

Galva Shine #780-5313

RS Components

Chemwatch: 4876-15

Version No: 2.1.1.1

Material Safety Data Sheet according to NOHSC and ADG requirements

Print Date:

23/10/2013

Issue Date:

21/10/2013

S.Local.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name: Galva Shine #780-5313

Chemical Name: Not Applicable

Synonyms: Not Available

Proper shipping name: AEROSOLS

Chemical formula: Not Applicable

Other means of identification: Not Available

CAS number: Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Application is by spray atomisation from a hand held aerosol pack
, Anti corrosion products.

Details of the supplier of the safety data sheet

Registered company name: RS Components

Address: 25 Pavesi Street Smithfield 2164 NSW
Australia

Telephone: +1 300 656 636

Fax: +1 300 656 696

Website: Not Available

Email: Not Available

Emergency telephone number

Association / Organisation: Not Available

Emergency telephone numbers: 1800 039 008 (24 hours),+61 3 9573 3112

Other emergency telephone numbers: 1800 039 008 (24 hours),+61 3 9573 3112

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

Poisons Schedule:

Risk Phrases [1]

R52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

R67 Vapours may cause drowsiness and dizziness.

R66 Repeated exposure may cause skin dryness and cracking.

R44 Risk of explosion if heated under confinement.

R12 Extremely flammable.

Legend:1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

Relevant risk statements are found in section 2

Indication(s) of danger: F+

Safety advice:

S09 Keep container in a well ventilated place.

S15 Keep away from heat.

S16 Keep away from sources of ignition. No smoking.

S23 Do not breathe gas/fumes/vapour/spray.

S24 Avoid contact with skin.

S29 Do not empty into drains.

S33 Take precautionary measures against static discharges.

S35 This material and its container must be disposed of in a safe way.

S38 In case of insufficient ventilation, wear suitable respiratory equipment.

S41 In case of fire and/or explosion, DO NOT BREATHE FUMES.

S43 In case of fire use...

S46 If swallowed, seek medical advice immediately and show this container or label.

S51	Use only in well ventilated areas.
S56	Dispose of this material and its container at hazardous or special waste collection point.
S57	Use appropriate container to avoid environmental contamination.

Other hazards

- Inhalation, skin contact and/or ingestion may produce health damage*.
- May produce discomfort of the eyes, respiratory tract and skin*.
- Cumulative effects may result following exposure*.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
67-64-1	10-30	acetone
1330-20-7	1-10	xylene
71-36-3	0-1	n-butanol
95-63-6	0-1	1,2,4-trimethyl benzene
108-67-8	0-1	1,3,5-trimethyl benzene
100-41-4	0.5-2.5	ethylbenzene
64742-49-0.	0.5-2.5	naphtha petroleum, light, hydrotreated
64742-82-1.	0.5-2.5	naphtha, petroleum, hydrodesulfurised heavy
64742-95-6.	0.5-2.5	naphtha petroleum, light aromatic solvent
115-10-6	>60	dimethyl ether

SECTION 4 First aid measures

Description of first aid measures

Eye Contact:

If aerosols come in contact with the eyes:

- Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact:

If solids or aerosol mists are deposited upon the skin:

- Flush skin and hair with running water (and soap if available).
- Remove any adhering solids with industrial skin cleansing cream.
- DO NOT use solvents.**
- Seek medical attention in the event of irritation.

Inhalation:

If aerosols, fumes or combustion products are inhaled:

- Remove to fresh air.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion:

- Avoid giving milk or oils.
- Avoid giving alcohol.
- Not considered a normal route of entry.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

for lower alkyl ethers:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics.** Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and

magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.

- Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated.
- Haemodialysis might be considered in patients with impaired renal function.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

SMALL FIRE:

- Water spray, dry chemical or CO₂

LARGE FIRE:

- Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility:

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting:

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- **DO NOT** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard:

- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition with violent container rupture.
- Aerosol cans may explode on exposure to naked flames.
- Rupturing containers may rocket and scatter burning materials.
- Hazards may not be restricted to pressure effects.
- May emit acrid, poisonous or corrosive fumes.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

Minor Spills:

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Wear protective clothing, impervious gloves and safety glasses.
- Shut off all possible sources of ignition and increase ventilation.
- Wipe up.
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

Major Spills:

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal.
- Clear area of all unprotected personnel and move upwind.
- Alert Emergency Authority and advise them of the location and nature of hazard.
- May be violently or explosively reactive.
- Wear full body clothing with breathing apparatus.
- Prevent by any means available, spillage from entering drains and water-courses.
- Consider evacuation.
- Shut off all possible sources of ignition and increase ventilation.
- No smoking or naked lights within area.
- Use extreme caution to prevent violent reaction.
- Stop leak only if safe to do so.
- Water spray or fog may be used to disperse vapour.
- **DO NOT** enter confined space where gas may have collected.
- Keep area clear until gas has dispersed.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- **DO NOT** allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- **When handling, DO NOT** eat, drink or smoke.
- **DO NOT** incinerate or puncture aerosol cans.
- **DO NOT** spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
- Store in original containers in approved flammable liquid storage area.
- **DO NOT** store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials.
- Store in a cool, dry, well ventilated area.
- Avoid storage at temperatures higher than 40 deg C.
- Store in an upright position.
- Protect containers against physical damage.
- Check regularly for spills and leaks.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container:

DO NOT repack. Use only containers as originally supplied by manufacturer

- Aerosol dispenser.
- Check that containers are clearly labelled.

Storage incompatibility:

- Avoid reaction with oxidising agents
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

Package Material Incompatibilities:

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	acetone	Acetone	1185 (mgm3) / 500 (ppm)	2375 (mgm3) / 1000 (ppm)	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	350 (mgm3) / 80 (ppm)	655 (mgm3) / 150 (ppm)	Not Available	Not Available
Australia Exposure Standards	n-butanol	n-Butyl alcohol	152 (mgm3) / 50 (ppm)	Not Available	Not Available	Not Available
Australia Exposure Standards	ethylbenzene	Ethyl benzene	434 (mgm3) / 100 (ppm)	543 (mgm3) / 125 (ppm)	Not Available	Not Available
Australia Exposure Standards	dimethyl ether	Dimethyl ether	760 (mgm3) / 400 (ppm)	950 (mgm3) / 500 (ppm)	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-0	TEEL-1	TEEL-2	TEEL-3
acetone	200(ppm)	200(ppm)	3200(ppm)	5700(ppm)
xylene	100(ppm)	130(ppm)	920(ppm)	2500(ppm)
n-butanol	50(ppm)	50(ppm)	50(ppm)	1400(ppm)
1,2,4-trimethyl benzene	25(ppm)	36.6(ppm)	36.6(ppm)	1500(ppm)
1,3,5-trimethyl benzene	25(ppm)	25(ppm)	25(ppm)	500(ppm)
ethylbenzene	100(ppm)	125(ppm)	125(ppm)	800(ppm)
naphtha petroleum, light aromatic solvent	500(ppm)	750(ppm)	750(ppm)	750(ppm)
dimethyl ether	1000(ppm)	3000(ppm)	10000(ppm)	60000(ppm)

Ingredient	Original IDLH	Revised IDLH
acetone	20,000 / 5,000(ppm)	2,500 [LEL] / 1,500(ppm)
xylene	1,000(ppm)	900(ppm)
n-butanol	8,000(ppm)	1,400 [LEL](ppm)
ethylbenzene	2,000(ppm)	800 [LEL](ppm)

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:

aerosols, (released at low velocity into zone of active generation)

Speed:

0.5-1 m/s

direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range

1: Room air currents minimal or favourable to capture

Upper end of the range

2: Contaminants of low toxicity or of nuisance value only.

1: Disturbing room air currents

3: Intermittent, low production.

2: Contaminants of high toxicity

4: Large hood or large air mass in motion

3: High production, heavy use

4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection:

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

No special equipment for minor exposure i.e. when handling small quantities. **OTHERWISE:** For potentially moderate or heavy exposures:

- Safety glasses with side shields.
- NOTE:** Contact lenses pose a special hazard; soft lenses may absorb irritants and **ALL** lenses concentrate them.
- Close fitting gas tight goggles

DO NOT wear contact lenses.

- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection:

See Hand protection below

Hand protection:

- No special equipment needed when handling small quantities.
- OTHERWISE:**
- For potentially moderate exposures:
- Wear general protective gloves, eg. light weight rubber gloves.
- For potentially heavy exposures:
- Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection:

See Other protection below

Other protection:

No special equipment needed when handling small quantities. **OTHERWISE:**

- Overalls.
- Skin cleansing cream.
- Eye wash unit.
- Do not spray on hot surfaces.
- The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHICK: Handbook of Reactive Chemical Hazards.

Thermal hazards:

Recommended material(s):

1.BUTYL 2.NEOPRENE

Respiratory protection:

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance

Grey highly flammable liquid aerosol with a characteristic odour; insoluble in water.

Physical state	Liquid	Relative density (Water = 1)	0.905 @ 20 deg.C
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>200
pH (as supplied)	Not Available	Decomposition temperature	Not Available

Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	<0	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	625 g/l (VOC)
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution(1%)	Not Available
Vapour density (Air = 1)	Not Available		

SECTION 10 Stability and reactivity

Reactivity:

See section 7

Chemical stability:

- Elevated temperatures.
- Presence of open flame.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions:

See section 7

Conditions to avoid:

See section 7

Incompatible materials:

See section 7

Hazardous decomposition products:

See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled:

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Ethers produce narcosis following inhalation.

Inhalation of lower alkyl ethers may result in central nervous system depression or stimulation, intoxication, headache, dizziness, weakness, blurred vision, seizures and possible coma.

Cardiovascular involvement may produce hypotension, bradycardia and cardiovascular collapse, whilst respiratory symptoms might include irritation of nose and throat, cough, laryngeal spasm, pharyngitis, irregular respiration, depression, pulmonary oedema and respiratory arrest. Nausea, vomiting and salivation might also indicate overexposure.

Convulsions, respiratory distress or paralysis, asphyxia, pneumonitis, and unconsciousness are all serious manifestations of poisoning. Fatalities have been reported. Kidney and liver damage with interstitial cystitis may result from massive exposures.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Systemic effects of acetone inhalation exposure include central nervous system depression, light-headedness, incoherent speech, ataxia, stupor, hypotension, tachycardia, metabolic acidosis, hyperglycaemia and ketosis. Rarely, convulsions and tubular necrosis may be evident. Other symptoms of exposure may include restlessness, headache, vomiting, low blood-pressure and rapid and irregular pulse, eye and throat irritation, weakness of the legs and dizziness. Inhalation of high concentrations may produce dryness of the mouth and throat, nausea, uncoordinated movement, loss of coordinated speech, drowsiness and, in severe cases, coma. Inhalation of acetone vapours over long periods causes irritation of the respiratory tract, coughing and headache. Rats exposed to 52200 ppm vapour for 1 hour showed clear signs of narcosis; fatalities occurred at 126600 ppm.

Exposure to ketone vapours may produce nose, throat and mucous membrane irritation. High concentrations of vapour may produce central nervous system depression characterised by headache, vertigo, loss of coordination, narcosis and cardiorespiratory failure. Some ketones produce neurological disorders (polyneuropathy) characterised by bilateral symmetrical paresthesia and muscle weakness primarily in the legs and arms.

Ingestion:

Accidental ingestion of the material may be damaging to the health of the individual. Overexposure is unlikely in this form. Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments. Ingestion of alkyl ethers may produce symptoms similar to those produced following inhalation.

Skin Contact:

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

- produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Spray mist may produce discomfort. Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system depression.

Open cuts, abraded or irritated skin should not be exposed to this material. Material on the skin evaporates rapidly and may cause tingling, chilling and even temporary numbness.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye:

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures..

Eye contact with alkyl ethers (vapours or liquid) may produce irritation, redness and lachrymation.

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic:

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Principal route of occupational exposure to the gas is by inhalation. Chronic exposure to alkyl ethers may result in loss of appetite, excessive thirst, fatigue, and weight loss.

Workers exposed to 700 ppm acetone for 3 hours/day for 7-15 years showed inflammation of the respiratory tract, stomach and duodenum, attacks of giddiness and loss of strength. Exposure to acetone may enhance liver toxicity of chlorinated solvents.

TOXICITY	IRRITATION
Galva Shine #780-5313	
Not Available	Not Available
acetone	
Dermal (rabbit) LD50: 20000 mg/kg	Eye (human): 500 ppm - irritant
Inhalation (rat) LC50: 50100 mg/m3/8 hr	Eye (rabbit): 20mg/24hr -moderate
Oral (rat) LD50: 5800 mg/kg	Eye (rabbit): 3.95 mg - SEVERE
	Skin (rabbit): 500 mg/24hr - mild
	Skin (rabbit):395mg (open) - mild
Not Available	Not Available
xylene	
Inhalation (rat) LC50: 5000 ppm/4h	Eye (human): 200 ppm irritant
Intraperitoneal (Mouse) LD50: 1548 mg/kg	Eye (rabbit): 5 mg/24h SEVERE
Intraperitoneal (Rat) LD50: 2459 mg/kg	Eye (rabbit): 87 mg mild
Oral (Mouse) LD50: 2119 mg/kg	Skin (rabbit):500 mg/24h moderate
Oral (rat) LD50: 4300 mg/kg	
Subcutaneous (Rat) LD50: 1700 mg/kg	
Not Available	Not Available
n-butanol	
Dermal (rabbit) LD50: 3400 mg/kg	Eye (human): 50 ppm - irritant
Inhalation (rat) LC50: 8000 ppm/4h	Eye (rabbit): 1.6 mg-SEVERE
Oral (rat) LD50: 790 mg/kg	Eye (rabbit): 24 mg/24h-SEVERE
	Skin (rabbit): 405 mg/24h-moderate
Not Available	Not Available
1,2,4-trimethyl benzene	
Inhalation (rat) LC50: 18000 mg/m3/4h	
Not Available	Not Available
1,3,5-trimethyl benzene	
Inhalation (rat) LC50: 24000 mg/m3/4h	Eye (rabbit): 500 mg/24h mild
	Skin (rabbit): 20 mg/24h moderate
Not Available	Not Available
ethylbenzene	
Dermal (rabbit) LD50: 17800 mg/kg	Eye (rabbit): 500 mg - SEVERE
Intraperitoneal (mouse) LD50: 2642 mg/kg	Skin (rabbit): 15 mg/24h mild
Oral (rat) LD50: 3500 mg/kg	
Not Available	Not Available
naphtha petroleum, light, hydrotreated	
Not Available	Not Available
naphtha, petroleum, hydrodesulfurised heavy	
Not Available	Not Available
naphtha petroleum, light aromatic solvent	
Inhalation (rat) LC50: >3670 ppm/8 h *	
Oral (rat) LD50: >5000 mg/kg *	
Not Available	Not Available
dimethyl ether	
Inhalation (rat) LC50: 308000 mg/m3	
Not Available	Not Available

* Value obtained from manufacturer's msds

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances

Galva Shine #780-5313

No significant acute toxicological data identified in literature search.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA) . Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a

solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia .

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (*Salmonella typhimurium/mammalian microsome assay*); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. for acetone:

The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m³ and in rats at 26,100 mg/m³. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m³ for both rats and mice.

Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m³, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals.

The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m³ have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m³ were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m³ or greater.

ACETONE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for acetone:

The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m³ and in rats at 26,100 mg/m³. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m³ for both rats and mice.

Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m³, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals.

The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m³ have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m³ were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m³ or greater.

XYLENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

N-BUTANOL

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for n-butanol

Acute toxicity: n-butanol (BA) was only slightly toxic to experimental animals following acute oral, dermal, or inhalation exposure. The acute oral LD₅₀ values for female rats ranged from 790 to 4360 mg/kg. Different strains of rat were used in each of four studies, which may account for the variability. Oral LD₅₀ values for mice, rabbits, hamsters, dogs, and male rats all fell within the same range. The rat inhalation LC₀ of 8000 ppm (24000 mg/m³) indicates very low inhalation toxicity (no lethality at 8000 ppm). The rabbit dermal LD₅₀ was 3402 mg/kg, indicating that BA can penetrate the skin, but not very readily. Animal experiments and human experience indicate that BA is, at most, moderately irritating to the skin, but it is a severe eye irritant. These effects are most likely due to BA's localised defatting and drying characteristics. Although no animal data are available, human studies and experience show that BA is not likely to be a skin sensitiser.

The median odor threshold for BA (0.17 ppm) is well below the lowest nasal irritation threshold in humans (289 ppm), allowing warning of possible chemical exposure prior to nasal irritation occurring. Human studies are complicated by the odor characteristics of the material, as the odor threshold is well below the levels at which irritation is observed.

Repeat dose toxicity: An *in vivo* toxicokinetics study confirmed the rapid metabolism of n-butyl acetate (BAc) to BA. Hydrolysis of BAc in blood and brain was estimated to be 99 percent complete within

2.7 minutes (elimination t_{1/2} = 0.41 minute). Thus, organisms exposed to BAc can experience appreciable tissue concentrations of BA. In this way, the results of toxicity studies with BAc can be used as supplemental, surrogate

data to provide information on the toxicity of BA.

A thirteen-week, subchronic exposure to BAc, the metabolic precursor of BA, produced transient hypoactivity (during exposure only) at 1500 and 3000 ppm (7185 and 14370 mg/m³) along with decreased body weight and food consumption, but no post exposure neurotoxicity even at 3000 ppm. A concurrent subchronic neurotoxicity study under the same exposure conditions showed no evidence of cumulative neurotoxicity based upon functional observational battery endpoints, quantitative motor activity, neuropathology and scheduled-controlled operant behavior endpoints. A no observable effect level (NOAEL) of 500 ppm (2395 mg/m³) was reported for systemic effects in rats, and a NOAEL of 3000 ppm (14370 mg/m³) was reported for post exposure neurotoxicity in rats.

Reproductive toxicity: Several studies indicate that BA is not a reproductive toxicant.

Female rats exposed to 6000 ppm (18000 mg/m³) BA throughout gestation and male rats exposed to 6000 ppm (18000 mg/m³) BA for six weeks prior to mating showed no effects on fertility or pregnancy rate. Male rats given BA at 533 mg/kg/day for 5 days had no testicular toxicity.

Developmental toxicity: BA produced only mild foetotoxicity and developmental alterations at or near the maternally toxic (even lethal) dose of 8000 ppm (24000 mg/m³) throughout gestation.

Genotoxicity: An entire battery of negative *in vitro* tests and a negative *in vivo* micronucleus test indicate that BA is not genotoxic.

Carcinogenicity: Based upon the battery of negative mutagenicity and clastogenicity findings, BA presents a very small potential for carcinogenicity.

1,2,4-TRIMETHYL BENZENE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption. 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethylbenzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethylbenzenes at 1700 ppm for 10 to 21 days.

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes.

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella typhimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study.

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethylbenzenes, 4-6 hours/day, 5 days/week over one generation

1,3,5-TRIMETHYL BENZENE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption. 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethylbenzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethylbenzenes at 1700 ppm for 10 to 21 days.

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes.

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella typhimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study.

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethylbenzenes, 4-6 hours/day, 5 days/week over one generation

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

ETHYLBENZENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylglyoxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances. Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys. Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene. In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular syncytial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland. In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose studies indicate that the reproductive organs are not a target for ethylbenzene toxicity. Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination. **NOTE:** Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. **WARNING:** This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

NAPHTHA PETROLEUM, LIGHT, HYDROTREATED

No significant acute toxicological data identified in literature search.

for petroleum:

This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic.

This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss.

This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents

Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans.

Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays.

Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed.

Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

NAPHTHA, PETROLEUM, HYDRODESULFURISED HEAVY

No significant acute toxicological data identified in literature search.

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT

for petroleum:

This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic.

This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss.

This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents

Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans.

Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays.

Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed.

Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans.

Acute Toxicity:	Not Applicable	Carcinogenicity:	Not Applicable
Skin Irritation/Corrosion:	Not Applicable	Reproductivity:	Not Applicable
Serious Eye Damage/Irritation:	Not Applicable	STOT - Single Exposure:	STOT - SE (Narcosis) Category 3
Respiratory or Skin sensitisation:	Not Applicable	STOT - Repeated Exposure:	Not Applicable
Mutagenicity:	Not Applicable	Aspiration Hazard:	Not Applicable

CMR STATUS

SKIN

n-butanol	Australia Exposure Standards - Skin	Sk
-----------	-------------------------------------	----

SECTION 12 Ecological information

Toxicity

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For ketones:

Ketones, unless they are alpha, beta-unsaturated ketones, can be considered as narcosis or baseline toxicity compounds

Hydrolysis may also involve the addition of water to ketones to yield ketals under mild acid conditions. However, this addition of water is thermodynamically favorable only for low molecular weight ketones. This addition is an equilibrium reaction that is reversible upon a change of water concentration and the reaction ultimately leads to no permanent change in the structure of the ketone substrate. The higher molecular weight ketones do not form stable ketals. Therefore, the ketones are stable to water under ambient environmental conditions.

Another possible reaction of ketones in water involves the enolic hydrogen on the carbons bonded to the carbonyl function. Under conditions of high pH (pH greater than 10), the enolic proton is abstracted by base (OH-) forming a carbanion intermediate that may react with other organic substrates (e.g., ketones, esters, aldehydes) containing a center for nucleophilic attack. The reactions, commonly recognized as condensation reactions, produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavorable.

Based on its reactions in air, it seems likely that ketones undergo photolysis in water. It is probable that ketones will be biodegraded to an appreciable degree by micro-organisms in soil and water. They are unlikely to bioconcentrate or biomagnify.

DO NOT discharge into sewer or waterways.

for acetone:

log Kow: -0.24

Half-life (hr) air: 312-1896

Half-life (hr) H₂O surface water: 20

Henry's atm m³/mol: 3.67E-05

BOD 5: 0.31-1.76,46-55%

COD: 1.12-2.07

THOD: 2.2

BCF: 0.69

Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades.

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available.

Soil Guidelines: none available.

Air Quality Standards: none available.

Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity

Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l

Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l

Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l

Aquatic invertebrate 2100 - 16700 mg/l

Aquatic plant NOEC: 5400-7500 mg/l

Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuhniella*) were exposed to an airborne acetone concentration of 61.5 mg/m³. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality.

The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Ertsosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
Not Available	Not Available	Not Available

Bioaccumulative potential

Ingredient	Bioaccumulation
Not Available	Not Available

Mobility in soil

Ingredient	Mobility
Not Available	Not Available

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal:

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Consult State Land Waste Management Authority for disposal.
- Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.
- **DO NOT** incinerate or puncture aerosol cans.
- Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required:

Marine Pollutant: NO

HAZCHEM: 2YE

Land transport (ADG)

UN number	1950	Packing group	Not Available
UN proper shipping name	AEROSOLS	Environmental hazard	No relevant data
Transport hazard class(es)	Class: 2 Subrisk:	Special precautions for user	Special provisions 63 190 277 327 limited quantity See SP 277

Air transport (ICAO-IATA / DGR)

UN number	1950	Packing group	Not Available
UN proper shipping name	Aerosols, flammable (engine starting fluid)	Environmental hazard	No relevant data
Transport hazard class(es)	ICAO/IATA Class: 2.1 ICAO / IATA Subrisk: ERG Code: 10L	Special precautions for user	Special provisions: A1A145A167A802 Cargo Only Packing Instructions: 203 Cargo Only Maximum Qty / Pack: 150 kg Passenger and Cargo Packing Instructions: Forbidden Passenger and Cargo Maximum Qty / Pack: Forbidden Passenger and Cargo Limited Quantity Packing Instructions: Forbidden Passenger and Cargo Maximum Qty / Pack: Forbidden

Sea transport (IMDG-Code / GGVSee)

UN number	1950	Packing group	Not Available
UN proper shipping name	AEROSOLS	Environmental hazard	No relevant data
Transport hazard class(es)	IMDG Class: 2.1 IMDG Subrisk:	Special precautions for user	EMS Number: F-D,S-U Special provisions: 63 190 277 327 344 959 Limited Quantities: SP277

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category	Residual Concentration - Outside Special Area (% w/w)	Residual Concentration - Inside Special Area (% w/w)
IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances	acetone	Not Available	Not Available	Not Available
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	xylene	C		
IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances	n-butanol	Not Available	Not Available	Not Available
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	1,2,4-trimethyl benzene	B		
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	1,3,5-trimethyl benzene	(B)		
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	ethylbenzene	C		

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

acetone(67-64-1) is found on the following regulatory lists

"Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Exposure Standards", "Australia Customs (Prohibited Exports) Regulations 1958 - Schedule 9 Precursor substances - Part 2", "Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions", "United Nations Consolidated List of Products Whose Consumption and/or Sale Have Been Banned, Withdrawn, Severely Restricted or Not Approved by Governments", "Australia Hazardous Substances Information System - Consolidated Lists", "Australia Crimes (Traffic in Narcotic Drugs and Psychotropic Substances) Act - Schedule 1 - United Nations Convention Against Illicit Traffic In Narcotic Drugs And Psychotropic Substances - Table II", "IOFI Global Reference List of Chemically Defined Substances", "Australia National Pollutant Inventory", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 18: List of products to which the Code does not apply", "IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances", "Fisher Transport Information", "Sigma-Aldrich Transport Information", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)", "FEMA Generally Recognized as Safe (GRAS) Flavoring Substances 23 - Examples of FEMA GRAS Substances with Non-Flavor Functions", "International Fragrance Association (IFRA) Survey: Transparency List", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia - Victoria Occupational Health and Safety Regulations - Schedule 9: Materials at Major Hazard Facilities (And Their Threshold Quantity) Table 2", "Australia Standard for

the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)", "IMO IBC Code Chapter 17: Summary of minimum requirements", "Australia Illicit Drug Reagents/Essential Chemicals - Category III", "United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances Under International Control (Red List) - Table II", "United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II", "OSPAR National List of Candidates for Substitution – Norway"

xylene(1330-20-7) is found on the following regulatory lists

"International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Hazardous Substances Information System - Consolidated Lists", "FisherTransport Information", "International Fragrance Association (IFRA) Survey: Transparency List", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "OECD List of High Production Volume (HPV) Chemicals", "OSPAR List of Chemicals for Priority Action", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7", "IMO IBC Code Chapter 17: Summary of minimum requirements", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "Australia Exposure Standards", "Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix I", "WHO Guidelines for Drinking-water Quality - Guideline values for chemicals that are of health significance in drinking-water", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6", "Australia National Pollutant Inventory", "IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)", "Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (Domestic water supply - organic compounds)", "Australia Drinking Water Guideline Values For Physical and Chemical Characteristics", "Australia - Australian Capital Territory - Environment Protection Regulation: Pollutants entering waterways taken to cause environmental harm - Domestic water supply quality", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5"

n-butanol(71-36-3) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Exposure Standards", "Australia Hazardous Substances Information System - Consolidated Lists", "IOFI Global Reference List of Chemically Defined Substances", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 18: List of products to which the Code does not apply", "IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances", "FisherTransport Information", "Sigma-Aldrich Transport Information", "Acros Transport Information", "International Fragrance Association (IFRA) Survey: Transparency List", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia National Pollutant Inventory", "IMO IBC Code Chapter 17: Summary of minimum requirements", "OSPAR National List of Candidates for Substitution – Norway"

1,2,4-trimethyl benzene(95-63-6) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia Hazardous Substances Information System - Consolidated Lists", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "FisherTransport Information", "Sigma-Aldrich Transport Information", "International Fragrance Association (IFRA) Survey: Transparency List", "OSPAR National List of Candidates for Substitution – United Kingdom", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia High Volume Industrial Chemical List (HVICL)", "OSPAR List of Chemicals for Priority Action", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7", "IMO IBC Code Chapter 17: Summary of minimum requirements", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO", "Australia National Pollutant Inventory"

1,3,5-trimethyl benzene(108-67-8) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia Hazardous Substances Information System - Consolidated Lists", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "FisherTransport Information", "Sigma-Aldrich Transport Information", "International Fragrance Association (IFRA) Survey: Transparency List", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia High Volume Industrial Chemical List (HVICL)", "OSPAR List of Chemicals for Priority Action", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7", "IMO IBC Code Chapter 17: Summary of minimum requirements", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO", "Australia National Pollutant Inventory"

ethylbenzene(100-41-4) is found on the following regulatory lists

"International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia Exposure Standards", "Australia Hazardous Substances Information System - Consolidated Lists", "WHO Guidelines for Drinking-water Quality - Guideline values for chemicals that are of health significance in drinking-water", "Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (AQUA/1 to 6 - non-pesticide anthropogenic organics)", "Australia National Pollutant Inventory", "IMO IBC Code Chapter 17: Summary of minimum requirements", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "FisherTransport Information", "Sigma-Aldrich Transport Information", "IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO", "Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (Domestic water supply - organic compounds)", "Australia Drinking Water Guideline Values For Physical and Chemical Characteristics", "Australia - Australian Capital Territory - Environment Protection Regulation: Pollutants entering waterways taken to cause environmental harm - Domestic water supply quality", "Australia - Australian Capital Territory - Environment Protection Regulation: Pollutants entering waterways taken to cause environmental harm (Aquatic habitat)", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia High Volume Industrial Chemical List (HVICL)", "OSPAR List of Chemicals for Priority Action", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7", "Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)"

naphtha petroleum, light, hydrotreated(64742-49-0.) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "International Chemical Secretariat (ChemSec) SIN List ("Substitute It Now!)", "Australia Hazardous Substances Information System - Consolidated Lists", "FisherTransport Information", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations"

naphtha, petroleum, hydrodesulphurised heavy(64742-82-1.) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "International Chemical Secretariat (ChemSec) SIN List ("Substitute It Now!)", "Australia Hazardous Substances Information System - Consolidated Lists", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "Australia - New South Wales Protection of the Environment Operations (Waste) Regulation 2005 - Characteristics of trackable wastes", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations"

naphtha petroleum, light aromatic solvent(64742-95-6.) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "International Chemical Secretariat (ChemSec) SIN List ("Substitute It Now!)", "Australia Hazardous Substances Information System - Consolidated Lists", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations"

dimethyl ether(115-10-6) is found on the following regulatory lists

"International Council of Chemical Associations (ICCA) - High Production Volume List", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia Exposure Standards", "Australia Hazardous Substances Information System - Consolidated Lists", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix B (Part 3)", "Sigma-Aldrich Transport Information", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia Dangerous Goods Code (ADG Code) - Packing Instruction - Liquefied and Dissolved Gases", "Australia National Pollutant Inventory", "Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)", "IMO IBC Code Chapter 17: Summary of minimum requirements"

SECTION 16 Other information

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.