Product data sheet
Characteristics

RPM22P7
power plug-in relay - Zelio RPM - 2 C/O-230 V AC - 15 A - with LED

Main		
Range of product	Zelio Relay	-
Series name	Power	$\stackrel{\square}{\square}$
Product or component type	Plug-in relay	
Device short name	RPM	-
Contacts type and composition	$2 \mathrm{C} / \mathrm{O}$	¢
[Uc] control circuit voltage	230 V AC	-
[lthe] conventional enclosed thermal current	15 A at $-40 . . .55^{\circ} \mathrm{C}$	
Status LED	With	¢
Control type	Lockable test button	-
Utilisation coefficient	20 \%	
Complementary		年
Shape of pin	Flat	Eㅡㅔ
[Ui] rated insulation voltage	250 V conforming to IEC 300 V conforming to UL 300 V conforming to CSA	-0
[Uimp] rated impulse withstand voltage	4 kV for $1.2 / 50 \mu \mathrm{~s}$	$\stackrel{8}{8}$
Contacts material	AgNi	$\stackrel{\square}{\circ}$
[le] rated operational current	15 A at 277 V AC conforming to UL 7.5 A at 28 V DC (NC) conforming to IEC 15 A at 250 V AC (NO) conforming to IEC 7.5 A at 250 V AC (NC) conforming to IEC 15 A at 28 V DC (NO) conforming to IEC 15 A at 28 V DC conforming to UL	-
Maximum switching voltage	250 V conforming to IEC	-
Load current	$\begin{aligned} & 15 \mathrm{~A} \text { at } 250 \mathrm{~V} \mathrm{AC} \\ & 15 \mathrm{~A} \text { at } 28 \mathrm{~V} \mathrm{DC} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
Maximum switching capacity	$\begin{aligned} & 3750 \text { VA } \\ & 420 \mathrm{~W} \end{aligned}$	-
Minimum switching capacity	170 mW at $10 \mathrm{~mA}, 17 \mathrm{~V}$	$\stackrel{\text { E }}{ }$
Operating rate	<= 18000 cycles/hour no-load <= 1200 cycles/hour under load	¢ $\stackrel{8}{8}$ $\stackrel{0}{\square}$
Mechanical durability	10000000 cycles	$\stackrel{.1}{0}$

Electrical durability	100000 cycles for resistive load
Average coil consumption in VA	1.1 at 60 Hz
Drop-out voltage threshold	$>=0.15 \mathrm{Uc}$ AC
Operating time	20 ms at nominal voltage
Reset time	20 ms at nominal voltage
Rated operational voltage limits	$184 \ldots 253 \mathrm{~V} \mathrm{AC}$
Protection category	RT I
Operating position	Any position
Safety reliability data	$\mathrm{B} 10 \mathrm{~d}=100000$
Product weight	0.036 kg
Device presentation	Complete product

Environment

Dielectric strength	2000 V AC between coil and contact with reinforced insulation
	2000 V AC between poles with basic insulation
	1500 V AC between contacts with micro disconnection insulation
Standards	EN/IEC 61810-1
	UL 508
	CSA C22.2 No 14
Croduct certifications	RoHS
	UL
	REACH
	EAC
Ambient air temperature for storage	$-40 \ldots . .85^{\circ} \mathrm{C}$
Ambient air temperature for operation	$-40 \ldots 55^{\circ} \mathrm{C}$
Vibration resistance	$3 \mathrm{gn}(\mathrm{f}=10 \ldots . .150 \mathrm{~Hz})$, amplitude $+/-1 \mathrm{~mm}$ (on 5 cycles in operation)
	$5 \mathrm{gn}(\mathrm{f}=10 . .150 \mathrm{~Hz})$, amplitude $+/-1 \mathrm{~mm}$ (on 5 cycles not operating)
IP degree of protection	IP40 conforming to EN/IEC 60529
Shock resistance	30 gn not operating
	15 gn in operation
Pollution degree	3

Contractual warranty
Warranty period 18 months

Connections and Schema

Wiring Diagram

Symbols shown in blue correspond to Nema marking.

Durability (inductive load) = durability (resistive load) \times reduction coefficient.
Resistive AC load

X
Switching capacity (kVA)
$\mathrm{Y} \quad$ Durability (Number of operating cycles)

Reduction coefficient for inductive AC load (depending on power factor $\cos \phi$)

Y Reduction coefficient (A)

Maximum switching capacity on resistive DC load

$$
\begin{array}{ll}
X & \text { Voltage DC } \\
Y & \text { Current DC }
\end{array}
$$

Note : These are typical curves, actual durability depends on load, environment, duty cycle, etc.

