MHF16-PS	MHF16-PS	MHF16-PS	
Finger assembly	MHF-A1602	MHF-A1602-1	MHF-A1602-2	$3,4,5,6,14,16,19$ Mounting screw
Description	Contents			
	MHF2-20D	MHF2-20D1	MHF2-20D2	
Seal kit	MHF20-PS	MHF20-PS	MHF20-PS	$20,21,22$
Finger assembly	MHF-A2002	MHF-A2002-1	MHF-A2002-2	$3,4,5,6,14,16,19$ Mounting screw

Bolts for body through hole mounting

Part No.	Number of pieces	
MHF-B12	MHF2-12D	2 pieces/unit
	MHF2-12D1	2 pieces/unit
	MHF2-12D2	4 pieces/unit

*The bolts for body through hole mounting are attached to the product. They are also provided at an order of 1 piece or more with the above part numbers.
*When mounting MHF2-16D \square or MHF2-20D \square with the body through holes, use hexagon socket head screws available on the market.

Series MHF2

Dimensions

MHF2-8D

*Use the attached hexagon socket head screws for mounting holes.

Dimensions
MHF2-8D1

Scale: 80\%

*Use the attached hexagon socket head
 screws for mounting holes.

Dimensions
MHF2-8D2
Scale: 80\%

*Use the attached hexagon socket head screws for mounting holes.
ø2.5H9 ${ }_{0}^{+0.025}$ depth 2.5
Groove for auto switch mounting

Groove for auto switch mounting

*Use the attached hexagon socket head screws for mounting holes.

Series MHF2

Dimensions
MHF2-12D1
Scale: 65\%

*Use the attached hexagon socket head screws for mounting holes.

MHF2-12D2
Scale: 65\%

*Use the attached hexagon socket head $\varnothing 3 \mathrm{H} 9+0.025$ depth $3 \quad$ screws for mounting holes.

Groove for auto switch mounting

Series MHF2

Dimensions

MHF2-16D

Scale: 50\%

4-M5 thread depth 5.5
Mounting thread

Low Profile Air Gripper Series MHF2

Dimensions

MHF2-16D1

Groove for auto switch mounting

Series MHF2

Dimensions

MHF2-16D2

Low Profile Air Gripper Series MHF2

Dimensions

MHF2-20D
Scale: 50\%

Groove for auto switch mounting

Series MHF2

Dimensions
MHF2-20D1
Scale: 50\%

Groove for auto switch mounting

Groove for auto switch mounting

Series MHF2
 Body Option: Side Piping Type

MHF2- $\square \mathbf{D} \square \mathbf{R}$

*For dimensions not given above, please refer to the table of dimensions on pages 5-88 through 5-99.

Body option dimension table

Unit: mm				
Model	A	B	C	D
MHF2-8DR	5.5	25	11	M3
MHF2-8D1R		37		
MHF2-8D2R		61		
MHF2-12DR	7	38	14.8	M5
MHF2-12D1R		54		
MHF2-12D2R		90		
MHF2-16DR	9	54	19	M5
MHF2-16D1R		76		
MHF2-16D2R		124		
MHF2-20DR	10	66	23	M5
MHF2-20D1R		94		
MHF2-20D2R		154		

Auto Switch Hysteresis

Auto switches have hysteresis similar to micro switches. Use the table below as a guide when adjusting auto switch positions, etc.

Hysteresis

	D-M9 $\square(\mathrm{V})$	D-M9 $\square \mathbf{W}(\mathbf{V})$	
		Red ON	Green ON
MHF2-8D \square	0.5	0.5	1
MHF2-12D \square	0.5	0.5	1
MHF2-16D \square	0.5	0.5	1
MHF2-20D \square	0.5	0.5	1

Auto Switch Mounting

Insert the auto switch into the switch mounting groove in the air chuck in the direction shown below, and after setting the mounting position, tighten the attached switch mounting screw with a screwdriver.

Note) Use a screwdriver with a grip diameter of 5 to 6 mm to tighten the auto switch mounting screw. The tightening torque should be about 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. When you begin to feel that the screw is being tightened, turn it further by 90 .

\triangle Caution

When using an auto switch on the mounting plate side, the switch will protrude from the end face as shown below. Please provide a run off apace of 2 mm or deeper on the mounting plate.

Auto Switch Protrusion from the Body End Surface

-The amount of auto switch protrusion from the body end surface is shown in the table below.

- Use this as a standard when mounting, etc.

Auto switch protrusion

[^1]
Series MHF2
 Installation and Setting of Auto Switch

Various auto switch applications are possible through different combinations of auto switch quantity and detecting positions.

1) Detection of work (External holding)

Note) •It is recommended that work be held at the center of the finger stroke.
-lf work is held around the end position of finger opening stroke, the above detecting combination may be limited due to the ON/OFF differential of the auto switches.

Series MHF2
 Installation and Setting of Auto Switch

Various auto switch applications are possible through difterent combinations ot auto switch quantity and detecting positions.
2) Detection of work (Internal holding)

[^2]-lf work is held around the end position of finger opening stroke, the above detecting combination may be limited due to the ON/OFF differential of the auto switches.

[^0]: Note 1) At the pressure of 0.5 MPa , when holding point L is 20 mm .
 Note 2) Excluding the auto switch weight

[^1]: Note) There is no protrusion for sections of the table with no values entered.

[^2]: Note) $\cdot l$ is recommended that work be held at the center of the finger stroke.

