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Introduction1

1.1 General
This document includes information that can be used as reference when using infrared
cameras. Here you find topics like measurement techniques, the history of infrared tech-
nology, and the theory of thermography, just to mention a few. You will also find a chapter
that lists emissivity values for a large number of materials.

1.2 Copyright
© 2019, FLIR Systems, Inc. All rights reserved worldwide. No parts of the software in-
cluding source code may be reproduced, transmitted, transcribed or translated into any
language or computer language in any form or by any means, electronic, magnetic, opti-
cal, manual or otherwise, without the prior written permission of FLIR Systems.

The documentation must not, in whole or part, be copied, photocopied, reproduced,
translated or transmitted to any electronic medium or machine readable form without pri-
or consent, in writing, from FLIR Systems.

Names and marks appearing on the products herein are either registered trademarks or
trademarks of FLIR Systems and/or its subsidiaries. All other trademarks, trade names
or company names referenced herein are used for identification only and are the prop-
erty of their respective owners.
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2.1 Introduction
An infrared camera measures and images the emitted infrared radiation from an object.
The fact that radiation is a function of object surface temperature makes it possible for
the camera to calculate and display this temperature.

However, the radiation measured by the camera does not only depend on the tempera-
ture of the object but is also a function of the emissivity. Radiation also originates from
the surroundings and is reflected in the object. The radiation from the object and the re-
flected radiation will also be influenced by the absorption of the atmosphere.

To measure temperature accurately, it is therefore necessary to compensate for the ef-
fects of a number of different radiation sources. This is done on-line automatically by the
camera. The following object parameters must, however, be supplied for the camera:

• The emissivity of the object
• The reflected apparent temperature
• The distance between the object and the camera
• The relative humidity
• Temperature of the atmosphere

2.2 Emissivity
The most important object parameter to set correctly is the emissivity which, in short, is a
measure of how much radiation is emitted from the object, compared to that from a per-
fect blackbody of the same temperature.

Normally, object materials and surface treatments exhibit emissivity ranging from approx-
imately 0.1 to 0.95. A highly polished (mirror) surface falls below 0.1, while an oxidized
or painted surface has a higher emissivity. Oil-based paint, regardless of color in the visi-
ble spectrum, has an emissivity over 0.9 in the infrared. Human skin exhibits an emissiv-
ity 0.97 to 0.98.

Non-oxidized metals represent an extreme case of perfect opacity and high reflexivity,
which does not vary greatly with wavelength. Consequently, the emissivity of metals is
low – only increasing with temperature. For non-metals, emissivity tends to be high, and
decreases with temperature.

2.2.1 Finding the emissivity of a sample

2.2.1.1 Step 1: Determining reflected apparent temperature

Use one of the following two methods to determine reflected apparent temperature:
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Thermographic measurement techniques2

2.2.1.1.1 Method 1: Direct method

Follow this procedure:

1. Look for possible reflection sources, considering that the incident angle = reflection
angle (a = b).

Figure 2.1 1 = Reflection source

2. If the reflection source is a spot source, modify the source by obstructing it using a
piece if cardboard.

Figure 2.2 1 = Reflection source
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3. Measure the radiation intensity (= apparent temperature) from the reflection source
using the following settings:

• Emissivity: 1.0
• Dobj: 0

You can measure the radiation intensity using one of the following two methods:

Figure 2.3 1 = Reflection source Figure 2.4 1 = Reflection source

You can not use a thermocouple to measure reflected apparent temperature, because a
thermocouple measures temperature, but apparent temperatrure is radiation intensity.

2.2.1.1.2 Method 2: Reflector method

Follow this procedure:

1. Crumble up a large piece of aluminum foil.
2. Uncrumble the aluminum foil and attach it to a piece of cardboard of the same size.
3. Put the piece of cardboard in front of the object you want to measure. Make sure that

the side with aluminum foil points to the camera.
4. Set the emissivity to 1.0.
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5. Measure the apparent temperature of the aluminum foil and write it down. The foil is
considered a perfect reflector, so its apparent temperature equals the reflected appa-
rent temperature from the surroundings.

Figure 2.5 Measuring the apparent temperature of the aluminum foil.

2.2.1.2 Step 2: Determining the emissivity

Follow this procedure:

1. Select a place to put the sample.
2. Determine and set reflected apparent temperature according to the previous

procedure.
3. Put a piece of electrical tape with known high emissivity on the sample.
4. Heat the sample at least 20 K above room temperature. Heating must be reasonably

even.
5. Focus and auto-adjust the camera, and freeze the image.
6. Adjust Level and Span for best image brightness and contrast.
7. Set emissivity to that of the tape (usually 0.97).
8. Measure the temperature of the tape using one of the following measurement

functions:

• Isotherm (helps you to determine both the temperature and how evenly you have
heated the sample)

• Spot (simpler)
• Box Avg (good for surfaces with varying emissivity).

9. Write down the temperature.
10. Move your measurement function to the sample surface.
11. Change the emissivity setting until you read the same temperature as your previous

measurement.
12. Write down the emissivity.

Note

• Avoid forced convection
• Look for a thermally stable surrounding that will not generate spot reflections
• Use high quality tape that you know is not transparent, and has a high emissivity you

are certain of
• This method assumes that the temperature of your tape and the sample surface are

the same. If they are not, your emissivity measurement will be wrong.
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2.3 Reflected apparent temperature
This parameter is used to compensate for the radiation reflected in the object. If the
emissivity is low and the object temperature relatively far from that of the reflected it will
be important to set and compensate for the reflected apparent temperature correctly.

2.4 Distance
The distance is the distance between the object and the front lens of the camera. This
parameter is used to compensate for the following two facts:

• That radiation from the target is absorbed by the atmosphere between the object and
the camera.

• That radiation from the atmosphere itself is detected by the camera.

2.5 Relative humidity
The camera can also compensate for the fact that the transmittance is also dependent
on the relative humidity of the atmosphere. To do this set the relative humidity to the cor-
rect value. For short distances and normal humidity the relative humidity can normally be
left at a default value of 50%.

2.6 Other parameters
In addition, some cameras and analysis programs from FLIR Systems allow you to com-
pensate for the following parameters:

• Atmospheric temperature – i.e. the temperature of the atmosphere between the cam-
era and the target

• External optics temperature – i.e. the temperature of any external lenses or windows
used in front of the camera

• External optics transmittance – i.e. the transmission of any external lenses or windows
used in front of the camera
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3.1 Introduction

The use of thermal cameras has spread to many professional environments in recent
years. They are easy to handle, and thermal images are quick to take. Images can also
be attached to reports easily, e.g., for an inspection of an electrical installation or building
as evidence of work carried out or of any faults or deviations identified. However, people
often forget that an image to be used as evidence or even proof before the courts must
meet certain requirements: this is not achieved with a quick snapshot. So, what charac-
terizes a really good thermal image?

3.2 Background

During the practical exercises in our thermography training classes we notice, time and
time again, how difficult some participants find choosing the optimal camera settings for
different tasks. Not everyone has a background in, for example, amateur photography
(more on the difference between thermography and photography in the next section),
and to take a good and meaningful thermal image you need some knowledge of photog-
raphy, including its practical application. For this reason, it is hardly surprising that ther-
mographers, particularly those without training, repeatedly produce reports with thermal
images that are devoid of meaning or even support the wrong conclusions and are fit on-
ly for the waste bin. Unfortunately, such reports are found not only in companies in which
thermography is more of an added bonus but also in businesses where these reports
may be part of a critical process monitoring or maintenance program. There are two main
reasons for this: either the users don't know what a good thermal image is or how to take
one, or—for whatever reason—the job is not being done properly.

3.3 A good image

As thermography and photography are related, it makes sense to take a look at what is
important to professional photographers. How do they characterize a good image? Three
aspects can be pointed out as the most important:

1. An image has to touch the observer in some way. That means it needs to be unusual,
striking, or unique, and has to arouse interest and, depending on the genre, emotion.

2. The composition and balance must be in harmony; the image detail and content must
go together aesthetically.

3. The lighting must be interesting, such as back lighting or side lighting that casts dra-
matic shadows, or evening light or other pleasing illumination—whatever fits the over-
all effect that the photographer wants.

To what extent can these concepts be applied to thermography?

With thermography, the motif should also be interesting. In other words, our aim is to de-
pict an object or its condition. Emotions are not required—facts have priority in thermal
images (assuming they are not an art project!). In everyday working life, it is important to
illustrate thermal patterns clearly and to facilitate temperature measurements.

The thermal image must also have suitable image detail and display the object at an ap-
propriate size and position.

Without external illumination, neither visual sight nor photography is possible because
what we see with our eyes or capture with a camera is reflected light. In thermography,
the camera records both emitted and reflected radiation. Therefore, the relationship and
intensity of the infrared radiation, both emitted by the object and by the surrounding envi-
ronment, are important. Brightness and contrast in the image are then adjusted by
changing the displayed temperature interval.

The comparison between photography and thermography can be summarized in a table
using a few keywords:

Photography Thermography

Interesting motif The object to be examined

“Tells a story” “Presents facts”
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Photography Thermography

Aesthetically pleasing Clear heat patterns

Emotive Objective

Image detail Image detail

Focus Focus

Lighting Emission and reflection

Brightness Brightness

Contrast Contrast

As with photography, in thermography there are countless possibilities for editing images
—provided they are saved as radiometric images. However, not all settings can be
changed, and not all image errors can be corrected.

3.4 The three unchangeables—the basis for a good image

3.4.1 Focus

A professional thermal image is always focused and sharp, and the object and heat pat-
tern must be clear and easy to recognize.

Figure 3.1 Only hazy “patches of heat” can be seen in the unfocused image (left). The focused image
(right) clearly shows which object is being observed and where the object is warm.

A blurred image not only comes across as unprofessional and makes it harder to identify
the object and any faults (see Figure 3.1) but can also lead to measurement errors (see
Figure 3.2), which are more serious the smaller the measurement object. Even if all other
parameters are set correctly, the measurement values from an unfocused thermal image
are highly likely to be incorrect.

Figure 3.2 Focused thermal image (left) with a maximum temperature of Tmax = 89.7°C (193.5°F) and an
unfocused thermal image (right) with a maximum temperature of Tmax = 73.7°C (164.7°F).

Of course, the size of the detector matrix also plays a role in image quality. Images taken
by cameras with small detectors (i.e., with fewer pixels) are more blurred or “grainier”
and give the impression that they are not focused (see Figure 3.3). It should also be
noted that not every camera can be focused, and in this case the only means of focusing
the camera is by changing the distance from the object.
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Figure 3.3 The same radiator from the same distance with the same settings, taken by three different ther-
mal cameras: FLIR C2 (left), FLIR T440 (middle), and FLIR T640 (right).

3.4.2 Temperature range

For hand-held uncooled microbolometer cameras, the “exposure” is essentially preset by
the image frame rate. This means that it is not possible to choose for how long—and
therefore how much—radiation hits the camera detector. For this reason, an appropriate
temperature range must be selected that matches the amount of incident radiation. If a
temperature range is selected that is too low, the image will be oversaturated, as objects
with higher temperatures emit more infrared radiation than colder objects. If you select a
temperature range that is too high, the thermal image will be “underexposed,” as can be
seen in Figure 3.4.

Figure 3.4 Images from a FLIR T440 with temperature ranges of –20 to +120°C, (left, –4 to +248°F), 0 to
+650°C (middle, +32 to +1202°F) and +250 to +1200°C (right, +482 to +2192°F). All other settings are
unchanged.

To take an image or temperature measurement, the lowest possible temperature range
available on the camera should be selected. However, it must also include the highest
temperature in the image (see Figure 3.5).

Figure 3.5 An image of the same object taken with different temperature ranges: –20 to 120°C (left, –4 to
+248°F) and 0 to 650°C (right, +32 to +1202°F). The temperature in the left image is displayed with a warn-
ing sign (a red circle with a white cross) because the measured values are outside the calibrated range.

Depending on the camera model and configuration options, overdriven and underdriven
areas can be displayed in a contrasting color.

3.4.3 Image detail and distance from the object

Illumination in photography corresponds in thermography to the interplay of radiation
from the object and reflected radiation from the surrounding environment. The latter is
unwanted because interfering—or, at the very least, spot—reflections need to be
avoided. This is achieved by choosing a suitable position from where to take images. It is
also advisable to select a position from which the object of interest can be seen clearly
and is not hidden. This may seem obvious but in the building sector, for example, it is
common to find reports in which pipes or windows to be investigated are hidden behind
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sofas, indoor plants or curtains. Figure 3.6 illustrates this situation—which occurs all too
regularly.

Figure 3.6 “Thermographic inspection” of an inaccessible object.

It is also important that the object under investigation, or its areas of interest, take up the
whole thermal image. This is particularly true when measuring the temperature of small
objects. The spot tool must be completely filled by the object to enable correct tempera-
ture measurements. Since the field of view and therefore the spot size are determined by
both the distance to the object and the camera’s optics, in such situations the distance to
the object must either be reduced (get closer!) or a telephoto lens must be used (see Fig-
ure 3.7).

Figure 3.7 Supply and return lines from radiators in an open-plan office. The left image was taken from a
distance of 1 m: the measurement spot is filled and the temperature measurement is correct. The right im-
age was taken from a distance of 3 m: the measurement spot is not completely filled and the measured
temperature values are incorrect (31.4 and 24.4°C (88.5 and 75.9°F) instead of 33.2 and 25.9°C (91.8 and
78.6°F)).

3.5 The changeables—image optimization and temperature measurement

3.5.1 Level and span

After choosing the appropriate temperature range, you can adjust the contrast and
brightness of the thermal image by changing the temperature intervals displayed. In
manual mode, the false colors available in the palette can be assigned to the tempera-
tures of the object of interest. This process is often referred to as “thermal tuning.” In au-
tomatic mode, the camera selects the coldest and warmest apparent temperatures in the
image as the upper and lower limits of the temperature interval currently displayed.

A good or problem-specific scaling of the thermal image is an important step in the inter-
pretation of the image, and is, unfortunately, often underestimated (see Figure 3.8).
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Figure 3.8 A thermal image in automatic mode (left) and in manual model (right). The adjusted tempera-
ture interval increases the contrast in the image and makes the faults clear.

3.5.2 Palettes and isotherms

Palettes represent intervals with the same apparent temperatures using different sets of
colors. In other words, they translate specific radiation intensities into colors that are spe-
cific to a particular palette. Frequently used palettes include the gray, iron, and rainbow
palettes (see Figure 3.9). Gray tones are particularly suited to resolving small geometric
details but are less suited to displaying small differences in temperature. The iron palette
is very intuitive and also easy to understand for those without much experience in ther-
mography. It offers a good balance between geometric and thermal resolution. The rain-
bow palette is more colorful and alternates between light and dark colors. This results in
greater contrast, but this can lead to a noisy image for objects with different surfaces or
many temperatures.

Figure 3.9 Gray, iron, and rainbow palettes (left to right).

The isotherm is a measuring function that displays a given interval of the same apparent
temperature or radiation intensity in a color that is different from the palette. It allows you
to emphasize temperature patterns in the image (see Figure 3.10).

Figure 3.10 Foundation wall: connection between the old (left in image) and the new (right in image) parts
of the building. The isotherm highlights an area of air leakage.

3.5.3 Object parameters

As we have seen, the appearance of thermal images is dependent on the thermogra-
pher’s technique and choice of settings, and the look of saved radiometric images can
be altered by editing. However, it is also possible to change the settings that are relevant
for the calculation of temperatures. In practice, this means that the emissivity and re-
flected apparent temperature can be altered retrospectively. If you notice that these pa-
rameters have been set incorrectly or want to add more measurement spots, the
temperature measurement values will be calculated or recalculated according to the
changes (see Figure 3.11).
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Figure 3.11 Change in emissivity for a saved image. The maximum temperature is 65.0°C (149°F) for ε =
0.95 in the left image and 77.3°C (171.1°F) for ε = 0.7 in the right image.

3.6 Taking images—practical tips

The following list includes some practical tips. However, note that this is not a compre-
hensive description of the thermal imaging procedure.

• Ensure that the camera is saving radiometric images.
• Choose an appropriate position from which to take images:

◦ Observe the radiative situation.
◦ Check that the object is clearly visible and displayed at an appropriate size and

position.

• If you change the emissivity, monitor the temperature range and make sure that it re-
mains appropriate.

• Focus.
• Use a tripod to minimize camera shake.
• Carry out thermal tuning.
• Take note of the object description, object size, actual distance, environmental condi-

tions, and operating conditions.

It is easier to edit the thermal image when it is saved or “frozen” (in “Preview”). Also,
since you don't have to do everything on site, you can leave dangerous zones immedi-
ately after taking the image. If possible, take a few more images than you need—includ-
ing from different angles. This is preferable to taking too few! You can then choose the
best image afterwards, at leisure.

3.7 Conclusion

Taking a good thermal image does not require any magic tricks—solid craft and sound
work is all that is required. Many of the points mentioned may seem trivial and “old news,”
particularly to amateur photographers. Of course, the equipment plays a role easier to
ensure sharp images. Better, i.e. high-definition, cameras allow the fast localization of
even small anomalies, and without focusing capabilities it is always difficult to capture a
sharp image. However, high-end cameras are no guarantee of good images if used in-
correctly. The basis for good, professional work is education and training in thermogra-
phy, exchange of knowledge with other thermographers, and, of course, practical
experience.
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4.1 Moisture & water damage
4.1.1 General

It is often possible to detect moisture and water damage in a house by using an infrared
camera. This is partly because the damaged area has a different heat conduction prop-
erty and partly because it has a different thermal capacity to store heat than the sur-
rounding material.

Many factors can come into play as to how moisture or water damage will appear in an
infrared image.

For example, heating and cooling of these parts takes place at different rates depending
on the material and the time of day. For this reason, it is important that other methods are
used as well to check for moisture or water damage.

4.1.2 Figure

The image below shows extensive water damage on an external wall where the water
has penetrated the outer facing because of an incorrectly installed window ledge.

4.2 Faulty contact in socket
4.2.1 General

Depending on the type of connection a socket has, an improperly connected wire can re-
sult in local temperature increase. This temperature increase is caused by the reduced
contact area between the connection point of the incoming wire and the socket , and can
result in an electrical fire.

A socket’s construction may differ dramatically from one manufacturer to another. For
this reason, different faults in a socket can lead to the same typical appearance in an in-
frared image.

Local temperature increase can also result from improper contact between wire and
socket, or from difference in load.

4.2.2 Figure

The image below shows a connection of a cable to a socket where improper contact in
the connection has resulted in local temperature increase.
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4.3 Oxidized socket
4.3.1 General

Depending on the type of socket and the environment in which the socket is installed, ox-
ides may occur on the socket's contact surfaces. These oxides can lead to locally in-
creased resistance when the socket is loaded, which can be seen in an infrared image
as local temperature increase.

A socket’s construction may differ dramatically from one manufacturer to another. For
this reason, different faults in a socket can lead to the same typical appearance in an in-
frared image.

Local temperature increase can also result from improper contact between a wire and
socket, or from difference in load.

4.3.2 Figure

The image below shows a series of fuses where one fuse has a raised temperature on
the contact surfaces against the fuse holder. Because of the fuse holder’s blank metal,
the temperature increase is not visible there, while it is visible on the fuse’s ceramic
material.
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4.4 Insulation deficiencies
4.4.1 General

Insulation deficiencies may result from insulation losing volume over the course of time
and thereby not entirely filling the cavity in a frame wall.

An infrared camera allows you to see these insulation deficiencies because they either
have a different heat conduction property than sections with correctly installed insulation,
and/or show the area where air is penetrating the frame of the building.

When you are inspecting a building, the temperature difference between the inside and
outside should be at least 10°C (18°F). Studs, water pipes, concrete columns, and simi-
lar components may resemble an insulation deficiency in an infrared image. Minor differ-
ences may also occur naturally.

4.4.2 Figure

In the image below, insulation in the roof framing is lacking. Due to the absence of insula-
tion, air has forced its way into the roof structure, which thus takes on a different charac-
teristic appearance in the infrared image.

4.5 Draft
4.5.1 General

Draft can be found under baseboards, around door and window casings, and above ceil-
ing trim. This type of draft is often possible to see with an infrared camera, as a cooler
airstream cools down the surrounding surface.

When you are investigating draft in a house, there should be sub-atmospheric pressure
in the house. Close all doors, windows, and ventilation ducts, and allow the kitchen fan
to run for a while before you take the infrared images.

An infrared image of draft often shows a typical stream pattern. You can see this stream
pattern clearly in the picture below.

Also keep in mind that drafts can be concealed by heat from floor heating circuits.

4.5.2 Figure

The image below shows a ceiling hatch where faulty installation has resulted in a strong
draft.
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About calibration5

5.1 Introduction
Calibration of a thermal camera is a prerequisite for temperature measurement. The cali-
bration provides the relationship between the input signal and the physical quantity that
the user wants to measure. However, despite its widespread and frequent use, the term
“calibration” is often misunderstood and misused. Local and national differences as well
as translation-related issues create additional confusion.

Unclear terminology can lead to difficulties in communication and erroneous translations,
and subsequently to incorrect measurements due to misunderstandings and, in the worst
case, even to lawsuits.

5.2 Definition—what is calibration?
The International Bureau of Weights and Measures1 defines calibration2 in the following
way:

an operation that, under specified conditions, in a first step, establishes a relation be-
tween the quantity values with measurement uncertainties provided by measurement
standards and corresponding indications with associated measurement uncertainties
and, in a second step, uses this information to establish a relation for obtaining a meas-
urement result from an indication.

The calibration itself may be expressed in different formats: this can be a statement, cali-
bration function, calibration diagram3, calibration curve4, or calibration table.

Often, the first step alone in the above definition is perceived and referred to as being
“calibration.” However, this is not (always) sufficient.

Considering the calibration procedure of a thermal camera, the first step establishes the
relation between emitted radiation (the quantity value) and the electrical output signal
(the indication). This first step of the calibration procedure consists of obtaining a homo-
geneous (or uniform) response when the camera is placed in front of an extended source
of radiation.

As we know the temperature of the reference source emitting the radiation, in the second
step the obtained output signal (the indication) can be related to the reference source’s
temperature (measurement result). The second step includes drift measurement and
compensation.

To be correct, calibration of a thermal camera is, strictly, not expressed through tempera-
ture. Thermal cameras are sensitive to infrared radiation: therefore, at first you obtain a
radiance correspondence, then a relationship between radiance and temperature. For
bolometer cameras used by non-R&D customers, radiance is not expressed: only the
temperature is provided.

5.3 Camera calibration at FLIR Systems
Without calibration, an infrared camera would not be able to measure either radiance or
temperature. At FLIR Systems, the calibration of uncooled microbolometer cameras with
a measurement capability is carried out during both production and service. Cooled cam-
eras with photon detectors are often calibrated by the user with special software. With
this type of software, in theory, common handheld uncooled thermal cameras could be
calibrated by the user too. However, as this software is not suitable for reporting
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purposes, most users do not have it. Non-measuring devices that are used for imaging
only do not need temperature calibration. Sometimes this is also reflected in camera ter-
minology when talking about infrared or thermal imaging cameras compared with ther-
mography cameras, where the latter are the measuring devices.

The calibration information, no matter if the calibration is done by FLIR Systems or the
user, is stored in calibration curves, which are expressed by mathematical functions. As
radiation intensity changes with both temperature and the distance between the object
and the camera, different curves are generated for different temperature ranges and ex-
changeable lenses.

5.4 The differences between a calibration
performed by a user and that performed directly
at FLIR Systems
First, the reference sources that FLIR Systems uses are themselves calibrated and
traceable. This means, at each FLIR Systems site performing calibration, that the sour-
ces are controlled by an independent national authority. The camera calibration certifi-
cate is confirmation of this. It is proof that not only has the calibration been performed by
FLIR Systems but that it has also been carried out using calibrated references. Some
users own or have access to accredited reference sources, but they are very few in
number.

Second, there is a technical difference. When performing a user calibration, the result is
often (but not always) not drift compensated. This means that the values do not take into
account a possible change in the camera’s output when the camera’s internal tempera-
ture varies. This yields a larger uncertainty. Drift compensation uses data obtained in cli-
mate-controlled chambers. All FLIR Systems cameras are drift compensated when they
are first delivered to the customer and when they are recalibrated by FLIR Systems serv-
ice departments.

5.5 Calibration, verification and adjustment
A common misconception is to confuse calibration with verification or adjustment. In-
deed, calibration is a prerequisite for verification, which provides confirmation that speci-
fied requirements are met. Verification provides objective evidence that a given item
fulfills specified requirements. To obtain the verification, defined temperatures (emitted
radiation) of calibrated and traceable reference sources are measured. The measure-
ment results, including the deviation, are noted in a table. The verification certificate
states that these measurement results meet specified requirements. Sometimes, compa-
nies or organizations offer and market this verification certificate as a “calibration
certificate.”

Proper verification—and by extension calibration and/or recalibration—can only be
achieved when a validated protocol is respected. The process is more than placing the
camera in front of blackbodies and checking if the camera output (as temperature, for in-
stance) corresponds to the original calibration table. It is often forgotten that a camera is
not sensitive to temperature but to radiation. Furthermore, a camera is an imaging sys-
tem, not just a single sensor. Consequently, if the optical configuration allowing the cam-
era to “collect” radiance is poor or misaligned, then the “verification” (or calibration or
recalibration) is worthless.

For instance, one has to ensure that the distance between the blackbody and the camera
as well as the diameter of the blackbody cavity are chosen so as to reduce stray radiation
and the size-of-source effect.

To summarize: a validated protocol must comply with the physical laws for radiance, and
not only those for temperature.
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Calibration is also a prerequisite for adjustment, which is the set of operations carried out
on a measuring system such that the system provides prescribed indications corre-
sponding to given values of quantities to be measured, typically obtained from measure-
ment standards. Simplified, adjustment is a manipulation that results in instruments that
measure correctly within their specifications. In everyday language, the term “calibration”
is widely used instead of “adjustment” for measuring devices.

5.6 Non-uniformity correction
When the thermal camera displays ”Calibrating…” it is adjusting for the deviation in re-
sponse of each individual detector element (pixel). In thermography, this is called a ”non-
uniformity correction” (NUC). It is an offset update, and the gain remains unchanged.

The European standard EN 16714-3, Non-destructive Testing—Thermographic Testing
—Part 3: Terms and Definitions, defines an NUC as “Image correction carried out by the
camera software to compensate for different sensitivities of detector elements and other
optical and geometrical disturbances.”

During the NUC (the offset update), a shutter (internal flag) is placed in the optical path,
and all the detector elements are exposed to the same amount of radiation originating
from the shutter. Therefore, in an ideal situation, they should all give the same output sig-
nal. However, each individual element has its own response, so the output is not uniform.
This deviation from the ideal result is calculated and used to mathematically perform an
image correction, which is essentially a correction of the displayed radiation signal.
Some cameras do not have an internal flag. In this case, the offset update must be per-
formed manually using special software and an external uniform source of radiation.

An NUC is performed, for example, at start-up, when changing a measurement range, or
when the environment temperature changes. Some cameras also allow the user to trig-
ger it manually. This is useful when you have to perform a critical measurement with as
little image disturbance as possible.

5.7 Thermal image adjustment (thermal tuning)
Some people use the term “image calibration” when adjusting the thermal contrast and
brightness in the image to enhance specific details. During this operation, the tempera-
ture interval is set in such a way that all available colors are used to show only (or mainly)
the temperatures in the region of interest. The correct term for this manipulation is “ther-
mal image adjustment” or “thermal tuning”, or, in some languages, “thermal image optimi-
zation.” You must be in manual mode to undertake this, otherwise the camera will set the
lower and upper limits of the displayed temperature interval automatically to the coldest
and hottest temperatures in the scene.
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Before the year 1800, the existence of the infrared portion of the electromagnetic spec-
trum wasn't even suspected. The original significance of the infrared spectrum, or simply
‘the infrared’ as it is often called, as a form of heat radiation is perhaps less obvious to-
day than it was at the time of its discovery by Herschel in 1800.

Figure 6.1 Sir William Herschel (1738–1822)

The discovery was made accidentally during the search for a new optical material. Sir
William Herschel – Royal Astronomer to King George III of England, and already famous
for his discovery of the planet Uranus – was searching for an optical filter material to re-
duce the brightness of the sun’s image in telescopes during solar observations. While
testing different samples of colored glass which gave similar reductions in brightness he
was intrigued to find that some of the samples passed very little of the sun’s heat, while
others passed so much heat that he risked eye damage after only a few seconds’
observation.

Herschel was soon convinced of the necessity of setting up a systematic experiment,
with the objective of finding a single material that would give the desired reduction in
brightness as well as the maximum reduction in heat. He began the experiment by ac-
tually repeating Newton’s prism experiment, but looking for the heating effect rather than
the visual distribution of intensity in the spectrum. He first blackened the bulb of a sensi-
tive mercury-in-glass thermometer with ink, and with this as his radiation detector he pro-
ceeded to test the heating effect of the various colors of the spectrum formed on the top
of a table by passing sunlight through a glass prism. Other thermometers, placed outside
the sun’s rays, served as controls.

As the blackened thermometer was moved slowly along the colors of the spectrum, the
temperature readings showed a steady increase from the violet end to the red end. This
was not entirely unexpected, since the Italian researcher, Landriani, in a similar experi-
ment in 1777 had observed much the same effect. It was Herschel, however, who was
the first to recognize that there must be a point where the heating effect reaches a maxi-
mum, and that measurements confined to the visible portion of the spectrum failed to lo-
cate this point.

Figure 6.2 Marsilio Landriani (1746–1815)

Moving the thermometer into the dark region beyond the red end of the spectrum, Her-
schel confirmed that the heating continued to increase. The maximum point, when he
found it, lay well beyond the red end – in what is known today as the ‘infrared
wavelengths’.
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When Herschel revealed his discovery, he referred to this new portion of the electromag-
netic spectrum as the ‘thermometrical spectrum’. The radiation itself he sometimes re-
ferred to as ‘dark heat’, or simply ‘the invisible rays’. Ironically, and contrary to popular
opinion, it wasn't Herschel who originated the term ‘infrared’. The word only began to ap-
pear in print around 75 years later, and it is still unclear who should receive credit as the
originator.

Herschel’s use of glass in the prism of his original experiment led to some early contro-
versies with his contemporaries about the actual existence of the infrared wavelengths.
Different investigators, in attempting to confirm his work, used various types of glass in-
discriminately, having different transparencies in the infrared. Through his later experi-
ments, Herschel was aware of the limited transparency of glass to the newly-discovered
thermal radiation, and he was forced to conclude that optics for the infrared would prob-
ably be doomed to the use of reflective elements exclusively (i.e. plane and curved mir-
rors). Fortunately, this proved to be true only until 1830, when the Italian investigator,
Melloni, made his great discovery that naturally occurring rock salt (NaCl) – which was
available in large enough natural crystals to be made into lenses and prisms – is remark-
ably transparent to the infrared. The result was that rock salt became the principal infra-
red optical material, and remained so for the next hundred years, until the art of synthetic
crystal growing was mastered in the 1930’s.

Figure 6.3 Macedonio Melloni (1798–1854)

Thermometers, as radiation detectors, remained unchallenged until 1829, the year Nobili
invented the thermocouple. (Herschel’s own thermometer could be read to 0.2 °C
(0.036 °F), and later models were able to be read to 0.05 °C (0.09 °F)). Then a break-
through occurred; Melloni connected a number of thermocouples in series to form the
first thermopile. The new device was at least 40 times as sensitive as the best thermome-
ter of the day for detecting heat radiation – capable of detecting the heat from a person
standing three meters away.

The first so-called ‘heat-picture’ became possible in 1840, the result of work by Sir John
Herschel, son of the discoverer of the infrared and a famous astronomer in his own right.
Based upon the differential evaporation of a thin film of oil when exposed to a heat pat-
tern focused upon it, the thermal image could be seen by reflected light where the inter-
ference effects of the oil film made the image visible to the eye. Sir John also managed
to obtain a primitive record of the thermal image on paper, which he called a
‘thermograph’.
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Figure 6.4 Samuel P. Langley (1834–1906)

The improvement of infrared-detector sensitivity progressed slowly. Another major break-
through, made by Langley in 1880, was the invention of the bolometer. This consisted of
a thin blackened strip of platinum connected in one arm of a Wheatstone bridge circuit
upon which the infrared radiation was focused and to which a sensitive galvanometer re-
sponded. This instrument is said to have been able to detect the heat from a cow at a
distance of 400 meters.

An English scientist, Sir James Dewar, first introduced the use of liquefied gases as cool-
ing agents (such as liquid nitrogen with a temperature of –196°C (–320.8°F)) in low tem-
perature research. In 1892 he invented a unique vacuum insulating container in which it
is possible to store liquefied gases for entire days. The common ‘thermos bottle’, used
for storing hot and cold drinks, is based upon his invention.

Between the years 1900 and 1920, the inventors of the world ‘discovered’ the infrared.
Many patents were issued for devices to detect personnel, artillery, aircraft, ships – and
even icebergs. The first operating systems, in the modern sense, began to be developed
during the 1914–18 war, when both sides had research programs devoted to the military
exploitation of the infrared. These programs included experimental systems for enemy
intrusion/detection, remote temperature sensing, secure communications, and ‘flying tor-
pedo’ guidance. An infrared search system tested during this period was able to detect
an approaching airplane at a distance of 1.5 km (0.94 miles), or a person more than 300
meters (984 ft.) away.

The most sensitive systems up to this time were all based upon variations of the bolome-
ter idea, but the period between the two wars saw the development of two revolutionary
new infrared detectors: the image converter and the photon detector. At first, the image
converter received the greatest attention by the military, because it enabled an observer
for the first time in history to literally ‘see in the dark’. However, the sensitivity of the im-
age converter was limited to the near infrared wavelengths, and the most interesting mili-
tary targets (i.e. enemy soldiers) had to be illuminated by infrared search beams. Since
this involved the risk of giving away the observer’s position to a similarly-equipped enemy
observer, it is understandable that military interest in the image converter eventually
faded.

The tactical military disadvantages of so-called 'active’ (i.e. search beam-equipped) ther-
mal imaging systems provided impetus following the 1939–45 war for extensive secret
military infrared-research programs into the possibilities of developing ‘passive’ (no
search beam) systems around the extremely sensitive photon detector. During this peri-
od, military secrecy regulations completely prevented disclosure of the status of infrared-
imaging technology. This secrecy only began to be lifted in the middle of the 1950’s, and
from that time adequate thermal-imaging devices finally began to be available to civilian
science and industry.
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7.1 Introduction
The subjects of infrared radiation and the related technique of thermography are still new
to many who will use an infrared camera. In this section the theory behind thermography
will be given.

7.2 The electromagnetic spectrum
The electromagnetic spectrum is divided arbitrarily into a number of wavelength regions,
called bands, distinguished by the methods used to produce and detect the radiation.
There is no fundamental difference between radiation in the different bands of the elec-
tromagnetic spectrum. They are all governed by the same laws and the only differences
are those due to differences in wavelength.

Figure 7.1 The electromagnetic spectrum. 1: X-ray; 2: UV; 3: Visible; 4: IR; 5: Microwaves; 6: Radiowaves.

Thermography makes use of the infrared spectral band. At the short-wavelength end the
boundary lies at the limit of visual perception, in the deep red. At the long-wavelength
end it merges with the microwave radio wavelengths, in the millimeter range.

The infrared band is often further subdivided into four smaller bands, the boundaries of
which are also arbitrarily chosen. They include: the near infrared (0.75–3 μm), the middle
infrared (3–6 μm), the far infrared (6–15 μm) and the extreme infrared (15–100 μm).
Although the wavelengths are given in μm (micrometers), other units are often still used
to measure wavelength in this spectral region, e.g. nanometer (nm) and Ångström (Å).

The relationships between the different wavelength measurements is:

7.3 Blackbody radiation
A blackbody is defined as an object which absorbs all radiation that impinges on it at any
wavelength. The apparent misnomer black relating to an object emitting radiation is ex-
plained by Kirchhoff’s Law (after Gustav Robert Kirchhoff, 1824–1887), which states that
a body capable of absorbing all radiation at any wavelength is equally capable in the
emission of radiation.
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Figure 7.2 Gustav Robert Kirchhoff (1824–1887)

The construction of a blackbody source is, in principle, very simple. The radiation charac-
teristics of an aperture in an isotherm cavity made of an opaque absorbing material rep-
resents almost exactly the properties of a blackbody. A practical application of the
principle to the construction of a perfect absorber of radiation consists of a box that is
light tight except for an aperture in one of the sides. Any radiation which then enters the
hole is scattered and absorbed by repeated reflections so only an infinitesimal fraction
can possibly escape. The blackness which is obtained at the aperture is nearly equal to
a blackbody and almost perfect for all wavelengths.

By providing such an isothermal cavity with a suitable heater it becomes what is termed
a cavity radiator. An isothermal cavity heated to a uniform temperature generates black-
body radiation, the characteristics of which are determined solely by the temperature of
the cavity. Such cavity radiators are commonly used as sources of radiation in tempera-
ture reference standards in the laboratory for calibrating thermographic instruments,
such as a FLIR Systems camera for example.

If the temperature of blackbody radiation increases to more than 525°C (977°F), the
source begins to be visible so that it appears to the eye no longer black. This is the incipi-
ent red heat temperature of the radiator, which then becomes orange or yellow as the
temperature increases further. In fact, the definition of the so-called color temperature of
an object is the temperature to which a blackbody would have to be heated to have the
same appearance.

Now consider three expressions that describe the radiation emitted from a blackbody.

7.3.1 Planck’s law

Figure 7.3 Max Planck (1858–1947)

Max Planck (1858–1947) was able to describe the spectral distribution of the radiation
from a blackbody by means of the following formula:
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where:
Wλb Blackbody spectral radiant emittance at wavelength λ.

c Velocity of light = 3 × 108 m/s

h Planck’s constant = 6.6 × 10-34 Joule sec.

k Boltzmann’s constant = 1.4 × 10-23 Joule/K.

T Absolute temperature (K) of a blackbody.

λ Wavelength (μm).

Note The factor 10-6 is used since spectral emittance in the curves is expressed in
Watt/m2, μm.
Planck’s formula, when plotted graphically for various temperatures, produces a family of
curves. Following any particular Planck curve, the spectral emittance is zero at λ = 0,
then increases rapidly to a maximum at a wavelength λmax and after passing it ap-
proaches zero again at very long wavelengths. The higher the temperature, the shorter
the wavelength at which maximum occurs.

Figure 7.4 Blackbody spectral radiant emittance according to Planck’s law, plotted for various absolute
temperatures. 1: Spectral radiant emittance (W/cm2 × 103(μm)); 2: Wavelength (μm)

7.3.2 Wien’s displacement law

By differentiating Planck’s formula with respect to λ, and finding the maximum, we have:

This is Wien’s formula (after Wilhelm Wien, 1864–1928), which expresses mathemati-
cally the common observation that colors vary from red to orange or yellow as the tem-
perature of a thermal radiator increases. The wavelength of the color is the same as the
wavelength calculated for λmax. A good approximation of the value of λmax for a given
blackbody temperature is obtained by applying the rule-of-thumb 3 000/T μm. Thus, a
very hot star such as Sirius (11 000 K), emitting bluish-white light, radiates with the peak
of spectral radiant emittance occurring within the invisible ultraviolet spectrum, at wave-
length 0.27 μm.
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Figure 7.5 Wilhelm Wien (1864–1928)

The sun (approx. 6 000 K) emits yellow light, peaking at about 0.5 μm in the middle of
the visible light spectrum.

At room temperature (300 K) the peak of radiant emittance lies at 9.7 μm, in the far infra-
red, while at the temperature of liquid nitrogen (77 K) the maximum of the almost insignif-
icant amount of radiant emittance occurs at 38 μm, in the extreme infrared wavelengths.

Figure 7.6 Planckian curves plotted on semi-log scales from 100 K to 1000 K. The dotted line represents
the locus of maximum radiant emittance at each temperature as described by Wien's displacement law. 1:
Spectral radiant emittance (W/cm2 (μm)); 2: Wavelength (μm).

7.3.3 Stefan-Boltzmann's law

By integrating Planck’s formula from λ = 0 to λ = ∞, we obtain the total radiant emittance
(Wb) of a blackbody:

This is the Stefan-Boltzmann formula (after Josef Stefan, 1835–1893, and Ludwig Boltz-
mann, 1844–1906), which states that the total emissive power of a blackbody is propor-
tional to the fourth power of its absolute temperature. Graphically, Wb represents the
area below the Planck curve for a particular temperature. It can be shown that the radiant
emittance in the interval λ = 0 to λmax is only 25% of the total, which represents about the
amount of the sun’s radiation which lies inside the visible light spectrum.
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Figure 7.7 Josef Stefan (1835–1893), and Ludwig Boltzmann (1844–1906)

Using the Stefan-Boltzmann formula to calculate the power radiated by the human body,
at a temperature of 300 K and an external surface area of approx. 2 m2, we obtain 1 kW.
This power loss could not be sustained if it were not for the compensating absorption of
radiation from surrounding surfaces, at room temperatures which do not vary too drasti-
cally from the temperature of the body – or, of course, the addition of clothing.

7.3.4 Non-blackbody emitters

So far, only blackbody radiators and blackbody radiation have been discussed. However,
real objects almost never comply with these laws over an extended wavelength region –
although they may approach the blackbody behavior in certain spectral intervals. For ex-
ample, a certain type of white paint may appear perfectly white in the visible light spec-
trum, but becomes distinctly gray at about 2 μm, and beyond 3 μm it is almost black.

There are three processes which can occur that prevent a real object from acting like a
blackbody: a fraction of the incident radiation α may be absorbed, a fraction ρ may be re-
flected, and a fraction τ may be transmitted. Since all of these factors are more or less
wavelength dependent, the subscript λ is used to imply the spectral dependence of their
definitions. Thus:

• The spectral absorptance αλ= the ratio of the spectral radiant power absorbed by an
object to that incident upon it.

• The spectral reflectance ρλ = the ratio of the spectral radiant power reflected by an ob-
ject to that incident upon it.

• The spectral transmittance τλ = the ratio of the spectral radiant power transmitted
through an object to that incident upon it.

The sum of these three factors must always add up to the whole at any wavelength, so
we have the relation:

For opaque materials τλ = 0 and the relation simplifies to:

Another factor, called the emissivity, is required to describe the fraction ε of the radiant
emittance of a blackbody produced by an object at a specific temperature. Thus, we
have the definition:

The spectral emissivity ελ= the ratio of the spectral radiant power from an object to that
from a blackbody at the same temperature and wavelength.

Expressed mathematically, this can be written as the ratio of the spectral emittance of
the object to that of a blackbody as follows:

Generally speaking, there are three types of radiation source, distinguished by the ways
in which the spectral emittance of each varies with wavelength.

• A blackbody, for which ελ = ε = 1
• A graybody, for which ελ = ε = constant less than 1
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• A selective radiator, for which ε varies with wavelength

According to Kirchhoff’s law, for any material the spectral emissivity and spectral absorp-
tance of a body are equal at any specified temperature and wavelength. That is:

From this we obtain, for an opaque material (since αλ + ρλ = 1):

For highly polished materials ελ approaches zero, so that for a perfectly reflecting materi-
al (i.e. a perfect mirror) we have:

For a graybody radiator, the Stefan-Boltzmann formula becomes:

This states that the total emissive power of a graybody is the same as a blackbody at the
same temperature reduced in proportion to the value of ε from the graybody.

Figure 7.8 Spectral radiant emittance of three types of radiators. 1: Spectral radiant emittance; 2: Wave-
length; 3: Blackbody; 4: Selective radiator; 5: Graybody.

Figure 7.9 Spectral emissivity of three types of radiators. 1: Spectral emissivity; 2: Wavelength; 3: Black-
body; 4: Graybody; 5: Selective radiator.
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7.4 Infrared semi-transparent materials
Consider now a non-metallic, semi-transparent body – let us say, in the form of a thick flat
plate of plastic material. When the plate is heated, radiation generated within its volume
must work its way toward the surfaces through the material in which it is partially ab-
sorbed. Moreover, when it arrives at the surface, some of it is reflected back into the inte-
rior. The back-reflected radiation is again partially absorbed, but some of it arrives at the
other surface, through which most of it escapes; part of it is reflected back again.
Although the progressive reflections become weaker and weaker they must all be added
up when the total emittance of the plate is sought. When the resulting geometrical series
is summed, the effective emissivity of a semi-transparent plate is obtained as:

When the plate becomes opaque this formula is reduced to the single formula:

This last relation is a particularly convenient one, because it is often easier to measure
reflectance than to measure emissivity directly.
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As already mentioned, when viewing an object, the camera receives radiation not only
from the object itself. It also collects radiation from the surroundings reflected via the ob-
ject surface. Both these radiation contributions become attenuated to some extent by the
atmosphere in the measurement path. To this comes a third radiation contribution from
the atmosphere itself.

This description of the measurement situation, as illustrated in the figure below, is so far
a fairly true description of the real conditions. What has been neglected could for in-
stance be sun light scattering in the atmosphere or stray radiation from intense radiation
sources outside the field of view. Such disturbances are difficult to quantify, however, in
most cases they are fortunately small enough to be neglected. In case they are not negli-
gible, the measurement configuration is likely to be such that the risk for disturbance is
obvious, at least to a trained operator. It is then his responsibility to modify the measure-
ment situation to avoid the disturbance e.g. by changing the viewing direction, shielding
off intense radiation sources etc.

Accepting the description above, we can use the figure below to derive a formula for the
calculation of the object temperature from the calibrated camera output.

Figure 8.1 A schematic representation of the general thermographic measurement situation.1: Surround-
ings; 2: Object; 3: Atmosphere; 4: Camera

Assume that the received radiation power W from a blackbody source of temperature
Tsource on short distance generates a camera output signal Usource that is proportional to
the power input (power linear camera). We can then write (Equation 1):

or, with simplified notation:

where C is a constant.

Should the source be a graybody with emittance ε, the received radiation would conse-
quently be εWsource.

We are now ready to write the three collected radiation power terms:

1. Emission from the object = ετWobj, where ε is the emittance of the object and τ is the
transmittance of the atmosphere. The object temperature is Tobj.
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2. Reflected emission from ambient sources = (1 – ε)τWrefl, where (1 – ε) is the reflec-
tance of the object. The ambient sources have the temperature Trefl.
It has here been assumed that the temperature Trefl is the same for all emitting surfa-
ces within the halfsphere seen from a point on the object surface. This is of course
sometimes a simplification of the true situation. It is, however, a necessary simplifica-
tion in order to derive a workable formula, and Trefl can – at least theoretically – be giv-
en a value that represents an efficient temperature of a complex surrounding.

Note also that we have assumed that the emittance for the surroundings = 1. This is
correct in accordance with Kirchhoff’s law: All radiation impinging on the surrounding
surfaces will eventually be absorbed by the same surfaces. Thus the emittance = 1.
(Note though that the latest discussion requires the complete sphere around the ob-
ject to be considered.)

3. Emission from the atmosphere = (1 – τ)τWatm, where (1 – τ) is the emittance of the at-
mosphere. The temperature of the atmosphere is Tatm.

The total received radiation power can now be written (Equation 2):

We multiply each term by the constant C of Equation 1 and replace the CW products by
the corresponding U according to the same equation, and get (Equation 3):

Solve Equation 3 for Uobj (Equation 4):

This is the general measurement formula used in all the FLIR Systems thermographic
equipment. The voltages of the formula are:
Table 8.1 Voltages

Uobj Calculated camera output voltage for a blackbody of temperature
Tobj i.e. a voltage that can be directly converted into true requested
object temperature.

Utot Measured camera output voltage for the actual case.

Urefl Theoretical camera output voltage for a blackbody of temperature
Trefl according to the calibration.

Uatm Theoretical camera output voltage for a blackbody of temperature
Tatm according to the calibration.

The operator has to supply a number of parameter values for the calculation:

• the object emittance ε,
• the relative humidity,
• Tatm
• object distance (Dobj)
• the (effective) temperature of the object surroundings, or the reflected ambient tem-

perature Trefl, and
• the temperature of the atmosphere Tatm

This task could sometimes be a heavy burden for the operator since there are normally
no easy ways to find accurate values of emittance and atmospheric transmittance for the
actual case. The two temperatures are normally less of a problem provided the surround-
ings do not contain large and intense radiation sources.

A natural question in this connection is: How important is it to know the right values of
these parameters? It could though be of interest to get a feeling for this problem already
here by looking into some different measurement cases and compare the relative
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magnitudes of the three radiation terms. This will give indications about when it is impor-
tant to use correct values of which parameters.

The figures below illustrates the relative magnitudes of the three radiation contributions
for three different object temperatures, two emittances, and two spectral ranges: SW and
LW. Remaining parameters have the following fixed values:

• τ = 0.88
• Trefl = +20°C (+68°F)
• Tatm = +20°C (+68°F)

It is obvious that measurement of low object temperatures are more critical than measur-
ing high temperatures since the ‘disturbing’ radiation sources are relatively much stron-
ger in the first case. Should also the object emittance be low, the situation would be still
more difficult.

We have finally to answer a question about the importance of being allowed to use the
calibration curve above the highest calibration point, what we call extrapolation. Imagine
that we in a certain case measure Utot = 4.5 volts. The highest calibration point for the
camera was in the order of 4.1 volts, a value unknown to the operator. Thus, even if the
object happened to be a blackbody, i.e. Uobj = Utot, we are actually performing extrapola-
tion of the calibration curve when converting 4.5 volts into temperature.

Let us now assume that the object is not black, it has an emittance of 0.75, and the trans-
mittance is 0.92. We also assume that the two second terms of Equation 4 amount to 0.5
volts together. Computation of Uobj by means of Equation 4 then results in Uobj = 4.5 /
0.75 / 0.92 – 0.5 = 6.0. This is a rather extreme extrapolation, particularly when consider-
ing that the video amplifier might limit the output to 5 volts! Note, though, that the applica-
tion of the calibration curve is a theoretical procedure where no electronic or other
limitations exist. We trust that if there had been no signal limitations in the camera, and if
it had been calibrated far beyond 5 volts, the resulting curve would have been very much
the same as our real curve extrapolated beyond 4.1 volts, provided the calibration algo-
rithm is based on radiation physics, like the FLIR Systems algorithm. Of course there
must be a limit to such extrapolations.

Figure 8.2 Relative magnitudes of radiation sources under varying measurement conditions (SW cam-
era). 1: Object temperature; 2: Emittance; Obj: Object radiation; Refl: Reflected radiation; Atm: atmos-
phere radiation. Fixed parameters: τ = 0.88; Trefl = 20°C (+68°F); Tatm = 20°C (+68°F).
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The measurement formula8

Figure 8.3 Relative magnitudes of radiation sources under varying measurement conditions (LW camera).
1: Object temperature; 2: Emittance; Obj: Object radiation; Refl: Reflected radiation; Atm: atmosphere radi-
ation. Fixed parameters: τ = 0.88; Trefl = 20°C (+68°F); Tatm = 20°C (+68°F).
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Terms, laws, and definitions9

Term Definition

Absorption and emission5 The capacity or ability of an object to absorb incident radi-
ated energy is always the same as the capacity to emit its
own energy as radiation

Apparent temperature uncompensated reading from an infrared instrument, con-
taining all radiation incident on the instrument, regardless of
its sources6

Color palette assigns different colors to indicate specific levels of apparent
temperature. Palettes can provide high or low contrast, de-
pending on the colors used in them

Conduction direct transfer of thermal energy from molecule to molecule,
caused by collisions between the molecules

Convection heat transfer mode where a fluid is brought into motion, ei-
ther by gravity or another force, thereby transferring heat
from one place to another

Diagnostics examination of symptoms and syndromes to determine the
nature of faults or failures7

Direction of heat transfer8 Heat will spontaneously flow from hotter to colder, thereby
transferring thermal energy from one place to another9

Emissivity ratio of the power radiated by real bodies to the power that is
radiated by a blackbody at the same temperature and at the
same wavelength10

Energy conservation11 The sum of the total energy contents in a closed system is
constant

Exitant radiation radiation that leaves the surface of an object, regardless of
its original sources

Heat thermal energy that is transferred between two objects (sys-
tems) due to their difference in temperature

Heat transfer rate12 The heat transfer rate under steady state conditions is di-
rectly proportional to the thermal conductivity of the object,
the cross-sectional area of the object through which the heat
flows, and the temperature difference between the two ends
of the object. It is inversely proportional to the length, or
thickness, of the object13

Incident radiation radiation that strikes an object from its surroundings

IR thermography process of acquisition and analysis of thermal information
from non-contact thermal imaging devices

Isotherm replaces certain colors in the scale with a contrasting color. It
marks an interval of equal apparent temperature14

Qualitative thermography thermography that relies on the analysis of thermal patterns
to reveal the existence of and to locate the position of
anomalies15

Quantitative thermography thermography that uses temperature measurement to deter-
mine the seriousness of an anomaly, in order to establish re-
pair priorities15
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5. Kirchhoff’s law of thermal radiation.
6. Based on ISO 18434-1:2008 (en).
7. Based on ISO 13372:2004 (en).
8. 2nd law of thermodynamics.
9. This is a consequence of the 2nd law of thermodynamics, the law itself is more complicated.
10.Based on ISO 16714-3:2016 (en).
11.1st law of thermodynamics.
12.Fourier’s law.
13.This is the one-dimensional form of Fourier’s law, valid for steady-state conditions.
14.Based on ISO 18434-1:2008 (en)
15.Based on ISO 10878-2013 (en).



Terms, laws, and definitions9

Term Definition

Radiative heat transfer Heat transfer by the emission and absorption of thermal
radiation

Reflected apparent temperature apparent temperature of the environment that is reflected by
the target into the IR camera16

Spatial resolution ability of an IR camera to resolve small objects or details

Temperature measure of the average kinetic energy of the molecules and
atoms that make up the substance

Thermal energy total kinetic energy of the molecules that make up the
object17

Thermal gradient gradual change in temperature over distance16

Thermal tuning process of putting the colors of the image on the object of
analysis, in order to maximize contrast
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Emissivity tables10

This section presents a compilation of emissivity data from the infrared literature and
measurements made by FLIR Systems.

10.1 References
1. Mikaél A. Bramson: Infrared Radiation, A Handbook for Applications, Plenum press,

N.Y.
2. William L. Wolfe, George J. Zissis: The Infrared Handbook, Office of Naval Research,

Department of Navy, Washington, D.C.
3. Madding, R. P.: Thermographic Instruments and systems. Madison, Wisconsin: Uni-

versity of Wisconsin – Extension, Department of Engineering and Applied Science.
4. William L. Wolfe: Handbook of Military Infrared Technology, Office of Naval Research,

Department of Navy, Washington, D.C.
5. Jones, Smith, Probert: External thermography of buildings..., Proc. of the Society of

Photo-Optical Instrumentation Engineers, vol.110, Industrial and Civil Applications of
Infrared Technology, June 1977 London.

6. Paljak, Pettersson: Thermography of Buildings, Swedish Building Research Institute,
Stockholm 1972.

7. Vlcek, J: Determination of emissivity with imaging radiometers and some emissivities
at λ = 5 µm. Photogrammetric Engineering and Remote Sensing.

8. Kern: Evaluation of infrared emission of clouds and ground as measured by weather
satellites, Defence Documentation Center, AD 617 417.

9. Öhman, Claes: Emittansmätningar med AGEMA E-Box. Teknisk rapport, AGEMA
1999. (Emittance measurements using AGEMA E-Box. Technical report, AGEMA
1999.)

10. Matteï, S., Tang-Kwor, E: Emissivity measurements for Nextel Velvet coating 811-21
between –36°C AND 82°C.

11. Lohrengel & Todtenhaupt (1996)
12. ITC Technical publication 32.
13. ITC Technical publication 29.
14. Schuster, Norbert and Kolobrodov, Valentin G. Infrarotthermographie. Berlin: Wiley-

VCH, 2000.

Note The emissivity values in the table below are recorded using a shortwave (SW)
camera. The values should be regarded as recommendations only and used with
caution.

10.2 Tables
Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference

1 2 3 4 5 6

3M type 35 Vinyl electrical
tape (several
colors)

< 80 LW ≈ 0.96 13

3M type 88 Black vinyl electri-
cal tape

< 105 LW ≈ 0.96 13

3M type 88 Black vinyl electri-
cal tape

< 105 MW < 0.96 13

3M type Super 33
+

Black vinyl electri-
cal tape

< 80 LW ≈ 0.96 13

Aluminum anodized sheet 100 T 0.55 2

Aluminum anodized, black,
dull

70 SW 0.67 9

Aluminum anodized, black,
dull

70 LW 0.95 9
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Emissivity tables10

Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Aluminum anodized, light
gray, dull

70 SW 0.61 9

Aluminum anodized, light
gray, dull

70 LW 0.97 9

Aluminum as received, plate 100 T 0.09 4

Aluminum as received,
sheet

100 T 0.09 2

Aluminum cast, blast
cleaned

70 SW 0.47 9

Aluminum cast, blast
cleaned

70 LW 0.46 9

Aluminum dipped in HNO3,
plate

100 T 0.05 4

Aluminum foil 27 10 µm 0.04 3

Aluminum foil 27 3 µm 0.09 3

Aluminum oxidized, strongly 50–500 T 0.2–0.3 1

Aluminum polished 50–100 T 0.04–0.06 1

Aluminum polished plate 100 T 0.05 4

Aluminum polished, sheet 100 T 0.05 2

Aluminum rough surface 20–50 T 0.06–0.07 1

Aluminum roughened 27 10 µm 0.18 3

Aluminum roughened 27 3 µm 0.28 3

Aluminum sheet, 4 samples
differently
scratched

70 SW 0.05–0.08 9

Aluminum sheet, 4 samples
differently
scratched

70 LW 0.03–0.06 9

Aluminum vacuum
deposited

20 T 0.04 2

Aluminum weathered,
heavily

17 SW 0.83–0.94 5

Aluminum bronze 20 T 0.60 1

Aluminum
hydroxide

powder T 0.28 1

Aluminum oxide activated, powder T 0.46 1

Aluminum oxide pure, powder
(alumina)

T 0.16 1

Asbestos board 20 T 0.96 1

Asbestos fabric T 0.78 1

Asbestos floor tile 35 SW 0.94 7

Asbestos paper 40–400 T 0.93–0.95 1

Asbestos powder T 0.40–0.60 1

Asbestos slate 20 T 0.96 1

Asphalt paving 4 LLW 0.967 8

Brass dull, tarnished 20–350 T 0.22 1

Brass oxidized 100 T 0.61 2

Brass oxidized 70 SW 0.04–0.09 9
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Emissivity tables10

Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Brass oxidized 70 LW 0.03–0.07 9

Brass oxidized at 600°C 200–600 T 0.59–0.61 1

Brass polished 200 T 0.03 1

Brass polished, highly 100 T 0.03 2

Brass rubbed with 80-
grit emery

20 T 0.20 2

Brass sheet, rolled 20 T 0.06 1

Brass sheet, worked
with emery

20 T 0.2 1

Brick alumina 17 SW 0.68 5

Brick common 17 SW 0.86–0.81 5

Brick Dinas silica,
glazed, rough

1100 T 0.85 1

Brick Dinas silica,
refractory

1000 T 0.66 1

Brick Dinas silica, un-
glazed, rough

1000 T 0.80 1

Brick firebrick 17 SW 0.68 5

Brick fireclay 1000 T 0.75 1

Brick fireclay 1200 T 0.59 1

Brick fireclay 20 T 0.85 1

Brick masonry 35 SW 0.94 7

Brick masonry,
plastered

20 T 0.94 1

Brick red, common 20 T 0.93 2

Brick red, rough 20 T 0.88–0.93 1

Brick refractory,
corundum

1000 T 0.46 1

Brick refractory,
magnesite

1000–1300 T 0.38 1

Brick refractory,
strongly radiating

500–1000 T 0.8–0.9 1

Brick refractory, weakly
radiating

500–1000 T 0.65–0.75 1

Brick silica, 95% SiO2 1230 T 0.66 1

Brick sillimanite, 33%
SiO2, 64% Al2O3

1500 T 0.29 1

Brick waterproof 17 SW 0.87 5

Bronze phosphor bronze 70 SW 0.08 9

Bronze phosphor bronze 70 LW 0.06 9

Bronze polished 50 T 0.1 1

Bronze porous, rough 50–150 T 0.55 1

Bronze powder T 0.76–0.80 1

Carbon candle soot 20 T 0.95 2

Carbon charcoal powder T 0.96 1

Carbon graphite powder T 0.97 1
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Emissivity tables10

Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Carbon graphite, filed
surface

20 T 0.98 2

Carbon lampblack 20–400 T 0.95–0.97 1

Chipboard untreated 20 SW 0.90 6

Chromium polished 50 T 0.10 1

Chromium polished 500–1000 T 0.28–0.38 1

Clay fired 70 T 0.91 1

Cloth black 20 T 0.98 1

Concrete 20 T 0.92 2

Concrete dry 36 SW 0.95 7

Concrete rough 17 SW 0.97 5

Concrete walkway 5 LLW 0.974 8

Copper commercial,
burnished

20 T 0.07 1

Copper electrolytic, care-
fully polished

80 T 0.018 1

Copper electrolytic,
polished

–34 T 0.006 4

Copper molten 1100–1300 T 0.13–0.15 1

Copper oxidized 50 T 0.6–0.7 1

Copper oxidized to
blackness

T 0.88 1

Copper oxidized, black 27 T 0.78 4

Copper oxidized, heavily 20 T 0.78 2

Copper polished 50–100 T 0.02 1

Copper polished 100 T 0.03 2

Copper polished,
commercial

27 T 0.03 4

Copper polished,
mechanical

22 T 0.015 4

Copper pure, carefully
prepared surface

22 T 0.008 4

Copper scraped 27 T 0.07 4

Copper dioxide powder T 0.84 1

Copper oxide red, powder T 0.70 1

Ebonite T 0.89 1

Emery coarse 80 T 0.85 1

Enamel 20 T 0.9 1

Enamel lacquer 20 T 0.85–0.95 1

Fiber board hard, untreated 20 SW 0.85 6

Fiber board masonite 70 SW 0.75 9

Fiber board masonite 70 LW 0.88 9

Fiber board particle board 70 SW 0.77 9

Fiber board particle board 70 LW 0.89 9

Fiber board porous, untreated 20 SW 0.85 6
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Emissivity tables10

Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Glass pane (float
glass)

non-coated 20 LW 0.97 14

Gold polished 130 T 0.018 1

Gold polished, carefully 200–600 T 0.02–0.03 1

Gold polished, highly 100 T 0.02 2

Granite polished 20 LLW 0.849 8

Granite rough 21 LLW 0.879 8

Granite rough, 4 different
samples

70 SW 0.95–0.97 9

Granite rough, 4 different
samples

70 LW 0.77–0.87 9

Gypsum 20 T 0.8–0.9 1

Ice: See Water

Iron and steel cold rolled 70 SW 0.20 9

Iron and steel cold rolled 70 LW 0.09 9

Iron and steel covered with red
rust

20 T 0.61–0.85 1

Iron and steel electrolytic 100 T 0.05 4

Iron and steel electrolytic 22 T 0.05 4

Iron and steel electrolytic 260 T 0.07 4

Iron and steel electrolytic, care-
fully polished

175–225 T 0.05–0.06 1

Iron and steel freshly worked
with emery

20 T 0.24 1

Iron and steel ground sheet 950–1100 T 0.55–0.61 1

Iron and steel heavily rusted
sheet

20 T 0.69 2

Iron and steel hot rolled 130 T 0.60 1

Iron and steel hot rolled 20 T 0.77 1

Iron and steel oxidized 100 T 0.74 4

Iron and steel oxidized 100 T 0.74 1

Iron and steel oxidized 1227 T 0.89 4

Iron and steel oxidized 125–525 T 0.78–0.82 1

Iron and steel oxidized 200 T 0.79 2

Iron and steel oxidized 200–600 T 0.80 1

Iron and steel oxidized strongly 50 T 0.88 1

Iron and steel oxidized strongly 500 T 0.98 1

Iron and steel polished 100 T 0.07 2

Iron and steel polished 400–1000 T 0.14–0.38 1

Iron and steel polished sheet 750–1050 T 0.52–0.56 1

Iron and steel rolled sheet 50 T 0.56 1

Iron and steel rolled, freshly 20 T 0.24 1

Iron and steel rough, plane
surface

50 T 0.95–0.98 1

Iron and steel rusted red, sheet 22 T 0.69 4

Iron and steel rusted, heavily 17 SW 0.96 5
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Emissivity tables10

Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Iron and steel rusty, red 20 T 0.69 1

Iron and steel shiny oxide layer,
sheet,

20 T 0.82 1

Iron and steel shiny, etched 150 T 0.16 1

Iron and steel wrought, carefully
polished

40–250 T 0.28 1

Iron galvanized heavily oxidized 70 SW 0.64 9

Iron galvanized heavily oxidized 70 LW 0.85 9

Iron galvanized sheet 92 T 0.07 4

Iron galvanized sheet, burnished 30 T 0.23 1

Iron galvanized sheet, oxidized 20 T 0.28 1

Iron tinned sheet 24 T 0.064 4

Iron, cast casting 50 T 0.81 1

Iron, cast ingots 1000 T 0.95 1

Iron, cast liquid 1300 T 0.28 1

Iron, cast machined 800–1000 T 0.60–0.70 1

Iron, cast oxidized 100 T 0.64 2

Iron, cast oxidized 260 T 0.66 4

Iron, cast oxidized 38 T 0.63 4

Iron, cast oxidized 538 T 0.76 4

Iron, cast oxidized at 600°C 200–600 T 0.64–0.78 1

Iron, cast polished 200 T 0.21 1

Iron, cast polished 38 T 0.21 4

Iron, cast polished 40 T 0.21 2

Iron, cast unworked 900–1100 T 0.87–0.95 1

Krylon Ultra-flat
black 1602

Flat black Room tempera-
ture up to 175

LW ≈ 0.96 12

Krylon Ultra-flat
black 1602

Flat black Room tempera-
ture up to 175

MW ≈ 0.97 12

Lacquer 3 colors sprayed
on Aluminum

70 SW 0.50–0.53 9

Lacquer 3 colors sprayed
on Aluminum

70 LW 0.92–0.94 9

Lacquer Aluminum on
rough surface

20 T 0.4 1

Lacquer bakelite 80 T 0.83 1

Lacquer black, dull 40–100 T 0.96–0.98 1

Lacquer black, matte 100 T 0.97 2

Lacquer black, shiny,
sprayed on iron

20 T 0.87 1

Lacquer heat–resistant 100 T 0.92 1

Lacquer white 100 T 0.92 2

Lacquer white 40–100 T 0.8–0.95 1

Lead oxidized at 200°C 200 T 0.63 1

Lead oxidized, gray 20 T 0.28 1
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Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Lead oxidized, gray 22 T 0.28 4

Lead shiny 250 T 0.08 1

Lead unoxidized,
polished

100 T 0.05 4

Lead red 100 T 0.93 4

Lead red, powder 100 T 0.93 1

Leather tanned T 0.75–0.80 1

Lime T 0.3–0.4 1

Magnesium 22 T 0.07 4

Magnesium 260 T 0.13 4

Magnesium 538 T 0.18 4

Magnesium polished 20 T 0.07 2

Magnesium
powder

T 0.86 1

Molybdenum 1500–2200 T 0.19–0.26 1

Molybdenum 600–1000 T 0.08–0.13 1

Molybdenum filament 700–2500 T 0.1–0.3 1

Mortar 17 SW 0.87 5

Mortar dry 36 SW 0.94 7

Nextel Velvet
811-21 Black

Flat black –60–150 LW > 0.97 10 and
11

Nichrome rolled 700 T 0.25 1

Nichrome sandblasted 700 T 0.70 1

Nichrome wire, clean 50 T 0.65 1

Nichrome wire, clean 500–1000 T 0.71–0.79 1

Nichrome wire, oxidized 50–500 T 0.95–0.98 1

Nickel bright matte 122 T 0.041 4

Nickel commercially
pure, polished

100 T 0.045 1

Nickel commercially
pure, polished

200–400 T 0.07–0.09 1

Nickel electrolytic 22 T 0.04 4

Nickel electrolytic 260 T 0.07 4

Nickel electrolytic 38 T 0.06 4

Nickel electrolytic 538 T 0.10 4

Nickel electroplated on
iron, polished

22 T 0.045 4

Nickel electroplated on
iron, unpolished

20 T 0.11–0.40 1

Nickel electroplated on
iron, unpolished

22 T 0.11 4

Nickel electroplated,
polished

20 T 0.05 2

Nickel oxidized 1227 T 0.85 4

Nickel oxidized 200 T 0.37 2

Nickel oxidized 227 T 0.37 4
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Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Nickel oxidized at 600°C 200–600 T 0.37–0.48 1

Nickel polished 122 T 0.045 4

Nickel wire 200–1000 T 0.1–0.2 1

Nickel oxide 1000–1250 T 0.75–0.86 1

Nickel oxide 500–650 T 0.52–0.59 1

Oil, lubricating 0.025 mm film 20 T 0.27 2

Oil, lubricating 0.050 mm film 20 T 0.46 2

Oil, lubricating 0.125 mm film 20 T 0.72 2

Oil, lubricating film on Ni base:
Ni base only

20 T 0.05 2

Oil, lubricating thick coating 20 T 0.82 2

Paint 8 different colors
and qualities

70 SW 0.88–0.96 9

Paint 8 different colors
and qualities

70 LW 0.92–0.94 9

Paint Aluminum, vari-
ous ages

50–100 T 0.27–0.67 1

Paint cadmium yellow T 0.28–0.33 1

Paint chrome green T 0.65–0.70 1

Paint cobalt blue T 0.7–0.8 1

Paint oil 17 SW 0.87 5

Paint oil based, aver-
age of 16 colors

100 T 0.94 2

Paint oil, black flat 20 SW 0.94 6

Paint oil, black gloss 20 SW 0.92 6

Paint oil, gray flat 20 SW 0.97 6

Paint oil, gray gloss 20 SW 0.96 6

Paint oil, various colors 100 T 0.92–0.96 1

Paint plastic, black 20 SW 0.95 6

Paint plastic, white 20 SW 0.84 6

Paper 4 different colors 70 SW 0.68–0.74 9

Paper 4 different colors 70 LW 0.92–0.94 9

Paper black T 0.90 1

Paper black, dull T 0.94 1

Paper black, dull 70 SW 0.86 9

Paper black, dull 70 LW 0.89 9

Paper blue, dark T 0.84 1

Paper coated with black
lacquer

T 0.93 1

Paper green T 0.85 1

Paper red T 0.76 1

Paper white 20 T 0.7–0.9 1

Paper white bond 20 T 0.93 2

Paper white, 3 different
glosses

70 SW 0.76–0.78 9
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Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Paper white, 3 different
glosses

70 LW 0.88–0.90 9

Paper yellow T 0.72 1

Plaster 17 SW 0.86 5

Plaster plasterboard,
untreated

20 SW 0.90 6

Plaster rough coat 20 T 0.91 2

Plastic glass fibre lami-
nate (printed circ.
board)

70 SW 0.94 9

Plastic glass fibre lami-
nate (printed circ.
board)

70 LW 0.91 9

Plastic polyurethane iso-
lation board

70 LW 0.55 9

Plastic polyurethane iso-
lation board

70 SW 0.29 9

Plastic PVC, plastic floor,
dull, structured

70 SW 0.94 9

Plastic PVC, plastic floor,
dull, structured

70 LW 0.93 9

Platinum 100 T 0.05 4

Platinum 1000–1500 T 0.14–0.18 1

Platinum 1094 T 0.18 4

Platinum 17 T 0.016 4

Platinum 22 T 0.03 4

Platinum 260 T 0.06 4

Platinum 538 T 0.10 4

Platinum pure, polished 200–600 T 0.05–0.10 1

Platinum ribbon 900–1100 T 0.12–0.17 1

Platinum wire 1400 T 0.18 1

Platinum wire 500–1000 T 0.10–0.16 1

Platinum wire 50–200 T 0.06–0.07 1

Porcelain glazed 20 T 0.92 1

Porcelain white, shiny T 0.70–0.75 1

Rubber hard 20 T 0.95 1

Rubber soft, gray, rough 20 T 0.95 1

Sand T 0.60 1

Sand 20 T 0.90 2

Sandstone polished 19 LLW 0.909 8

Sandstone rough 19 LLW 0.935 8

Silver polished 100 T 0.03 2

Silver pure, polished 200–600 T 0.02–0.03 1

Skin human 32 T 0.98 2

Slag boiler 0–100 T 0.97–0.93 1

Slag boiler 1400–1800 T 0.69–0.67 1

Slag boiler 200–500 T 0.89–0.78 1
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Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Slag boiler 600–1200 T 0.76–0.70 1

Snow: See Water

Soil dry 20 T 0.92 2

Soil saturated with
water

20 T 0.95 2

Stainless steel alloy, 8% Ni, 18%
Cr

500 T 0.35 1

Stainless steel rolled 700 T 0.45 1

Stainless steel sandblasted 700 T 0.70 1

Stainless steel sheet, polished 70 SW 0.18 9

Stainless steel sheet, polished 70 LW 0.14 9

Stainless steel sheet, untreated,
somewhat
scratched

70 SW 0.30 9

Stainless steel sheet, untreated,
somewhat
scratched

70 LW 0.28 9

Stainless steel type 18-8, buffed 20 T 0.16 2

Stainless steel type 18-8, oxi-
dized at 800°C

60 T 0.85 2

Stucco rough, lime 10–90 T 0.91 1

Styrofoam insulation 37 SW 0.60 7

Tar T 0.79–0.84 1

Tar paper 20 T 0.91–0.93 1

Tile glazed 17 SW 0.94 5

Tin burnished 20–50 T 0.04–0.06 1

Tin tin–plated sheet
iron

100 T 0.07 2

Titanium oxidized at 540°C 1000 T 0.60 1

Titanium oxidized at 540°C 200 T 0.40 1

Titanium oxidized at 540°C 500 T 0.50 1

Titanium polished 1000 T 0.36 1

Titanium polished 200 T 0.15 1

Titanium polished 500 T 0.20 1

Tungsten 1500–2200 T 0.24–0.31 1

Tungsten 200 T 0.05 1

Tungsten 600–1000 T 0.1–0.16 1

Tungsten filament 3300 T 0.39 1

Varnish flat 20 SW 0.93 6

Varnish on oak parquet
floor

70 SW 0.90 9

Varnish on oak parquet
floor

70 LW 0.90–0.93 9

Wallpaper slight pattern,
light gray

20 SW 0.85 6

Wallpaper slight pattern, red 20 SW 0.90 6

Water distilled 20 T 0.96 2
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Emissivity tables10

Table 10.1 T: Total spectrum; SW: 2–5 µm; LW: 8–14 µm, LLW: 6.5–20 µm; 1: Material; 2: Specification;
3:Temperature in °C; 4: Spectrum; 5: Emissivity: 6:Reference (continued)

1 2 3 4 5 6

Water frost crystals –10 T 0.98 2

Water ice, covered with
heavy frost

0 T 0.98 1

Water ice, smooth 0 T 0.97 1

Water ice, smooth –10 T 0.96 2

Water layer >0.1 mm
thick

0–100 T 0.95–0.98 1

Water snow T 0.8 1

Water snow –10 T 0.85 2

Wood 17 SW 0.98 5

Wood 19 LLW 0.962 8

Wood ground T 0.5–0.7 1

Wood pine, 4 different
samples

70 SW 0.67–0.75 9

Wood pine, 4 different
samples

70 LW 0.81–0.89 9

Wood planed 20 T 0.8–0.9 1

Wood planed oak 20 T 0.90 2

Wood planed oak 70 SW 0.77 9

Wood planed oak 70 LW 0.88 9

Wood plywood, smooth,
dry

36 SW 0.82 7

Wood plywood,
untreated

20 SW 0.83 6

Wood white, damp 20 T 0.7–0.8 1

Zinc oxidized at 400°C 400 T 0.11 1

Zinc oxidized surface 1000–1200 T 0.50–0.60 1

Zinc polished 200–300 T 0.04–0.05 1

Zinc sheet 50 T 0.20 1
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