RTD Compound #691-347, 330-6345

RS Components

Chemwatch: **4591-10** Version No: **7.1.1.1**

Material Safety Data Sheet according to NOHSC and ADG requirements

Chemwatch Hazard Alert Code: 1

Issue Date: **05/12/2014** Print Date: **05/12/2014** Initial Date: **Not Available** S.Local.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	RTD Compound #691-347, 330-6345
Chemical Name	Not Applicable
Synonyms	Manufacturer's Codes: 691-347, 330-6345
Proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%)
Chemical formula	Not Applicable
Other means of identification	Not Available
CAS number	Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Metal cutting lubricant. Applied by brush or dip.

Details of the manufacturer/importer

Registered company name	RS Components	RS Components
Address	25 Pavesi Street Smithfield 2164 NSW Australia	Units 30 & 31, 761 Great South Road Penrose 1006 Auckland New Zealand
Telephone	+1 300 656 636	+64 9 526 1600
Fax	+1 300 656 696	+64 9 579 1700
Website	Not Available	www.rsnewzealand.com
Email	Not Available	Not Available

Emergency telephone number

Association / Organisation	Not Available	Not Available
Emergency telephone numbers	1800 039 008 (24 hours),+61 3 9573 3112	Not Available
Other emergency telephone numbers	1800 039 008 (24 hours),+61 3 9573 3112	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

Poisons Schedule	Not Applicable	
Risk Phrases [1]	R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.	
RISK Phrases 113	R66 Repeated exposure may cause skin dryness and cracking.	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Relevant risk statements are found in section 2

Indication(s) of danger	N	
SAFETY ADVICE		
S24	Avoid contact with skin.	
S29	Do not empty into drains.	
S35	This material and its container must be disposed of in a safe way.	
S40	To clean the floor and all objects contaminated by this material, use water and detergent.	
S46	If swallowed, seek medical advice immediately and show this container or label.	
\$56	Dispose of this material and its container at hazardous or special waste collection point.	

Chemwatch: 4591-10 Page 2 of 11 Issue Date: 05/12/2014 Version No: 7.1.1.1 Print Date: 05/12/2014

RTD Compound #691-347, 330-6345

\$57	Use appropriate container to avoid environmental contamination.
S61	Avoid release to the environment. Refer to special instructions/Safety data sheets.
Other hazards	
	Inhalation and/or ingestion may produce health damage*.
	Cumulative effects may result following exposure*.
	May produce skin discomfort*.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
85535-85-9	30-60	C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%
64741-95-3	15-30	residual oils, petroleum, solvent-deasphalted
ingredients (non-hazardaus)		

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product.
- In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases.
- ▶ High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.

NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

	 Foam. Dry chemical powder. BCF (where regulations permit). Carbon dioxide. Water spray or fog - Large fires only
--	--

Special hazards arising from the substrate or mixture

Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
----------------------	--

Advice for firefighters

refighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	

Chemwatch: 4591-10 Page 3 of 11 Issue Date: 05/12/2014

Version No: 7.1.1.1 Print Date: 05/12/2014 RTD Compound #691-347, 330-6345

Fire/Explosion Hazard

- Combustible.
- ▶ Slight fire hazard when exposed to heat or flame.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- ▶ Mists containing combustible materials may be explosive.

Combustion products include:, carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, other pyrolysis products typical of burning organic

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills	Environmental hazard - contain spillage. Slippery when spilt. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. Environmental hazard - contain spillage. Slippery when spilt.
	Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

	Avoid all personal contact, including inhalation.
	Wear protective clothing when risk of exposure occurs.
	▶ Use in a well-ventilated area.
	Prevent concentration in hollows and sumps.
	▶ DO NOT enter confined spaces until atmosphere has been checked.
	▶ DO NOT allow material to contact humans, exposed food or food utensils.
	Avoid contact with incompatible materials.
Safe handling	▶ When handling, DO NOT eat, drink or smoke.
	▶ Keep containers securely sealed when not in use.
	Avoid physical damage to containers.
	Always wash hands with soap and water after handling.
	Work clothes should be laundered separately. Launder contaminated clothing before re-use.
	▶ Use good occupational work practice.
	 Observe manufacturer's storage and handling recommendations contained within this MSDS.
	 Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
	▶ Store in original containers.
	► Keep containers securely sealed.
	▶ No smoking, naked lights or ignition sources.
Other information	▶ Store in a cool, dry, well-ventilated area.
	▶ Store away from incompatible materials and foodstuff containers.
	▶ Protect containers against physical damage and check regularly for leaks.
	 Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 DO NOT use aluminium or galvanised containers Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 Avoid reaction with oxidising agents Reacts vigorously with alkali metals CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire. Avoid storage with reducing agents.

PACKAGE MATERIAL INCOMPATIBILITIES

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Chemwatch: **4591-10** Page **4** of **11**

Version No: **7.1.1.1**

RTD Compound #691-347, 330-6345

Issue Date: **05/12/2014**Print Date: **05/12/2014**

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	residual oils, petroleum, solvent-deasphalted	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
RTD Compound #691-347, 330-6345	Not Available	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%	Not Available	Not Available
residual oils, petroleum, solvent-deasphalted	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Co	intaminant:	Air Speed:
solvent, va	pours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
	umes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating , pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
	y, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into bid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, a	brasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid .	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity		
3: Intermittent, low production. 3: High production, heavy use		
4: Large hood or large air mass in motion 4: Small hood-local control only		

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

reisonal protection

▶ Safety glasses with side shields

Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

rotection See Hand protection below

Hands/feet protection

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

Body protection

See Other protection below

Other protection

- Overalls.P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.

RTD Compound #691-347, 330-6345

Issue Date: **05/12/2014**Print Date: **05/12/2014**

► Eye wash unit.

Thermal hazards Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

RTD Compound #691-347, 330-6345 Not Available

Material CPI	
--------------	--

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Brown paste with a characteristic odour; insoluble in water		
Physical state	Non Slump Paste	Relative density (Water = 1)	1.17
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>200
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>100	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution(1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

individual

The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation, of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the

Chemwatch: 4591-10 Page 6 of 11 Issue Date: 05/12/2014 Version No: 7.1.1.1 Print Date: 05/12/2014

RTD Compound #691-347, 330-6345

Inhalation hazard is increased at higher temperatures. A vapour/ mist containing chlorinated paraffins of more than 10 carbon atoms and a chlorine content ranging between 40 and 70% may produce a sore throat, coughing and shortness of breath Accidental ingestion of the material may be damaging to the health of the individual. Ingestion Short chain chlorinated paraffins produced liver damage and myocardial atrophy when fed to rats for 14 days. Large quantities may produce gastrointestinal disturbances including abdominal pain, nausea and vomiting. Rats fed 13600 mg/kg and mice fed 27200 mg/kg of C12, 60% chlorinated paraffin exhibited inactivity, ataxia and diarrhoea possibly related to the large amounts administered rather than to any underlying toxic mechanism elicited by the material. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Exposure to material may result in a dermatitis, described as chloracne, a persistent acneform (resembling common acne in appearance) characterised by comedones (white-, and black-heads), keratin cysts, and inflamed papules with hyperpigmentation and an anatomical distribution frequently involving the skin under the eyes and behind the ears. Other areas affected are the face, neck, shoulders, arms, chest, and abdomen (especially around the umbilicus and Skin Contact scrotum). The most sensitive areas appear to be below and to the outer side of the eye and behind the ear. This condition may be accompanied by intense itchina It occurs after acute or chronic exposure to a variety of chlorinated aromatic compounds by skin contact, ingestion or inhalation and may appear within days to months following the first exposure. Other dermatological alterations include hypertrichosis (the growth of excess hair), and increased incidence of actinic or solar elastosis (the degeneration of elastic tissue within muscles or loss of dermal elasticity produced by the effects of sunlight), and Peyronie's disease (a rare progressive scarring of the penile membrane). Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Chlorinated paraffins of more than 10 carbon atoms and with a chlorine content ranging between 40 and 70% may be absorbed by the skin and produce areas of localised reddening. Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Prolonged or repeated exposure to chlorinated paraffins may produce liver and kidney disorders as shown in animal studies. Chronic administration of high doses of chlorinated paraffins to rats produced piloerection, muscle incoordination and urinary and faecal incontinence. Administration of the C12, 60% chlorinated paraffin produced lymphohisticcytic inflammation of the liver and pancreatic and mesenteric lymph nodes, with secondary congestion of the spleen and liver damage. An exacerbation of severe nephropathy that occurs in aging rats was also reported. Chronic feeding with chlorinated paraffins (C12, 60% Chronic chlorine and C23, 43% chlorine) produced inflammation and lesions of the stomach, particularly in male rats. Gavage studies show an increased incidence of liver, kidney and thyroid neoplasms, alveolar/ bronchiolar carcinomas and leukaemia. Chlorinated paraffins as a group are generally not regarded as genotoxic and are unlikely to present a carcinogenic hazard to humans under normal conditions of handling and use. Rats fed on a diet containing 6250 ppm chlorinated paraffins (C14-17, 52% chlorine) produced offspring which did not survive to weaning. Neonates showed subcutaneous haematoma, pale discolouration, bloody orifices, haemorrhage in the cranial cavity and pale livers, kidneys and spleens. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. TOXICITY IRRITATION RTD Compound #691-347. 330-6345 Not Available Not Available C14-17 alkanes. TOXICITY IRRITATION chlorinated-, chlorinated Not Available Not Available paraffin 52, 58% TOXICITY IRRITATION residual oils, petroleum, solvent-deasphalted Not Available Not Available

* Value obtained from manufacturer's msds

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives;

The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: ▶ The adverse effects of these materials are associated with undesirable components, and

- The levels of the undesirable components are inversely related to the degree of processing;
- ▶ Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- The potential toxicity of residual base oils is independent of the degree of processing the oil receives.
- ► The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil's mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing

for Unrefined and Mildly Refined Distillate Base Oils

Acute toxicity: LD50s of >5000 mg/kg (bw) and >2g/kg (bw) for the oral and dermal routes of exposure, respectively, have been observed in rats dosed with an unrefined light paraffinic distillate The same material was also reported to be "moderately irritating" to the skin of rabbits. When tested for eye irritation in rabbits, the material produced Draize scores of 3.0 and 4.0 (unwashed/washed eyes) at 24 hours, with the scores returning to zero by 48 hours. The material was reported to be "not sensitising" when tested in guinea pigs

Repeat dose toxicity: 200, 1000 and 2000 mg/kg (bw)/day of an unrefined base oil has been applied undiluted to the skin of male and female rabbit.. The

RTD Compound #691-347. 330-6345

Chemwatch: **4591-10** Page **7** of **11** Issue Date: **05/12/2014**Version No: **7.1.1.1** Print Date: **05/12/2014**

RTD Compound #691-347, 330-6345

test material was applied to the rabbits' skins 3 times/week for 4 weeks. To ensure maximum exposure, the applied material was covered with an occlusive dressing for 6 hours. In the high dose group, body weight gains were affected by treatment. These effects were largely due to effects on growth rate during the first week of the study. There were no significant differences between treated and control groups for any of the recorded haematological and clinical chemistry values. Gross and microscopic pathology findings relating to the treated skin were seen in all rabbits in the highest dose group. The findings consisted of "slight" to "moderate" proliferative changes in the treated skin.

Reproductive/ developmental toxicity No reproductive or developmental toxicity studies have been reported for unrefined & mildly refined distillate base oils. However, a developmental toxicity screening study has been reported for heavy vacuum gas oil, a material with a process history similar to the unrefined distillate base oils. As an unrefined vacuum distillate material, heavy vacuum gas oil contains the broadest spectrum of chemical components and highest concentration of bioavailable and/or biologically active components Because of their lack of or low level of processing, in comparison to other refined base oils. the unrefined lubricating base oils will also have higher concentrations of bioavailable and/or biologically active components.

Heavy vacuum gas oil was applied daily to the skin of pregnant rats on days 0-19 of gestation. Dose levels administered included: 30, 125, 500 and 1000 mg/kg (bw)/day. All animals were euthanised on day 20. In the dams, the only dose-related finding at gross necropsy was pale colored lungs in four animals in the highest dose group and in one animal in the 500 mg/kg (bw)/day group. Mean thymus weights of the dams in the highest dose group were approximately half those of the control groups. Although absolute liver weights were unaffected by exposure to the gas oil, mean relative liver weights were increased (approximately 15%) in groups exposed to doses greater than 125 mg/kg (bw)/day. Maternal and foetal body weights were reduced at 500 and 1000 mg/kg (bw)/day. Significant increases in resorptions were also seen in these two dose groups. Soft tissue variations and malformations, and skeletal malformations were also increased at 500 and 1000 mg/kg

Genotoxicity: Modified Ames assays have been carried out on a number of base oils that were either unrefined or poorly refined. The oils were found to be mutagenic, with a strong correlation between mutagenicity and 3-7 ring PAC content.

Carcinogenicity: The general conclusions that can drawn from the animal carcinogenicity studies are potential skin carcinogens. When applied repeatedly to the skin, carcinogenic base oils are associated only with skin tumours and not with an increase in systemic tumours Residual Base Oils

Residual oils have substantial polycyclic aromatic compound (PAC) levels when assayed by traditional methods. On this basis, they would be expected to have mutagenic and/or carcinogenic activity. However, no adverse effects have been seen in either in vitro mutagenicity or dermal carcinogenicity testing of residual base oils, irrespective of the degree of processing they have undergone. Ultraviolet, HPLC/UV, GC/MS, and infrared analyses of these oils indicate that the aromatics they contain are predominantly 1-3 rings that are highly alkylated (paraffinic and naphthenic). Because they are found in such a high boiling material (> 550 C), it is estimated that the alkyl side-chains of these 1-3 ring aromatics would be approximately 13 to 25 carbons in length. These highly alkylated aromatic ring materials are either devoid of the biological activity necessary to cause mutagenesis and carcinogenesis, or are largely non-bioavailable to the organisms

Acute toxicity: There are no acute toxicity data available for the residual base oils. It is thought that the high molecular weight of these materials and associated low bioavailability preclude the systemic doses necessary to produce acute toxicity. Furthermore, tests of a variety of distillate base oils, including unrefined materials that contain high levels of biologically active materials, have consistently shown low acute toxicity.

Repeat dose toxicity: No subchronic repeat-dose studies have been reported on residual base oils. However, two dermal carcinogenicity studies have been performed

Reproductive and developmental toxicity: There are no reproductive or developmental toxicity data available for the residual base oils

Carcinogenicity: A dermal carcinogenicity study of a residual base oil in mice has been reported. The test substance was described as "a non-solvent refined, deasphalted, dewaxed residual paraffinic lubricant base oil". For eighteen months, three times/week, undiluted test material was applied to the skin of female CF1 mice. Two other groups of mice underwent similar treatments, but for only 22 or 52 weeks. The base oil produced minimal clinical evidence of skin irritation. No tumours of epidermal origin were observed in animals dosed with the base oil. Furthermore, no treatment-related effects were observed with regard to clinical condition, body weight gain, mortality or post mortem findings.

A second dermal carcinogenicity study of a residual base oil has been conducted in male C3H/HeJ mice. The test substance was described as "deasphalted, dewaxed, residual oil". The test material was applied undiluted to the animals' backs, three times/week for 24 months. None of the animals treated with the test material developed skin tumours, or any other tumours considered treatment-related.

The absence of systemic toxicity in these two dermal carcinogenicity studies supports the belief that the high molecular weight of the residual base oils and the resulting low bio- availability preclude the internal doses necessary to elicit systemic toxicity.

Genotoxicity:

In vitro (mutagenicity): Samples of a vacuum residuum and four residual base oils tested negative for the induction of frame shift mutations in modified Ames assays

In vivo (chromosomal aberrations): There is no in vivo genotoxicity data available for the residual base oils. However, in vitro mutagenicity tests have been conducted on residual base oils and have produced negative results. Dermal carcinogenicity studies on these materials have also been negative. Given these consistent results, and the low bioavailability of these materials, it is expected that in vivo mutagenicity tests would also be negative.

No significant acute toxicological data identified in literature search.

 $NOTE: C12, 60\% \ chlorinated \ paraffin \ [CAS\ RN\ 108171-26-2] \ is \ classified \ by \ IARC \ as \ Group\ 2B. \ Possibly \ carcinogenic \ to \ humans.$

Studies using the C12, 59% chlorinated variant (in combination with corn oil) caused tumors when force fed at very high doses over long periods of time. Pregnant rats fed C16, 52% chlorinated paraffin had offspring which died during weaning.

High molecular weight liquid chloroparaffins are considered to be practically non-harmful. Special consideration should be given to solid grades of the material (eg Cerector 70) because of relatively high levels of carbon tetrachloride remaining as a residual reactant. Vapours are readily absorbed through intact skin, requiring additional precautions in handling.

Lifetime studies have been carried out with two grades of chlorinated paraffins. A short-chain grade with 58% chlorine caused tumours in rats and mice. Male mice exposed to long-chain grades with 40% chlorine showed an excess of tumours at one site. It has been shown that the mechanisms by which short-term paraffins cause tumours are specific to rodents and may not have relevance to human health. Furthermore, chlorinated paraffins have been shown to non-genotoxic.

The Regulatory regime in various countries differs with respected to chlorinated paraffins.

In the USA, the short-chain (C12), 58% chlorine product has been classified and labelled as a carcinogen.

In Germany the MAK Commission has classified most chlorinated paraffins as Category IIIB (suspect carcinogens). They are not however included in the list of substances (TRGS 905) required to be labelled.

All EU Member States are required to classify short chain chlorinated paraffins as Category 3 carcinogens.

C14-17 ALKANES, CHLORINATED-, CHLORINATED PARAFFIN 52, 58%

NOTE: C12, 60% chlorinated paraffin [CAS RN 108171-26-2] is classified by IARC as Group 2B. Possibly carcinogenic to humans. Studies using the C12, 59% chlorinated variant (in combination with corn oil) caused tumors when force fed at very high doses over long periods of time. Pregnant rats fed C16, 52% chlorinated paraffin had offspring which died during weaning.

High molecular weight liquid chloroparaffins are considered to be practically non-harmful. Special consideration should be given to solid grades of the material (eg Cereclor 70) because of relatively high levels of carbon tetrachloride remaining as a residual reactant. Vapours are readily absorbed through intact skin, requiring additional precautions in handling.

Lifetime studies have been carried out with two grades of chlorinated paraffins. A short-chain grade with 58% chlorine caused tumours in rats and mice. Male mice exposed to long-chain grades with 40% chlorine showed an excess of tumours at one site. It has been shown that the mechanisms by which short-term paraffins cause tumours are specific to rodents and may not have relevance to human health. Furthermore, chlorinated paraffins have been shown to non-genotoxic.

The Regulatory regime in various countries differs with respected to chlorinated paraffins.

In the USA, the short-chain (C12), 58% chlorine product has been classified and labelled as a carcinogen.

In Germany the MAK Commission has classified most chlorinated paraffins as Category IIIB (suspect carcinogens). They are not however included in the list of substances (TRGS 905) required to be labelled.

All EU Member States are required to classify short chain chlorinated paraffins as Category 3 carcinogens.

RESIDUAL OILS, PETROLEUM, SOLVENT-DEASPHALTED

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives;

The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- The levels of the undesirable components are inversely related to the degree of processing;

RTD Compound #691-347, 330-6345

Print Date: 05/12/2014

- ▶ Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- The potential toxicity of residual base oils is independent of the degree of processing the oil receives.
- The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil's mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing for Unrefined and Mildly Refined Distillate Base Oils

Acute toxicity: LD50s of >5000 mg/kg (bw) and >2g/kg (bw) for the oral and dermal routes of exposure, respectively, have been observed in rats dosed with an unrefined light paraffinic distillate The same material was also reported to be "moderately irritating" to the skin of rabbits. When tested for eye irritation in rabbits, the material produced Draize scores of 3.0 and 4.0 (unwashed/washed eyes) at 24 hours, with the scores returning to zero by 48 hours. The material was reported to be "not sensitising" when tested in guinea pigs

Repeat dose toxicity: 200, 1000 and 2000 mg/kg (bw)/day of an unrefined base oil has been applied undiluted to the skin of male and female rabbit. The test material was applied to the rabbits' skins 3 times/week for 4 weeks. To ensure maximum exposure, the applied material was covered with an occlusive dressing for 6 hours. In the high dose group, body weight gains were affected by treatment. These effects were largely due to effects on growth rate during the first week of the study. There were no significant differences between treated and control groups for any of the recorded haematological and clinical chemistry values. Gross and microscopic pathology findings relating to the treated skin were seen in all rabbits in the highest dose group. The findings consisted of "slight" to "moderate" proliferative changes in the treated skin.

Reproductive/ developmental toxicity No reproductive or developmental toxicity studies have been reported for unrefined & mildly refined distillate base oils. However, a developmental toxicity screening study has been reported for heavy vacuum gas oil, a material with a process history similar to the unrefined distillate base oils.. As an unrefined vacuum distillate material, heavy vacuum gas oil contains the broadest spectrum of chemical components and highest concentration of bioavailable and/or biologically active components Because of their lack of or low level of processing, in comparison to other refined base oils. the unrefined lubricating base oils will also have higher concentrations of bioavailable and/or biologically active components. Heavy vacuum gas oil was applied daily to the skin of pregnant rats on days 0-19 of gestation. Dose levels administered included: 30, 125, 500 and 1000 mg/kg (bw)/day. All animals were euthanised on day 20. In the dams, the only dose-related finding at gross necropsy was pale colored lungs in four animals in the highest dose group and in one animal in the 500 mg/kg (bw)/day group. Mean thymus weights of the dams in the highest dose group were approximately half those of the control groups. Although absolute liver weights were unaffected by exposure to the gas oil, mean relative liver weights were increased (approximately 15%) in groups exposed to doses greater than 125 mg/kg (bw)/day. Maternal and foetal body weights were reduced at 500 and 1000 mg/kg (bw)/day. Significant increases in resorptions were also seen in these two dose groups. Soft tissue variations and malformations, and skeletal malformations were also increased at 500 and 1000 mg/kg

Genotoxicity: Modified Ames assays have been carried out on a number of base oils that were either unrefined or poorly refined. The oils were found to be mutagenic, with a strong correlation between mutagenicity and 3-7 ring PAC content.

Carcinogenicity: The general conclusions that can drawn from the animal carcinogenicity studies are potential skin carcinogens. When applied repeatedly to the skin, carcinogenic base oils are associated only with skin tumours and not with an increase in systemic tumours Residual Base Oils

Residual oils have substantial polycyclic aromatic compound (PAC) levels when assayed by traditional methods. On this basis, they would be expected to have mutagenic and/or carcinogenic activity. However, no adverse effects have been seen in either in vitro mutagenicity or dermal carcinogenicity testing of residual base oils, irrespective of the degree of processing they have undergone. Ultraviolet, HPLC/UV, GC/MS, and infrared analyses of these oils indicate that the aromatics they contain are predominantly 1-3 rings that are highly alkylated (paraffinic and naphthenic). Because they are found in such a high boiling material (> 550 C), it is estimated that the alkyl side-chains of these 1-3 ring aromatics would be approximately 13 to 25 carbons in length. These highly alkylated aromatic ring materials are either devoid of the biological activity necessary to cause mutagenesis and carcinogenesis, or are largely non-bioavailable to the organisms

Acute toxicity: There are no acute toxicity data available for the residual base oils. It is thought that the high molecular weight of these materials and associated low bioavailability preclude the systemic doses necessary to produce acute toxicity. Furthermore, tests of a variety of distillate base oils, including unrefined materials that contain high levels of biologically active materials, have consistently shown low acute toxicity.

Repeat dose toxicity: No subchronic repeat-dose studies have been reported on residual base oils. However, two dermal carcinogenicity studies have been performed

Reproductive and developmental toxicity: There are no reproductive or developmental toxicity data available for the residual base oils Carcinogenicity: A dermal carcinogenicity study of a residual base oil in mice has been reported. The test substance was described as "a non-solvent refined, deasphalted, dewaxed residual paraffinic lubricant base oil". For eighteen months, three times/week, undiluted test material was applied to the skin of female CF1 mice. Two other groups of mice underwent similar treatments, but for only 22 or 52 weeks. The base oil produced minimal clinical evidence of skin irritation. No tumours of epidermal origin were observed in animals dosed with the base oil. Furthermore, no treatment-related effects were observed with regard to clinical condition, body weight gain, mortality or post mortem findings.

A second dermal carcinogenicity study of a residual base oil has been conducted in male C3H/HeJ mice. The test substance was described as "deasphalted, dewaxed, residual oil". The test material was applied undiluted to the animals' backs, three times/week for 24 months. None of the animals treated with the test material developed skin tumours, or any other tumours considered treatment-related.

The absence of systemic toxicity in these two dermal carcinogenicity studies supports the belief that the high molecular weight of the residual base oils and the resulting low bio- availability preclude the internal doses necessary to elicit systemic toxicity.

Genotoxicity:

In vitro (mutagenicity): Samples of a vacuum residuum and four residual base oils tested negative for the induction of frame shift mutations in modified Ames assays

In vivo (chromosomal aberrations): There is no in vivo genotoxicity data available for the residual base oils. However, in vitro mutagenicity tests have been conducted on residual base oils and have produced negative results. Dermal carcinogenicity studies on these materials have also been negative. Given these consistent results, and the low bioavailability of these materials, it is expected that in vivo mutagenicity tests would also be negative. No significant acute toxicological data identified in literature search.

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	0	Reproductivity	0
Serious Eye Damage/Irritation	0	STOT - Single Exposure	0
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

Data required to make classification available

X - Data available but does not fill the criteria for classification

Not Available to make classification

Version No: 7.1.1.1

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

for lubricating oil base stocks:

Vapor Pressure Vapor pressures of lubricating base oils are reported to be negligible. In one study, the experimentally measured vapour pressure of a solvent-dewaxed heavy paraffinic distillate base oil was 1.7 x 10exp-4 Pa . Since base oils are mixtures of C15 to C50 paraffinic, naphthenic, and aromatic hydrocarbon isomers, representative components of those structures were selected to calculate a range of vapor pressures. The estimated vapor pressure values for these selected components of base oils ranged from 4.5 x 10exp-1 Pa to 2 x 10exp-13Pa. Based on Dalton's Law the expected total vapour pressure for base oils would fall well below minimum levels (10exp-5 Pa) of recommended experimental procedures.

Partition Coefficient (log Kow): In mixtures such as the base oils, the percent distribution of the hydrocarbon groups (i.e., paraffins, naphthenes, and aromatics) and the carbon chain lengths determines in-part the partitioning characteristics of the mixture. Generally, hydrocarbon chains with fewer carbon atoms tend to have lower partition coefficients than those with higher carbon numbers . However, due to their complex composition, unequivocal determination of the log Kow of these hydrocarbon mixtures cannot be made. Rather, partition coefficients of selected C15 chainlength hydrocarbon structures representing paraffinic, naphthenic, and aromatic constituents in base oil lubricants were modelled . Results showed typical log Kow values from 4.9 to 7.7, which were consistent with values of >4 for lubricating oil basestocks

Water Solubility: When released to water, base oils will float and spread at a rate that is viscosity dependent. While water solubility of base oils is typically very low, individual hydrocarbons exhibit a wide range of solubility depending on molecular weight and degree of unsaturation. Decreasing molecular weight (i.e., carbon number) and increasing levels of unsaturation increases the water solubility of these materials. As noted for partition coefficient, the water solubility of lubricating base oils cannot be determined due to their complex mixture characteristics. Therefore, the water solubility of individual C15 hydrocarbons representing the different groups making up base oils (i.e., linear and branched paraffins, naphthenes, and aromatics) was modelled. Based on water solubility modelling of those groups, aqueous solubilities are typically much less than 1 ppm. (0.003-0.63 mg/l)

Environmental Fate:

Photodegradation: Chemicals having potential to photolyse have UV/visible absorption maxima in the range of 290 to 800 nm. Some chemicals have absorption maxima significantly below 290 nm and consequently cannot undergo direct photolysis in sunlight (e.g. chemicals such as alkanes, alkenes, alkynes, saturated alcohols, and saturated acids). Most hydrocarbon constituents of the materials in this category are not expected to photolyse since they do not show absorbance within the 290-800 nm range. However, photodegradation of polyaromatic hydrocarbons (PAHs) can occur and may be a significant degradation pathway for these constituents of lubricating base oils. The degree and rate at which PAHs may photodegrade depend upon whether conditions allow penetration of light with sufficient energy to effect a change. For example, polycyclic aromatic compounds (PAC) compounds bound to sediments may persist due to a lack of sufficient light penetration

Atmospheric gas-phase reactions can occur between organic chemicals and reactive molecules such as photochemically produced hydroxyl radicals, ozone and nitrogen oxides. Atmospheric oxidation as a result of radical attack is not direct photochemical degradation, but indirect degradation. In general, lubricating base oils have low vapour pressures and volatilisation is not expected to be a significant removal mechanism for the majority of the hydrocarbon components. However, some components (e.g., C15 branched paraffins and naphthenes) appear to have the potential to volatilise Atmospheric half-lives of 0.10 to 0.66 days have been calculated for representative C15 hydrocarbon components of lubricating base oils

Stability in Water: Chemicals that have a potential to hydrolyze include alkyl halides, amides, carbamates, carbamylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters. Because lubricating base oils do not contain significant levels of these functional groups, materials in the lubricating base oils category are not subject to hydrolysis

Chemical Transport and Distribution in the Environment: Based on the physical-chemical characteristics of component hydrocarbons in lubricating base oils, the lower molecular weight components are expected to have the highest vapour pressures and water solubilities, and the lowest partition coefficients. These factors enhance the potential for widespread distribution in the environment. To gain an understanding of the potential transport and distribution of lubricating base oil components, the EQC (Equilibrium Criterion) model was used to characterize the environmental distribution of different C15 compounds representing different structures found in lube oils (e.g., paraffins, naphthenes, and aromatics). The modelling found partitioning to soil or air is the ultimate fate of these C15 compounds. Aromatic compounds partition principally to soil. Linear paraffins partition mostly to soil, while branching appears to allow greater distribution to air. Naphthenes distribute to both soil and air, with increasing proportions in soil for components with the greater number of ring structures. Because the modelling does not take into account degradation factors, levels modelled in the atmosphere are likely overstated in light of the tendency for indirect photodegradation to occur.

Biodegradation: The extent of biodegradation measured for a particular lubricating oil basestock is dependent not only on the procedure used but also on how the sample is presented in the biodegradation test. Lubricant base oils typically are not readily biodegradable in standard 28-day tests. However, since the oils consist primarily of hydrocarbons that are ultimately assimilated by microorganisms, and therefore inherently biodegradable. Twenty-eight biodegradability studies have been reported for a variety of lubricating base oils. Based on the results of ultimate biodegradability tests using modified Sturm and manometric respirometry testing the base oils are expected to be, for the most part, inherently biodegradable. Biodegradation rates found using the modified Sturm procedure ranged from 1.5 to 29%. Results from the manometric respirometry tests on similar materials showed biodegradation rates from 31 to 50%. Biodegradation rates measured in 21-day CEC tests for similar materials ranged from 13 to 79%.

Ecotoxicity:

Numerous acute studies covering fish, invertebrates, and algae have been conducted to assess the ecotoxicity of various lubricating base oils. None of these studies have shown evidence of acute toxicity to aquatic organisms. Eight, 7-day exposure studies using rainbow trout failed to demonstrate toxicity when tested up to the maximum concentration of 1000 mg/L applied as dispersions. Three, 96-hour tests with rainbow trout also failed to show any toxic effects when tested up to 1000 mg/L applied as dispersions. Similarly, three 96-hour tests with fathead minnows at a maximum test concentration of 100 mg/L water accommodated fractions (WAF) showed no adverse effects. Two species of aquatic invertebrates (Daphnia magna and Gammarus sp.) were exposed to WAF solutions up to 10,000 mg/L for 48 and 96-hours, respectively, with no adverse effects being observed. Four-day exposures of the freshwater green alga (Scenedesmus subspicatus) to 500 mg/L WAF solutions failed to show adverse effects on growth rate and algal cell densities in four studies

Multiple chronic ecotoxicity studies have shown no adverse effects to daphnid survival or reproduction. In 10 of 11 chronic studies, daphnids were exposed for 21 days to WAF preparations of lubricating base oils with no ill effects on survival or reproduction at the maximum concentration of 1000 mg/L. One test detected a reduction in reproduction at 1000 mg/L. Additional data support findings of no chronic toxicity to aquatic invertebrates and fish. No observed effect levels ranged from 550 to 5,000 mg/L when tested as either dispersions or WAFs.

The data described above are supported by studies on a homologous series of alkanes. The author concluded that the water solubility of carbon chains .C10 is too limited to elicit acute toxicity. This also was shown for alkylbenzene compounds having carbon numbers .C15. Since base oils consist of carbon compounds of C15 to C50, component hydrocarbons that are of acute toxicological concern are, for the most part, absent in these materials. Similarly, due to their low solubility, the alkylated two to three ring polyaromatic components in base oils are not expected to cause acute or chronic toxicity. This lack of toxicity is borne out in the results of the reported studies.

The effects of crude and refined oils on organisms found in fresh and sea water ha been extensively reviewed.

sea water. Where spillages occur the non-mobile species suffer the greatest mortality, whereas fish species can often escape from the affected region. The extent of the initial mortality depends on the chemical nature of the oil, the location, and the physical conditions, particularly the temperature and wind velocity. Most affected freshwater and marine communities recover from the effects of an oil spill within a year. The occurrence of biogenic hydrocarbons in the world's oceans is well recorded. They have the characteristic isoprenoid structure, and measurements made in wate columns indicate a background concentration of 1.0 to 10 ul/l. The higher molecular weight materials are dispersed as particles, with the highest concentrations of about 20 ul/l occurring in the top 3 mm layer of water

A wide variation in the response of organisms to oil exposures has been noted. The larvae of fish and crustaceans appear to be most susceptible to the water-soluble fraction of crude oil. Exposures of plankton and algae have indicated that certain species of diatoms and green algae are inhibited, whereas microflagellates are not.

For the most part, molluscs and most intertidal worm species appear to be tolerant of oil contamination.

The term chlorinated paraffins is usually taken to encompass a wide range of liquids and solids from C10 to >C24 and containing 30-72% chlorine content. Properties differ significantly across this range and for this reason they are considered in three separate groups.

- 1. The C10-13 liquid products from 40-72% CI2 content
- 2. The C14-17, C18-20 and chlorinated paraffin wax liquids (average C25) from 40-60% Cl2 content
- 3. The powdered chlorinated paraffin waxes of >69% Cl2 content

Chemwatch: **4591-10**Version No: **7.1.1.1**

Page 10 of 11

RTD Compound #691-347, 330-6345

Issue Date: **05/12/2014**Print Date: **05/12/2014**

higher viscosity and density.

- Chlorinated paraffins have very low vapour pressure with the most volatile (C10-13 types) < 10-3 mbar. They are chemically stable but dehydrochlorinated on heating at high temperatures (for for prolonged periods). Dehydrochlorination also occurs on prolonged exposure to light.
- · All have low solubility in water but C10-13 types are significantly more soluble than other classes which show decreased solubility with increasing chain length.
- > Studies confirm that they adsorb strongly onto suspended materials or sediments in an aqueous environment. True solutions (at the low solubility limit) do degrade without added reagents.
- Laboratory studies often fail to indicate biodegradation occurring, but longer term studies in biological effluent treatment plants do reveal substantial degradation and the undegraded residue is removed by adsorption onto biological sludge.
- The short chain grades have been shown in laboratory tests, to have toxic effects on fish and other forms of aquatic life after long-term exposure to concentrations close to their water solubility, and significantly higher than those found typically in the environment.
- Mid-chain forms show a significantly reduced spectrum of toxicity compared to short-chain grades, as would be expected from their lower bioaccumulation. No measurable short or long term toxicity has been found in studies with numerous species of fish. Only one of several aquatic invertebrate species that has been been tested showed any sensitivity but at levels higher than those found in the environment. Similarly, certain soil and sediment organisms are affected at levels of hundreds of parts per million (ppm) whilst others are affected at 1000s of ppm.
- Long chain grades, because of their large molecular size and their very low solubility, have shown no toxicity to fish and other forms of aquatic life at and above their solubility limit.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Product / Packaging disposal
- Where in doubt contact the responsible authority.
 Recycle wherever possible or consult manufacturer for recycling options.
- Recycle wherever possible or consult manufacti
 Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

HAZCHEM

2Z

Land transport (ADG)

UN number	3077		
Packing group	III		
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%)		
Environmental hazard	No relevant data		
Transport hazard class(es)	Class 9 Subrisk Not Applicable		
Special precautions for user	Special provisions 179 274 331 335 AU01 Limited quantity 5 kg		

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in:

(a) packagings;

(b) IBCs; or

(c) any other receptacle not exceeding 500 kg(L).

- Australian Special Provisions (SP AU01) - ADG Code 7th Ed.

Chemwatch: 4591-10 Page 11 of 11 Issue Date: 05/12/2014 Version No: 7.1.1.1 Print Date: 05/12/2014

RTD Compound #691-347, 330-6345

UN number	3077	
Packing group		
UN proper shipping name	Environmentally hazardous substance, solid, n.o.s. * (contains C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%)	
Environmental hazard	No relevant data	
Transport hazard class(es)	ICAO/IATA Class 9 ICAO / IATA Subrisk Not Applicable ERG Code 9L	
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack	A97A158A179 956 400 kg 956 400 kg Y956 30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	3077	
Packing group	III	
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%)	
Environmental hazard	No relevant data	
Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable	
Special precautions for user	EMS Number F-A , S-F Special provisions 274 335 966 967 Limited Quantities 5 kg	

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%	х

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

C14-17 alkanes, chlorinated-, chlorinated paraffin 52, 58%(85535-85-9) is found on the following regulatory lists	"International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs","Australia Inventory of Chemical Substances (AICS)","Australia Hazardous Substances Information System - Consolidated Lists"
residual oils, petroleum, solvent- deasphalted(64741-95-3) is found on the following regulatory lists	"Australia Exposure Standards","Australia Inventory of Chemical Substances (AICS)","International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs","Australia Hazardous Substances Information System - Consolidated Lists"

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.