Rotary Actuator Vane Type 10, 15, 20, 30, 40

RoHS

Many combinations available!

The mounting position of the auto switch can be set freely.

The switch can be fixed in the desired position in the circumferential direction.

Connecting port location: Side ported or Axial ported The port location can be selected according to the application.
(Size 10 to 40 with unit(s) are side ported only.)

Double vane type is standardized for 90° and 100°.
The outside dimensions of the double vane type are equivalent to those of the single vane type (except size 10). Double vane construction can get twice the torque of the single vane type.

Series	Vane type	Rotating angle	Size				
			10	15	20	30	40
Basic type CRB2	Single	90°		-			
		100°					
		180°					
		270°					
With angle adjuster CRB2BWU	Double	90°					
		100°					
		180°					
		270°					

Working Principle/How to Mount Loads

Vane Type
Series

How to Mount Loads

How to connect a load directly to a single flat shaft

To secure the load, select a screw of an appropriate size from those listed in tables (1) and (2) by taking the shaft's single flat bearing stress strength into consideration.

Table (1) Using Screw Directly (Fig. 1)

Series	Size	Shaft bore size	Screw
CRB2	$\mathbf{1 0}$	4	M4 or larger
	$\mathbf{1 5}$	5	M5 or larger
	$\mathbf{2 0}$	6	
	$\mathbf{3 0}$	8	M6 or larger

Table (2) Using Holding Block (Fig. 2)

Series	Size	Shaft bore size	Screw	Plate thickness (t)
CRB2	$\mathbf{1 0}$	4	M3 or larger	2 or wider
	$\mathbf{1 5}$	5		2.3 or wider
	$\mathbf{2 0}$	6	M4 or larger	3.6 or wider
	$\mathbf{3 0}$	8	M5 or larger	4 or wider

The plate thickness (t) in the table above indicates a reference value when a carbon steel is used. Besides, we do not manufacture a holding block.

Fig. 2

Model Selection

Selection Procedures

Note

Selection Example

- Operating conditions

Operating conditions are as follows:

- Tentative model
- Operating pressure (MPa)
- Mounting orientation
- Load type

Static load
Resistance load
Inertial load

- Load dimensions (m)
- Load mass (kg)
- Rotation time (s)
- Rotating angle (rad)
- The unit for the rotating angle is radian. $180^{\circ}=\pi \mathrm{rad}$
$90^{\circ}=\pi / 2 \mathrm{rad}$

Tentative model: CRB2BS30-180SZ
Operating pressure: 0.4 MPa
Mounting orientation: Vertical Load type: Inertial load Rotation time: 0.6 s Rotating angle: $\pi \mathrm{rad}\left(180^{\circ}\right)$

1 Calculation of Moment of Inertia

Calculate the inertial moment of load.

- Loads are generated from multiple parts. The inertial moment of each load is calculated, and then totaled.

Inertial moment of load 1: I_{1}

$$
I_{1}=0.15 \times \frac{0.06^{2}+0.03^{2}}{12}+0.15 \times 0.025^{2}=0.00015
$$

Inertial moment of load 2: I_{2}

$$
I_{2}=0.1 \times \frac{0.01^{2}}{2}+0.1 \times 0.04^{2}=0.000165
$$

Total inertial moment: I

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=0.000315\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
$$

2 Calculation of Required Torque

Calculate the required torque for each load type and confirm that the values fall in the effective torque range.

- Static load (Ts)

Required torque: $\mathrm{T}=\mathrm{Ts}$

- Resistance load (Tf)

Required torque: $\mathrm{T}=\mathrm{Tf} \times$ (3 to 5)

- Inertial load (Ta)

Required torque: $\mathrm{T}=\mathrm{Ta} \times 10$

When the resistance load is rotated, the required torque calculated from the inertial load must be added.
Required torque
$T=T f \times(3$ to 5$)+T a \times 10$

Inertial load: Ta

$\mathrm{Ta}=\mathrm{I} \cdot \dot{\omega}$
$\dot{\omega}=\frac{2 \theta}{\mathrm{t}^{2}}\left[\mathrm{rad} / \mathrm{s}^{2}\right]$
Required torque: T
$\mathrm{T}=\mathrm{Ta} \times 10$
$=0.000315 \times \frac{2 \times \pi}{0.6^{2}} \times 10=0.055[\mathrm{~N} \cdot \mathrm{~m}]$
0.055 Nm < Effective torque OK

Confirmation of Rotation Time

Confirm that the time falls in the rotation time adjustment range.

- Consider the time after converted in the time per 90°.
($0.6 \mathrm{~s} / 180^{\circ}$ is converted to $0.3 \mathrm{~s} / 90^{\circ}$.)
$0.04 \leq \mathrm{t} \leq 0.3$
$\mathrm{t}=0.3 \mathrm{~s} / 90^{\circ} \mathrm{OK}$

4 Calculation of Kinetic Energy

Calculate the kinetic energy of the load and confirm that the energy is within the allowable range.

- If the energy exceeds the allowable range, a suitable cushioning mechanism such as a shock absorber must be externally installed.

> Kinetic energy: E $\mathrm{E}=\frac{1}{2} \cdot I \cdot \omega^{2}$ $\omega=\frac{2 \cdot \theta}{\mathrm{t}}$ $\mathrm{E}=\frac{1}{2} \times 0.000315 \times\left(\frac{2 \times \pi}{0.6}\right)^{2}=0.01725[\mathrm{~J}]$ $0.01725[\mathrm{~J}]<$ Allowable energy OK

5

Confirmation of Allowable Load

Confirm that the load applied to the product is within the allowable range.

- If the load exceeds the allowable range, a bearing or similar must be externally installed.

Thrust load: M

$0.15 \times 9.8+0.1 \times 9.8$
$=2.45[\mathrm{~N}]$
$2.45[\mathrm{~N}]$ < Allowable thrust load OK

Calculation of Air Consumption and Required Air Flow Capacity

Air consumption and required air flow capacity are calculated when necessary.

1 Calculation of Moment of Inertia

1-1 Equation Table of Moment of Inertia

I: Moment of inertia m: Load mass

1. Thin shaft

Position of rotational axis: Perpendicular to the shaft through the center of gravity

$$
\mathrm{I}=\mathbf{m} \cdot \frac{\mathrm{a}^{2}}{12}
$$

2. Thin rectangular plate

Position of rotational axis: Parallel to side b and through the center of gravity

3. Thin rectangular plate (Including rectangular parallelepiped)
Position of rotational axis: Perpendicular to the plate through the center of gravity

4. Round plate (Including column)

Position of rotational axis: Through the center axis

5. Solid sphere

Position of rotational axis: Through the center of diameter

$$
I=m \cdot \frac{2 \mathbf{r}^{2}}{5}
$$

6. Thin round plate

Position of rotational axis: Through the center of diameter

7. Cylinder

Position of rotational axis: Through the center of diameter and gravity.

$$
I=\mathbf{m} \cdot \frac{3 \mathbf{r}^{2}+\mathbf{a}^{2}}{12}
$$

8. When the rotational axis and load center of gravity are not consistent

$\mathbf{I}=\mathbf{K}+\mathbf{m} \cdot \mathbf{L}^{2}$
$\mathbf{K}:$ Moment of inertia around the load center of gravity
9. Round plate $\mathbf{K}=\mathbf{m} \cdot \frac{\mathbf{r}^{2}}{2}$
10. Gear transmission

11. Find the moment of inertia IB around the rotation of shaft (B).
12. Iв is converted to the moment of inertia IA around the rotation of shaft (A).
$\mathrm{IA}=\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{2} \cdot \mathrm{IB}$

1-2 Calculation Example of Moment of Inertia

1 If the shaft is located at a desired point of the load:
Example) 1. If the load is the thin rectangular plate:
Obtain the center of gravity of load as I_{1}, a provisional shaft.

$$
\mathbf{I}_{1}=\mathbf{m} \cdot \frac{\mathbf{a}^{2}+\mathbf{b}^{2}}{12}
$$

2. Obtain the actual moment of inertia I2 around the shaft, with the premise that the mass of the load itself is concentrated in the load's center of gravity point.

$$
\mathbf{I}_{2}=\mathbf{m} \cdot \mathbf{L}^{2}
$$

3. Obtain the actual moment of inertia I.
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
(\mathbf{m} : Mass of load
L : Distance from the shaft to the center of gravity of load

Calculation Example

$$
\begin{array}{ll}
a=0.2 \mathrm{~m}, \mathrm{~b}=0.1 \mathrm{~m}, \mathrm{~L}=0.05 \mathrm{~m}, \mathrm{~m}=1.5 \mathrm{~kg} \\
I_{1}=1.5 \times \frac{0.2^{2}+0.1^{2}}{12}=6.25 \times 10^{-3} & \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I_{2}=1.5 \times 0.05^{2}=3.75 \times 10^{-3} & \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I=(6.25+3.75) \times 10^{-3}=0.01 & \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{array}
$$

2 If the load is divided into multiple loads:

Example) 1. If the load is divided into the 2 cylinders:
$\{$ The center of gravity of load 1 matches the shaft.
\{The center of gravity of load 2 differs from the shaft.\}
Obtain the moment of inertia of load 1:

$$
\mathbf{I}_{1}=\mathbf{m}_{1} \cdot \frac{\mathbf{r}_{1}^{2}}{2}
$$

2. Obtain the moment of inertia of load 2.

$$
I_{2}=m_{2} \cdot \frac{\mathbf{r}_{2}^{2}}{2}+\mathbf{m}_{2} \cdot L^{2}
$$

3. Obtain the actual moment of inertia I.

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

$\left(\begin{array}{l}\mathbf{m}_{1}, \mathbf{m}_{2}: \text { Mass of load } 1 \text { and } 2 \\ \mathbf{r}_{1}, \mathbf{r}_{2}: \text { Radius of load } 1 \text { and } 2 \\ \mathbf{L}: \text { Distance from the shaft to the center of gravity of load } 2\end{array}\right)$

Calculation Example

$\mathrm{m}_{1}=2.5 \mathrm{~kg}, \mathrm{~m}_{2}=0.5 \mathrm{~kg}, \mathrm{r}_{1}=0.1 \mathrm{~m}, \mathrm{r}_{2}=0.02 \mathrm{~m}, \mathrm{~L}=0.08 \mathrm{~m}$

$$
\begin{array}{ll}
I_{1}=2.5 \times \frac{0.1^{2}}{2}=1.25 \times 10^{-2} & \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I_{2}=0.5 \times \frac{0.02^{2}}{2}+0.5 \times 0.08^{2}=0.33 \times 10^{-2} & \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I=(1.25+0.33) \times 10^{-2}=1.58 \times 10^{-2} & \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{array}
$$

Rotary Actuator/Vane Type Series CRB2 Size: 10, 15, 20, 30, 40

Basic type Series CRB2

Rotary Actuator Vane Type

Series CRB2
Size: 10, 15, 20, 30, 40

How to Order

Without
auto switch

Flange Assembly Part No.
(For details, refer to page 5.)

Model	Assembly part no.
CRB2F $\square \mathbf{1 0}$	P211070-2
CRB2F $\square \mathbf{1 5}$	P211090-2
CRB2F $\square \mathbf{2 0}$	P211060-2
CRB2F $\square \mathbf{3 0}$	P211080-2

Made to Order
(For details, refer to pages 19 to $23,29,30$.)

Symbol	Description
XA1 to XA24	Shaft type pattern
XC1	Add connecting ports
XC2	Change threaded hole to throughh-hole
XC3	Change the screw position
XC4	Change the rotation range
XC5	Change rotation range between 0 to200
XC6	Change rotaion range between 0to 110°
XC7	Reversed shaft
XC30	Fluorine grease

The above may not be selected when the product comes with an auto switch or angle adjustment unit. For details, refer to pages 19, 20, 24, 25, 29.

Single Vane Specifications

Model (Size)		CRB2B $\square 10-\square$ S	CRB2B $\square 15-\square$ S	CRB2B■20-■S	CRB2B $\square 30-\square S$	CRB2BC40-■S	
	Vane type	Single vane					
Rotating angle		$90^{\circ}, 180^{\circ} \quad 270^{\circ}$	$90^{\circ}, 180^{\circ}$ 270	$90^{\circ}, 180^{\circ}, 270^{\circ}$			
Fluid		Air (Non-lube)					
Proof pressure (MPa)		1.05			1.5		
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$					
Max. operating pressure (MPa)		0.7			1.0		
Min. operating pressure (MPa)		0.2	0.15				
Rotation time adjustment range s/90 ${ }^{\circ}{ }^{\text {Note }}$ 1)		0.03 to 0.3			0.04 to 0.3	0.07 to 0.5	
Allowable kinetic energy (J) ${ }^{\text {Note 2) }}$		0.00015	0.001	0.003	0.02	0.04	
		0.00025	0.0004	0.015	0.03		
Shaft load (N)	Allowable radial load		15	15	25	30	60
	Allowable thrust load	10	10	20	25	40	
Bearing type		Bearing					
Port location		Side ported or Axial ported					
Port size (Side ported, Axial ported) Angle adjustable range ${ }^{\text {Note } 3)}$		M3 $\times 0.5$		M5 x 0.8			
		0 to 230°		0 to 240°		0 to 230°	
Mounting		Basic type, Flange type				Basic type	
Auto switch		Mountable (Side ported only)					

Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used.
Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 15.

Double Vane Specifications

Model (Size)	CRB2B $\square 10-\square \mathrm{D}$	CRB2B $\square 15-\square$ D	CRB2B $20-\square \mathrm{D}$	CRB2B $\square 30-\square \mathrm{D}$	CRB2B $\quad 40-\square \mathrm{D}$
Vane type	Double vane				
Rotating angle	$90^{\circ}, 100^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Rotation time adjustment range s/90 ${ }^{\circ}$ Note ${ }^{\text {1) }}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)	0.0003	0.0012	0.0033	0.02	0.04
Shaft load Allowable radial load	15	15	25	30	60
(N) Allowable thrust load	10	10	20	25	40
Bearing type	Bearing				
Port location	Side ported or Axial ported				
Port size (Side ported, Axial ported)		$\times 0.5$	M5 x 0.8		
Angle adjustable range ${ }^{\text {Note 3) }}$	0 to 90°				
Mounting	Basic type, Flange type				Basic type
Auto switch	Mountable (Side ported only)				

Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speed ($0.3 \mathrm{sec} / 90^{\circ}$) can cause the unit to stick or not operate.
Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 15.
Volume

Vane type	Single vane															Double vane									
Model	CRB2B $\square 10-\square$ S			CRB2B $\square 15-\square$ S			CRB2B $\square 20-\square$ S			CRB2B $\square 30-\square$ S			CRB2B $\square 40-\square$ S			CRB2BD10-7D		CRB2B-15-वD		CRB2B-20-वD		CRB2B $730-\mathrm{D}$		CRB2BC40-वD	
Rotation	90°	180°	270°	90°	100°																				
Volume	$\begin{gathered} 1 \\ (0.6) \\ \hline \end{gathered}$	1.2	1.5	$\begin{array}{c\|} \hline 1.5 \\ (1.0) \\ \hline \end{array}$	2.9	3.7	$\begin{array}{\|c\|} \hline 4.8 \\ (3.6) \\ \hline \end{array}$	6.1	7.9	$\begin{array}{\|l} \hline 11.3 \\ (8.5) \end{array}$	15	20.2	$\begin{array}{\|c\|} \hline 25 \\ (18.7) \\ \hline \end{array}$	31.5	41	1.0	1.1	2.6	2.7	5.6	5.7	14.4	14.5	33	34

* Values inside () are volume of the supply side when A port is pressurized.

Weight

Vane type	Single vane															Double vane									
Model	CRB2BW10- \square S			CRB2BW15- \square S			CRB2BW20-■S			CRB2BW30- \square S			CRB2BW40- \square S			CRB2BW10-CD		CRB2BW15-CD		CRB2BW20-CD		CRB2BW30-CD		CRB2BW40-D	
Rotating angle	90°	180°	270°	90°	100°																				
Rotary actuator body	27	26.7	26.4	48.4	47.4	46.4	104	103	101	199	194	189	385	374	363	42.7	43.7	55.4	58.4	119	142	219	239	398	444
Flange assembly		9			10			19			25			-			9	10					25		
Auto switch unit		15			20			28			38			43			5	20					38		3
Angle adjuster unit		30			47			90			150			203			0	47					0	20	

Series
 CRB2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type, except for standard shaft type.

CRB2BJ

							(mm)
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$		
C	8	9	10	13	15		
D	14	18	20	22	30		

Note) Dimensions and tolerance of the shaft and single flat (a parallel key for size 40) are the same as the standard.

The above may not be selected when the product comes with an auto switch or angle adjustment unit. For details, refer to pages 24 , 25, 29.
(mm)

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
\mathbf{D}	14	18	20	22	30

Note 1) Only side ports are available for connecting port location.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel key for size $40)$ are the same as the standard.

Optional Specifications: Flange (Size: 10, 15, 20, 30)

Type				Flange assembly part no.
Basic type	With auto switch	With angle adjuster	With angle adjuster and auto switch	
CRB2F $\square 10$	CDRB2FW10	CRB2FWU10	CDRB2FWU10	P211070-2
CRB2F $\square 15$	CDRB2FW15	CRB2FWU15	CDRB2FWU15	P211090-2
CRB2F $\square 20$	CDRB2FW20	CRB2FWU20	CDRB2FWU20	P211060-2
CRB2F $\square 30$	CDRB2FW30	CRB2FWU30	CDRB2FWU30	P211080-2

Note 1) The flange (with countersunk head screws) is not mounted on the actuator at the time of shipment.
Note 2) The flange can be mounted on the rotary actuator at 60° intervals.

Assembly Part No.: P211070-2
(for C \square RB2F $\square \square 10$)

M3 countersunk head
screw (3 pcs.)

Assembly Part No.: P211060-2
(for C \square RB2F $\square \square 20$)
$6 x$ countersunk head screw

Assembly Part No.: P211090-2
(for C \square RB2F $\square \square 15$)
$6 \times$ countersunk head screw

Assembly Part No.: P211080-2
(for C \square RB2F $\square \square 30$)
$6 x$ countersunk head screw

Series CRB2

Effective Output

CRB2B $\square 15$

Direct Mounting of Body

Dimension " L " of the actuators is provided in the table below for JIS standard hexagon socket head cap screws. If these types of screw are used, their heads will fit in the mounting hole.

Reference screw size

Model	\mathbf{L}	Screw
CRB2B $\square \mathbf{1 0}$	11.5^{*}	M2.5
CRB2B $\square \mathbf{1 5}$	16	M2.5
CRB2B $\square \mathbf{2 0}$	24.5	M3
CRB2B $\square \mathbf{3 0}$	34.5	M4
CRB2B $\square \mathbf{4 0}$	39.5	M4

* Only the size 10 actuators have different L dimensions for single and double vane. Double vane: $L=20.5$
* Refer to page 10 for Q1 and Q2 dimensions.

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of actuators when B port is pressurized.

Single vane

90S

$180 S$

$270 S$

Double vane
90, 100D

* For size 40 actuators, a parallel key will be used instead of chamfer.

Note 1) For single vane type, the tolerance of rotating angle of $90^{\circ}, 180^{\circ}, 270^{\circ}$ will be ${ }_{0}^{+5^{\circ}}$ for size 10 only.
For double vane type, the tolerance of rotating angle of 90° will be ${ }_{0}^{+5^{\circ}}$ for size 10 only.
Note 2) The chamfered position of the double vane type shows the 90° specification position.

Construction
Single vane - Figures for 90° and 180° show the condition of the actuators when B port is pressurized, and the figure for 270° shows the position of the ports during rotation.

CRB2BS10/15/20/30/40- \square SZ

For 90°

(Viewed from the output shaft side)

For 180°
(Viewed from the output shaft side)

For 270°
(Viewed from the output shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum die-casted	Painted
$\mathbf{2}$	Body (B)	Aluminum die-casted	Painted
$\mathbf{3}$	Vane shaft	Stainless steel*	
$\mathbf{4}$	Stopper	Resin	For 270
$\mathbf{5}$	Stopper	Resin	For 180°
$\mathbf{6}$	Bearing	High carbon chrome bearing steel	
$\mathbf{7}$	Back-up ring	Stainless steel	
$\mathbf{8}$	Hexagon socket head cap screw	SCM	Special screw
$\mathbf{9}$	O-ring	NBR	
$\mathbf{1 0}$	Stopper seal	NBR	Special seal
$\mathbf{1 1}$	O-ring	NBR	Size 40 only
$\mathbf{1 2}$	Parallel key	Carbon steel	Size 40 only

* The material is carbon steel for size 30 and 40.

Double vane - Figures below show the intermediate rotation position when A or B port is pressurized.

CRB2BS10- \square DZ

For 90°

(Viewed from the output shaft side)

For 100°
(Viewed from the output shaft side)

CRB2BS15/20/30/40- \square DZ

For 90°
(Viewed from the output shaft side)

For 100°
(Viewed from the output shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum die-casted	Painted
$\mathbf{2}$	Body (B)	Aluminum die-casted	Painted
$\mathbf{3}$	Vane shaft	Carbon steel	
$\mathbf{4}$	Stopper	Stainless steel*	
$\mathbf{5}$	Stopper	Resin	
$\mathbf{6}$	Stopper	Stainless steel*	
$\mathbf{7}$	Bearing	High carbon chrome bearing steel	
$\mathbf{8}$	Back-up ring	Stainless steel	
$\mathbf{9}$	Cover	Aluminum alloy	

[^0]| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 0}$ | Plate | Resin | |
| $\mathbf{1 1}$ | Hexagon socket head cap screw | SCM | Special screw |
| $\mathbf{1 2}$ | O-ring | NBR | |
| $\mathbf{1 3}$ | Stopper seal | NBR | Special seal |
| $\mathbf{1 4}$ | Gasket | NBR | Special seal |
| $\mathbf{1 5}$ | O-ring | NBR | |
| $\mathbf{1 6}$ | O-ring | NBR | |
| $\mathbf{1 7}$ | O-ring | NBR | Size 40 only |
| $\mathbf{1 8}$ | Parallel key | Carbon steel | Size 40 only |

Series
 CRB2

Construction
Single vane

- Figures for 90° and 180° show the condition of the actuators when B port is pressurized, and the figure for 270° shows the position of the ports during rotation.

CRB2BW10/15/20/30/40- \square SZ

For 90°

(Viewed from the long shaft side)

(Short shaft side)

For 180°
(Viewed from the long shaft side)

For 270°
(Viewed from the long shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum die-casted	Painted
$\mathbf{2}$	Body (B)	Aluminum die-casted	Painted
$\mathbf{3}$	Vane shaft	Stainless steel*	
$\mathbf{4}$	Stopper	Resin	For 270°
$\mathbf{5}$	Stopper	Resin	For 180°
$\mathbf{6}$	Bearing	High carbon chrome bearing steel	
$\mathbf{7}$	Back-up ring	Stainless steel	
$\mathbf{8}$	Hexagon socket head cap screw	SCM	Special screw
$\mathbf{9}$	O-ring	NBR	
$\mathbf{1 0}$	Stopper seal	NBR	Special seal
$\mathbf{1 1}$	O-ring	NBR	Size 40 only
$\mathbf{1 2}$	Parallel key	Carbon steel	Size 40 only
The material is carbon steel for size 30 and 40.			

Double vane - Figures below show the intermediate rotation position when A or B port is pressurized.
CRB2BW10-■DZ

For 90°
(Viewed from the long shaft side)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum die-casted	Painted
$\mathbf{2}$	Body (B)	Aluminum die-casted	Painted
$\mathbf{3}$	Vane shaft	Carbon steel	
4	Stopper	Stainless steel*	
5	Stopper	Resin	
6	Stopper	Stainless steel*	
7	Bearing	High carbon chrome bearing steel	
$\mathbf{8}$	Back-up ring	Stainless steel	
$\mathbf{9}$	Cover	Aluminum alloy	

[^1]
CRB2BW15/20/30/40- \square DZ

For 90°

(Viewed from the long shaft side)

(18) Parallel key for size 40 (Long shaft side)
(Short shaft side)

(Long shaft side)

For 100°
(Viewed from the long shaft side)

No.	Description	Material	Note
$\mathbf{1 0}$	Plate	Resin	
$\mathbf{1 1}$	Hexagon socket head cap screw	SCM	Special screw
$\mathbf{1 2}$	O-ring	NBR	
$\mathbf{1 3}$	Stopper seal	NBR	Special seal
$\mathbf{1 4}$	Gasket	NBR	Special seal
$\mathbf{1 5}$	O-ring	NBR	
$\mathbf{1 6}$	O-ring	NBR	
$\mathbf{1 7}$	O-ring	NBR	Size 40 only
$\mathbf{1 8}$	Parallel key	Carbon steel	Size 40 only

Construction (With auto switch)

Single vane

- Following figures show actuators for 90° and 180° when B port is pressurized.

Double vane

- Following figures show the intermediate rotation position when A or B port is pressurized.

Component Parts

No.	Description	Material
$\mathbf{1}$	Cover (A)	Resin
$\mathbf{2}$	Cover (B)	Resin
$\mathbf{3}$	Magnet lever	Resin
$\mathbf{4}$	Holding block	Stainless steel
$\mathbf{5}$	Holding block (B)	Aluminum alloy
$\mathbf{6}$	Switch block (A)	Resin
$\mathbf{7}$	Switch block (B)	Resin
$\mathbf{8}$	Switch block	Resin
$\mathbf{9}$	Magnet	

No.	Description	Material
$\mathbf{1 0}$	Hexagon socket head set screw	Stainless steel
$\mathbf{1 1}$	Cross recessed round head screw	Stainless steel
$\mathbf{1 2}$	Cross recessed round head screw	Stainless steel
$\mathbf{1 3}$	Cross recessed round head screw	Stainless steel
$\mathbf{1 4}$	Cross recessed round head screw	Stainless steel
$\mathbf{1 5}$	Rubber cap	NBR

* For the CDRB2BW10, 2 cross recessed round head screws (11) are required.

Series CRB2

Dimensions: 10, 15, 20, 30, 40 (The size 10 double vane type is indicated on page 11.)

- For single vane type, the figures below show actuators for 90° and 180° when B port is pressurized.

For double vane type, the figures below show the intermediate rotation position when the A or B port is pressurized.

Single shaft/CRB2BS $\square-\square$ S/D

 <Port location: Side ported>

Single shaft

Size 40

CRB2B \square 10- $\square S$
CRB2B $\square \square-\square$ SE/DE <Port location: Side ported> <Port location: Axial ported>
$2 \times$ M3 $\times 0.5$ (Depth 4) Size 10 only

Double shaft/CRB2BW $\square-\square$ S/D <Port location: Side ported>

Dimensions: 10
Double vane

- Following figures show the intermediate rotation position when A or B port is pressurized.

Single shaft/CRB2BS \square-10D
<Port location: Side ported>

Double shaft/CRB2BW10-D <Port location: Side ported>

CRB2B $\square 10-\square$ DE
<Port location: Axial ported>

Series CDRB2

Dimensions: 10, 15, 20, 30, 40 (The size 10 double vane type is indicated on page 13.)

- For single vane type, the figures below show actuators for 90° and 180° when B port is pressurized.

For double vane type, the figures below show the intermediate rotation position when the A or B port is pressurized.

CDRB2BW10/15- \square S

CDRB2BW15- \square D

CDRB2BW20/30/40- \square S/D

Size 40

*1. The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V)
The length is 30 when any of the following auto switches are used: D-97/93A
*2. The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A
The angle is 69° when any of the following auto switches are used: D-S99(V)/T99(V)/S9P(V)

CDRB2BW20/30- \square S/D

(26.5: Connector type)

Model	A	B	C	D	E (g7)	F (h9)	G	K	L	M	N	P	Q	R	T	W	Y
CDRB2BW10- \square S	29	15	29	14	$4_{-0.016}^{-0.004}$	$9_{-0.036}^{0}$	3	9	0.5	9.5	9.5	24	M 3×0.5 depth 6	M3	3.6	19.8	18.5
$\begin{aligned} & \text { CDRB2BW15- } \square \mathbf{S} \\ & \hline \text { CDRB2BW15- } \square \mathrm{D} \end{aligned}$	34	20	29	18	$5_{-0.016}^{-0.004}$	$12_{-0.043}^{0}$	4	10	0.5	14	10	29	M3 x 0.5 depth 5	M3	7.6	21	18.5
$\begin{aligned} & \text { CDRB2BW20- } \square \mathrm{S} \\ & \hline \text { CDRB2BW20- } \square \mathrm{D} \end{aligned}$	42	29	30	20	$6_{-0.016}^{-0.004}$	$14_{-0.043}^{0}$	4.5	10	0.5	20	13	36	M4 x 0.7 depth 7	M5	10.5	22	25
CDRB2BW30- \square S	50	40	31	22	$8_{-0.020}^{-0.005}$	$16_{-0.043}^{0}$	5	12	1.0	26	14	43	M5 x 0.8 depth 10	M5	14	24	25
CDRB2BW40- \square S	63	45	31	30	$10^{-0.0020}$	$25_{-0.052}^{0}$	6.5	20	1.5	31	20	56	M5 x 0.8 depth 10	M5	17	30	31

Dimensions: 10
Double vane

- Following figures show the intermediate rotation position when A or B port is pressurized.

CDRB2BW \square-10D

*1. The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V)
The length is 30 when any of the following auto switches are used: D-97/93A
*2. The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A
The angle is 69° when any of the following auto switches are used: D-S99(V)/T99(V)/S9P(V)

Rotary Actuator with Angle Adjuster Vane Type

Series CRB2BWU
Size: 10, 15, 20, 30, 40

How to Order

With auto switch

 Size: 20, 30, 40
CDTRB2 B WŪ

With auto switch
(With auto switch unit and built-in magnet)

* Refer to page 33 when the auto switch unit is needed separately.

With angle adjuster unit

* Refer to page 33 when the angle adjuster unit is needed separately.

Patterned sequencing orderd	
Nil	Standard
\mathbf{P}	Simple Specials/Made to Order

* For details, refer to pages 19 to 30.
* For applicable auto switch model, refer to the table below.

Made to Order For details, refer to the table below. - Number of auto switches

* S : A right-hand auto switch is shipped.
** Nil: A right-hand switch and a left-hand switch are shipped.
- Electrical entry/Lead wire length

Nil	Grommet/Lead wire: 0.5 m
\mathbf{L}	Grommet/Lead wire: 3 m
\mathbf{C}	Connector/Lead wire: 0.5 m
$\mathbf{C L}$	Connector/Lead wire: 3 m
$\mathbf{C N}$	Connector/Without lead wire

* Connectors are available only for the R73, R80, T79.
** Lead wire with connector part nos. D-LC05: Lead wire 0.5 m
D-LC30: Lead wire 3 m
D-LC50: Lead wire 5 m

Made to Order	Made to Order (For details, refer to pages 19 to 23, 29, 30.)
Symbol	Description
XA1 to XA24	Shaft type pattern
XC1	Add connecting ports
XC2	Change threaded hole to through-hole
XC3	Change the screw position
XC4	Change the rotation range
XC5	Change rotation range between 0 and 200°
XC6	Change rotation range between 0 and 110°
XC7	Reversed shaft
XC30	Fluorine grease

The above may not be selected when the product comes with an auto switch or angle adjuster unit. For details, refer to pages 19, 20, 24, 25, 29.

Applicable Auto Switches/Refer to Best Pneumatics No. 4 for further information on auto switches.

$\begin{array}{\|l\|} \hline \frac{0}{0} \\ \frac{0}{0} \\ \frac{0}{2} \\ \hline \frac{N}{0} \\ \hline \frac{0}{6} \\ \hline \end{array}$	Type	Special function	Electrical entry	曾\| Wiring	Load voltage			Auto switch model		Lead wire type	Lead wire length (m)*				Pre-wired connector	Applicable load		
								$\left\|\begin{array}{c} 0.5 \\ \text { (Nil) } \end{array}\right\|$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$		$\left\|\begin{array}{c} 5 \\ (Z) \end{array}\right\|$	$\left\|\begin{array}{c} \text { None } \\ (\mathrm{N}) \end{array}\right\|$						
					DC		AC						Perpendicular	In-line				
	Solid		Grommet		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	S99V	S99	Oiproof heavy-duty vinyl cord	\bullet	\bigcirc	\bigcirc	-	\bigcirc	$\underset{\text { circuit }}{\text { IC }}$	$\begin{aligned} & \text { Relay, } \\ & \text { PLC } \end{aligned}$	
	state						S9PV	S9P	-		\bullet	\bigcirc	-	\bigcirc				
10	switch			2-wire		12 V		T99V	T99		\bullet	-	\bigcirc	-	\bigcirc	-		
-	Reed auto switch					$5 \mathrm{~V}, 12 \mathrm{~V}{ }^{5}$		${ }_{5}^{5 \mathrm{~V}, 12 \mathrm{~V} \text {, }}$	-	90	Vinyparale ard	\bullet	\bullet	\bigcirc	-			IC circuit
¿ָ						$\begin{gathered} 5 \mathrm{~V}, 12 \mathrm{~V} \\ 100 \mathrm{~V} \\ 2 \end{gathered}$	$\begin{aligned} & 5 \mathrm{~F}, 12 V_{i} \\ & 24 \mathrm{~V}, 100 \mathrm{~V} \end{aligned}$	-	90A	$\begin{aligned} & \text { Oiproof heavy- } \\ & \text { duty viny cord } \end{aligned}$	-	\bullet	-	-				
						-	-	-	97	Vinp parald cood	\bullet	\bullet	\bullet	-	-			
						-	100 V	-	93A	Oilpoof heay-	-	\bullet	-	-				
$\begin{aligned} & \text { O} \\ & \text { o } \\ & \text { O} \\ & \text { N } \\ & \text { No } \\ & \hline \end{aligned}$	Solid state auto switch		Grommet	3-wire (NPN)	5V, 12V			-	S79	Oiproof heavy-duty vinyl cord	-	-	\bigcirc	-	\bigcirc	IC	$\begin{aligned} & \text { Relay, } \\ & \text { PLC } \end{aligned}$	
				3-wie (PNP)			-	S7P	\bullet		\bullet	O	-	\bigcirc	circuit			
				2-wire	24 V	12 V		-	T79		\bullet	\bullet	\bigcirc	-	\bigcirc			
			Connector ${ }^{-}$					-	T79C		-	\bullet	-	\bullet	-			
	Reed auto switch		Grommet					100 V	-		R73	-	\bullet	\bigcirc	-			-
			Connector				-	-	R73C		-	\bullet	-	\bullet				
			Grommet			48V, 100 V	100 V	-	R80		-	\bullet	\bigcirc	-	IC circuit			
			Connector ${ }^{2}$			- 2	24 or less	-	R80C		-	\bullet	-	-	-			

* Lead wire length symbols: 0.5 m Nil (Example) R73C
$3 \mathrm{~m} \cdots \cdots \mathrm{~L}$ (Example) R73CL
$5 \mathrm{~m} \cdots . . \mathrm{Z}$ (Example) R73CZ
None N (Example) R73CN
* Auto switches are shipped together, (but not assembled).

Construction: 10, 15, 20, 30, 40

- The unit is common for single vane type and double vane type.

With angle adjuster
CRB2BWU10/15/20/30/40- \square S/D

Single vane

Double vane

With angle adjuster and auto switch

Specific Product Precautions

Be sure to read before handling. Refer to back
cover for Safety Instructions, "Handling
1 Precautions for SMC Products" (M-E03-3) for
Rotary Actuator Precautions and Auto Switch
Precautions.

Angle Adjuster Unit

\triangle Caution

1. Since the maximum angle of the rotating angle adjustment range will be limited by the rotation of the rotary actuator, make sure to take this into consideration when ordering.

Rotating angle of rotary actuator	Rotating angle adjustment range
$270^{\circ}+4$	
	0° to $230^{\circ}(\text { Size: } 10,40)^{* 1}$
$180^{\circ+4}$	0° to $240^{\circ}($ Size: $15,20,30)$
$90^{\circ+4}$	0° to 175°
	0° to 85°

*1. The maximum adjustment angle of the angle adjuster unit for size 10 and 40 is 230°.
2. Connecting ports are side ported only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator.
4. Use a 100° rotary actuator when you desire to adjust the angle to 90° using a double vane type.

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Stopper ring	Aluminum die-casted	
$\mathbf{2}$	Stopper lever	Carbon steel	
$\mathbf{3}$	Lever retainer	Carbon steel	Zinc chromated
$\mathbf{4}$	Rubber bumper	NBR	
$\mathbf{5}$	Stopper block	Carbon steel	Zinc chromated
$\mathbf{6}$	Block retainer	Carbon steel	Zinc chromated
$\mathbf{7}$	Cap	Resin	
$\mathbf{8}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{9}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 0}$	Hexagon socket head cap screw	Stainless steel	Special screw
$\mathbf{1 1}$	Joint		
$\mathbf{1 2}$	Hexagon socket head cap screw	Stainless steel	Hexagon nut will be used
	Hexagon nut	Stainless steel	for size 10 only.
$\mathbf{1 3}$	Cross recessed round head screw	Stainless steel	
$\mathbf{1 4}$	Magnet lever	-	

Series CRB2BWU

Dimensions: 10, 15, 20, 30, 40

- For single vane type, the figures below show actuators for 90° (without unit) when the B port is pressurized. For double vane type, the figures below show the intermediate rotation position when the A or B port is pressurized.
CRB2BWU10/15/20/30/40- \square S

Size 40

Key dimensions			
Model	b (h9)	h (h9)	L1
CRB2BWU40	$4_{-0.030}^{0}$	$4_{-0.030}^{0}$	20

Model	A	B	C	D	E (g7)	F (h9)	G	K	L	M	N	P	Q	R	T
CRB2BWU10- \square S	29	15	19.5	14	$4_{-0.016}^{-0.004}$	$9{ }_{-0.036}^{0}$	3	9	0.5	9.5	9.5	24	M 3×0.5 depth 6	M3	3.6
$\begin{aligned} & \text { CRB2BWU15- } \square \text { S } \\ & \hline \text { CRB2BWU15- } \square \text { D } \end{aligned}$	34	20	21.2	18	$5_{-0.016}^{-0.004}$	$12{ }_{-0.043}^{0}$	4	10	0.5	14	10	29	M3 x 0.5 depth 5	M3	7.6
CRB2BWU20- \square S	42	29	25	20	$6_{-0.016}^{-0.004}$	$14{ }_{-0.043}^{0}$	4.5	10	0.5	20	13	36	M4 x 0.7 depth 7	M5	10.5
CRB2BWU30- \square S	50	40	29	22	$8^{-0.0020}$	$16{ }_{-0.043}^{0}$	5	12	1.0	26	14	43	M5 x 0.8 depth 10	M5	14
CRB2BWU40- \square S	63	45	36.3	30	$10_{-0.020}^{-0.005}$	$25{ }_{-0.052}^{0}$	6.5	20	1.5	31	20	56	M5 x 0.8 depth 10	M5	17

Dimensions: 10, 15, 20, 30, 40 (The size 10 double vane type is indicated on page 18.)

- For single vane type, the figures below show actuators for 90° (without unit) when the B port is pressurized. For double vane type, the figures below show the intermediate rotation position when the A or B port is pressurized.

CDRB2BWU10/15- \square S

CDRB2BWU15- \square D

CDRB2BWU20/30/40- \square S/D

CDRB2BWU40- \square S/D

*1. The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V)
The length is 30 when any of the following auto switches are used: D-97/93A
*2. The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A
The angle is 69° when any of the following auto switches are used: D-S99(V)/T99(V)/S9P(V)

Model	A	B	C	D	E(g7)	F(h9)	G	K	L	M	N	P	Q	R	T	W	Y
CDRB2BWU10- \square S	29	15	45.5	14	$4_{-0.016}^{-0.004}$	$9_{-0.036}^{0}$	3	9	0.5	9.5	9.5	24	M 3×0.5 depth 6	M3	3.6	19.8	18.5
$\begin{aligned} & \hline \text { CDRB2BWU15- } \square \mathrm{S} \\ & \hline \text { CDRB2BWU15- } \square \mathrm{D} \end{aligned}$	34	20	47	18	$5_{-0.016}^{-0.04}$	$12{ }_{-0.043}^{0}$	4	10	0.5	14	10	29	M 3×0.5 depth 5	M3	7.6	21	18.5
CDRB2BWU20- \square S	42	29	51	20	$6_{-0.016}^{-0.004}$	$14{ }_{-0.043}^{0}$	4.5	10	0.5	20	13	36	M4 x 0.7 depth 7	M5	10.5	22	25
CDRB2BWU30- \square S	50	40	55.5	22	$8_{-0.020}^{-0.005}$	$16{ }_{-0.043}^{0}$	5	12	1.0	26	14	43	M5 x 0.8 depth 10	M5	14	24	25
CDRB2BWU40- \square S	63	45	62.2	30	$10_{-0.020}^{-0.005}$	$25{ }_{-0.052}^{0}$	6.5	20	1.5	31	20	56	M5 x 0.8 depth 10	M5	17	30	31

Series CRB2BWU

Dimensions: 10
Double vane

- Figures show the intermediate rotation position when the A or B port is pressurized.

CDRB2BWU10- \square D

*1. The length is 24 when any of the following auto switches are used: D-90/90A/S99(V)/T99(V)/S9P(V) The length is 30 when any of the following auto switches are used: D-97/93A
*2. The angle is 60° when any of the following auto switches are used: D-90/90A/97/93A The angle is 69° when any of the following auto switches are used: $\mathrm{D}-\mathrm{S} 99(\mathrm{~V}) / \mathrm{T} 99(\mathrm{~V}) / \mathrm{S} 9 \mathrm{P}(\mathrm{V})$

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials -XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system. (Refer to Best Pneumatics No.4) Please contact SMC for a specification sheet when placing an order.

Symbol

Shaft Pattern Sequencing I

-XA1 to -XA24
Applicable shaft type: W (Standard)

Shaft Pattern Sequencing Symbol
-Axial: Top (Long shaft side)

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA1		\bullet	\bullet	\bullet	\bullet	
XA3	Shaft-end male thread	\bullet	\bullet	\bullet	\bullet	
XA5	Stepped round shaft	\bullet	\bullet	\bullet	\bullet	
XA7	Stepped round shaft with male thread	\bullet	\bullet	\bullet	\bullet	
XA9	Modified length of standard chamfer	\bullet	\bullet	\bullet	\bullet	
XA11	Double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA14	Shaft through-hole + Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA17	Shortened shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA21	Stepped round shaft with double-sided chamfer	\bullet	\bullet	\bullet	\bullet	
XA23	Right-angle chamfer	\bullet	\bullet	\bullet	\bullet	
XA24	Double key					\bullet

* These specifications are not available for rotary actuators with auto switch and/or with angle adjuster unit.
-Axial: Bottom (Short shaft side)

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA2* *	Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA4 *	Shaft-end male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA6* *	Stepped round shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA8* *	Stepped round shaft with male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA10* *	Modified length of standard chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA12*	Double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA15* * Shaft through-hole + Shaft-end female thread		\bullet	\bullet	\bullet	\bullet	
XA18*	Shortened shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA22* *	Stepped round shaft with double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet

-Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13*			\bullet	\bullet	\bullet	\bullet
XA16*	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19*	Shortened shaft	\bullet	\bullet	\bullet	\bullet	
XA20*	Reversed shaft	\bullet	\bullet	\bullet	\bullet	\bullet

Combination
XA \square Combination

A combination of up to two $X A \square s$ are available.
Example: -XA2A24

XA \square, XC \square Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 29 to 30 for details on the made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC1*	Add connecting port	10, 15, 20, 30, 40	\bullet
XC2*	Change threaded holes to through-holes	15, 20, 30, 40	\bullet
XC3*	Change the screw position	10, 15, 20, 30, 40	\bullet
XC4	Change rotation range		\bullet
XC5*	Change rotation range between 0 to 200°		\bullet
XC6*	Change rotation range between 0 to 110°		\bullet
XC7*	Reversed shaft		-
XC30	Fluorine grease		\bullet

* These specifications are not available for rotary actuators with auto switch and/or with angle adjuster unit.
A total of four XA \square and $X C \square$ combinations is available.
Example: -XA2A24C1C30
-XA2C1C4C30

Rotary Actuator Vane Type
 Series CRB2

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining
Symbol. A1 female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A3 \quad The long shaft can be further shortened by machining (If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Symbol: A5 \quad The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker. (If not specifying dimension C 1 , indicate "*" instead.)

Symbol: $\mathbf{A 7}$ The long shaft can be further shortened by machining (f 17 it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate " $*$ " instead.)

Axial: Bottom (Short shaft side)

Symbol: A2 The short shaft can be further shortened by machining
(If shortening the shaft is not required, indicate " $*$ " for dimension Y.)

- Not available for size 10.
- The maximum dimension $L 2$ is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 \quad The short shaft can be further shortened by machining Symbol. A4 male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W

| | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Symbol: A6 The short shaft can be further shortened by machining
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker. (If not specifying dimension C2, indicate "*" instead.)

Symbol: A8 \quad The short shaft can be further shortened by machining If it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate " $*$ " for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker. (If not specifying dimension C2, indicate "*" instead.)

(mm)				
Size	Y	L2 max	Q2	
$\mathbf{1 0}$	5.5 to	8	Y-1	3
$\mathbf{1 5}$	7.5 to	9	Y-1.5	3,4
$\mathbf{2 0}$	9	to 10	Y-1.5	$3,4,5$
$\mathbf{3 0}$	11	to 13	Y-2	$3,4,5,6$
$\mathbf{4 0}$	14	to 15	Y-4.5	$3,4,5,6,8$

Axial: Top (Long shaft side)

Axial: Bottom (Short shaft side)

Symbol: A9 The long shaft can be further shortened by changing If shortening the the length of the standard chamfer on the long shaft side (If shortening the shaft is not required, indicate "*" for dimension X.) - Applicable shaft type: W

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore size of $ø 30$.
- Applicable shaft type: W

Symbol: A14
Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 max. $=6 \mathrm{~mm}$
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

- Applicable shaft type: W

Symbol: A10 The short shaft can be further shortened by changing (If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W

(mm)		
Size	Y	L2
10	3 to 8	5-(8-Y) to (Y-1)
15	3 to 9	6-(9-Y) to (Y-1.5)
20	3 to 10	7-(10-Y) to (Y-1.5)
30	5 to 13	8-(13-Y) to (Y-2)
40	7 to 15	9-(15-Y) to (Y-2)

Symbol: A12 The short shaft can be further shortened by machining (If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L2 and Y dimensions.)

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more, and 1 mm or more with shaft bore size of $\varnothing 30$ and $\varnothing 40$.
- Applicable shaft type: W

Symbol: A15
Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- A parallel key is used on the long shaft for size 40.
- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 max. $=8 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A18 The short shaft is shortened.

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

(mm)	
Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
$\mathbf{4 0}$	4.5 to 15

Rotary Actuator Vane Type
 Series CRB2

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it (If shortening the into a stepped round shaft with a double-sided chamfer. (If shortening the shaft is not required, indicate "**" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it (If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker. (If not specifying dimension C 2 , indicate "*" instead.)
The standard chanter
may not beatered
dependingonthe tye
of machingngrequired

Double Shaft

Symbol: A13

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)		
Size	\mathbf{X}		\mathbf{Y}
$\mathbf{1 0}$	3	to 14	1
to 8			
$\mathbf{1 5}$	4	to 18	1.5 to 9
$\mathbf{2 0}$	4.5 to 20	1.5 to 10	
$\mathbf{3 0}$	5	to 22	2
to 13			
$\mathbf{4 0}$	18	to 30	4.5 to 15

Symbol: A23 $\begin{aligned} & \text { The long shaft can be further shortened by machining }\end{aligned}$ (If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the $L 1$ and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore size of $\varnothing 30$ and $\varnothing 40$.
- Applicable shaft type: W

Size	\mathbf{X}	L1	L3 max
$\mathbf{1 0}$	5 to 14	9-($14-\mathbf{X})$ to $(X-3)$	X-3
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10 \cdot(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12 \cdot(22-X)$ to $(X-5)$	$X-5$

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Symbol: A20

The shafts are reversed.
(Both the long shaft and the short shaft are shortened.)

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A24

Double key

Keys and keyways are machined additionally at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
 -XA31 to -XA58: Shaft Pattern Sequencing II
Shaft shape pattern is dealt with simple made-to-order system. (Refer to Best Pneumatics No.4) Please contact SMC for a specification sheet when placing an order.

Symbol

Shaft Pattern Sequencing II

Applicable shaft type: S, J, K, T, Y

Shaft Pattern Sequencing Symbol

- Axial: Top (Long shaft side)

Symbol	Description		Shaft type	Applicable size			
				$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	J, K, T		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	J, K, T	\bullet	\bullet	\bullet	\bullet	\bullet
XA45	Middle-cut chamfer	J, K, T	\bullet	\bullet	\bullet	\bullet	\bullet
XA47	Machined keyway	J, K, T			\bullet	\bullet	
XA48	Change of long shaft length	S, Y	\bullet	\bullet	\bullet	\bullet	\bullet
XA51	Change of long shaft length	J, K, T	\bullet	\bullet	\bullet	\bullet	\bullet

- Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	
XA32	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA34	Shaft-end female thread	J, K, T		\bullet	\bullet	\bullet	\bullet
XA38	Stepped round shaft	K	\bullet	\bullet	\bullet	\bullet	\bullet
XA46	Middle-cut chamfer	K	\bullet	\bullet	\bullet	\bullet	\bullet
XA49	Change of short shaft length	Y	\bullet	\bullet	\bullet	\bullet	\bullet
XA52	Change of short shaft length	K	\bullet	\bullet	\bullet	\bullet	\bullet
XA55	Change of short shaft length	J	\bullet	\bullet	\bullet	\bullet	\bullet

- Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39*	Shaft through-hole	S, Y		\bullet	-	-	\bullet
XA40*	Shaft through-hole	K, T		\bullet	\bullet	\bullet	\bullet
XA41*	Shaft through-hole	J		\bullet	-	-	\bullet
XA42*	Shatt through-hole + Shat-end female thread	S, Y		\bullet	\bullet	\bullet	\bullet
XA43*	Shatt through-hole + Shat-end female thread	K, T		\bullet	-	-	\bigcirc
XA44*	Shatt throughh-hole + Shat-end female thread	J		\bullet	\bullet	\bullet	\bigcirc
XA50*	Change of double shaft length	Y	\bullet	\bullet	\bullet	\bullet	-
XA53*	Change of double shaft length	K	\bullet	-	-	\bullet	\bullet
XA57*	Change of double shaft length	J	\bullet	\bullet	\bullet	\bullet	\bullet
XA58*	Reversed shat, Change of double shat length	J	-	-	-	-	\bullet

* These specifications are not available for rotary actuators with auto switch and/or with angle adjuster unit.

Combination

XA \square Combination

A combination of up to two $\mathrm{XA} \square$ s are available.
Example: XA31A32

XA $\square, \mathbf{X C} \square$ Combination

Combination other than XA \square, such as Made to Order (XC \square), is also available. Refer to pages 29 to 30 for details on the made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|l\|} \hline \text { Combination } \\ \hline \text { XA31 to XA58 } \\ \hline \end{array}$
XC1*	Add connecting ports	10, 15, 20, 30, 40	-
XC2*	Change threaded holes to through-holes	15, 20, 30, 40	\bullet
XC3*	Change the screw position	10, 15, 20, 30, 40	\bullet
XC4	Change the rotation range		\bullet
XC5*	Change rotation range between 0 to 200°		-
XC6*	Change rotation range between 0 to 110°		\bullet
XC7*	Reversed shaft		-
XC30	Fluorine grease		\bullet

* These specifications are not available for rotary actuators with
auto switch and/or with angle adjuster unit.
A total of four XA \square and $X C \square$ combinations is available.
Example: ХАЗ3А34C5C30

Axial: Top (Long shaft side)

Axial: Bottom (Short shaft side)

Symbol: A31

Female threads are machined into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: S, Y

Symbol: A33

Female threads are machined into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: J, K, T

Symbol: A37 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: J, K, T
- Equal dimensions are indicated by the same marker. (If not specifying dimension C 1 , indicate "*" instead.)

	(mm)		
Size	X	L1max	D1
$\mathbf{1 0}$	4 to 14	X-3	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	5 to 18	X-4	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	6 to 20	X-4.5	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	6 to 22	X-5	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	8 to 30	X-6.5	$\varnothing 3$ to $\varnothing 9.9$

Symbol: A45 The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard model.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: J, K, T

Symbol: A32 Female threads are machined into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times the thread size.
- Applicable shaft type: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Female threads are machined into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size. (Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times the thread size.
- Applicable shaft type: J, K, T

(mm)			
-	Q2		
Size ${ }_{\text {mame }}^{\text {same }}$	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		
40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C2, indicate "*" instead.)

Size	Y	L2max	Q2
10	2 to 14	Y-1	03 to 03.9
15	3 to 18	Y-1.5	¢3 to ø4.9
20	3 to 20	Y-1.5	03 to 05.9
30	3 to 22	Y-2	03 to 07.9
40	6 to 30	Y-4.5	¢5 to 09.9

Symbol: A46 The short shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard model.)
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K

(mm)				
Size	Y	W2	L2max	L4max
10	4.5014	0.5 to 2	Y-1	L2-1
15	5.5 to 18	0.5 to 2.5	Y-1.5	L2-1
20	6 to 20	0.5 to 3	Y-1.5	L2-1
30	8.5 to 22	0.5 to 4	Y-2	L2-2
40	13.5 to 30	0.5 to 5	Y-4.5	L2-2

Axial: Top (Long shaft side)

Axial: Bottom (Short shaft side)

Symbol: A47
Machine a keyway into the long shaft. (The position of the keyway is the same as the standard model.) The key must be ordered separately.

- Applicable shaft type: J, K, T

Size	a1	L1	N1
$\mathbf{2 0}$	$2 h 9_{-0.025}^{0}$	10	6.8
$\mathbf{3 0}$	$3 h 9_{-0.025}^{0}$	14	9.2

Symbol: A48
The long shaft is shortened.

- Applicable shaft type: S, Y

Size 10 to 30 Size 40

	(mm)
Size	\mathbf{X}
$\mathbf{1 0}$	3 to 14
15	4 to 18
20	4.5 to 20
30	5 to 22
40	18 to 30

Symbol: A51

The long shaft is shortened.

- Applicable shaft type: J, K, T

	(mm)
Size	\mathbf{X}
$\mathbf{1 0}$	3 to 14
$\mathbf{1 5}$	4 to 18
$\mathbf{2 0}$	4.5 to 20
$\mathbf{3 0}$	5 to 22
$\mathbf{4 0}$	6.5 to 30

Symbol: A49 The short shaft is shortened.

- Applicable shaft type: Y
Size 10 to 30 Size 40

Symbol: A52
The short shaft is shortened.

- Applicable shaft type: K

	(mm)
Size	\mathbf{Y}
10	1 to 14
15	1.5 to 18
20	1.5 to 20
30	2 to 22
40	4.5 to 30

Symbol: A55

The short shaft is shortened.

- Applicable shaft type: J

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
40	4.5 to 15

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)

- Applicable shaft type: S, Y
- A parallel key is used on the long
- Equal dimensions are indicated by
the same marker
- Not available for size 10.
shaft for size 40
$\mathrm{d} 1=\varnothing$

Y axis

S axis
axis

Minimum machining diameter for
d 1 is 0.1 mm .
(mm)

Symbol: A40
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft type: K, T
- Equal dimensions are indicated by
the same marker.
- Not available for size 10.

- d1 = $02.5, L 1=18($ max $)$ for size 15 ; minimum machining diameter for d 1 is 0.1 mm .
$\bullet \mathrm{d} 1=\mathrm{d} 3$ for size 20 to $40 . \quad(\mathrm{mm})$

Size	K	T	K	T
	d1		d3	
15	ø2.5		$\varnothing 2.5$ to ø3	
20	-		ø2.5 to ø4	
30	-		$\varnothing 2.5$ to $\varnothing 4.5$	
40	-		ø2.5 to $\varnothing 5$	

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft: L1 max. $=7.5 \mathrm{~mm}$

				(mm)
Size	15	20	30	40
Thread ${ }^{\text {shata }}$ Nee	K T	K ${ }_{\text {T }}$	K T	K T
M 3×0.5	ø2.5	ø2.5	ø2.5	ø2.5
M 4×0.7	-	ø3.3	ø3.3	ø3.3
M5 $\times 0.8$	-	-	$\varnothing 4.2$	ø4.2

Symbol: A50
Both the long shaft and the short shaft are shortened

- Applicable shaft type: Y

Symbol: A57
Both the long shaft and the short shaft are shortened.

- Applicable shaft type: J

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size
(Example) For M5: L1 max 10 mm However, for M5 on the short shaft of S shaft: L1 max. $=7.5 \mathrm{~mm}$

- A parallel key is used on the long shaft for size 40.
- Applicable shaft type: S, Y - Aqual dimensions are indicated by the same marker.

\square	(mm)			
	15	20	30	40
	S ${ }^{\mathbf{Y}}$	$\mathbf{S} \mathbf{Y}$	$\mathbf{S} \mathbf{Y}$	$\mathbf{S} \mathbf{Y}$
M3 $\times 0.5$	ø2.5	ø2.5	ø2.5	$ø 2.5$
M4 x 0.7	-	$ø 3.3$	ø3.3	-
M5 0.8	-	-	$\varnothing 4.2$	-

Symbol: A44

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- Applicable shaft type: J
- The maximum dimension L1 is, as
- Equal dimensions are indicated a rule, twice the thread size. by the same marker.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$

Size Thread	15	$\mathbf{2 0}$	$\mathbf{3 0}$	40
$\mathrm{M} 3 \times 0.5$	$ø 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
$\mathrm{M} 4 \times 0.7$	-	$\varnothing 3.3$	$\varnothing 3.3$	$\varnothing 3.3$
$\mathrm{M} 5 \times 0.8$	-	-	$\varnothing 4.2$	$\varnothing 4.2$

Symbol: A53 Both the long shaft and the short shaft are shortened.

- Applicable shaft type: K

	(mm)	
Size	X	\mathbf{Y}
$\mathbf{1 0}$	3 to 14	$1 \quad$ to 14
$\mathbf{1 5}$	4 to 18	1.5 to 18
$\mathbf{2 0}$	4.5 to 20	1.5 to 20
$\mathbf{3 0}$	5 to 22	
$\mathbf{4 0}$	2 to 22	

Symbol: A58

The shafts are reversed. Additionally, both the long shaft and the short shaft are shortened.
(If shortening the shaft is not required, indicate " $*$ " for dimension X, Y.)

- Applicable shaft type: J

Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	3 to 10	$1 \quad$ to 12
$\mathbf{1 5}$	4 to 11.5	1.5 to 15.5
$\mathbf{2 0}$	4.5 to 13	1.5 to 17
$\mathbf{3 0}$	5 to 16	2 to 19
$\mathbf{4 0}$	6.5 to 17	4.5 to 28

Series CRB2 (Size 10, 15, 20, 30, 40)
Made to Order
-XC1, 2, 3, 4, 5, 6, 7, 30

Symbol
-XC1 to -XC7, -XC30

Made to Order Symbol

Symbol	Description	Applicable shaft type W, J, K, S, T, Y	Applicable size
XC1*	Add connecting ports	\bullet	
XC2*	Change threaded holes to through-holes	\bullet	10
XC3*	Change the screw position	\bullet	15
XC4	Change the rotation range	-	
XC5*	Change rotation range between 0 to 200°	\bullet	
XC6*	Change rotation range between 0 to 110°	-	30
XC7*	Reversed shaft	W, J	40
XC30	Fluorine grease	\bullet	

[^2]Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	\bigcirc	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

Symbol: C1 The connecting ports are added on the Body (A) end surface. (It will have an aluminum surface since the additional machining will be left unfinished.)

- A parallel key is used instead of chamfer on the long shaft for size 40.
- Not available for the rotary actuator with auto switch.

Symbol: C3

The position of the screws for tightening the actuator body is changed.

(Viewed from the short shaft side)

Symbol: C5

Applicable to single vane type only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRB2BW10 is ${ }_{0}^{+5^{\circ}}$.
- Port size for CRB2BW10, 15 is M3.
- A parallel key is used instead of chamfer for size 40. $\theta=\left[_{---]^{\circ}+4^{\circ}}^{0}\right.$

Start of rotation is the position of the chamfer (key) when B port is pressurized.
(Viewed from the long shaft side)

Symbol: C7

The shafts are reversed.

- A parallel key is used instead of chamfer on the long shaft for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	12	10
$\mathbf{1 5}$	15.5	11.5
$\mathbf{2 0}$	17	13
$\mathbf{3 0}$	19	16
$\mathbf{4 0}$	28	17

Symbol: C2
The threaded holes on the Body (B) are changed to through-holes. (It will have an aluminum surface since the additional machining will be left unfinished.)

- Not available for the rotary actuator with auto switch.

Symbol: C4

Applicable to single vane type only
The rotation range is changed. Rotating angle 90°.
Starts of rotation is the horizontal line (90° down from the top to the right side).

- Rotation tolerance for CRB2BW10 is ${ }_{0}^{+5^{\circ}}$.
- A parallel key is used instead of chamfer on the long shaft for size 40

(Viewed from the long shaft side)
Symbol: C6
Applicable to single vane type only
Start of rotation is horizontal line (90° down from the top to the left side)
- Rotation tolerance for CRB2BW10 is ${ }_{0}^{+5^{\circ}}$.
- A parallel key is used instead of chamfer on the long shaft for size 40.

Symbol: C30

The standard grease is changed to fluovine grease. (Not for low-speed specification.)

Auto Switch Unit and Angle Adjuster Unit

Series CRB2 Auto switch unit and/or angle adjuster unit can be mounted on the rotary actuator vane type.

* The rotary actuator with auto switch and angle adjuster is basically a combination of the auto switch unit and angle adjuster unit.

The items marked with \star are additional parts required for connection (joint assembly parts), and the items marked with are unnecessary.

* To order the joint assembly separately, order it using the joint unit part number.

1 Auto Switch Unit Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
CRB2	CDRB2BW10	Single/Double	P611070-1
	CDRB2BW15		P611090-1
	CDRB2BW20		P611060-1
	CDRB2BW30		P611080-1
	CDRB2BW40		P611010-1

* Auto switch unit can be ordered separately if the rotary actuator with auto switch is required after the product being delivered. Since the auto switch will not be included, please order separately.

2 Switch Block Unit Part No.

Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged.

Series	Model		
CRB2	CDRB2BW10,15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRB2BW20,30	Right-handed	P611060-8
		Left-handed	
	CDRB2BW40	Right-handed	P611010-8
		Left-handed	P611010-9

* Solid state switch for size 10 and 15 requires no switch block, therefore the unit part number will be P211070-13.

3 Angle Adjuster Unit Part No.

Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
CRB2	CRB2BWU10		P811010-3
	CRB2BWU15		P811020-3
	CRB2BWU20	Single/Double	P811030-3
	CRB2BWU30		P811040-3
	CRB2BWU40		P811050-3

4 Auto Switch Angle Adjuster Unit Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
CRB2	CDRB2BWU10	Single/Double	P811010-4
	CDRB2BWU15		P811020-4
	CDRB2BWU20		P811030-4
	CDRB2BWU30		P811040-4
	CDRB2BWU40		P811050-4

5 Joint Unit Part No.

Joint unit is required to retrofit the angle adjuster unit to a rotary actuator with auto switch or to retrofit the auto switch unit to a rotary actuator with angle adjuster.

Series	Model	Vane type	Unit part no.
CRB2	CDRB2BWU10		P211070-10
	CDRB2BWU15		P211090-10
	CDRB2BWU20		P211060-10
	CDRB2BWU30		P211080-10
	CDRB2BWU40		P211010-10

Series CRB2

Angle Adjustment Setting

Specifications

Single Vane

Model	Rotaiting angle adjustment range	Rubber bumper
CRB2BWU10	0 to 230°	
CRB2BWU15		
CRB2BWU20	0 to 240°	Yes
CRB2BWU30		
CRB2BWU40	0 to 230°	

Note 1) Use rotary actuator for 270°.
Note 2) Connecting ports are side ported only.
Note 3) The allowable kinetic energy is the same as the specifications of the rotary actuator.
Double Vane

Model	Rotating angle adjustment range	Rubber bumper
CRB2BWU10		
CRB2BWU15	0 to 90°	Yes
CRB2BWU20		
CRB2BWU30		
CRB2BWU40		

Note 1) Since the maximum angle of the rotating angle adjustment range will be limited by the rotation when using a rotary actuator for 90°, make sure to take this into consideration when ordering. Rotary actuator for 90° should be used to adjust the angle of 85° or less as a guide.
Note 2) Connecting ports are side ported only.
Note 3) The allowable kinetic energy is the same as the specifications of the rotary actuator.

Rotating Angle Adjustment Method

Remove the resin cap in the illustrations below, slide the stopper block on the long groove and lock it into the appropriate position to adjust the rotating angle and rotating position. Protruding four chamfers for wrench on the output shaft that rotates allows manual operation and convenient positioning. (Refer to the rotating angle setting examples shown in the next page for details.)

Section A-A
Section A-A
(Single vane)

Note) For size 40, each stopper block comes with 2 holding screws.

Recommended Tightening Torque for Holding Stopper Block

Model	Tightening torque (N•m)
CRB2BWU10	1.0 to 1.2
CRB2BWU15	
CRB2BWU20	3.4 to 3.9
CRB2BWU30	
CRB2BWU40	

Note) Stopper block is tightened temporarily at the time of shipment. Angle is not adjusted before shipment.

Output shaft with single flat
(A key is used for size 40.)

Other Operating Method

Although one stopper block is mounted on each long groove for standard specifications as shown in the illustrations below, 2 stopper blocks can be mounted on one long groove.

Size: 15, 20, 30 60°
As shown in <Fig.b>, when mounting 2 stopper blocks on one long groove, by revolving each stopper block (A)(B), the rotation range of the output shaft with single flat (key) is adjustable, as described in <Fig.a>, within either left 50° or 60° against port A and B .
(Rotation range of single flat (key) when mounting 2 stopper blocks on the other side's groove is the opposite side from <Fig.a> and the setting range is within either right 50° or 60° against port A and B.)

<Fig. b>

Rotating Angle Setting Examples

Example 1
The stopper ring is mounted on the standard position. (Rotary actuator with a rotating angle of 270° is used.)

Lock Block (D) in Fig. 1-2, and move Block (C) clockwise to allow the rotation of the shaft with single flat in Fig. 1-1 from point zero to End (1). When Block (c) is locked and Block (D) is moved counterclockwise, the shaft with single flat in Fig. 1-1 rotates from point zero to End (2). The maximum rotation range of the shaft with single flat is as follows: Sizes 10, 40: up to 230°; Sizes 15, 20,30 : up to 240° (Fig. $1-2$ shows when the rotating angle is 0°.)

Example 3

The stopper ring is mounted on 120° clockwise from the standard position shown in Fig. 1-2 of Example 1 as in Fig. 4-2 of Example 4.

<Fig. 3-1>

Lock Block (C) in Fig. 3-2 and move Block (D) counterclockwise to allow the rotation of the shaft with single flat in Fig. 3-1 from End (1) to End (2). However, since the internal stopper will come into contact with the vane at End (1) position of the shaft with single flat make sure that the stopper lever stops at Block (c) when adjusting. End (1) side can be adjusted within 30° by moving Block(C) counterclockwise.

Example 2 The stopper ring is mounted on 120° counterclockwise from the standard position shown in Fig. 1-2 of Example 1.

The maximum rotation range of the shaft with single flat in Fig. 2-2 is 195°, from End (1) to End (2). The rotation range of the shaft with single flat in Fig. 2-1 decreases to the range between End (2) and (3) when moving Block (C) in Fig. 2-2 clockwise, and similarly when moving Block (D) counterclockwise, the rotation range decreases to the range between End (1) and (4). However, since the internal stopper will come into contact with the vane at End (1) position of the shaft with single flat in Fig. 2-1, make sure that the stopper lever stops at Block (D) when adjusting.

Example 4

The stopper ring is mounted on 120° clockwise from the standard position shown in Fig. 1-2 of Example 1 as in Fig. 3-2 of Example 3.

Counterclockwise
<Fig. 4-2>
The maximum rotation range of the shaft with single flat is 270°, from End (1) to End (2), when using the actuator for 270° and End (1) side in Fig. 4-1 is stopped using the internal stopper and End (2) side is adjusted using Block (c). The rotation range can be adjusted within 90° in End (2) side. Note that Block (c) cannot be moved and set 90° or more counterclockwise from its position in Fig. 4-2 since the internal stopper will come into contact with the vane.

[^3]
Applicable Auto Switches

Applicable series	Auto switch model		Electrical entry
CDRB2BW10/15	Reed	D-90/90A	Grommet, 2-wire
		D-97/93A	
	Solid state	D-S99/S99V*	Grommet, 3-wire (NPN)
		D-S9P/S9PV*	Grommet, 3-wire (PNP)
		D-T99/T99V	Grommet, 2-wire
CDRB2BW20/30/40	Reed	D-R73	Grommet, 2-wire
		D-R80	Connector, 2-wire
	Solid state	D-S79*	Grommet, 3-wire (NPN)
		D-S7P*	Grommet, 3-wire (PNP)
		D-T79	Grommet, 2-wire; Connector, 2-wire

* Solid state switch with 3-wire type has no connector type.

Operating Range and Hysteresis

* Operating range: $\theta \mathrm{m}$

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the switch turns OFF as the magnet travels the same direction.

* Hysteresis range: θ d

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the auto switch turns OFF as the magnet travels the opposite direction.

Model	$\theta \mathrm{m}$: Operating range	θ d: Hysteresis range
CDRB2BW10/15	110°	10°
CDRB2BW20/30	90°	
CDRB2BW40	52°	

Note) Since the figures in the above table are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

How to Change the Auto Switch Detecting Position

* When setting the detecting position, loosen the tightening screw a bit and move the auto switch to the preferred position and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix position. Be sure to set the tightening torque around $0.49 \mathrm{~N} \cdot \mathrm{~m}$.

CDRB2BW10/15 CDRB2BW20 to 40

Auto Switch Adjustment

Rotation range of the output shaft with single flat (key for size 40 only) and auto switch mounting position <Applicable models/Size: 10, 15, 20, 30, 40>
<Single vane>

Rotating angle: $\mathbf{9 0}^{\circ}$

Rotating angle: $\mathbf{2 7 0}^{\circ}$

CDRB2BW10 to 40

$$
\text { CDRB2BW10 to } 40
$$

* Solid-lined curves indicate the rotation range of the output shaft with single flat (key). When the single flat (key) is pointing to the END (1) direction, the switch for rotation END (1) will operate, and when the single flat (key) is pointing to the END (2) direction, the switch for rotation END (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Operating angle of the switch can be decreased by either moving the switch for rotation END (1) clockwise or moving the switch for rotation END (2) counterclockwise. Auto switch in the figures above is at the most sensitive position.
* Each auto switch unit comes with one right-hand and one left-hand switch.

Rotating angle: $\mathbf{1 8 0}^{\circ}$

Rotating angle: $\mathbf{1 8 0}^{\circ}$

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

\triangle Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger indicates a hazard with a high level of risk
 which, if not avoided, will result in death or serious injury.

© Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*2)
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

SMC Corporation

Akihabara UDX 15F,
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN
Phone: 03-5207-8249 Fax: 03-5298-5362
http://www.smcworld.com
© 2012 SMC Corporation All Rights Reserved

[^0]: * For size 40, material for (4)(6) is die-cast aluminum.

[^1]: * For size 40, material for (4)(6) is die-cast aluminum.

[^2]: * These specifications are not available for rotary actuators with auto switch and/or angle adjuster unit.

[^3]: Note 1) Mounting of the stopper ring shown in Examples 2, 3, 4 are not applicable for size 10.
 Note 2) marks in the illustrations above indicate the mounting position of the stopper ring.
 Note 3) Select the appropriate rotation of the rotary actuator after careful consideration of the content of "Angle Adjustment Setting".
 Note 4) For size 40, each block comes with 2 holding screws.

