

Penetrating Spray #692-823

RS Components

Chemwatch: 4828-69

Version No: 7.1.1.1

Material Safety Data Sheet according to NOHSC and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 28/03/2014

Print Date: 28/03/2014

Initial Date: Not Available

S.Local.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Penetrating Spray #692-823
Synonyms	Manufacturer's Code: 692-823
Proper shipping name	AEROSOLS
Chemical formula	Not Applicable
Other means of identification	Not Available
CAS number	Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack Use according to manufacturer's directions. , Penetrating spray.
--------------------------	--

Details of the supplier of the safety data sheet

Registered company name	RS Components	RS Components
Address	25 Pavesi Street Smithfield 2164 NSW Australia	Units 30 & 31, 761 Great South Road Penrose 1006 Auckland New Zealand
Telephone	+1 300 656 636	+64 9 526 1600
Fax	+1 300 656 696	+64 9 579 1700
Website	Not Available	www.rsnewzealand.com
Email	Not Available	Not Available

Emergency telephone number

Association / Organisation	Not Available	Not Available
Emergency telephone numbers	1800 039 008 (24 hours),+61 3 9573 3112	Not Available
Other emergency telephone numbers	1800 039 008 (24 hours),+61 3 9573 3112	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

Label elements

Relevant risk statements are found in section 2

Poisons Schedule	
Risk Phrases [1]	<p>R44 Risk of explosion if heated under confinement.</p> <p>R67 Vapours may cause drowsiness and dizziness.</p> <p>R12 Extremely flammable.</p>
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI
Indication(s) of danger	F+

SAFETY ADVICE

S09	Keep container in a well ventilated place.
S15	Keep away from heat.
S16	Keep away from sources of ignition. No smoking.

Penetrating Spray #692-823

S23	Do not breathe gas/fumes/vapour/spray.
S29	Do not empty into drains.
S33	Take precautionary measures against static discharges.
S38	In case of insufficient ventilation, wear suitable respiratory equipment.
S41	In case of fire and/or explosion, DO NOT BREATHE FUMES.
S43	In case of fire use...
S51	Use only in well ventilated areas.
S56	Dispose of this material and its container at hazardous or special waste collection point.

Other hazards

Inhalation, skin contact and/or ingestion may produce health damage*.
 May produce discomfort of the eyes and respiratory tract*.
 Cumulative effects may result following exposure*.
 Repeated exposure potentially causes skin dryness and cracking*.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64741-96-4.	30-50	naphthenic distillate, heavy, solvent-refined (severe)
8008-20-6.	30-50	kerosene, deodorised
124-38-9	1-10	carbon dioxide

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If aerosols come in contact with the eyes: <ul style="list-style-type: none"> ▶ Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. ▶ Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: <ul style="list-style-type: none"> ▶ Flush skin and hair with running water (and soap if available). ▶ Remove any adhering solids with industrial skin cleansing cream. ▶ DO NOT use solvents. ▶ Seek medical attention in the event of irritation.
Inhalation	If aerosols, fumes or combustion products are inhaled: <ul style="list-style-type: none"> ▶ Remove to fresh air. ▶ Lay patient down. Keep warm and rested. ▶ Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. ▶ If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ▶ Transport to hospital, or doctor.
Ingestion	<ul style="list-style-type: none"> ▶ Avoid giving milk or oils. ▶ Avoid giving alcohol. ▶ Not considered a normal route of entry. ▶ If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

	Treat symptomatically. <ul style="list-style-type: none"> ▶ Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product. ▶ In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases. ▶ High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. <p>NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.</p>
--	---

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

	<ul style="list-style-type: none"> ▶ Foam. ▶ Dry chemical powder. ▶ BCF (where regulations permit). ▶ Carbon dioxide. ▶ Water spray or fog - Large fires only.
--	---

Penetrating Spray #692-823

Special hazards arising from the substrate or mixture

Fire Incompatibility

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- **DO NOT** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance from source of ignition.
- Heating may cause expansion or decomposition with violent container rupture.
- Aerosol cans may explode on exposure to naked flames.
- Rupturing containers may rocket and scatter burning materials.
- Hazards may not be restricted to pressure effects.
- May emit acrid, poisonous or corrosive fumes.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

, carbon dioxide (CO₂)

, sulfur oxides (SO_x)

, other pyrolysis products typical of burning organic material

CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

Slippery when spilt.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Wear protective clothing, impervious gloves and safety glasses.
- Shut off all possible sources of ignition and increase ventilation.
- Wipe up.
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

Major Spills

Slippery when spilt.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- **DO NOT** allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sums.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- **When handling, DO NOT eat, drink or smoke.**
- **DO NOT** incinerate or puncture aerosol cans.
- **DO NOT** spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.

Penetrating Spray #692-823

	<ul style="list-style-type: none"> Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this MSDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	<ul style="list-style-type: none"> Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container	<ul style="list-style-type: none"> Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	<ul style="list-style-type: none"> Avoid reaction with oxidising agents Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

PACKAGE MATERIAL INCOMPATIBILITIES

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	naphthenic distillate, heavy, solvent-refined (severe)	Oil mist, refined mineral	5 (mg/m3)	Not Available	Not Available	Not Available
Australia Exposure Standards	carbon dioxide	Carbon dioxide / Carbon dioxide in coal mines	9000 (mg/m3) / 22500 (mg/m3) / 5000 (ppm) / 12500 (ppm)	54000 (mg/m3) / 30000 (ppm)	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	TEEL-0	TEEL-1	TEEL-2	TEEL-3
kerosene, deodorised	100(ppm)	100(ppm)	400(ppm)	400(ppm)
carbon dioxide	5000(ppm)	30000(ppm)	40000(ppm)	40000(ppm)

Ingredient	Original IDLH	Revised IDLH
carbon dioxide	50,000(ppm)	40,000(ppm)

Exposure controls

Appropriate engineering controls	<p>Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.</p> <p>The basic types of engineering controls are:</p> <p>Process controls which involve changing the way a job activity or process is done to reduce the risk.</p> <p>Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.</p> <p>Employers may need to use multiple types of controls to prevent employee overexposure.</p> <p>General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.</p> <p>Provide adequate ventilation in warehouse or closed storage areas.</p> <p>Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.</p>
	Type of Contaminant:
	aerosols, (released at low velocity into zone of active generation)
	direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)
	Within each range the appropriate value depends on:
	Lower end of the range
	1: Room air currents minimal or favourable to capture
	2: Contaminants of low toxicity or of nuisance value only.
	3: Intermittent, low production.
	Upper end of the range
	1: Disturbing room air currents
	2: Contaminants of high toxicity
	3: High production, heavy use

Continued...

Penetrating Spray #692-823

	4: Large hood or large air mass in motion	4: Small hood-local control only			
<p>Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction systems, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.</p>					
Personal protection					
Eye and face protection	No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: <ul style="list-style-type: none">▶ Safety glasses with side shields.▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.				
Skin protection	See Hand protection below				
Hand protection	<ul style="list-style-type: none">▶ No special equipment needed when handling small quantities.▶ OTHERWISE:<ul style="list-style-type: none">▶ For potentially moderate exposures:▶ Wear general protective gloves, eg. light weight rubber gloves.▶ For potentially heavy exposures:▶ Wear chemical protective gloves, eg. PVC. and safety footwear.				
Body protection	See Other protection below				
Other protection	No special equipment needed when handling small quantities. OTHERWISE: <ul style="list-style-type: none">▶ Overalls.▶ Skin cleansing cream.▶ Eyewash unit.▶ Do not spray on hot surfaces.				
Thermal hazards					

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the **computer-generated** selection:

Penetrating Spray #692-823 Not Available

Material	CPI
* CPI - Chemwatch Performance Index	

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1 P2	-
up to 50	1000	-	A-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	A-2 P2
up to 100	10000	-	A-3 P2
100+		Airline**	

* - Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO₂), G = Agricultural chemicals, K = Ammonia(NH₃), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Dark grey liquid aerosol with an aromatic odour; insoluble in water.		
Physical state	Liquid	Relative density (Water = 1)	0.8
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>200
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	<0	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	195	Molecular weight (g/mol)	Not Available

Penetrating Spray #692-823

Flash point (°C)	37.7-70 (kerosene)	Taste	Not Available
Evaporation rate	Slow	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	8.0	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	0.9	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution(1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	<ul style="list-style-type: none"> ▶ Elevated temperatures. ▶ Presence of open flame. ▶ Product is considered stable. ▶ Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

	Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
	<p>Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.</p> <p>Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.</p> <p>Inhalation hazard is increased at higher temperatures.</p>
Inhaled	<p>High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitiser and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.</p> <p>Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis.</p> <p>Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination</p> <p>WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.</p>
Ingestion	<p>Accidental ingestion of the material may be damaging to the health of the individual.</p> <p>Not normally a hazard due to physical form of product.</p> <p>Considered an unlikely route of entry in commercial/industrial environments</p>
Skin Contact	<p>The material may accentuate any pre-existing dermatitis condition</p> <p>Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.</p> <p>Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.</p> <p>Spray mist may produce discomfort</p> <p>Open cuts, abraded or irritated skin should not be exposed to this material</p> <p>Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects.</p> <p>Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.</p> <p>Aromatic hydrocarbons may produce skin irritation, vasodilation with erythema and changes in endothelial cell permeability. Systemic intoxication, resulting from contact with the light aromatics, is unlikely due to the slow rate of permeation. Branching of the side chain appears to increase percutaneous absorption.</p>
Eye	<p>Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.</p> <p>Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce</p>

Penetrating Spray #692-823

irritation after brief exposures..

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Principal route of occupational exposure to the gas is by inhalation.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesia of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesia), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin absorption.

Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m³ oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m³ oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis.

Penetrating Spray #692-823

TOXICITY

IRRITATION

Not Available

Not Available

naphthenic distillate, heavy, solvent-refined (severe)

TOXICITY

IRRITATION

Not Available

Not Available

kerosene, deodorised

TOXICITY

IRRITATION

Dermal (rabbit) LD50: >5000 mg/kg

Eye (rabbit): 100 mg/24h mild

Oral (rat) LD50: 45000 mg/kg

Skin (rabbit): 500 mg/24h mild

Not Available

Not Available

carbon dioxide

TOXICITY

IRRITATION

Not Available

Not Available

* Value obtained from manufacturer's msds unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances

Penetrating Spray #692-823

No significant acute toxicological data identified in literature search.

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives;

The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- ▶ The adverse effects of these materials are associated with undesirable components, and
- ▶ The levels of the undesirable components are inversely related to the degree of processing;
- ▶ Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- ▶ The potential toxicity of *residual base oils* is independent of the degree of processing the oil receives.
- ▶ The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil's mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing.

Highly and Severely Refined Distillate Base Oils

Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to > 4 mg/l.

When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating".

Testing in guinea pigs for sensitization has been negative.

Repeat dose toxicity: Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil's toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/or the peculiarities of the study.

- ▶ The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive,
- ▶ The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and
- ▶ The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly

Penetrating Spray #692-823

► severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials.

Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study's authors.

A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters. The study authors considered these malformations to be minor and within the normal ranges for the strain of rat.

Genotoxicity:

In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay. Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices.

In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells.

Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally.

For "kerosenes"

Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg. The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulphurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodourised kerosene (probably a desulphurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l.

When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation.

An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulphurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 had resolved.

Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulphurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs.

Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects.

Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits. The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be treatment-related:

- increased relative heart weights for the mid- and high- dose males and females,
- increased absolute and relative spleen weights in treated females, and
- differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stress-related and therefore, indirectly related to treatment).

Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight changes.

In a different study, hydrodesulphurised kerosene was tested in a thirteen-week dermal study using Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Ophthalmological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights.

Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of proliferative and inflammatory changes in the skin.

A hydrodesulphurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study, Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m³ kerosene. Exposures were for approximately 6 hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues.

Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. Following the discovery that hydrodesulphurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation. If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred. Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration. The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulphurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor. A sample of a hydrodesulphurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice. Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity.

In-Vitro (Genotoxicity): The potential *in vitro* genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation. Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation. The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results.

Hydrodesulphurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation).

In-Vivo Genotoxicity: Multiple *in vivo* genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in *in vivo* bone marrow cytogenetic tests in Sprague-Dawley rats. One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay. Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation.

Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days pre mating through 20

Penetrating Spray #692-823

days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day. Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported. There were no compound-related deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds.

No significant acute toxicological data identified in literature search.

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- ▶ The adverse effects of these materials are associated with undesirable components, and
- ▶ The levels of the undesirable components are inversely related to the degree of processing;
- ▶ Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- ▶ The potential toxicity of *residual base oils* is independent of the degree of processing the oil receives.
- ▶ The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil's mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing

Highly and Severely Refined Distillate Base Oils

Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to > 4 mg/l.

When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating"

Testing in guinea pigs for sensitization has been negative

Repeat dose toxicity: Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil's toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/or the peculiarities of the study.

- ▶ The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive,
- ▶ The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and
- ▶ The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials.

Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study's authors.

A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters. The study authors considered these malformations to be minor and within the normal ranges for the strain of rat.

Genotoxicity:

In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay. Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices.

In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells.

Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

for petroleum:

This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic.

This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss.

This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents

Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans.

Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All *in vivo* studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays.

Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed.

Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials.

Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans.

KEROSENE, DEODORISED

Penetrating Spray #692-823

For "kerosenes"

Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg. The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodorised kerosene (probably a desulfurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l.

When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation.

An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 had resolved.

Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs.

Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects.

Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits. The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be treatment-related:

- increased relative heart weights for the mid- and high- dose males and females,
- increased absolute and relative spleen weights in treated females, and
- differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stress-related and therefore, indirectly related to treatment).

Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight changes.

In a different study, hydrodesulfurised kerosene was tested in a thirteen-week dermal study using Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Ophthalmological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights.

Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of a proliferative and inflammatory changes in the skin.

A hydrodesulfurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study, Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m³ kerosene. Exposures were for approximately 6 hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues.

Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. Following the discovery that hydrodesulfurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation. If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred. Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration. The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulfurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor. A sample of a hydrodesulfurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice. Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity.

In-Vitro (Genotoxicity): The potential *in vitro* genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation. Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation. The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results.

Hydrodesulfurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation). **In-Vivo Genotoxicity:** Multiple *in vivo* genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in *in vivo* bone marrow cytogenetic tests in Sprague-Dawley rats. One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay. Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation.

Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days pre mating through 20 days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day. Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported. There were no compound-related deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds.

CARBON DIOXIDE

- pulmonary effects IDLH: 50,000 ppm

Acute Toxicity

Carcinogenicity

Skin Irritation/Corrosion

Reproductivity

Penetrating Spray #692-823

Serious Eye Damage/Irritation	<input checked="" type="checkbox"/>	STOT - Single Exposure	<input checked="" type="checkbox"/>
Respiratory or Skin sensitisation	<input checked="" type="checkbox"/>	STOT - Repeated Exposure	<input checked="" type="checkbox"/>
Mutagenicity	<input checked="" type="checkbox"/>	Aspiration Hazard	<input checked="" type="checkbox"/>

CMR STATUS

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

For kerosene:

For kerosene-range refinery streams ("kerosene"):

Kerosene is the name for the lighter end of a group of petroleum streams known as the middle distillates.

Kerosene may be obtained either from the distillation of crude oil under atmospheric pressure (straight-run kerosene) or from catalytic, thermal or steam cracking of heavier petroleum streams (cracked kerosene). The kerosenes, are further treated by a variety of processes (including hydrogenation) to remove or reduce the level of sulfur, nitrogen or olefinic materials. The precise composition of any particular kerosene will depend on the crude oil from which it was derived and on the refinery processes used for its production.

The streams are complex mixtures of paraffinic, isoparaffinic, naphthenic (cycloparaffinic) and aromatic (mainly alkylbenzene) hydrocarbons ranging in carbon number from C5-25 (mainly C9-16) and boil in the range 145 to 300 C. Olefins constitute less than 5% of the mixtures, by volume, and polycyclic aromatic hydrocarbons (PAHs) (3-7 fused rings) content is typically very low. Jet fuels (e.g., Jet A, JP-8, etc.) are included because they are composed almost entirely of two of these streams straight run kerosene (CAS No. 8008-20-6) or hydrodesulphurised kerosene (CAS No. 64742-81-0)

Environmental Fate

Terrestrial fate: If released to soil, kerosene is expected to biodegrade under both aerobic and anaerobic conditions. Kerosene is a mixture of petroleum hydrocarbons, chiefly C10-C16 alkanes, and a typical analysis includes the identification of n-dodecane, alkyl benzene derivatives, naphthalene, and tetrahydronaphthalenes. Soil adsorption coefficients for these representative classes of compounds ranging from 1500 to 17,000 obtained from estimated log octanol/water partition coefficients of 3.3 to 5.25 indicate that some components of kerosene may display low mobility and some will be essentially immobile in soil. The vapour pressure of kerosene, 0.48 mm Hg indicates that it may rapidly volatilise from dry soil to the atmosphere although its expected strong adsorption to soil may significantly attenuate the rate of this process.

Aquatic fate: If released to water, kerosene is expected to biodegrade under both aerobic and anaerobic conditions. Bioconcentration factors for components of kerosene were estimated to be 190 to 5800 (based on estimated log octanol/water partition coefficients of 3.3 to 5.25) indicating that some components of kerosene may significantly bioconcentrate in fish and aquatic organisms. Soil adsorption coefficients for kerosene ranging from 1500 to 17,000 indicate that it may strongly adsorb to sediment and suspended organic matter. The estimated half-life for volatilisation of kerosene from a model river 1 m deep flowing at 1 m/sec with a wind speed of 3 m/sec which does not take into account adsorptive processes is 3-6 hrs. The estimated half-life for volatilisation of kerosene from a model lake, which accounts for adsorptive processes, is >130 days.

Atmospheric fate If released to the atmosphere, kerosene may undergo oxidation by a gas-phase reaction with photochemically produced hydroxyl radicals. Estimated rate constants for the oxidation of these representative classes of compounds ranging from 1.2-2.2x10-11 cm/molec-sec at 25 deg C translates to an atmospheric half-life for kerosene of 2-3.4 days using an average atmospheric hydroxyl radical concentration of 5x10+5 molec/cu-cm.

The stability of kerosene in soils as affected by volatilization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residues in a dune sand, a loamy sand, and a silty loam soil during a 50 day period. Seven major compounds ranging between C9 and C15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions air-dry soil and no subsequent addition of water excluded both biodegradative and leaching losses. The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (> 4.5 um) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.

Volatilisation in the air phase and saturated mass flow of kerosene in the three sands (fine, medium and coarse) were studied in the laboratory under controlled conditions. Volatilisation was the major physico-chemical process affecting the fate of kerosene in the inert porous medium. During volatilization the liquid kerosene changed its composition by gradually losing its light components (C9-C13), and the viscosity of the remaining liquid kerosene increased. The increase in viscosity led to a decrease in the infiltration rate, for example, by about 20% when the viscosity increased

Ecotoxicity:

Data for various kerosene streams is available. Kerosenes and jet fuels are moderately to acutely toxic to aquatic organisms. All studies used exposures to water accommodated fractions (WAFs) of the process streams. Each of the different streams exhibited similar toxicity to rainbow trout (*Oncorhynchus mykiss*, 96-hour LC 50 values of 18 - 25 mg/L); likewise, toxicity to the alga *Selenastrum capricornutum*, with 96-hour growth rate EC50 values of 5.0 - 6.2 mg/L and biomass inhibition EC50 values of 5.9 - 11 mg/L, did not vary greatly among the streams. There was considerable variation in the measured toxicity of the category member (CAS No. 64742-81-0) to daphnids (*Daphnia magna*) when evaluated in different tests; in the test using daily renewal of freshly-prepared WAF, the 48-hr EC50 was estimated at 1.4 mg/L, while in the test where solution was not renewed it was estimated at between 40 and 89 mg/L. In spite of daily renewal, a sample of sweetened kerosene (CAS No. 91770-15-9) exhibited considerably less toxicity than the hydrodesulphurised and hydrocracked materials tested in the same laboratory, indicating the difference in that measurement is due to the nature of the sample rather than variations in the testing approach.

for lubricating oil base stocks:

Vapor Pressure Vapor pressures of lubricating base oils are reported to be negligible. In one study, the experimentally measured vapour pressure of a solvent-dewaxed heavy paraffinic distillate base oil was $1.7 \times 10^{exp-4}$ Pa. Since base oils are mixtures of C15 to C50 paraffinic, naphthenic, and aromatic hydrocarbon isomers, representative components of those structures were selected to calculate a range of vapor pressures. The estimated vapor pressure values for these selected components of base oils ranged from $4.5 \times 10^{exp-1}$ Pa to $2 \times 10^{exp-13}$ Pa. Based on Dalton's Law the expected total vapour pressure for base oils would fall well below minimum levels (10^{exp-5} Pa) of recommended experimental procedures.

Partition Coefficient (log Kow): In mixtures such as the base oils, the percent distribution of the hydrocarbon groups (i.e., paraffins, naphthenes, and aromatics) and the carbon chain lengths determines in-part the partitioning characteristics of the mixture. Generally, hydrocarbon chains with fewer carbon atoms tend to have lower partition coefficients than those with higher carbon numbers. However, due to their complex composition, unequivocal determination of the log Kow of these hydrocarbon mixtures cannot be made. Rather, partition coefficients of selected C15 chain-length hydrocarbon structures representing paraffinic, naphthenic, and aromatic constituents in base oil lubricants were modelled. Results showed typical log Kow values from 4.9 to 7.7, which were consistent with values of >4 for lubricating oil basestocks

Water Solubility: When released to water, base oils will float and spread at a rate that is viscosity dependent. While water solubility of base oils is typically very low, individual hydrocarbons exhibit a wide range of solubility depending on molecular weight and degree of unsaturation. Decreasing molecular weight (i.e., carbon number) and increasing levels of unsaturation increases the water solubility of these materials. As noted for partition coefficient, the water solubility of lubricating base oils cannot be determined due to their complex mixture characteristics. Therefore, the water solubility of individual C15 hydrocarbons representing the different groups making up base oils (i.e., linear and branched paraffins, naphthenes, and aromatics) was modelled. Based on water solubility modelling of those groups, aqueous solubilities are typically much less than 1 ppm. (0.003-0.63 mg/l)

Environmental Fate:

Photodegradation: Chemicals having potential to photolysis have UV/visible absorption maxima in the range of 290 to 800 nm. Some chemicals have absorption maxima significantly below 290 nm and consequently cannot undergo direct photolysis in sunlight (e.g. chemicals such as alkanes, alkenes, alkynes, saturated alcohols, and saturated acids). Most hydrocarbon constituents of the materials in this category are not expected to photolysis since they do not show absorbance within the 290-800 nm range. However, photodegradation of polycyclic aromatic hydrocarbons (PAHs) can occur and may be a significant degradation pathway for these constituents of lubricating base oils. The degree and rate at which PAHs may photodegrade depend upon whether conditions allow penetration of light with sufficient energy to effect a change. For example, polycyclic aromatic compounds (PAC) compounds bound to sediments may persist due to a lack of sufficient light penetration

Atmospheric gas-phase reactions can occur between organic chemicals and reactive molecules such as photochemically produced hydroxyl radicals, ozone and nitrogen oxides. Atmospheric oxidation as a result of radical attack is not direct photochemical degradation, but indirect degradation. In general, lubricating base oils have low vapour pressures and volatilisation is not expected to be a significant removal mechanism for the majority of the hydrocarbon components. However, some components (e.g., C15 branched paraffins and naphthenes) appear to have the potential to volatilise. Atmospheric half-lives of 0.10 to 0.66 days have been calculated for representative C15 hydrocarbon components of lubricating base oils

Stability in Water: Chemicals that have a potential to hydrolyze include alkyl halides, amides, carbamates, carboxylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters. Because lubricating base oils do not contain significant levels of these functional groups, materials in the lubricating base oils category are not subject to hydrolysis

Chemical Transport and Distribution in the Environment: Based on the physical-chemical characteristics of component hydrocarbons in lubricating base oils, the lower molecular weight

Penetrating Spray #692-823

components are expected to have the highest vapour pressures and water solubilities, and the lowest partition coefficients. These factors enhance the potential for widespread distribution in the environment. To gain an understanding of the potential transport and distribution of lubricating base oil components, the EQC (Equilibrium Criterion) model was used to characterize the environmental distribution of different C15 compounds representing different structures found in lube oils (e.g., paraffins, naphthenes, and aromatics). The modelling found partitioning to soil or air is the ultimate fate of these C15 compounds. Aromatic compounds partition principally to soil. Linear paraffins partition mostly to soil, while branching appears to allow greater distribution to air. Naphthenes distribute to both soil and air, with increasing proportions in soil for components with the greater number of ring structures. Because the modelling does not take into account degradation factors, levels modelled in the atmosphere are likely overstated in light of the tendency for indirect photodegradation to occur.

Biodegradation: The extent of biodegradation measured for a particular lubricating oil basestock is dependent not only on the procedure used but also on how the sample is presented in the biodegradation test. Lubricant base oils typically are not readily biodegradable in standard 28-day tests. However, since the oils consist primarily of hydrocarbons that are ultimately assimilated by microorganisms, and therefore inherently biodegradable. Twenty-eight biodegradability studies have been reported for a variety of lubricating base oils. Based on the results of ultimate biodegradability tests using modified Sturm and manometric respirometry testing the base oils are expected to be, for the most part, inherently biodegradable. Biodegradation rates found using the modified Sturm procedure ranged from 1.5 to 29%. Results from the manometric respirometry tests on similar materials showed biodegradation rates from 31 to 50%. Biodegradation rates measured in 21-day CEC tests for similar materials ranged from 13 to 79%.

Ecotoxicity:

Numerous acute studies covering fish, invertebrates, and algae have been conducted to assess the ecotoxicity of various lubricating base oils. None of these studies have shown evidence of acute toxicity to aquatic organisms. Eight, 7-day exposure studies using rainbow trout failed to demonstrate toxicity when tested up to the maximum concentration of 1000 mg/L applied as dispersions. Three, 96-hour tests with rainbow trout also failed to show any toxic effects when tested up to 1000 mg/L applied as dispersions. Similarly, three 96-hour tests with fathead minnows at a maximum test concentration of 100 mg/L water accommodated fractions (WAF) showed no adverse effects. Two species of aquatic invertebrates (*Daphnia magna* and *Gammarus sp.*) were exposed to WAF solutions up to 10,000 mg/L for 48 and 96-hours, respectively, with no adverse effects being observed. Four-day exposures of the freshwater green alga (*Scenedesmus subspicatus*) to 500 mg/L WAF solutions failed to show adverse effects on growth rate and algal cell densities in four studies.

Multiple chronic ecotoxicity studies have shown no adverse effects to daphnid survival or reproduction. In 10 of 11 chronic studies, daphnids were exposed for 21 days to WAF preparations of lubricating base oils with no ill effects on survival or reproduction at the maximum concentration of 1000 mg/L. One test detected a reduction in reproduction at 1000 mg/L. Additional data support findings of no chronic toxicity to aquatic invertebrates and fish. No observed effect levels ranged from 550 to 5,000 mg/L when tested as either dispersions or WAFs.

The data described above are supported by studies on a homologous series of alkanes. The author concluded that the water solubility of carbon chains C10 is too limited to elicit acute toxicity. This also was shown for alkylbenzene compounds having carbon numbers C15. Since base oils consist of carbon compounds of C15 to C50, component hydrocarbons that are of acute toxicological concern are, for the most part, absent in these materials. Similarly, due to their low solubility, the alkylated two to three ring polycyclic aromatic components in base oils are not expected to cause acute or chronic toxicity. This lack of toxicity is borne out in the results of the reported studies.

The effects of crude and refined oils on organisms found in fresh and sea water have been extensively reviewed.

Sea water. Where spills occur the non-mobile species suffer the greatest mortality, whereas fish species can often escape from the affected region. The extent of the initial mortality depends on the chemical nature of the oil, the location, and the physical conditions, particularly the temperature and wind velocity. Most affected freshwater and marine communities recover from the effects of an oil spill within a year. The occurrence of biogenic hydrocarbons in the world's oceans is well recorded. They have the characteristic isoprenoid structure, and measurements made in water columns indicate a background concentration of 1.0 to 10 µg/L. The higher molecular weight materials are dispersed as particles, with the highest concentrations of about 20 µg/L occurring in the top 3 mm layer of water.

A wide variation in the response of organisms to oil exposures has been noted. The larvae of fish and crustaceans appear to be most susceptible to the water-soluble fraction of crude oil.

Exposures of plankton and algae have indicated that certain species of diatoms and green algae are inhibited, whereas microflagellates are not.

For the most part, molluscs and most intertidal worm species appear to be tolerant of oil contamination.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
Not Available	Not Available	Not Available

Bioaccumulative potential

Ingredient	Bioaccumulation
Not Available	Not Available

Mobility in soil

Ingredient	Mobility
Not Available	Not Available

SECTION 13 DISPOSAL CONSIDERATIONS**Waste treatment methods**

Product / Packaging disposal	<ul style="list-style-type: none"> ▶ Consult State Land Waste Management Authority for disposal. ▶ Discharge contents of damaged aerosol cans at an approved site. ▶ Allow small quantities to evaporate. ▶ DO NOT incinerate or puncture aerosol cans. ▶ Bury residues and emptied aerosol cans at an approved site.
------------------------------	---

SECTION 14 TRANSPORT INFORMATION**Labels Required**

Marine Pollutant	NO
HAZCHEM	2Y

Land transport (ADG)

UN number	1950
Packing group	Not Available
UN proper shipping name	AEROSOLS

Penetrating Spray #692-823

Environmental hazard	No relevant data
Transport hazard class(es)	Class 2.1 Subrisk
Special precautions for user	Special provisions 63 190 277 327 limited quantity See SP 277

Air transport (ICAO-IATA / DGR)

UN number	1950
Packing group	Not Available
UN proper shipping name	Aerosols, flammable
Environmental hazard	No relevant data
Transport hazard class(es)	ICAO/IATA Class 2.1 ICAO / IATA Subrisk ERG Code 10L
Special precautions for user	Special provisions A145A167A802 Cargo Only Packing Instructions 203 Cargo Only Maximum Qty / Pack 150 kg Passenger and Cargo Packing Instructions 203 Passenger and Cargo Maximum Qty / Pack 75 kg Passenger and Cargo Limited Quantity Packing Instructions Y203 Passenger and Cargo Maximum Qty / Pack 30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	1950
Packing group	Not Available
UN proper shipping name	AEROSOLS
Environmental hazard	No relevant data
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk
Special precautions for user	EMS Number F-D,S-U Special provisions 63 190 277 327 344 959 Limited Quantities SP277

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

naphthenic distillate, heavy, solvent-refined (severe)(64741-96-4.) is found on the following regulatory lists	"Australia Hazardous Substances Information System - Consolidated Lists", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "International Chemical Secretariat (ChemSec) SIN List (*Substitute It Now!)", "International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs", "Australia Exposure Standards", "International Fragrance Association (IFRA) Survey: Transparency List"
kerosene, deodorised(8008-20-6.) is found on the following regulatory lists	"Australia Hazardous Substances Information System - Consolidated Lists", "FisherTransport Information", "Sigma-Aldrich Transport Information", "Australia Inventory of Chemical Substances (AICS)", "Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)", "Belgium Federal Public Service Mobility and Transport, Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (Dutch)", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "International Air Transport Association (IATA) Dangerous Goods Regulations", "International Maritime Dangerous Goods Requirements (IMDG Code)"
carbon dioxide(124-38-9) is found on the following regulatory lists	"Australia Hazardous Substances Information System - Consolidated Lists", "Australia Exposure Standards", "Sigma-Aldrich Transport Information", "Acros Transport Information", "Australia Inventory of Chemical Substances (AICS)", "UNECE - Kiev Protocol on Pollutant Release and Transfer Registers - Annex II", "CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP", "Australia Australian Pesticides and Veterinary Medicines Authority (APVM) Record of approved active constituents", "International Numbering System for Food Additives", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Approved Active Constituents for Agricultural Chemical Products", "Belgium Federal Public Service Mobility and Transport, Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (Dutch)", "Australia Dangerous Goods Code (ADG Code) - Packing Instruction - Liquefied and Dissolved Gases", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "International Air Transport Association (IATA) Dangerous Goods Regulations", "International Maritime Dangerous Goods Requirements (IMDG Code)"

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.