

Datasheet

CPL80 Series Passive LED Cooler

Specify Part Number - CPL8050-101 - CPL8070-101

Features:

- Solid one piece aluminum construction for maximum thermal conductivity
- Pin fin design maximizes surface area and provides omni-directional cooling to eliminate concerns about orientation (unlike a linear extrusion)
- Precision machined flat base ensures consistent contact between the heat sink, interface and LED substrate to maximize heat transfer
- Standard 10mm thick base allows full recommended depth for mounting holes

MODEL	DIAMETER mm	HEIGHT mm	BASE THICKNESS	WEIGHT g	THERMAL	POWER DISSIPATION (watts)	
					RESISTANCE	35 °C	25 °C
			mm		°C/W	Ambient	Ambient
CPL8050-101	83	50	10	222	1,45	34	41
CPL8070-101	83	70	10	267	1,30	38	46

Thermal Performance Chart

Note 1: Power Dissipation calculations are based on a case temperature of 85°C .

Note 2: The power dissipation values are based on dissipating 100% of the electrical power in an LED lighting system. LEDs are becoming increasingly efficient and a significant percentage of the electrical power is converted to light. Accordingly, only 70% to 80% of the electrical power requires thermal dissipation. Efficiencies vary according to the manufacturer, model and CCT of the LED.

To calculate power dissipation capacity of the heat sink for a specific LED, divide the power dissipation values by the LED conversion efficiency of the LED being used. For example, the CPL8050-101 listed above could dissipate 42.5W of power for an LED with a power to light conversion efficiency of 80% at 35C ambient (34W/0.8 = 42.5W).

