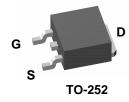
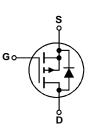
FAIRCHILD SEMICONDUCTOR®

FDD6685


30V P-Channel PowerTrench^o MOSFET


General Description

This P-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5V – 25V).

Features

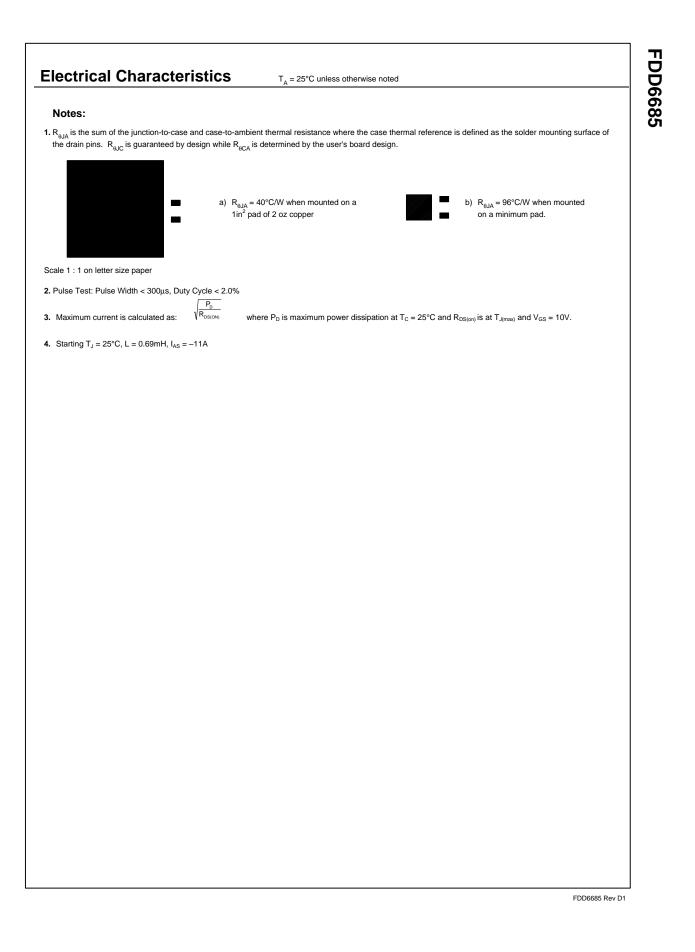
- -40 A, -30 V. $R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 30 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Fast switching speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability
- Qualified to AEC Q101

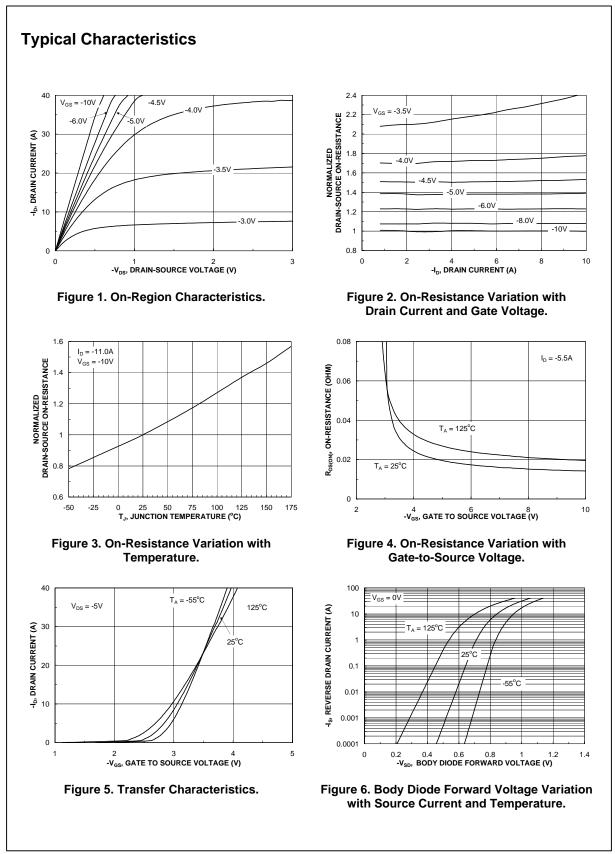
Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		-30	V	
V _{GSS}	Gate-Source Voltage		±25	V	
I _D	Continuous Drain Current @Tc=25°C	(Note 3)	-40		
	@T _A =25°C	(Note 1a)	-11	A	
	Pulsed, PW ≤ 100)µS (Note 1b)	-100		
PD	Power Dissipation for Single Operation	(Note 1)	52	W	
		(Note 1a)	3.8		
		(Note 1b)	1.6		
T _J , T _{STG}	Operating and Storage Junction Temperation	ure Range	-55 to +175	°C	

Thermal Characteristics

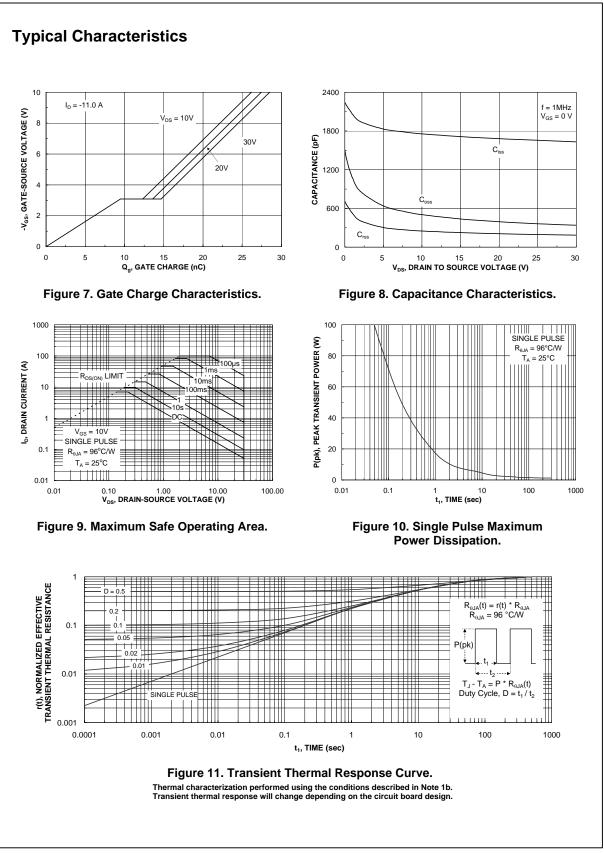
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	2.9	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W


This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at http://www.aecouncil.com/


Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

©2011 Fairchild Semiconductor Corporation

FDD6685


Device Marking Device		Reel Size Tape Wi		dth Quantity				
FDD	FDD6685 FDD6685		13" 12mn		n 2500 units			nits
Electric	al Char	acteristics	T _A = 25°C unless otherwise	noted				
Symbol		Parameter	Test Conditions		Min	Тур	Max	Units
Drain-So	urce Ava	lanche Ratings (Note	: 4)					
AS		se Drain-Source	$I_{\rm D} = -11 {\rm A}$			42		mJ
AS	Maximum Avalanche	Drain-Source Current				-11		A
Off Chara	acteristic	S						
3V _{DSS}	Drain-Sou	rce Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \text{ J}$	ιA	-30			V
<u>ΔBVdss</u> ΔTj	Breakdown Coefficient	n Voltage Temperature	$I_D = -250 \ \mu A$, Referenced to $25^{\circ}C$			-24		mV/°C
DSS	Zero Gate	Voltage Drain Current	$V_{\text{DS}} = -24 \text{ V}, V_{\text{GS}} =$				-1	μA
GSS	Gate-Bod	y Leakage	$V_{GS} = \pm 25V, V_{DS} = 0 V$				±100	nA
On Chara	acteristic	S (Note 2)						
V _{GS(th)}	Gate Three	shold Voltage	$V_{DS}=V_{GS},\ I_D=-250$	μA	-1	-1.8	-3	V
ΔV _{GS(th)} ΔT _J		shold Voltage ire Coefficient	I_D = -250 μ A, Referenced to 25°C			5		mV/°C
R _{DS(on)}	Static Drai On–Resist		$ \begin{array}{l} V_{GS} = -10 \ V, \qquad I_D = -11 \ A \\ V_{GS} = -4.5 \ V, \qquad I_D = -9 \ A \\ V_{GS} = -10 \ V, I_D = -11 \ A, T_J = 125^\circ C \end{array} $			14 21 20	20 30	mΩ
D(on)	On-State	Drain Current	$V_{GS} = -10 \text{ V}, \qquad V_{DS} = -5 \text{ V}$		-20			А
JFS	Forward T	ransconductance	$V_{\text{DS}} = -5 \ \text{V}, \qquad \ \ I_{\text{D}} =$	–11 A		26		S
Dynamic	Characte	eristics						
Ciss	Input Capa		$V_{DS} = -15 V$, V_{GS}	= 0 V,		1715		pF
Coss	Output Ca	pacitance	f = 1.0 MHz			440		pF
Crss	Reverse T	ransfer Capacitance				225		pF
R _G	Gate Resis	stance	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$			3.6		Ω
Switchin	a Charac	teristics (Note 2)						
d(on)	Turn–On E	· · ·				17	31	ns
Г	Turn–On F	Rise Time				11	21	ns
d(off)	Turn–Off D	Delay Time				43	68	ns
f	Turn–Off F	all Time	-			21	34	ns
Qg	Total Gate	Charge				17	24	nC
Q _{gs}	Gate-Sou	rce Charge				9		nC
\mathcal{Q}_{gd}	Gate-Drai	n Charge			4		nC	
Drain-So	ource Dio	de Characteristics	and Maximum Ra	atings				
V _{SD}		rce Diode Forward	$V_{GS} = 0 V, I_{S} = -3.2$			-0.8	-1.2	V
Trr	Diode Rev	erse Recovery Time	IF = -11 A,			26		ns
Qrr	Diode Rev	erse Recovery Charge	diF/dt = 100 A/µs			13		nC

FDD6685

FDD6685 Rev D1

FDD6685

FDD6685 Rev D1

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ CTI ™ Current Transfer Logic™ DEUXPEED Dual Cool™ **EcoSPARK**[®] EfficentMax™ ESBC™ ® F

Fairchild Semiconductor® FACT Quiet Series™

FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™ **OPTOLOGIC®** OPTOPLANAR[®]

Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFĔT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM^{®*} GENERAL

p Jwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™

The Power Franchise[®]

The Right Technology for Your Success™

Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

R

PDP SPM™

DISCLAIMER

Fairchild®

FACT®

FAST®

FastvCore™

FETBench™

FlashWriter[®]*

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
		Rev. 154		