New Product

Phase-sequence Phase-loss Relay
K8DT-PH

Protect motors and other equipment from unstable voltages in the power supply system.
Protect motors and other equipment by detecting phase sequence and phase loss for three-phase power supplies.

- Phase loss detection while the motor is operating.
- Global application with power supply range of 200 to 480 V with one Relay.
- Greater resistance to inverter noise.
- Width of 17.5 mm to reduce space required in panels.
- Push-In Plus Terminal that reduce wiring work.
 - The use of cage clamps enables wiring with bare stranded wires.
 - Double-insertion holes for crossover wiring (all terminals).
- UL listed for easy shipping to North America.
- Certified for maritime standards (LR).
- Models added with transistor outputs for superior contact reliability.

Refer to Safety Precautions on page 7.
Refer to page 6 for commonly asked questions.

Ordering Information

Phase-sequence Phase-loss Relay

<table>
<thead>
<tr>
<th>Function</th>
<th>Rated input voltage</th>
<th>Relay output</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase sequence and phase loss</td>
<td>3-phase, 3-wire 200</td>
<td>Relay: SPDT contact</td>
<td>K8DT-PH1CN</td>
</tr>
<tr>
<td>monitoring</td>
<td>480 VAC</td>
<td>output</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transistor</td>
<td>K8DT-PH1TN</td>
</tr>
</tbody>
</table>

*The power supply voltage is the same as the rated input voltage.

Options (Order Separately)

Front Cover

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y92A-D1A</td>
</tr>
</tbody>
</table>
K8DT-PH

Ratings and Specifications

Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated input voltage</td>
<td>3-phase, 200 to 480 VAC (3-wire)</td>
</tr>
<tr>
<td>Input load</td>
<td>Approx. 2.6 VA</td>
</tr>
<tr>
<td>Rated insulation voltage</td>
<td>528 VAC</td>
</tr>
<tr>
<td>Operating time</td>
<td>0.1 s ± 0.05 s</td>
</tr>
<tr>
<td>Phase sequence</td>
<td>0.1 s max. (when the voltage changes rapidly from 100% to 0% of rated voltage)</td>
</tr>
<tr>
<td>Reset method</td>
<td>Automatic reset</td>
</tr>
<tr>
<td>Indicators</td>
<td>Power (PWR): Green, Output (OUT): Yellow</td>
</tr>
<tr>
<td>Output form</td>
<td>Relay Output: SPDT contact</td>
</tr>
<tr>
<td></td>
<td>Transistor Output: 1</td>
</tr>
<tr>
<td>Output relay ratings</td>
<td>Rated load</td>
</tr>
<tr>
<td></td>
<td>5 A at 250 VAC (Resistive load)</td>
</tr>
<tr>
<td></td>
<td>5 A at 30 VDC (Resistive load)</td>
</tr>
<tr>
<td></td>
<td>1 A at 250 VAC (Inductive load)</td>
</tr>
<tr>
<td></td>
<td>0.2 A at 48 VDC (Inductive load)</td>
</tr>
<tr>
<td></td>
<td>Minimum load: 5 VDC, 10 mA (reference values)</td>
</tr>
<tr>
<td></td>
<td>Mechanical life: 10 million operations min.</td>
</tr>
<tr>
<td></td>
<td>Electrical life: 5 A at 250 VAC or 30 VDC:</td>
</tr>
<tr>
<td></td>
<td>50,000 operations</td>
</tr>
<tr>
<td></td>
<td>3 A at 250 VAC or 30 VDC: 100,000 operations</td>
</tr>
<tr>
<td>Transistor output ratings</td>
<td>Rated voltage: 24 VDC (maximum voltage: 26.4 VDC)</td>
</tr>
<tr>
<td></td>
<td>Maximum current: 50 mA DC</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>−20 to 60°C (with no condensation or icing)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−25 to 65°C (with no condensation or icing)</td>
</tr>
<tr>
<td>Ambient operating humidity</td>
<td>25% to 85% RH (with no condensation)</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>25% to 85% RH (with no condensation)</td>
</tr>
<tr>
<td>Altitude</td>
<td>2,000 m max.</td>
</tr>
<tr>
<td>Applicable wires</td>
<td>Stranded wires, solid wires, or ferrules</td>
</tr>
<tr>
<td>Applicable wire size</td>
<td>0.25 to 1.5 mm² (AWG24 to AWG16)</td>
</tr>
<tr>
<td>Wire insertion force</td>
<td>8 N max. for AWG20 wire</td>
</tr>
<tr>
<td>Screwdriver insertion force</td>
<td>15 N max.</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>8 mm</td>
</tr>
<tr>
<td>Ferrule length</td>
<td>8 mm</td>
</tr>
<tr>
<td>Recommended flat-blade screwdriver</td>
<td>XW4Z-00B (Omron)</td>
</tr>
<tr>
<td></td>
<td>SZF 0.4 ∙ 2.5 (Phoenix Contact)</td>
</tr>
<tr>
<td></td>
<td>210-719 (Wago)</td>
</tr>
<tr>
<td></td>
<td>SDI 0.4 ∙ 2.5 ∙ 75 (Weidmuller)</td>
</tr>
<tr>
<td>Current capacity</td>
<td>10 A (per pole)</td>
</tr>
<tr>
<td>Number of insertions</td>
<td>50 times</td>
</tr>
<tr>
<td>Case color</td>
<td>N1.5</td>
</tr>
<tr>
<td>Case material</td>
<td>PC, UL 94 V-0</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 100 g</td>
</tr>
<tr>
<td>Mounting</td>
<td>Mounts to DIN Track, or screw mounting</td>
</tr>
<tr>
<td>Dimensions</td>
<td>17.5 ∙ 90 ∙ 90 mm (W ∙ D ∙ H)</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input frequency range</td>
<td>45 to 65 Hz</td>
</tr>
<tr>
<td>Overload capacity</td>
<td>Continuous 528 V</td>
</tr>
<tr>
<td>Phase loss detection level</td>
<td>80% ± 10% of rated input</td>
</tr>
<tr>
<td></td>
<td>Calculation Formula</td>
</tr>
<tr>
<td></td>
<td>= 1 – (Highest phase-to-phase voltage – Lowest phase-to-phase voltage)/Average three-phase phase-to-phase voltage)</td>
</tr>
<tr>
<td>Applicable standards</td>
<td>Conforming standards</td>
</tr>
<tr>
<td></td>
<td>EN 60947-5-1 Installation environment (pollution level 2, Overvoltage category III)</td>
</tr>
<tr>
<td></td>
<td>EMC EN 60947-5-1</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>20 MΩ min.</td>
</tr>
<tr>
<td></td>
<td>Between external terminals and case</td>
</tr>
<tr>
<td></td>
<td>Between input terminals and output terminals</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>2,000 VAC for one minute</td>
</tr>
<tr>
<td></td>
<td>Between external terminals and case</td>
</tr>
<tr>
<td></td>
<td>Between input terminals and output terminals</td>
</tr>
<tr>
<td>Impulse withstand voltage</td>
<td>6 kV (between live terminals and exposed, non-charged metal parts)</td>
</tr>
<tr>
<td>Noise immunity</td>
<td>1,500 V power supply terminal common/normal mode</td>
</tr>
<tr>
<td></td>
<td>Square-wave noise of 1 μs/100 ns pulse width with 1-ns rise time</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>Frequency: 10 to 55 Hz, 0.35-mm single amplitude</td>
</tr>
<tr>
<td></td>
<td>10 sweeps of 5 min each in X, Y, and Z directions</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>100 m/s², 3 times each in 6 directions along 3 axes</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>Terminals: IP20</td>
</tr>
</tbody>
</table>

Technical Notes

- **Input Voltage**
 - Rated: 3-phase, 200 to 480 VAC (3-wire)
 - Input load: Approx. 2.6 VA

- **Rated Insulation Voltage**
 - 528 VAC

- **Operating Time**
 - 0.1 s ± 0.05 s
 - Phase sequence: 0.1 s max. (when the voltage changes rapidly from 100% to 0% of rated voltage)

- **Reset Method**
 - Automatic reset

- **Indicators**
 - Power (PWR): Green
 - Output (OUT): Yellow

- **Output Form**
 - Relay Output: SPDT contact
 - Transistor Output: 1

- **Output Relay Ratings**
 - Rated load:
 - 5 A at 250 VAC (Resistive load)
 - 5 A at 30 VDC (Resistive load)
 - 1 A at 250 VAC (Inductive load)
 - 0.2 A at 48 VDC (Inductive load)
 - Minimum load: 5 VDC, 10 mA (reference values)
 - Electrical life: 5 A at 250 VAC or 30 VDC:
 - 50,000 operations
 - 3 A at 250 VAC or 30 VDC: 100,000 operations

- **Transistor Output Ratings**
 - Rated voltage: 24 VDC (maximum voltage: 26.4 VDC)
 - Maximum current: 50 mA DC

- **Ambient Operating Temperature**
 - −20 to 60°C (with no condensation or icing)

- **Storage Temperature**
 - −25 to 65°C (with no condensation or icing)

- **Ambient Operating Humidity**
 - 25% to 85% RH (with no condensation)

- **Storage Humidity**
 - 25% to 85% RH (with no condensation)

- **Altitude**
 - 2,000 m max.

- **Applicable Wires**
 - Stranded wires, solid wires, or ferrules

- **Applicable Wire Size**
 - 0.25 to 1.5 mm² (AWG24 to AWG16)

- **Wire Insertion Force**
 - 8 N max. for AWG20 wire

- **Screwdriver Insertion Force**
 - 15 N max.

- **Wire Stripping Length**
 - 8 mm

- **Ferrule Length**
 - 8 mm

- **Recommended Flat-Blade Screwdriver**
 - XW4Z-00B (Omron)
 - SZF 0.4 ∙ 2.5 (Phoenix Contact)
 - 210-719 (Wago)
 - SDI 0.4 ∙ 2.5 ∙ 75 (Weidmuller)

- **Current Capacity**
 - 10 A (per pole)

- **Number of Insertions**
 - 50 times

- **Case Color**
 - N1.5

- **Case Material**
 - PC, UL 94 V-0

- **Weight**
 - Approx. 100 g

- **Mounting**
 - Mounts to DIN Track, or screw mounting

- **Dimensions**
 - 17.5 × 90 × 90 mm (W × D × H)
Connections

Terminal Diagram

K8DT-PH1 C N
(1) (2)

(1) Input Voltages
Phase-to-phase voltage: 200 to 480 VAC
3-phase, 3 W power supply

(2) Output
C: Relay Output
T: Transistor Output

Note: Do not connect anything to terminals that are shaded in gray.

Wiring Example

Relay Output

Three-phase power supply
L1
L2
L3

Motor

Power supply AC/DC

Transistor Output

Three-phase power supply
L1
L2
L3

Motor

Power supply AC/DC

Note: Use copper wires with a rating of 75°C or an equivalent rating.

Timing Charts

Phase Sequence and Phase Loss Operation Diagram

Note: 1. The K8DT-PH1 outputs are normally operative.
2. The Relay will not operate if the input voltage drops below 80% of the minimum input value because L1 and L2 are also used to provide power.
3. Phase loss cannot be detected on the load side because this detection is based on the voltage.
Nomenclature

Front

Note: Use solid wires, stranded wires, or ferrules to connect to the terminals.
To maintain the withstand voltage after connecting the terminals, insert 8 mm of exposed conductor into the terminal.

Indicators

<table>
<thead>
<tr>
<th>Item</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power indicator (PWR: Green)</td>
<td>Lit when power is being supplied [*].</td>
</tr>
<tr>
<td>Output status indicator</td>
<td>Lights for output (lit for normal operation)</td>
</tr>
</tbody>
</table>

[*] This indicator uses the input across L1 and L2 as the internal power supply. It will not light unless there is an input across L1 and L2.

Operation Methods

Connections

Input
Connect using L1, L2, and L3.
Make sure the phase sequence is wired correctly. The Unit will not operate normally if the phase sequence is incorrect.

Outputs
For a relay output, the SPDT contacts are output on terminals 11, 12, and 14. For a transistor output, the output is on terminals 11 and 14.
The internal circuit of the transistor output is NPN, but application is possible for either a sinking or sourcing output.

In the case of sinking output applications

In the case of sourcing output applications
Dimensions (Unit: mm)

Phase-sequence Phase-loss Relay
K8DT-PH1

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5</td>
<td>90</td>
<td>86</td>
<td>5</td>
</tr>
</tbody>
</table>

Options (Order Separately)

Front Cover
Y92A-D1A

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Optional Parts for DIN Track Mounting

DIN Tracks
PFP-100N
PFP-50N

- Dimensions in parentheses are for the PFP-50N.

Dimensions (Unit: mm)

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>15(5)</td>
<td>1000(500)</td>
</tr>
</tbody>
</table>
Checking Operation

Phase Sequence
Switch the wiring, as shown by the dotted lines in the connection diagram, to reverse the phase sequence and check that the K8DT operates.

Phase Loss
Create a phase loss for any input phase and check that the K8DT operates.

Can phase loss be detected on the load side?
In principle, phase loss cannot be detected on the load side because the K8DT-PH measures three-phase voltage to determine phase loss.

Is it possible to detect phase losses for motor loads while the motor is operating?
Phase loss can be detected while the motor is operating. However, the detection conditions depend on the load conditions that are shown in the following figure. Understand these characteristics when using this feature.

Normally, three-phase motors will continue to rotate even if one phase is open. The three-phase voltage will be induced at the motor terminals. The diagram shows voltage induction at the motor terminals when phase R has been lost with a load applied to a three-phase motor. The horizontal axis shows the motor load as a percentage of the rated load, and the vertical axis shows voltage as a percentage of the rated voltage. The solid line in this graph shows the voltage that is induced at the motor terminals when a phase loss occurs while the motor is operating under various loads. The figure below shows how a phase loss that occurs while the motor is operating causes an imbalance in the voltage across each motor terminal. The K8DT-PH1 detects phase loss when the motor is operating when the voltage is unbalanced. (Detection occurs when the imbalance is 80% of the maximum phase). The K8DT-PH1 cannot detect phase loss with light motor loads because the voltage imbalance is too small. The detectable range is shown by the diagonal lines.

Characteristic Curve Diagram

Note: This characteristic curve shows the approximate values only.

Note: For phase loss of phase R, VST, VTR, and VRS indicate the motor terminal voltage at phase loss.
Safety Precautions

Be sure to read the precautions for all models in the website at the following URL: http://www.ia.omron.com/

Warning Indications

| **WARNING** | Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or may result in serious injury or death. Additionally, there may be significant property damage. |
| **CAUTION** | Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or in property damage. |

Precautions for Safe Use

- Supplementary comments on what to do or avoid doing, to use the product safely.

Precautions for Correct Use

- Supplementary comments on what to do or avoid doing, to prevent failure to operate, malfunction, or undesirable effects on product performance.

Meaning of Product Safety Symbols

- Used to warn of the risk of electric shock under specific conditions.
- Used for general prohibitions for which there is no specific symbol.
- Used to indicate prohibition when there is a risk of minor injury from electrical shock or other source if the product is disassembled.
- Used for general mandatory action precautions for which there is no specified symbol.

WARNING

Electrical shock may occasionally cause serious injury. Confirm that the input voltage is OFF before starting any wiring work and wire all connections correctly.

CAUTION

Doing so may occasionally result in minor injury due to electric shock. Do not touch the Relay while the power supply is ON.

There is a risk of minor electrical shock, fire, or device failure. Do not allow any pieces of metal, conductors, or cutting chips that occur during the installation process to enter the product.

Explosions may cause minor injuries. Do not use the product in locations with inflammable or explosive gases.

There is a risk of minor electrical shock, fire, or device failure. Do not disassemble, modify, repair, or touch the inside of the product.

Use of the product beyond its life may result in contact welding or burning. Make sure to consider the actual operating conditions and use the product within its rated load and electrical life count. The life of the output relay varies significantly with the switching capacity and switching conditions.

If the Relay is used with incorrect wiring, fire may occasionally occur, possibly resulting in physical damage. Check the wiring for mistakes before you turn ON the power supply.

If the Relay fails, monitoring and alarm outputs may fail to operate. This may result in physical damage to the facilities, equipment, or other devices that are connected to it. To reduce this risk, inspect the Relay regularly. To maintain safety in the event of malfunction of the Relay, take appropriate safety measures, such as installing a monitoring device on a separate line.

If the wire insertion length is insufficient, fire may occasionally occur, possibly resulting in physical damage. Insert the wires all the way to the back.

The terminal block may be damaged if you insert a flat-blade screwdriver in the release hole with excessive force. Insert the flat-blade screwdriver into the release holes with a force of 15 N or less.
Precautions for Safe Use

1. Do not use or store the product in the following locations.
 • Locations subject to water, or oil
 • Outdoor locations or under direct sunlight
 • Locations subject to dust or corrosive gases (sulfurizing gases, ammonia gases, etc.)
 • Locations subject to rapid temperature changes
 • Locations prone to icing and dew condensation
 • Locations subject to vibration and large shocks
 • Locations subject to wind and rain
 • Locations subject to static electricity or noise
 • Locations subject to insects or small animals
2. Use and store the product in a location where the ambient temperature and humidity are within the specified ranges. If applicable, provide forced cooling.
3. Check terminal polarity when wiring and wire all connections correctly.
4. Do not wire the input and output terminals incorrectly.
5. Make sure the power supply voltage and loads are within the specifications and ratings for the product.
6. Make sure the ferrule terminals for wiring are of the specified size.
7. The stripping length is 8 mm. Insert the wires all the way to the back.
8. Do not connect anything to terminals that are not being used.
9. Use a power supply that will reach the rated voltage within 1 second after the power is turned ON.
10. Keep wiring separate from high voltages and power lines that draw large currents. Do not place product wiring in parallel with or in the same path as high-voltage or high-current lines.
11. Do not install the product near equipment that generates high frequencies or surges.
12. The product may cause incoming radio wave interference. Do not use the product near radio wave receivers.
13. Install an external switch or circuit breaker and label it clearly so that the operator can quickly turn OFF the power supply.
14. Make sure the indicators operate correctly. Depending on the application environment, the indicators may deteriorate prematurely and become difficult to see.
15. Do not use the product if it is accidentally dropped. The internal components may be damaged.
16. Be sure you understand the contents of this catalog and handle the product according to the instructions provided.
17. Do not install the product in any way that would place a load on it.
18. When discarding the product, properly dispose of it as industrial waste.
19. The product must be handled only by trained electricians.
20. Prior to operation, check the wiring before you supply power to the product.
21. Do not install the product immediately next to heat sources.
22. Perform periodic maintenance.
23. Do not wire anything to the release holes.
24. When you insert a flat-blade screwdriver into a release hole, do not tilt or twist the screwdriver. The terminal block may be damaged.
25. Insert a flat-blade screwdriver into the release holes at an angle. The terminal block may be damaged if the screwdriver is inserted straight in.
26. Do not allow the flat-blade screwdriver to fall when you are holding it in a release hole.
27. Do not bend a wire past its natural bending radius or pull in it with excessive force. Doing so may break the wires.
28. To prevent wiring materials from smoking or igniting, confirm wire ratings and use the wiring materials given in the following table.

<table>
<thead>
<tr>
<th>Recommended wire</th>
<th>Stripping length (Ferrules not used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 to 1.5mm²/Equivalent to AWG24 to 16</td>
<td>8 mm</td>
</tr>
</tbody>
</table>

29. Do not insert more than one wire into each terminal insertion hole.
30. Use only the specified wires for wiring.
31. When wiring the terminals, allow some leeway in the wire length.

Precautions for Correct Use

Observe the following operating methods to prevent failure and malfunction.

1. Use the power supply voltage, input power, and other power supplies and converters with suitable capacities and rated outputs.
2. The distortion in the input waveform must be 30% max. If the input waveform is distorted beyond this level, it may cause unnecessary operation.
3. The product cannot be used for thyristor control or on the secondary side of an inverter. To use this product on the primary side of an inverter, install a noise filter on the primary side of the inverter.
4. Phase loss can be detected only from the input contacts to the power supply side. Phase loss cannot be detected from the input contacts to the load side.
5. When cleaning the product, do not use thinners or solvents. Use commercial alcohol.
6. If you use stranded wires, make sure that there are no loose wire strands.
7. If you wire crossovers and connect terminal blocks in parallel, a large current will flow. Make sure that the current does not exceed 10 A.
8. The terminal block may be damaged if the recommended tool is not used. Use the recommended flat-blade screwdriver to operate the release holes.

Correct Mounting Direction, Mounting, and Removing

Mounting to DIN Track
To mount the Relay to a DIN Track, hook the Relay onto the DIN Track and press the Relay in the direction of the arrow until you hear it lock into place.

Removing from the DIN Track
To remove the Relay, insert a screwdriver into the hook on the top or bottom and pull out the hook to release the Relay.

Applicable DIN Tracks
- PFP-100N (100 cm)
- PFP-50N (50 cm)
- Leave at least 30 mm of space between the product and other devices to allow easy installation and removal.
Screw Mounting

1. Pull out the two hooks on the back of the Relay to the outside until you hear them click in place.
2. Insert M3 screws into the hook holes and secure the Relay.

Connecting Wires to the Push-In Plus Terminal Block

Part Names of the Terminal Block

<table>
<thead>
<tr>
<th><Upper side></th>
<th><Lower side></th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal (Insertion) hole</td>
<td>Terminal (Insertion) hole</td>
</tr>
<tr>
<td>Release hole</td>
<td>Release hole</td>
</tr>
</tbody>
</table>

Connecting Wires with Ferrules and Solid Wires

Insert the solid wire or ferrule straight into the terminal block until the end strikes the terminal block.

Connecting Stranded Wires

Use the following procedure to connect the wires to the terminal block.

1. Hold a flat-blade screwdriver at an angle and insert it into the release hole. The angle should be between 10° and 15°. If the flat-blade screwdriver is inserted correctly, you will feel the spring in the release hole respond.
2. With the flat-blade screwdriver still inserted into the release hole, insert the wire into the terminal hole until it strikes the terminal block.
3. Remove the flat-blade screwdriver from the release hole.

Checking Connections

- After the insertion, pull gently on the wire to make sure that it will not come off and the wire is securely fastened to the terminal block.
- If you use a ferrule with a conductor length of 10 mm, part of the conductor may be visible after the ferrule is inserted into the terminal block, but the product insulation distance will still be satisfied.

Removing Wires from the Push-In Plus Terminal Block

Use the following procedure to remove wires from the terminal block. The same method is used to remove stranded wires, solid wires, and ferrules.

1. Hold a flat-blade screwdriver at an angle and insert it into the release hole.
2. With the flat-blade screwdriver still inserted into the release hole, remove the wire from the terminal insertion hole.
3. Remove the flat-blade screwdriver from the release hole.

Mounting Hole Dimensions

<table>
<thead>
<tr>
<th>Two M3 screw holes or two 3-dia. holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
</tr>
</tbody>
</table>

Note:
1. Pull out the hooks to mount the Relay with screws.
2. Recommended tightening torque: 0.5 to 0.6 N·m.
Recommended Ferrules and Tools

Recommended ferrules

<table>
<thead>
<tr>
<th>Applicable wire (mm²)</th>
<th>Ferrule Length (mm)</th>
<th>Stripping length (mm)</th>
<th>Recommended ferrules</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AWG)</td>
<td>(Ferrules used)</td>
<td></td>
<td>Phoenix/Contact product</td>
</tr>
<tr>
<td>0.25</td>
<td>24</td>
<td>8 10</td>
<td>Al 0.25-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 12</td>
<td>Al 0.25-10</td>
</tr>
<tr>
<td>0.34</td>
<td>22</td>
<td>8 10</td>
<td>Al 0.34-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 12</td>
<td>Al 0.34-10</td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>8 10</td>
<td>Al 0.5-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 12</td>
<td>Al 0.5-10</td>
</tr>
<tr>
<td>0.75</td>
<td>18</td>
<td>8 10</td>
<td>Al 0.75-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 12</td>
<td>Al 0.75-10</td>
</tr>
<tr>
<td>1.25/1.5</td>
<td>18/17</td>
<td>8 10</td>
<td>Al 1-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 12</td>
<td>Al 1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended crimp tool</td>
<td>CRIMPFOX6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRIMPFOX6T-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRIMPFOX10S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Make sure that the outer diameter of the wire coating is smaller than the inner diameter of the insulation sleeve of the recommended ferrule.
2. Make sure that the ferrule processing dimensions conform to the following figures.

Recommended Flat-blade Screwdriver

Use a flat-blade screwdriver to connect and remove wires.

Use the flat-blade screwdriver.

The following table shows manufacturers and models as of 2015/Dec.

<table>
<thead>
<tr>
<th>Side</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 mm</td>
<td>2.5 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD 0.4X2.5</td>
<td>Wera</td>
</tr>
<tr>
<td>SZS 0.4X2.5</td>
<td>Phoenix Contact</td>
</tr>
<tr>
<td>0.4X2.5X75</td>
<td>Wiha</td>
</tr>
<tr>
<td>AEF 2.5X75</td>
<td>Facom</td>
</tr>
<tr>
<td>210-719</td>
<td>Wago</td>
</tr>
<tr>
<td>SDI 0.4X2.5X75</td>
<td>Weidmuller</td>
</tr>
</tbody>
</table>

*OMRON’s exclusive purchase model XW4Z-00B is available to order as SZF 0-0.4X2.5 (manufactured by Phoenix Contact).
Terms and Conditions Agreement

Read and understand this catalog.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.
Authorized Distributor:

In the interest of product improvement, specifications are subject to change without notice.

© OMRON Corporation 2016 All Rights Reserved.
In the interest of product improvement, specifications are subject to change without notice.

Cat. No. N206-E1-01