

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

General Description

The MAX961–MAX964/MAX997/MAX999 are low-power, ultra-high-speed comparators with internal hysteresis. These devices are optimized for single +3V or +5V operation. The input common-mode range extends 100mV Beyond-the-Rails $^{\rm TM}$, and the outputs can sink or source 4mA to within 0.52V of GND and VCC. Propagation delay is 4.5ns (5mV overdrive), while supply current is 5mA per comparator.

The MAX961/MAX963/MAX964 and MAX997 have a shutdown mode in which they consume only 270 μ A supply current per comparator. The MAX961/MAX963 provide complementary outputs and a latch-enable feature. Latch enable allows the user to hold a valid comparator output. The MAX999 is available in a tiny SOT23-5 package. The single MAX961/MAX997 and dual MAX962 are available in space-saving 8-pin μ MAX® packages.

_Applications

Single 3V/5V Systems

Portable/Battery-Powered Systems

Threshold Detectors/Discriminators

GPS Receivers

Line Receivers

Zero-Crossing Detectors

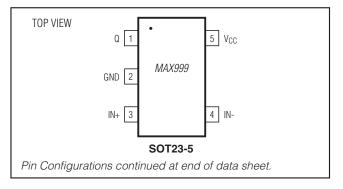
High-Speed Sampling Circuits

Selector Guide

PART	NO. OF COMPARATORS	COMPLEMENTARY OUTPUT	SHUTDOWN	LATCH ENABLE	PIN-PACKAGE
MAX961	1	Yes	Yes	Yes	8 SO/µMAX
MAX962	2	No	No	No	8 SO/µMAX
MAX963	2	Yes	Yes	Yes	14 SO
MAX964	4	No	Yes	No	16 SO/QSOP
MAX997	1	No	Yes	No	8 SO/µMAX
MAX999	1	No	No	No	5 SOT23

Beyond-the-Rails is a trademark and µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features


- ♦ Ultra-Fast, 4.5ns Propagation Delay
- ♦ Ideal for +3V and +5V Single-Supply Applications
- ♦ Beyond-the-Rails Input Voltage Range
- **♦ Low, 5mA Supply Current (MAX997/MAX999)**
- ♦ 3.5mV Internal Hysteresis for Clean Switching
- ♦ Output Latch (MAX961/MAX963)
- **♦ TTL/CMOS-Compatible Outputs**
- ♦ Shutdown Mode (MAX961/MAX963/MAX964/MAX997)
- ◆ Available in Space-Saving Packages: 5-Pin SOT23 (MAX999) 8-Pin µMAX (MAX961/MAX962/MAX997) 16-Pin QSOP (MAX964)

Ordering Information

PART	PIN-PACKAGE	TOP MARK	PKG CODE
MAX961ESA	8 SO	_	S8-2
MAX961EUA-T	8 μMAX-8	_	U8-1
MAX962ESA	8 SO	_	S8-2
MAX962EUA-T	8 μMAX-8	_	U8-1
MAX963ESD	14 SO	_	S14-1
MAX964ESE	16 Narrow SO	_	S16-1
MAX964EEE	16 QSOP	_	E16-1
MAX997ESA	8 SO	_	S8-2
MAX997EUA-T	8 μMAX-8	_	U8-1
MAX999AAUK+T	5 SOT23-5	+AFEI	U5+1
MAX999EUK-T	5 SOT23-5	ACAB	U5-1

Note: All E grade devices are specified over the -40°C to +85°C operating temperature range. MAX999AAUK is specified over the -40°C to +125°C operating temperature range.

Pin Configurations

⁺Denotes a lead-free package.

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} to GND0.3V to +6V All Other Pins0.3V to (V _{CC} + 0.3V) Current into Input Pins±20mA Duration of Output Short Circuit to GND or V _{CC} Continuous	14-Pin SO (derate 8.33mW/°C above +70°C)667mW/°C 16-Pin SO (derate 8.70mW/°C above +70°C)696mW/°C 16-Pin QSOP (derate 8.33mW/°C above +70°C)667mW/°C Operating Temperature Range
Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW/°C 8-Pin SO (derate 5.88mW/°C above +70°C)471mW/°C 8-Pin µMAX (derate 4.10mW/°C above +70°C)330mW/°C	MAX96_E/MAX99_E40°C to +85°C MAX999AAUK40°C to +125°C Storage Temperature Range65°C to +160°C Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VCC = +2.7V to +5.5V, VCM = 0V, COUT = 5pF, VSHDN = 0V, VLE = 0V, unless otherwise noted. TMIN to TMAX is -40°C to +85°C for all E grade devices. For MAX999AAUK only, TMIN to TMAX is -40°C to +125°C.) (Note 1)

CAMBOI	CONDITIONS		T _A = +25°C		TMIN to TMAX			UNITS	
STIVIBUL	CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vcc	Inferred by PS	SRR	2.7		5.5	2.7		5.5	V
VCMR	(Note 2)	Note 2)			V _{CC} + 0.1	-0.1		V _{CC} + 0.1	V
	VcM = -0.1V	μMAX, SOT23		±2.0	±3.5			±6.5	
\/	or 5.1V, VCC	MAX999AAUK		±2.0	±3.5			±8.0	mV
VIRIP	= 5V (Note 3)	All other E packages		±2.0	±3.5			±4.0	IIIV
				3.5					mV
	V _{CM} = -0.1V or 5.1V, V _{CC} = 5V (Note 4)	μMAX, SOT23		±0.5	±1.5			±4.5	mV
Voo		MAX999AAUK		±0.5	±1.5			±6.0	
VOS		All other E packages		±0.5	±1.5			±2.0	IIIV
	V _{IN+} = V _{IN-}	μMAX, SOT23			±15			±30	
ΙB	= $0V$ or V_{CC} , $V_{CC} = 5V$	All other E packages			±15			±15	μΑ
	$V_{CC} = 5.5V, V_{IN-} = 0V,$ $I_{IN+} = 100\mu A$			2.1					V
		·		3				·	pF
RIND	VCC = 5V			8					kΩ
RINCM	VCC = 5V			130					kΩ
	VCMR VTRIP Vos IB	VCC Inferred by PS VCMR (Note 2) VCM = -0.1V or 5.1V, VCC = 5V (Note 3) VCM = -0.1V or 5.1V, VCC = 5V (Note 4) VS VCM = -0.1V or 5.1V, VCC = 5V (Note 4) VIN+ = VIN- = 0V or VCC, VCC = 5V VCC = 5.5V, IIN+ = 100μA RIND VCC = 5V	VCC Inferred by PSRR VCMR (Note 2) μMAX, SOT23 VCM = -0.1V or 5.1V, VCC = 5V (Note 3) MAX999AAUK All other E packages All other E packages VOS 5V (Note 4) All other E packages VIN+ = VIN- VCC = 5V (Note 4) μMAX, SOT23 All other E packages μMAX, SOT23 All other E packages All other E packages VCC = 5V All other E packages VCC = 5.5V, VIN- = 0V, IIN+ = 100μA NIN- = 0V, IIN+ = 100μA	CONDITIONS MIN VCC Inferred by PSRR 2.7 VCMR (Note 2) -0.1 VTRIP VCM = -0.1V or 5.1V, VCC = 5V (Note 3) μMAX, SOT23 MAX999AAUK VCM = -0.1V or 5.1V, VCC = 5V (Note 4) μMAX, SOT23 MAX999AAUK All other E packages MAX999AAUK All other E packages μMAX, SOT23 All other E packages VIN+ = VIN- VCC = 5V All other E packages VCC = 5.5V, VIN- = 0V, IIN+ = 100μA NIN- = 0V, IIN+ = 100μA	CONDITIONS VCC Inferred by PSRR 2.7 VCMR (Note 2) -0.1 VTRIP VCM = -0.1V or 5.1V, VCC = 5V (Note 3) μMAX, SOT23 ±2.0 MAX999AAUK ±2.0 VCM = -0.1V or 5.1V, VCC = 5V (Note 4) μMAX, SOT23 ±0.5 MAX999AAUK ±0.5 MAX999AAUK ±0.5 VCM = -0.1V or 5.1V, VCC = 5V (Note 4) μMAX, SOT23 ±0.5 MAX999AAUK ±0.5 MAX99PAAUK ±0	VCC Inferred by PSRR 2.7 5.5 VCMR (Note 2) -0.1 VCC + 0.1 VTRIP VCM = -0.1V or 5.1V, VCC = 5V (Note 3) μMAX, SOT23 ±2.0 ±3.5 ±2.0 ±3.5 MAX999AAUK ±2.0 ±3.5 ±2.0 ±3.5 All other E packages ±2.0 ±3.5 VCM = -0.1V or 5.1V, VCC = 5V (Note 4) μMAX, SOT23 ±0.5 ±1.5 MAX999AAUK ±0.5 ±1.5	VCC Inferred by PSRR 2.7 5.5 2.7 VCMR (Note 2) -0.1 VCC + 0.1 -0.1 VTRIP VCM = -0.1V or 5.1V, VCC = 5V (Note 3) μMAX, SOT23 ±2.0 ±3.5 All other E packages ±0.5 ±1.5 All other E packages ±1.5 All other E packages ±15 All other E packages ±15 VCC = 5.5V, VIN- = 0V, IN+ = 100µA 3 RIND VCC = 5V 8	VCC Inferred by PSRR 2.7 5.5 2.7	VCC Inferred by PSRR 2.7 5.5 2.7 5.5

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, V_{CM} = 0 \text{V}, C_{OUT} = 5 \text{pF}, V_{SHDN} = 0 \text{V}, V_{LE} = 0 \text{V}, unless otherwise noted.}$ The to That is -40°C to +85°C for all E grade devices. For MAX999AAUK only, Thin to That is -40°C to +125°C.) (Note 1)

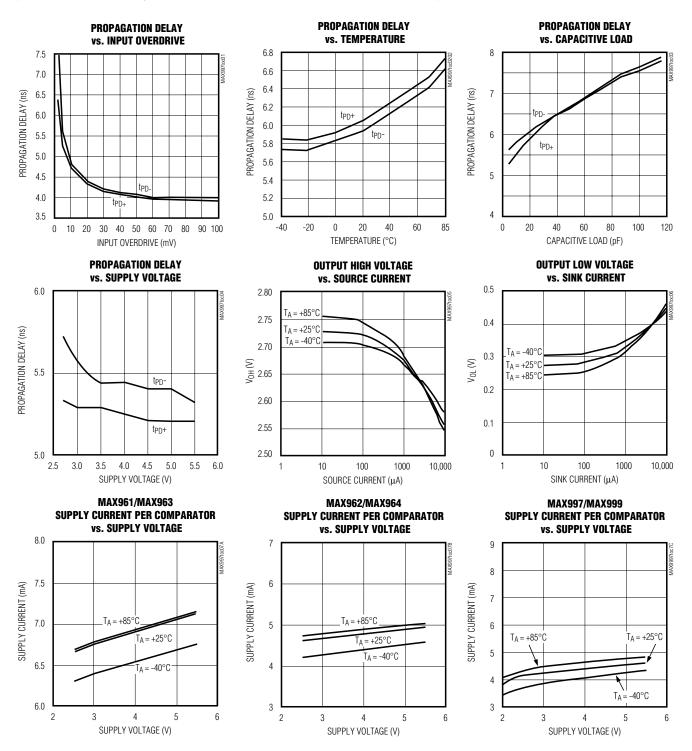
DADAMETED	SYMBOL	0001	DITIONS	1	A = +25°	С	T	MIN to TM	IAX	UNITS
PARAMETER	STWIBUL	SYMBOL CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Common-Mode Rejection	OMPR	$V_{CC} = 5V,$ $V_{CM} = -0.1V$	μMAX, SOT23		0.1	0.3			1.0	\/A/
Ratio	CMRR	to 5.1V (Note 5)	All other E packages		0.1	0.3			0.5	mV/V
Power-Supply Rejection Ratio	PSRR	VCM = 0V (No	ote 6)		0.05	0.3			0.3	mV/V
Output High Voltage	Vou	ISOURCE =	E grade	VCC - 0.52			VCC - 0.52			- v
Output High Voltage	Voh	4mA	MAX999AAUK	VCC - 0.52			VCC - 0.55			V
Outrout Law Valtage	1/-	4 4	E grade			0.52			0.52	V
Output Low Voltage	V _{OL}	I _{SINK} = 4mA	MAX999AAUK			0.52			0.55	\ \
Capacitive Slew Current		V _{OUT} = 1.4V,	$V_{CC} = 2.7V$	30	60					mA
Output Capacitance					4					рF
		MAX961/MAX	963, V _{CC} = 5V		7.2	11			11	<u> </u>
Supply Current per	loo	MAX962/MAX964, VCC = 5V			5	8			9	mA
Comparator	ICC	MAX997/MAX	(999E, V _{CC} = 5V		5	6.5			6.5	1717
		MAX999AAUI	$V_{CC} = 5V$		5	6.5			7.0	
Shutdown Supply Current per Comparator	ISHDN	MAX961/MAX MAX997, VCC	(963/MAX964/ c) = 5V		0.27	0.5			0.5	mA
Shutdown Output Leakage Current		MAX961/MAX MAX997, VOL VCC - 5V	963/MAX964/ JT = 5V and			1			20	μА
Rise/Fall Time	t _R , t _F	Vcc = 5V			2.3					ns
Logic-Input High	V _{IH}			V _{CC} /2 + 0.4			V _{CC} /2 + 0.4			V
Logic-Input Low	VIL					V _{CC} /2			V _{CC} /2 - 0.4	V
Logic-Input Current	IIL, IIH	VLOGIC = 0V or VCC				±15			±30	μΑ
		5mV	E grade		4.5	7.0			8.5	
Propagation Delay	tpD	overdrive (Note 7)	MAX999AAUK		4.5	7.0			10	ns
Differential Propagation Delay	tPD		Between any two channels or outputs (Q/\overline{Q})		0.3					ns
Propagation-Delay Skew	tskew	Between tpp-	and tpD+		0.3					ns

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, V_{CM} = 0 \text{V}, C_{OUT} = 5 \text{pF}, V_{SHDN} = 0 \text{V}, V_{LE} = 0 \text{V}, unless otherwise noted.}$ Thin to Thax is -40°C to +85°C for all E grade devices. For MAX999AAUK only, Thin to Thax is -40°C to +125°C.) (Note 1)

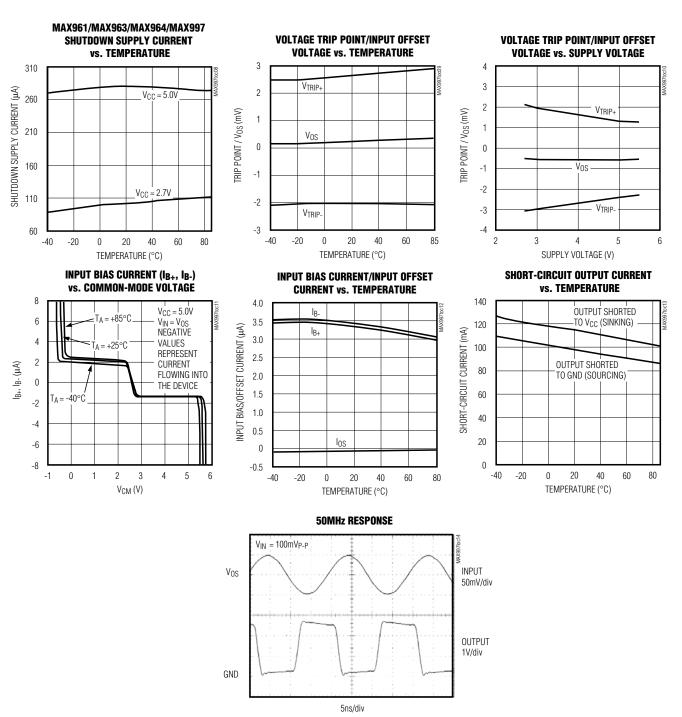
DADAMETED	PARAMETER SYMBOL		CONDITIONS TA = +25°C		С	TMIN to TMAX			UNITS
PARAMETER	STWIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Data-to-Latch Setup Time	tsu	MAX961/MAX963 (Note 8)			5			5	ns
Latch-to-Data Hold Time	tH	MAX961/MAX963 (Note 8)			5			5	ns
Latch Pulse Width	tLPW	MAX961/MAX963 (Note 8) 5				5	ns		
Latch Propagation Delay	tLPD	MAX961/MAX963 (Note 8)			10			10	ns
Shutdown Time	tOFF	Delay until output is high-Z (> 10kΩ)		150					ns
Shutdown Disable Time	ton	Delay until output is valid		250					ns


- Note 1: The MAX961EUA/MAX962EUA/MAX997EUA/MAX999EUK are 100% production tested at T_A = +25°C; all temperature specifications are guaranteed by design.
- **Note 2:** Inferred by CMRR. Either input can be driven to the absolute maximum limit without false output inversion, provided that the other input is within the input voltage range.
- **Note 3:** The input-referred trip points are the extremities of the differential input voltage required to make the comparator output change state. The difference between the upper and lower trip points is equal to the width of the input-referred hysteresis zone. (See Figure 1.)
- Note 4: Input offset voltage is defined as the mean of the trip points.
- Note 5: CMRR = (VoSL VoSH) / 5.2V, where VoSL is the offset at V_{CM} = -0.1V and V_{OSH} is the offset at V_{CM} = 5.1V.
- Note 6: PSRR = $(V_{OS}2.7 V_{OS}5.5) / 2.8V$, where $V_{OS}2.7$ is the offset voltage at $V_{CC} = 2.7V$, and $V_{OS}5.5$ is the offset voltage at $V_{CC} = 5.5V$.
- **Note 7:** Propagation delay for these high-speed comparators is guaranteed by design characterization because it cannot be accurately measured using automatic test equipment. A statistically significant sample of devices is characterized with a 200mV step and 100mV overdrive over the full temperature range. Propagation delay can be guaranteed by this characterization, since DC tests ensure that all internal bias conditions are correct. For low overdrive conditions, V_{TRIP} is added to the overdrive.

Note 8: Guaranteed by design.

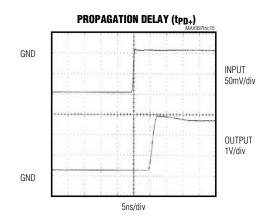
Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

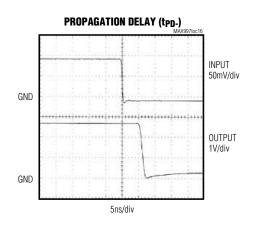
Typical Operating Characteristics


($V_{CC} = +3.0V$, $C_{LOAD} = 5pF$, 5mV of overdrive, $T_A = +25$ °C, unless otherwise noted.)

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Typical Operating Characteristics (continued)


(V_{CC} = +3.0V, C_{LOAD} = 5pF, 5mV of overdrive, T_A = +25°C, unless otherwise noted.)



Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Typical Operating Characteristics (continued)

(V_{CC} = +3.0V, C_{LOAD} = 5pF, 5mV of overdrive, T_A = +25°C, unless otherwise noted.)

Pin Description

		P	IN			NAME	FUNCTION
MAX997	MAX999	MAX961	MAX962	MAX963	MAX964	NAME	FUNCTION
1, 5	_	_	_	_	_	N.C.	No Connection. Not internally connected.
2	4	2	2	1	1	IN-, INA-	Comparator A Inverting Input
3	3	1	1	2	2	IN+, INA+	Comparator A Noninverting Input
_	_	4	_	3, 5	_	LE, LEA, LEB	Latch-Enable Input. The output latches when LE_ is high. The latch is transparent when LE_ is low.
4	2	5	5	4, 11	12	GND	Ground
_	_	_	_	_	16	N.C.	No Connection. Connect to GND to prevent parasitic feedback.
_	_	_	4	6	3	INB-	Comparator B Inverting Input
_	_	_	3	7	4	INB+	Comparator B Noninverting Input
_	_	_	_	_	5	INC-	Comparator C Inverting Input
_	_	_	_	_	6	INC+	Comparator C Noninverting Input
_	_	_	_	_	7	IND-	Comparator D Inverting Input
_	_	_	_	_	8	IND+	Comparator D Noninverting Input
8	_	3	_	8	9	SHDN	Shutdown Input. The device shuts down when SHDN is high.
_	_	_	6	9	14	QB	Comparator B Output
_	_	_	_	_	11	QC	Comparator C Output
_	_	_	_	_	10	QD	Comparator D Output
_	_	_	_	10	_	QB	Comparator B Complementary Output
7	5	8	8	12	13	V _{CC}	Positive Supply Input (V _{CC} to GND must be ≤5.5V)
6	1	6	7	13	15	Q, QA	Comparator A TTL Output
		7	_	14	_	Q, QA	Comparator A Complementary Output

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Detailed Description

The MAX961–MAX964/MAX997/MAX999 single-supply comparators feature internal hysteresis, ultra-high-speed operation, and low power consumption. Their outputs are guaranteed to pull within 0.52V of either rail without external pullup or pulldown circuitry. Beyond-the-Rails input voltage range and low-voltage, single-supply operation make these devices ideal for portable equipment. These comparators all interface directly to CMOS logic.

Timing

Most high-speed comparators oscillate in the linear region because of noise or undesirable parasitic feedback. This can occur when the voltage on one input is close to or equal to the voltage on the other input. These devices have a small amount of internal hysteresis to counter parasitic effects and noise.

The added hysteresis of the MAX961–MAX964/MAX997/MAX999 creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input

voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs. Standard comparators require hysteresis to be added with external resistors. The fixed internal hysteresis eliminates these resistors.

The MAX961/MAX963 include internal latches that allow storage of comparison results. LE has a high input impedance. If LE is low, the latch is transparent (i.e., the comparator operates as though the latch is not present). The comparator's output state is stored when LE is pulled high. All timing constraints must be met when using the latch function (Figure 2).

Input Stage Circuitry

The MAX961–MAX964/MAX997/MAX999 include internal protection circuitry that prevents damage to the precision input stage from large differential input voltages. This protection circuitry consists of two groups of three front-to-back diodes between IN+ and IN-, as well as two 200Ω resistors (Figure 3). The diodes limit the differential voltage applied to the comparator's internal circuitry to no more than $3V_F$, where V_F is the diode's forward-voltage drop (about 0.7V at +25°C).

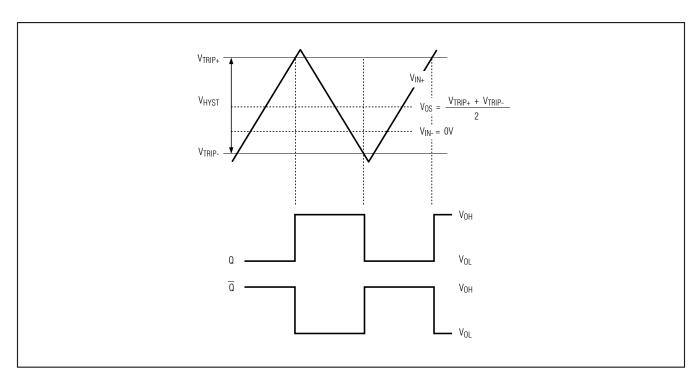


Figure 1. Input and Output Waveforms, Noninverting Input Varied

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

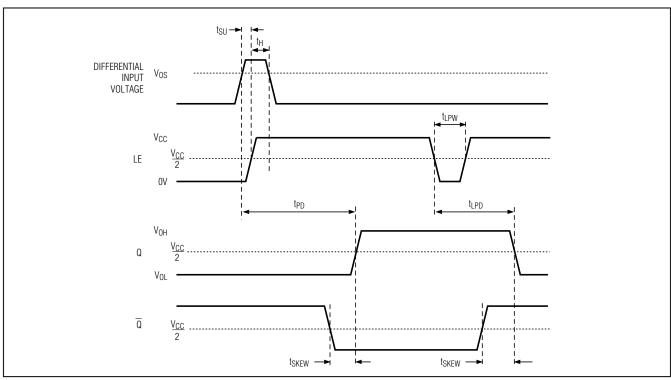


Figure 2. MAX961/MAX963 Timing Diagram

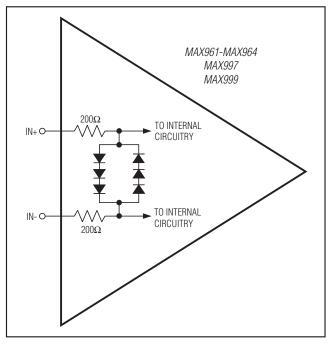


Figure 3. Input Stage Circuitry

For a large differential input voltage (exceeding 3V_F), this protection circuitry increases the input bias current at IN+ (source) and IN- (sink).

Input current =
$$\frac{(IN+-IN-)-3V_F}{2\times200}$$

Input currents with large differential input voltages should not be confused with input bias currents (I_B). As long as the differential input voltage is less than 3V_F, this input current is less than 2I_B.

The input circuitry allows the MAX961–MAX964/MAX997/MAX999's input common-mode range to extend 100mV beyond both power-supply rails. The output remains in the correct logic state if one or both inputs are within the common-mode range. Taking either input outside the common-mode range causes the input to saturate and the propagation delay to increase.

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

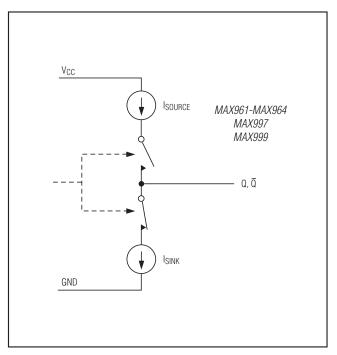


Figure 4. Output Stage Circuitry

The MAX961–MAX964/MAX997/MAX999 contain a current-driven output stage, as shown in Figure 4. During an output transition, ISOURCE or ISINK is pushed or pulled to the output pin. The output source or sink current is high during the transition, creating a rapid slew rate. Once the output voltage reaches VOH or VOL, the source or sink current decreases to a small value, capable of maintaining the VOH or VOL in static condition. This decrease in current conserves power after an output transition has occurred.

One consequence of a current-driven output stage is a linear dependence between the slew rate and the load capacitance. A heavy capacitive load slows down the voltage output transition.

Shutdown Mode

When SHDN is high, the MAX961/MAX963/MAX964/MAX997 shut down. When shut down, the supply current drops to 270µA per comparator, and the outputs become high impedance. SHDN has a high input impedance. Connect SHDN to GND for normal operation. Exit shutdown with LE low; otherwise, the output is indeterminate.

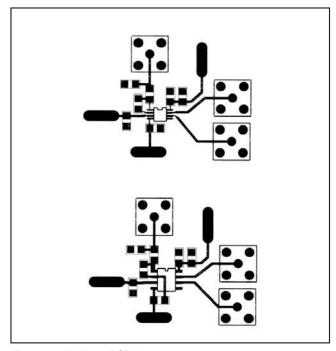
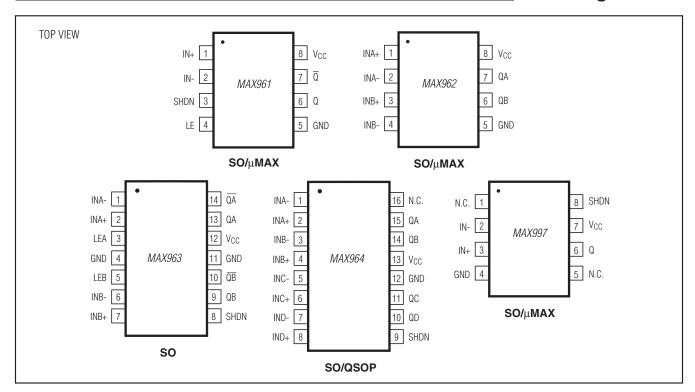


Figure 5. MAX961 PCB Layout

Applications Information

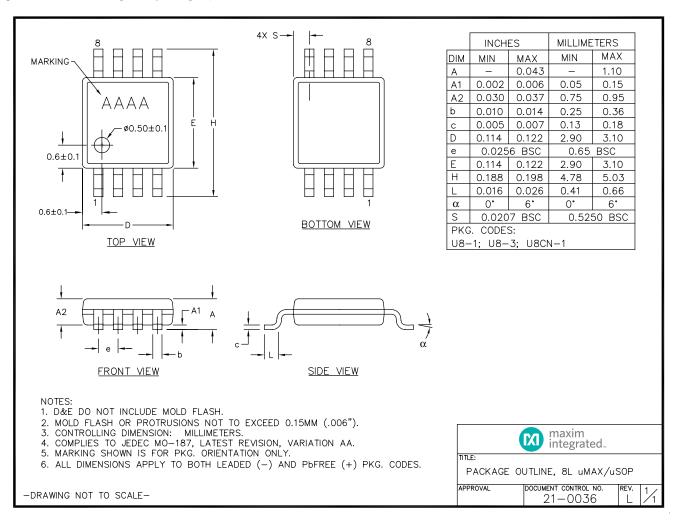

Circuit Layout and Bypassing

The MAX961–MAX964/MAX997/MAX999's high bandwidth requires a high-speed layout. Follow these layout guidelines:

- 1) Use a PCB with a good, unbroken, low-inductance ground plane.
- 2) Place a decoupling capacitor (a 0.1µF ceramic surface-mount capacitor is a good choice) as close to VCC as possible.
- 3) On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators. Keep inputs away from outputs. Keep impedance between the inputs low.
- 4) Solder the device directly to the printed circuit board rather than using a socket.
- 5) Refer to Figure 5 for a recommended circuit layout.
- 6) For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes negligible degradation to tpp when the source impedance is low.

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

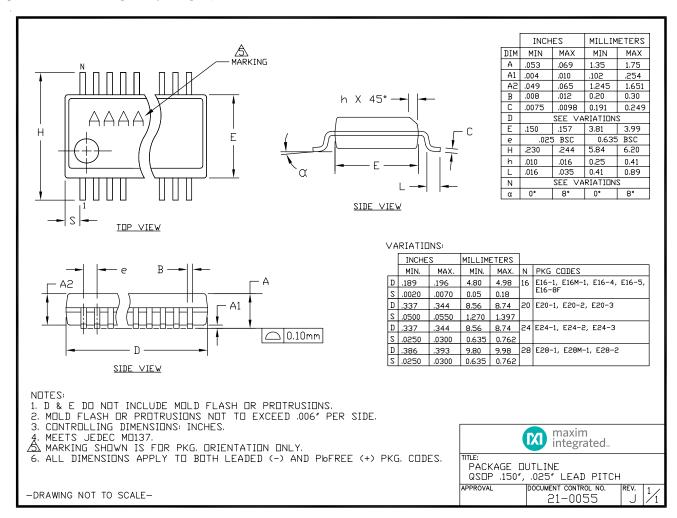
Pin Configurations


Chip Information

MAX961/MAX962 TRANSISTOR COUNT: 286 MAX963/MAX964 TRANSISTOR COUNT: 607 MAX997/MAX999 TRANSISTOR COUNT: 142

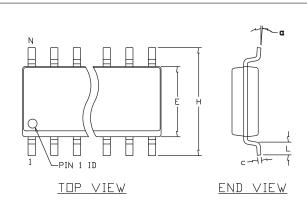
Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, **Beyond-the-Rails Comparators**

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

COMMON DIMENSIONS							
SYMBOL	INC	HES	ММ				
SIMBUL	MIN.	MAX.	MIN.	MAX.			
Α	.053	.069	1.35	1.75			
A1	.004	.010	0.10	0.25			
b	.014	.019	0.35	0.49			
С	.007	.010	0.19	0.25			
Ε	.150	.157	3.80	4.00			
е	.050	BSC	1.27	BSC			
Н	.228	.244	5.80	6.20			
L	.016	.050	0.40	1.27			
α	0*	8*	0*	8*			

VARIATION A						
SYMBOL	INC	HES	ММ			
SIMBUL	MIN.	MAX.	MIN.	MAX.		
D	.189 .197 4.80 5.00					
N		8	3			
MS012		Α	Α			
PKG. CODE	\$8-2, \$8-4, \$8-5, \$8-6F, \$8-7F, \$8-8F, \$8-10F, \$8-11F, \$8-16F					

VARIATION B							
SYMBOL	INC	HES	ММ				
SIMBUL	MIN.	MAX.	MIN.	MAX.			
D	.337	.344	8.55	8.75			
N		1-	4				
MS012		Α	В				
PKG. CODE	S14-1, S14-4, S14-5, S14-6; S14M-4, S14M-5, S14M-6, S14M-7						

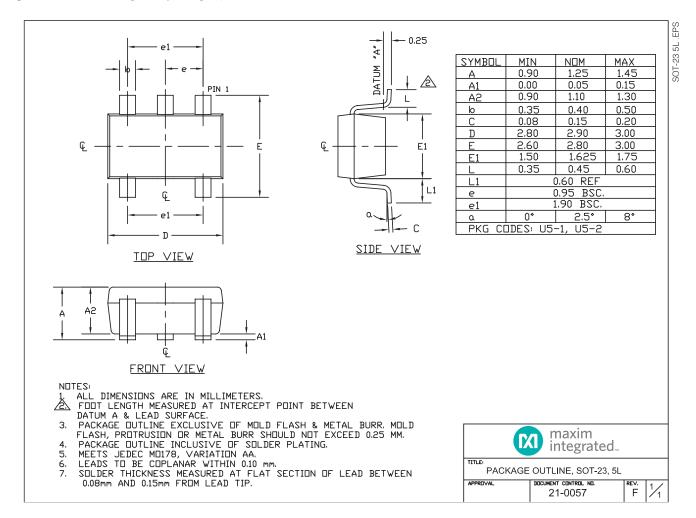
VARIATION C							
SYMBOL	INC	INCHES M					
SIMBUL	MIN.	MAX.	MIN.	MAX.			
D	.386	.394	9.80	10.00			
N		1	6				
MS012		AC					
PKG. CODE	S16-8,	S16-7F	\$16-1, \$16-3, \$16-5, \$16-6, \$16-8, \$16-7F, \$16-9F, \$16-10F; \$16M-3, \$16M-6				

	VARIATION C						
SYMBOL	INC	HES	М	М			
SIMBUL	MIN.	MIN. MAX. MIN.					
D	.386	.394	9.80	10.00			
N		1	6				
MS012		AC					
	S16-8,	S16-1, S16-3, S16-5, S16-6, S16-8, S16-7F, S16-9F, S16-10F; S16M-3, S16M-6					

21-0041

SIDE VIEW

NOTES:


- 1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC # 10-0131.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.15 MM (.006") PER SIDE.
- LEADS TO BE COPLANAR WITHIN 0.10mm (.004").
- 5. MEETS JEDEC MS012
- 6. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND POFREE (+) PKG. CODES.

-DRAWING NOT TO SCALE-

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/96	Initial release	_
1	12/96	Added 8-pin µMAX packages. Correct minor errors.	1, 2, 3
2	3/97	Added dual and quad MAX963/MAX964 packages.	1, 2, 3
3	7/97	Added new MAX997 and MAX999 parts.	1, 2, 3
4	3/99	New wafer fab/process change to CB20. Update specifications and TOCs.	2, 3, 4, 5, 6
5	2/07	Added new Current into Input Pins in the Absolute Maximum Ratings.	2
6	12/08	Added new automotive grade MAX999AAUK part and specifications.	1, 2, 3

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.