
Data sheet
1.04 (November 2024)

X67DS838B.L12

Translation of the original documentation

Publishing information

B&R Industrial Automation GmbH

B&R Strasse 1

5142 Eggelsberg

Austria

Telephone: +43 7748 6586-0

Fax: +43 7748 6586-26

office@br-automation.com

Disclaimer

All information in this document is current as of its creation. The contents of this document are subject to
change without notice. B&R Industrial Automation GmbH assumes unlimited liability in particular for tech-
nical or editorial errors in this document only (i) in the event of gross negligence or (ii) for culpably inflicted
personal injury. Beyond that, liability is excluded to the extent permitted by law. Liability in cases in which
the law stipulates mandatory unlimited liability (such as product liability) remains unaffected. Liability for
indirect damage, consequential damage, business interruption, loss of profit or loss of information and
data is excluded, in particular for damage that is directly or indirectly attributable to the delivery, perfor-
mance and use of this material.

B&R Industrial Automation GmbH notes that the software and hardware designations and brand names
of the respective companies used in this document are subject to general trademark, brand or patent pro-
tection.

Hardware and software from third-party suppliers referenced in this document is subject exclusively to the
respective terms of use of these third-party providers. B&R Industrial Automation GmbH assumes no lia-
bility in this regard. Any recommendations made by B&R Industrial Automation GmbH are not contractual
content, but merely non-binding information for which no liability is assumed. When using hardware and
software from third-party suppliers, the relevant user documentation of these third-party suppliers must
additionally be consulted and, in particular, the safety guidelines and technical specifications contained
therein must be observed. The compatibility of the products from B&R Industrial Automation GmbH de-
scribed in this document with hardware and software from third-party suppliers is not contractual content
unless this has been separately agreed in individual cases; in this respect, warranty for such compatibility is
excluded in any case, and it is the sole responsibility of the customer to verify this compatibility in advance.

1700741721187-1.04.2

2 1.04

mailto:office@br-automation.com

 General information

1 General information

1.1 Other applicable documents

For additional and supplementary information, see the following documents.

Other applicable documents
Document name Title
MAX67 X67 System user's manual

1.2 Order data

Order number Short description Figure
Other functions

X67DS838B.L12 X67 digital signal module, 2x IO-Link master V1.1 type B, 6x
IO-Link master V1.1 type A, 8 digital channels configurable
as inputs or outputs, 3-wire connections, NetTime function

Table 1: X67DS838B.L12 - Order data

Required accessories
For a general overview, see section "Accessories - General overview" in the X67 System user's manual.

Optional accessories for sensors

Connectors and cables from the X67 System accessories can be used to connect standard I/O-Link sensors
and devices.

Sensors/Devices with M12 connection
M12 connection
X67AC0C21-1 X67 female M12 connector, 5-pin, A-coded, shielded, cage clamp connection
X67AC2C21 X67 female M12 connector, 5-pin, A-coded, shielded, screw terminal
X67AC0C01-1 X67 male M12 connector, 5-pin, A-coded, shielded, cage clamp connection
X67AC2C01 X67 male M12 connector, 5-pin, A-coded, shielded, screw clamp connection
M12 connection with cable
X67CA0A41.xxxx Attachment cable, M12, 5-pin, straight
X67CA0A51.xxxx Attachment cable, M12, 5-pin, angled

Sensors/Devices with M8 connection
M8 connection
X67AC0P20 Female M8 connector, 4-pin, piercing connection
M8 connection with cable - Open-ended on one side
X67CA0P20.xxxx Attachment cable, M8, 4-pin, straight
X67CA0P30.xxxx Attachment cable, M8, 4-pin, angled

1.04 3

https://www.br-automation.com/download/10000017737

General information

1.3 Module description

The module is an IO-Link master that allows intelligent sensors and actuators to be connected per the IO-
Link standard. The module can operate up to 8 IO-Link devices. All IO-Link channels can also be operated in
SIO mode and thus used as digital inputs or outputs. The module is also equipped with 6 additional digital
inputs that can be used independently of the configuration of the IO-Link channels. Connectors 7 and 8 are
designed as class B IO-Link ports and have an additional galvanically isolated supply voltage.

Functions:

• Digital input filter
• IO-Link
• Parameter server
• Statistics counter
• NetTime Technology
• Flatstream communication

Digital inputs

The digital inputs are equipped with an input filter with a configurable input delay.

IO-Link

The module is an IO-Link master for controlling intelligent sensors and actuators per the IO-Link standard.
Up to 8 IO-Link devices (IO-Link version 1.1) can be connected to the module.

Parameter server

The parameter server permits the module to read configuration parameters of the connected IO-Link de-
vice. The data of the third-party device can thus be restored automatically, e.g. after replacing the IO-Link
device.

Statistics counter

Communication errors between individual IO-Link components can be easily recorded using the statistics
counters.

NetTime timestamps for IO-Link

Using these timestamps, applications can record value changes at on the IO-Link network and trigger events
that have a higher resolution than the I/O cycle would allow.

Flatstream communication

"Flatstream" was designed for X2X and POWERLINK networks and allows data transfer to be adapted to
individual demands. This allows data to be transferred more efficiently than with standard cyclic polling.

1.4 System requirements

In order to be able to use all functions in general, the minimum versions specified in section "IODD/DTM
support" on page 60 must be observed.

4 1.04

 Technical description

2 Technical description

2.1 Technical data

Order number X67DS838B.L12
Short description
I/O module IO-Link master with 8 IO-Link interfaces
General information
B&R ID code 0x2DB9
Status indicators IO-Link operating state, bus function, module status
Diagnostics

Module run/error Yes, using LED status indicator and software
IO-Link operating state Yes, using LED status indicator and software
C/Q status Yes, using LED status indicator and software
I/Q status Yes, using LED status indicator and software

Connection type
X2X Link M12, B-coded
Inputs M12, A-coded
I/O power supply M8, 4-pin

Cable specification
Cable type 4-pin sensor cable, unshielded
Cable length Max. 20 m
Line capacitance Max. 3 nF
Loop resistance Max. 6 Ω

Power consumption
Internal I/O 0.8 W via connection C

0.5 W via connection D
X2X Link power supply 0.8 W

Additional power dissipation caused by actua-
tors (resistive) [W]

-

Certifications
CE Yes
UKCA Yes

I/O power supply
Nominal voltage 24 VDC
Voltage range 24 VDC ±25%
Integrated protection Reverse polarity protection
Sensor/Actuator power supply
Voltage I/O power supply minus voltage drop for short-circuit protection
Voltage drop for short-circuit protection at 0.5 A Max. 0.3 V
Power consumption Max. 12 W per IO-Link interface
Short-circuit proof Yes
Overload protection

Switch-off delay Configurable using software
Switch-off duration Configurable using software

Class B sensor/actuator power supply
Voltage 24 VDC ±25%
Voltage drop for short-circuit protection at 1.9 A Max. 0.3 V
Power consumption Max. 72 W per IO-Link class B interface 1)

Short-circuit proof Yes
Overload protection Thermal shutdown in the event of overcurrent or short circuit
IO-Link in master mode
Transfer rates

COM1 4.8 kbaud
COM2 38.4 kbaud
COM3 230.4 kbaud

Limit values for COM3
Max. connection capacity 22 nF (cable + IO-Link device)
Max. load 96 Ω / 250 mA

Data format 1 start bit, 8 data bits, 1 parity bit (even), 1 stop bit
Bus level 24 VDC (active), 0 VDC (resting voltage)
IO-Link in master mode or in SIO mode "digital
output"
Variant Bipolar, positive and negative switching
Peak short-circuit current <1.3 A
Residual voltage <0.7 VDC at nominal current 0.25 A
Switching voltage I/O power supply minus voltage drop for short-circuit protection and semiconductor switch

Table 2: X67DS838B.L12 - Technical data

1.04 5

Technical description

Order number X67DS838B.L12
Voltage drop on semiconductor switch Max. 0.5 VDC at 0.25 A
Switching delay

0 → 1 <10 µs
1 → 0 <10 µs

Overload protection of C/Q output
Overcurrent threshold Configurable using software
Switch-off duration Configurable using software

IO-Link in SIO mode "Digital output"
Nominal voltage 24 VDC
Nominal output current 0.25 A
Total nominal current with actuator power sup-
ply

Max. 4 A

Output circuit Sink or source
Switching frequency (resistive load) Max. 500 Hz
Output protection Thermal shutdown in the event of overcurrent or short cir-

cuit, integrated protection for switching inductive loads
IO-Link in SIO mode "digital input"
Nominal voltage 24 VDC
Input filter

Hardware 300 ns
Input circuit Sink
Input voltage 24 VDC -15% / +20%
Input current at 24 VDC Typ. 2.4 mA
Input resistance Typ. 10 kΩ
Switching threshold

Low <5 VDC
High >15 VDC

IO-Link I/Q interface (digital input)
Nominal voltage 24 VDC
Input voltage 24 VDC -15% / +20%
Input current at 24 VDC Typ. 3.6 mA
Input filter

Hardware ≤60 µs
Software Default 1 ms, configurable between 0 and 25.5 ms

Input circuit Sink
Input resistance Typ. 6.3 kΩ
Switching threshold

Low <5 VDC
High >15 VDC

Electrical properties
Electrical isolation Bus isolated from IO-Link
Operating conditions
Mounting orientation

Any Yes
Installation elevation above sea level

0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP67
Ambient conditions
Temperature

Operation -25 to 60°C
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%
Storage 5 to 95%
Transport 5 to 95%

Mechanical properties
Dimensions

Width 53 mm
Height 85 mm
Depth 42 mm

Weight 450 g
Torque for connections

M8 Max. 0.4 Nm
M12 Max. 0.6 Nm

Table 2: X67DS838B.L12 - Technical data

1) Starting with module revision B2.

6 1.04

 Technical description

2.2 LED status indicators

Figure LED Color/Status Description
Status indicator 1: Status indicator for X2X Link
LED Green (left) Red (right) Description

Off Off No power supply via X2X Link
On Off X2X Link supplied, communication OK
Off On X2X Link supplied but no X2X Link communication
On On PREOPERATIONAL: X2X Link supplied, module not initialized

I/O LEDs: Status indicator for corresponding IO-Link channel
LED Color/Status Description

Red:
Overload of the power supply or the C/Q line of the channel.

Green: Channel is in operation.
IO-Link communication is running.

Green/Red (single flash): Channel is in operation.
There is no IO-Link communication.

x-1

Green/Red (double flash): Channel is in operation.
The IO-Link device does not correspond to the specified val-
ues.

x-2 Orange:
The LED lights up when there is data traffic on the C/Q line
in SIO mode.

Status indicator 2: Status indicator for module functionality
LED Color Status Description

Off No power to module
Single flash Mode RESET
Double flash Mode BOOT (during firmware update)1)

Blinking Mode PREOPERATIONAL

Left Green

On Mode RUN
Off Module not supplied with power or everything OK

Status indicator 1:
Left: Green, Right: Red

Status indicator 2:
Left: Green, Right: Red

1-1 5-1

1-2
2-1

5-2

2-2
3-1

3-2
4-1 8-1

4-2 8-2

6-1

6-2
7-1

7-2

Right Red
On Error or reset state

1) Depending on the configuration, a firmware update can take up to several minutes.

2.2.1 LED signal pattern

Blink cycle

1/8 blink cycle

LED off

LED on

Single flash

Double flash

Triple flash

Blinking

1.04 7

Technical description

2.3 Connection elements

X2X Link
Connector A: Input
Connector B: Output

Connections 1 to 8:
8x IO-Link channels
6x digital inputs

I/O power supply 24 VDC
Connector C: Supply
Connection D: Class B supply

2.3.1 X2X Link

The module is connected to the X2X Link network using pre-assembled cables. The connection is made
using M12 circular connectors.

Connection Pinout
Pin Name

1 X2X+
2 X2X
3 X2X⊥
4 X2X\

1

2

3

4

1

4

3

2

A

B

Shield connection made via threaded insert in the module.

A → B-coded (male), input
B → B-coded (female), output

2.3.2 Pinout

+24 VDC
+24 VDC B
GND
C/Q
GND B

Shield
1
2
3
4
5

X7 to X8
M12 ①

+24 VDC
I/Q
GND
C/Q
NC

Shield
1
2
3
4
5

X1 to X6
M12 ①

X6

X5

X2

X1

X8

X7

X4

X3

X67CA0A41.xxxx: M12 sensor cable, straight①
X67CA0A51.xxxx: M12 sensor cable, angled

8 1.04

 Technical description

2.3.2.1 IO-Link channels

The IO-Link channels and digital inputs are connected via M12 circular connectors.

Connection Pinout
Connections 1 - 6

Pin Name
1 +24 VDC 24 VDC sensor power supply
2 I/Q Additional digital input
3 GND Sensor power supply GND
4 C/Q Communication connection (C) or digital input/output (Q)
5 NC -

Connections 7 - 8
Pin Name

1 +24 VDC 24 VDC sensor power supply
2 +24 VDC B 24 VDC class B sensor power supply
3 GND Sensor power supply GND
4 C/Q Communication connection (C) or digital input/output (Q)
5 GND B Class B sensor power supply GND

Connections 1 - 4

2
1

4
3

5

1
4

3
2

5
Connections 5 - 8

Shield connection made via threaded insert in the module.

Connection 1 to 8 → A-coded (female), input/output

2.3.3 I/O power supply 24 VDC

The I/O power supply is connected via M8 connectors C and D.

2.3.3.1 Feed of the I/O power supply

The I/O power supply is connected via M8 connector C (male).

Information:
The maximum permissible current for the I/O power supply is 8 A (4 A per connection pin)!

Information:
Pin 1 and pin 2 of power supply connector C must each be fused with a slow-blow 4 A line
fuse. Pins 1 and 2 are not connected within the module.

Connection Pinout
Pin Name

1 24 VDC
2 24 VDC
3 GND
4 GND

1
2

3

4

C

C → Connector (male) in module, feed of the I/O power supply

1.04 9

Technical description

2.3.3.2 Feed of the I/O class B power supply

The I/O class B power supply is fed in via M8 connector D (female). The I/O class B power supply is galvan-
ically isolated.

Information:
The maximum permissible current for the I/O class B power supply is 4 A (2 A per connection
pin)!

Information:
Pin 1 and pin 2 of power supply connector D must be fused with a slow-blow 4 A line fuse.
Pins 1 and 2 are connected within the module.

Connection Pinout
Pin Name

1 24 VDC B
2 24 VDC B
3 GND B
4 GND B

3

1

4

2D

D → Connector (female) in module, feed of the I/O class B power supply

2.4 Connection examples

C/Q connection (X1 to X6)

The following connection options are available depending on the operating mode of an IO-Link channel:

Operating mode Connected element
IO-Link master mode IO-Link device
SIO mode "Digital output" Actuator
SIO mode "Digital input" Sensor

The connection is made as shown in the following diagram:

1
2
3
4
5

... +24 VDC

... I/Q

... GND

... C/Q

... NC

Ac
tu

at
or

3

1

4

Se
ns

or

3

1

4

Se
ns

or

1

4

IO
-L

in
k

de
vi

ce

Device
3

1

4

L-

L+

C/Q

1

2 3

4

5

1

2

3

4

5

GND

+24 VDC

C/Q

GND

+24 VDC

C/Q

+24 VDC

C/Q

10 1.04

 Technical description

I/Q connection (X1 to X6)

Sensors can be connected to the additional digital inputs in the following way:

1
2
3
4
5

... +24 VDC

... I/Q

... GND

... C/Q

... NC

Se
ns

or

3

1

2

Se
ns

or

1

2

1

2 3

4

5

1

2

3

4

5

GND

+24 VDC

I/Q

+24 VDC

I/Q

Class B power supply (X7 to X8)

The connection to the additional power supply can be made as follows:

1
2
3
4
5

... +24 VDC

... +24 VDC B

... GND

... C/Q

... GND B

Se
ns

or

3

1

4

5

2

1

2 3

4

5

1

2

3

4

5

GND

+24 VDC

C/Q

GND B

+24 VDC B

Ac
tu

at
or

po
w

er
 s

up
pl

y

1.04 11

Technical description

2.5 Input circuit diagram

A distinction must be made between connectors X1 to X6 and connectors X7 and X8.

2.5.1 Input diagram for connectors X1 to X6

1 2

34

5

24 V

C/Q

I/Q

C/Q LED status indicator (orange)

I/Q input status

RxD

Rshunt

TxD

TxEN

24 V

SPI

SPI
Serial Peripheral Interface

System
control

UART

Gate driver
control

Connection for
IO-Link channel

2.5.2 Input diagram for connectors X7 and X8

1 2

34

5

24 V

24 V B

GND B

GND B

C/Q

C/Q LED status indicator (orange)

RxD

Rshunt

TxD

TxEN

24 V

SPI

SPI
Serial Peripheral Interface

System
control

UART
Gate driver

control

Connection for
IO-Link channel

Control logic,
temperature
shutdown

Output state

12 1.04

 Technical description

2.6 Overload protection

The module can be used to connect IO-Link devices (IO-Link version 1.1). The power supply for the IO-Link
sensor/actuator is permitted to be obtained from the module. The power supply can be switched on or off
individually for each IO-Link channel.

To avoid damage to the hardware, the module is equipped with overload protection.

Information:
Separate overload protection is implemented for each connection pin of the sensor/actu-
ator power supply. This means that the connected IO-Link devices are supplied with power
in 4 groupsthat are galvanically isolated from each other.

If an IO-Link device triggers the overload protection on the module, the subsequent limi-
tation of the supply current affects all devices in this group. The devices of the other group
are not affected.

1.04 13

Function description

3 Function description

3.1 Digital input filter

An input filter is available for each input. Disturbance pulses that are shorter than the input delay are sup-
pressed by the input filter.

Input
signal

Signal after
the filter

tDelay tDelay tDelay

tDelay

Time

Time

⇒ Input delay

The value of the input filter affects the response time of all additional digital inputs:

• Low filter values reduce the dead time of the input.
• Higher filter values are recommended for noisy signals.

The filter value can be configured in increments of 100 µs. Since the input signals are sampled in an interval
of half the X2X Link cycle time, however, it makes sense to use values in corresponding increments.

Data type Values Information
0 No software filter (bus controller default setting)
1 0.1 ms
... ...

USINT

255 25.5 ms

Information:
The register is described in "Filtering digital inputs" on page 69.

14 1.04

 Function description

3.2 IO-Link

The module is an IO-Link master for controlling intelligent sensors and actuators per the IO-Link standard.
Up to 8 IO-Link devices (IO-Link version 1.1) can be connected to the module.

3.2.1 IO-Link communication

The module establishes communication with the IO-Link device if register "ChannelMode" on page 71 of
the corresponding channel is configured.

If the corresponding IO-Link channel of the module has been configured to "Operate" in Automation Stu-
dio, the IO-Link module attempts to exchange process data with the connected IO-Link device. For each
active IO-Link channel, 8 InputData0x_y and 8 OutputData0x_y registers are allocated in the memory of the
module.

InputData0x_1
Register

InputData0x_2 InputData0x_8
...8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit8-bit 8-bit8-bit

In order to define the actual IO-Link frame, how many of the maximum 8 registers are used must be defined
as well as the data type of the IO-Link data.

SINT
InputData0x_1

Register INT
InputData0x_2

DINT
InputData0x_8

...8-bit 8-bit 8-bit 8-bit 8-bit

The IO-Link frame for communication with the IO-Link device results from these initialized data points.

SINT
InputData0x_1

Register INT
InputData0x_2

DINT
InputData0x_8

...

SINT INT ... DINTIO-Link frame

8-bit 8-bit 8-bit 8-bit 8-bit

In order to transfer the IO-Link data to the PLC, the bandwidth of the X2X Link network must also be taken
into account when defining the data type for the IO-Link communication. This limitation can be minimized
if the "OCTET" data points or "multiplexed OCTET" data points are used instead of the standard data types.

"OCTET" byte arrays

8 registers with up to 32 bits are available per channel and direction. This way, 8 data points can be trans-
ferred. If this amount of data is insufficient, a byte array can be used to generate the IO-Link frame. The
user must manage the distribution of IO-Link frames within the application and observe the byte order in
the IO-Link device.

"Multiplexed OCTET" byte arrays

Time-multiplexed data transfer can take place in the background. Depending on the amount of data, several
X2X cycles may be required to transfer new data between the module and the controller. This mode is not
available in the output direction.

SIO mode

"SIO" stands for "standard I/O" and defines an alternative use for the C/Qx connection. If a channel of the
module is not required for IO-Link communication, the pin can be used as standard I/O. The user can decide
whether to use the standard I/O as input or output. The IO-Link standard also permits IO-Link communi-
cation to be stopped and restarted. If IO-Link communication is stopped at runtime, the C/Qx connection
can be used as a standard output.

1.04 15

Function description

Process data

To transfer process data from the IO-Link device to the controller (application), the information is first read
from the module and saved temporarily. Typically, 4 bytes are reserved for each piece for registered infor-
mation. This configures how the incoming IO-Link process data stream (IO-Link frame) is divided. According
to this configuration, the IO-Link process data is made available to the application via the corresponding
InputData registers. The InputData registers are assigned to individual data points with the corresponding
data type in the I/O mapping.

In order to transfer process data to the IO-Link device, it is necessary to configure which data type of the
individual "OutputData" registers is used to combine the outgoing IO-Link process data stream. According
to this configuration, OutputData registers are assigned to data points with the corresponding data types
in Automation Studio (I/O mapping).

If a byte array is used, it is up to the user to assign the required data types to the corresponding bytes.

Data type Values
USINT 0 to 255
SINT -128 to 127
UINT 0 to 65535
INT -32768 to 32767
UDINT 0 to 4,294,967,295
DINT -2147483648 to 2147483647
REAL -3.4E38 to 3.4E38

Information:
The registers are described in "IO-Link communication" on page 73.

16 1.04

 Function description

3.2.2 Configuring IO-Link timing characteristics

The module must manage records from 2 different communication standards at runtime. For efficient com-
munication on the X2X Link network, it must be ensured that the cycle time of all X2X modules corresponds
to the bus cycle time.

IO-Link specified cycle times

The IO-Link specification defines that an IO-Link device must be queried at certain intervals. This cycle is
referred to as the IO-Link cycle.
Valid IO-Link cycle times are in the range from 0.5 ms to 132.8 ms. A distinction is made between 3 different
areas.

Area Increment Calculation Valid cycle times
0.5 to 6.3 ms 0.1 ms Cycle time = 0.1 ms * n + 0.4 ms 0.5, 0.6 to 6.2, 6.3 ms
6.4 to 32.6 ms 0.4 ms Cycle time = 0.4 ms * n + 6.4 ms 6.4, 6.8, 7.2 to 32.2, 32.6 ms
32.0 to 132.8 ms 1.6 ms Cycle time = 1.6 ms * n + 32.0 ms 32.0, 33.6, 35.2 to 131.2, 132.8 ms

Module timer

The cycle of the module timer is automatically synchronized with the X2X cycle.

Synchronous operation

In contrast to free-running operation, in synchronous operation the synchronization cycle time can be set
individually for each channel.

Operating mode SYNCHRONIZED optimizes the interaction of X2X Link and IO-Link communication. The
resources of the module were designed for this mode; this configuration should therefore be used for the
channels of the module.

• In operating mode SYNCHRONIZED (automatic), the module calculates the required time parameters
by itself. An IO-Link cycle is determined that corresponds to the IO-Link specification. The selected IO-
Link cycle time corresponds to the smallest possible multiple of the module timer cycle time that meets
the following conditions:

– Valid IO-Link cycle time
– Greater than or equal to the minimum cycle time of the device

• In operating mode SYNCHRONIZED (manual), the user can manually configure the timing characteris-
tics of the module. The user can define both the synchronization cycle time and IO-Link cycle manually
using a factor.

• CycleMultiple
The synchronization cycle time of a channel can be manually set with this register.

Information:
If the value of register CycleMultiple is not defined for an IO-Link channel or set to zero,
the value is calculated automatically during module startup.

IO-Link cycle time
IO-Link cycle time = Synchronization cycle time * CfO_ReqCycleMultiple0x

1.04 17

Function description

The IO-Link cycle is set individually for each channel. If necessary, the IO-Link cycle of the channel can be
shifted using a channel-specific offset. Possible reasons for this:

• Channels should be aligned so that their requests end at the same time. With very short cycle times (<1
ms), it is possible that the data cannot be processed fast enough. The subsequent cycles are delayed
in this case, which is indicated by a reset of the status bit for synchronization.

• All channels run with the same cycle time. All channels will be ready at the same time in this case, which
may result in the module not processing all data in time. Offsets can be used to prevent such bottle-
necks and distribute the data volume more evenly.

Information:
If the IO-Link cycle is configured to be less than the minimum cycle time of the device, a
cycle is automatically selected that meets the following conditions:

• Multiple of the module timer cycle
• Valid IO-Link cycle time
• Greater than or equal to the minimum cycle time of the device

Configuration example

X2X cycle 1 ms

Timer cycle 1 ms

Synchronization cycle 2 ms CycleRequesetEndNettime02

CycleStartNettime02 CycleEndNettime02

Synchronization cycle 3 ms

100 μs Cycle offset3 ms
Synchronization time

Multiple = 1
Offset = 0
Cycle time = 0.5 ms

Multiple = 2
Offset = 0
Cycle time = 2 ms

Multiple = 3
Offset = 0
Cycle time = 3 ms

Multiple = 3
Offset = 1
Cycle time = 3 ms

Channel 1:

Channel 2:

Channel 3:

Channel 4:

X2X cycle

Timer cycle

Module timer in this example

• The period duration of the module timer corresponds to the cycle time of the X2X Link network.

IO-Link communication in this example

• Parameter "Multiple" on page 72 is used to determine the channel-specific cycle time for IO-Link
communication.

• Channels 3 and 4 have a common synchronization cycle of 3 ms, shifted by the offset.
• Channels start the query simultaneously at the beginning of a common synchronization cycle.
• The IO-Link cycle of the fourth channel was delayed with an offset of 1 ms.
• All channels have a common synchronization cycle of 6 ms.

18 1.04

 Function description

Free-running (asynchronous) operation

If the IO-Link and X2X Link cycle times cannot be synchronized, then the IO-Link cycle time can be specified
explicitly. IO-Link communication runs independently of the X2X cycle. No other NetTime data points can
be used except for "CycleEndNettime" on page 80. The cycle times of free-running IO-Link channels are
defined directly via the corresponding registers. However, deviations may occur if the module's resources
are exhausted.

Information:
• In free-running mode, no NetTime data points are permitted to be used except for "Cy-

cleEndNettime" on page 80.
• If the specified cycle time of the IO-Link communication undershoots the minimum

cycle time of the device, the IO-Link data is queried with the minimum cycle time of
the device.

• For efficient IO-Link communication, the set query cycle should correspond to the
specified IO-Link cycle times. If the value is unsuitable, the next suitable cycle time is
used automatically.

Information:
The registers are described in "Configuring IO-Link timing characteristics" on page 72.

1.04 19

Function description

3.2.3 IO-Link event interface

The event interface involves interrupt-controlled background communication. It enables the connected IO-
Link devices to transmit special messages, or "event codes", to the master.

The module can receive up to 16 of these messages, buffer them and make them available for retrieval
from the controller. Essentially, FIFO memory is used for this; this is managed independently of the cyclic
communication.

Information:
If a message is received via the event interface and the FIFO memory is full, the oldest
message in the buffer is overwritten. In rare cases, this can result in messages being lost
before they have been evaluated.

Sequence for reading an event

• A new event was triggered by the device. This is indicated by an increase in "EventPortSeq" on page
80.

• Event data can be read out using registers "EventQualifier" on page 81 and "EventCode" on page
81.
Description Information
EventQualifier
Instance layer that generated the event • Instance layer unknown

• Hardware
• Data exchange layer of the IO-Link device
• Application layer of the IO-Link device
• Application

Cause of the event • Device
• Master

Type of event • Information
• Warning
• Error

Event mode • One-time event
• Event no longer reported (e.g. voltage OK again)
• Event reported (e.g. voltage too low)

EventCode
The event codes can consist of vendor-specific event codes or event codes specified
by the IO-Link specification.

• The event must be acknowledged. To do so, the sequence number from "EventPortSeq" on page 80
must be copied to the sequence number from "EventQuit" on page 81.

• The next event is specified only after the event is acknowledged.

Information:
The registers are described in "IO-Link event interface" on page 80.

20 1.04

 Function description

3.2.4 IO-Link device IDs

IO-Link device IDs are defined by the manufacturer of the IO-Link device and cannot be modified by the
user. They can be used to clearly identify a connected IO-Link device.

These include:

• Manufacturer ID
• Unique ID of the IO-Link device
• Function class of the device assigned by the manufacturer
• Currently applied IO-Link cycle time
• Currently applied multiplier
• Currently applied divisor
• Minimum IO-Link cycle time
• Specified size of the input process data
• Defined size of the output process data
• Specified baud rate
• IO-Link version

Information:
The registers are described in "IO-Link device IDs" on page 85.

3.2.5 IO-Link status response

Status information provides information about the current situation between the module and IO-Link de-
vice. It can be retrieved from the controller and evaluated in the application task.

The following status information can be read out:

• Whether the last data transmitted to the IO-Link device was processed
• Whether the channel is synchronized without errors
• Whether an overload has occurred on the channel power supply or data line in the form of overcurrent

or overtemperature
• Current status of the IO-Link channel
• Number of all received IO-Link frames. It is ensured that all frames are really detected, even if X2X cycles

are lost or if the IO-Link cycle is faster than the X2X cycle.
• Start and end time of the last IO-Link cycle

Information:
The registers are described in "IO-Link status response" on page 77.

1.04 21

Function description

3.2.6 IO-Link timestamp

The IO-Link timestamp registers allow the assignment of IO-Link timestamps to the NetTime of a controller,
and vice versa.

This makes is possible for value changes of the IO-Link device to be assigned exactly to the NetTime of the
controller, and vice versa. Events can be captured or triggered with a higher timing resolution than would
be possible with the IO-Link cycle. This allows a highly precise timed response from the controller to signals
from the sensor, and vice versa. The resolution depends on the devices being used.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 31.

Examples

• For an input device, the timestamp is saved directly by the device when a certain event occurs (e.g. light
barrier triggered) and then transferred via IO-Link. The IO-Link master converts this IO-Link-specific
timestamp to a NetTime timestamp that can be used across the system.

• In the output direction, a converted timestamp is transferred to the device via IO-Link. The output
device reacts at the corresponding time and performs the intended event (e.g. closing a switch).

Information:
• The timestamp function is device-specific and not supported by every IO-Link device.
• This function cannot be used if the channel is operated in free-running (asynchronous)

mode.

Input timestamp

For input timestamps, associated status information can be retrieved.

Description Information
Sequence number The sequence number is incremented by 1 with each valid timestamp received. In the event

that the sequence number has been increased by more than 1, an event has been lost.
Events triggered by the application Signal state at occurrence of the timestamp

Example: Signal state at occurrence of the timestamp

– Light barrier was interrupted → This bit = 0
– Light barrier free → This bit = 1

No error → This bit = 0Timestamp error
An error has occurred on the IO-Link device → This bit = 1.
Possible causes:

• More timestamps were generated than could be transferred.
• The value of the IO-Link timestamp exceeded the permissible range of values.

In both cases, reducing the IO-Link cycle time can help.

Output timestamp

The NetTime for the output timestamp is automatically converted to an IO-Link timestamp. The event is
triggered at the defined NetTime.

Information:
The NetTime must be at least 3 IO-Link cycles in the future; otherwise, a warning is set in
IoLinkTimestampOutStatus.

The data type of the output timestamp must be identical to the data type defined in bit
26 of register "ChannelMode" on page 71.

Information:
The registers are described in "IO-Link timestamp" on page 83.

22 1.04

 Function description

3.2.7 Error codes

Requests can be made via registers or the Flatstream. If a request fails, the error bit is set and an error code
is generated. In addition to the general error codes, vendor-specific error codes may also occur. For these,
see the operating instructions for the corresponding IO-Link device.

Error display in the registers

• The error bit is set in "ParameterCtrlIn" on page 89, and the length of the error code is displayed in
the data length parameter.

• "ParameterDataIn" on page 90 contains the error code.

Error display in the Flatstream

If the error bit is set, the Flatstream bytes are composed as follows:

• Bytes 1 to 3: Module-specific Flatstream array
• Byte 4: Error code. For error code 8 (error reported by the device), bytes 5 and 6 contain additional

information.
• Bytes 5 and 6: Error code from the IO-Link device
• ...

Error codes
Code Explanation

1 No device on this channel
2 IO-Link disabled
3 Communication error with device
4 Request buffer full
5 Event queue empty
6 Request not supported
7 Object access failed
8 Object access, error reported by device
9 Incorrect channel number
10 No write access possible
11 No input data available
12 Frame too short
13 One or more events discarded
14 Device has no input data.
15 Device has no output data.

1.04 23

Function description

3.3 Parameter server

The parameter server is a function that is defined by the IO-Link specification. This function is normally
enabled in the module and can be managed with register "CfO_DS_Config" on page 83.

The parameter server permits the module to read configuration parameters of the connected IO-Link de-
vice. The data of the third-party device is stored in the EEPROM and can then be restored automatically,
e.g. after replacing the IO-Link device.

Information:
The selection of the transferred configuration data depends on the connected IO-Link de-
vice. The module only functions as data storage. It requests the configuration data of the
IO-Link device, stores the response and transmits the received information back to the
connected IO-Link device, if required.

A change to the read parameter server data in the memory of the module is not foreseen.

Event code 0xFF91

The module is able to process the "data memory upload request" (event code 0xFF91) of the connected IO-
Link device in order to automatically manage the memory of the parameter server in the module.

The standard does not specify exactly when the event code must be generated. Most IO-Link devices gener-
ate it as soon as the configuration parameters change. With some IO-Link devices, it can be advantageous
to request the upload and download processes manually. For this purpose the module includes an option
for adapting the transfer of the parameter server data to the individual application requirements.

Information:
Automatic management can be used if the connected third-party IO-Link device supports
the parameter server function and can generate the event code.

The parameter server

If supported by the IO-Link device, the IO-Link parameter server can be used to read application-specific
device configurations from the IO-Link master, for example. The module's parameter server is always en-
abled and can be used using a control register.

Which data storage parameters are transferred depends on the connected IO-Link device. The read infor-
mation is stored in EEPROM on the module and can be fed back automatically after replacing the device,
for example.

The module is able to process the data memory upload request (event code 0xFF91) of the IO-Link speci-
fication. The request is usually triggered when parameters are changed on the device. Depending on the
configuration, an upload of the data memory data can be started in this case (default).

Automatic management of data storage parameters

Automatic management has been designed according to IO-Link specification. Since the IO-Link standard
exhibits a degree of tolerance here, it is possible that some IO-Link devices may have to be handled differ-
ently. This can be configured using the register.

An upload/download is performed under the following conditions:

• DsControl0x = 1
• While the device is starting up or if a data storage upload request has been received.

24 1.04

 Function description

Offline configuration

With offline configuration, the configuration data set in Automation Studio for the device is saved in the
project and automatically configured for the controller after the project is downloaded or after the memory
card is created. Unlike the parameter server, where the values are read out from an existing device, the val-
ues are specified directly by the application in this case. The values are configured automatically only once
after the download. The procedure is not repeated until a new parameter file is received from Automation
Studio, the device has been replaced or the download is started manually by the library.

This function works independently of the parameter server. If the parameter server is enabled, however,
it starts after the offline configured if required and saves the corresponding data. In this case, the data is
loaded from the parameter server to the device when the device is replaced.

Information:
The registers are described in "IO-Link parameter server" on page 82.

1.04 25

Function description

3.4 Statistics counter

Communication errors that have occurred between individual IO-Link components are mapped in the sta-
tistics counters.

➀
➂ ➃➁

➂ ➃➁

Module

Legend
➀ I/O processor
➁ Channel-specific IO-Link interface
➂ IO-Link channel
➃ IO-Link device

The following error messages are recorded:

• Number of command retries caused by communication errors between the I/O processor and IO-Link
device.

• Number of checksum errors between the I/O processor and channel-specific IO-Link interface
• Number of communication errors between the I/O processor and channel-specific IO-Link interface
• Number of parity errors between the channel-specific IO-Link interface and IO-Link device
• Number of protocol errors between the channel-specific IO-Link interface and IO-Link device
• Number of bytes received with errors between the channel-specific IO-Link interface and IO-Link de-

vice.
• Number of checksum errors between the channel-specific IO-Link interface and IO-Link device
• Number of response errors. These occur if the IO-Link device does not respond in time to the request

frame of the master or if the pause between the individual bytes in the response frame is too large.
• Number of cycle errors. These occur if an IO-Link cycle is started before the previous one could be

completed and processed. These errors can be corrected by setting a lower cycle time.

Information:
The registers are described in "Statistics counter" on page 86.

26 1.04

 Function description

3.5 Communication via the command interface

The command interface provides the possibility of accessing the object dictionary of the IO-Link device via
index and subindex. Alternatively, access can also take place using library AsIoLink or the Flatstream.

Information:
A maximum of the first 4 bytes of an object can be read or written with this interface.

Procedure for write access:
• Set the object to be written using "ParameterIndexOut" on page 88 and "ParameterSubIndexOut"

on page 88.
• Write the data to be written to "ParameterDataOut" on page 89.
• Set read/write, IF and the sequence number incremented by 1 in register "ParameterCtrlOut" on page

89.
• Wait until the sequence confirmation in "ParameterCtrlIn" on page 89 is equal to the sequence num-

ber.

Procedure for read access:
• Set the object to be read using "ParameterIndexOut" on page 88 and "ParameterSubIndexOut" on

page 88.
• In parameter "ParameterCtrlOut" on page 89, delete bit 7, set the channel number and increase the

sequence number.
• Wait until the sequence confirmation in "ParameterCtrlIn" on page 89 is equal to the sequence num-

ber.
• Read out the error state from "ParameterCtrlIn" on page 89. An error is indicated by a set error bit.
• Read the data from "ParameterCtrlIn" on page 89.

Behavior in the event of error

For details about the behavior when an error occurs, see "Error codes" on page 23.

Error display
• If the "error code" on page 23 is not equal to 8 (i.e. error reported by the device), then the LSB of register

ParameterDataIn contains the error code.
• In the event of an error reported by the device, the error specified by the IO-Link device is also displayed.

UDINT
MSB LSB

Reserved IO-Link error code Additional IO-Link error code 8

Information:
The registers are described in "IO-Link communication via the command interface" on page
88.

1.04 27

Function description

3.6 Flatstream communication

The module enables the user to communicate with the connected IO-Link device using the Flatstream.

Communication is separated in time, i.e. output data is transferred completely from the controller to the
module and checked. The module then initiates the actual communication with the IO-Link device.

The module behaves the same way in the input direction. Messages from the IO-Link device must be received
in full in the X2X module before the Flatstream message is generated and transmitted to the controller.

Information:
The registers are described in "Flatstream registers" on page 90.

3.6.1 General handling of the Flatstream

Input/Output sequence Rx/Tx bytes
(Unchanged) Control byte (unchanged) Payload data array for Flat-

stream (IO-Link information)

The user has a choice when using the Flatstream.

• Using the Flatstream as described in "Flatstream communication" on page 34.
• Using library "AsFltGen" to manage input/output sequences and the Flatstream control bytes auto-

matically.

In both cases, a module-specific array with Flatstream payload data must be created in the application.

3.6.2 IO-Link information for the Flatstream

An individual array must be defined in the application to be able to use IO-Link communication via the Flat-
stream.

The following must be defined for the request in the controller → module → IO-Link device direction.

• Channel number of the module
• Frame number for the request
• Type of request
• The corresponding IO-Link data must then be attached depending on the request.

The response consists of the following parts:

• The channel number, frame number, access type and type of request are repeated.
• The module generates the error bit and manages the confirmation bit.
• The successfully received IO-Link information or corresponding "error code" on page 23 is then added.

Module-specific Flatstream array for IO-Link communication
Byte Name Value Description

1 Channel number 1 to 4
2 Frame number 0 to 255 This number is repeated in the module's response. In this

way, the later response of the module can be clearly as-
signed to the request.

3 See Byte 3. x
... IO-Link data or error code Depends on byte 3

28 1.04

 Function description

Byte 3
Bit Description Value Information

0 Access to the object dictionary
1 Access to the process data of the inputs
2 Access to the process data of the outputs
3 Read out single event
4 Read out multiple events
5 Enable event forwarding
6 Disable event forwarding

0 - 2 Type of request

7 Announcement of an automatically forwarded event
3 - 4 Reserved -

0 Message without request5 Confirmation
1 Response to request1)

0 No error6 Status bit (for response frame)
1 Error
0 Read7 Access type
1 Write

1) This confirmation bit is also set for a response to a request. The response used to confirm a request often contains additional data that must
be processed.

3.6.3 IO-Link data

Different IO-Link data must be attached to the Flatstream depending on the type of request.

3.6.3.1 Access to the object dictionary

Request
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

4 Index number high 0 to 255
5 Index number low 0 to 255

Index of the desired IO-Link parameter

6 Subindex number 0 to 255 Subindex of the IO-Link parameter
7 to ... Data 0 to 255 Optional, for write access

Response
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication
4 to ... Data / "Error code" on page 23 0 to 255 Omitted if data was written successfully

3.6.3.2 Access to process data

Request
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

4 Data 0 to 255 Optional, for write access

Response
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

4 Data / "Error code" on page 23 0 to 255 Omitted if data was written successfully

1.04 29

Function description

3.6.3.3 Access to event data

Request
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

Response
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

Event counter - Current Bits 0 to 3 Number of attached events4
Event counter - Pending Bits 4 to 7 Number of pending events

5 Event 0 - Event qualifier 0 to 255 See "EventQualifier" on page 81.
6 Event 0 - Event data high 0 to 255
7 Event 0 - Event data low 0 to 255

8 - 10 Event 1
x to (x + 2) Event n1)

1) Only applies if several events were queried with byte 3 (bits 0 to 2 = 4). Only 1 event occurs with byte 3 (bits 0 to 2 = 3).

or

Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

4 "Error code" on page 23 0 to 255

3.6.3.4 Enabling or disabling event forwarding

Request
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

Response
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

or

Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

4 "Error code" on page 23 0 to 255

3.6.3.5 Announcement of a forwarded event

After event forwarding has been enabled, events must no longer be queried cyclically. The module generates
the event as soon as the corresponding event has occurred.

Message
Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

Event counter - Current Bits 0 to 3 Number of attached events4
Event counter - Pending Bits 4 to 7 Number of pending events

5 Event 0 - Event qualifier 0 to 255 See "EventQualifier" on page 81.
6 Event 0 - Event data high 0 to 255
7 Event 0 - Event data low 0 to 255

8 - 10 Event 1
x to (x + 2) Event n1)

1) Only applies if several events were queried with byte 3 (bits 0 to 2 = 4). Only 1 event occurs with byte 3 (bits 0 to 2 = 3).

or

Byte Name Value Description
1 to 3 Module-specific Flatstream array for IO-Link communication

4 "Error code" on page 23 0 to 255

30 1.04

 Function description

3.7 NetTime Technology

NetTime refers to the ability to precisely synchronize and transfer system times between individual com-
ponents of the controller or network (controller, I/O modules, X2X Link, POWERLINK, etc.).

This allows the moment that events occur to be determined system-wide with microsecond precision. Up-
coming events can also be executed precisely at a specified moment.

3.7.1 Time information

Various time information is available in the controller or on the network:

• System time (on the PLC, Automation PC, etc.)
• X2X Link time (for each X2X Link network)
• POWERLINK time (for each POWERLINK network)
• Time data points of I/O modules

The NetTime is based on 32-bit counters, which are increased with microsecond resolution. The sign of the
time information changes after 35 min, 47 s, 483 ms and 648 µs; an overflow occurs after 71 min, 34 s, 967
ms and 296 µs.

The initialization of the times is based on the system time during the startup of the X2X Link, the I/O mod-
ules or the POWERLINK interface.

Current time information in the application can also be determined via library AsIOTime.

3.7.1.1 Controller data points

The NetTime I/O data points of the controller are latched to each system clock and made available.

3.7.1.2 X2X Link - Reference time point

X2X Link

Full cycle Half cycle

SI AO AISOAIAOSISOAIAO

Full cycle Full cycleHalf cycle

Task class Task class Task class

System time System time System timeX2X Link
time

X2X Link
time

23000 24000 25000 26000 27000

System cycle time = 2 ms
X2X cycle time = 2 ms

The reference time point on the X2X Link network is always calculated at the half cycle of the X2X Link
cycle. This results in a difference between the system time and the X2X Link reference time point when the
reference time is read out.

In the example above, this results in a difference of 1 ms, i.e. if the system time and X2X Link reference time
are compared at time 25000 in the task, then the system time returns the value 25000 and the X2X Link
reference time returns the value 24000.

1.04 31

Function description

3.7.1.3 POWERLINK - Reference time point

Full cycle

PReqSoC

Full cycle Full cycle

Task class Task class Task class

System time System time System time

POWERLINK
NetTime SoC

23000 25000 27000

System cycle time = 2 ms
POWERLINK system cycle time = 2 ms

POWERLINK
NetTime SoC

POWERLINK
NetTime SoC

PRes PReq PReqSoC PRes PReq... ...

The POWERLINK reference time point is always calculated at the start of cycle (SoC) of the POWERLINK net-
work. The SoC starts 20 µs after the system clock due to the system. This results in the following difference
between the system time and the POWERLINK reference time:

POWERLINK reference time = System time - POWERLINK cycle time + 20 µs

In the example above, this means a difference of 1980 µs, i.e. if the system time and POWERLINK reference
time are compared at time 25000 in the task, then the system time returns the value 25000 and the POW-
ERLINK reference time returns the value 23020.

3.7.1.4 Synchronization of system time/POWERLINK time and I/O module

Time

X2X Link cycle

(E)

(S)

C
ou

nt
er

 v
al

ue

(1)

(2)
Counter PLC/POWERLINK
Counter I/O module

(E)

(S)

At startup, the internal counters for the controller/POWERLINK (1) and the I/O module (2) start at different
times and increase the values with microsecond resolution.

At the beginning of each X2X Link cycle, the controller or POWERLINK network sends time information to
the I/O module. The I/O module compares this time information with the module's internal time and forms
a difference (green line) between the two times and stores it.

When a NetTime event (E) occurs, the internal module time is read out and corrected with the stored dif-
ference value (brown line). This means that the exact system moment (S) of an event can always be deter-
mined, even if the counters are not absolutely synchronous.

Note

The deviation from the clock signal is strongly exaggerated in the picture as a red line.

32 1.04

 Function description

3.7.2 Timestamp functions

NetTime-capable modules provide various timestamp functions depending on the scope of functions. If a
timestamp event occurs, the module immediately saves the current NetTime. After the respective data is
transferred to the controller, including this precise moment, the controller can then evaluate the data using
its own NetTime (or system time), if necessary.

3.7.2.1 Time-based inputs

NetTime Technology can be used to determine the exact moment of a rising edge at an input. The rising
and falling edges can also be detected and the duration between 2 events can be determined.

Information:
The determined moment always lies in the past.

3.7.2.2 Time-based outputs

NetTime Technology can be used to specify the exact moment of a rising edge on an output. The rising and
falling edges can also be specified and a pulse pattern generated from them.

Information:
The specified time must always be in the future, and the set X2X Link cycle time must be
taken into account for the definition of the moment.

3.7.2.3 Time-based measurements

NetTime Technology can be used to determine the exact moment of a measurement that has taken place.
Both the starting and end moment of the measurement can be transmitted.

1.04 33

Function description

3.8 Flatstream communication

3.8.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transfer to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard
cyclic polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R PLC

B&R PLC

B&R PLC
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a
bridge. The module is used to pass controller requests directly on to the field device.

34 1.04

 Function description

3.8.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus
cycle. With Flatstream communication, all messages are viewed as part of a continuous data stream. Long
data streams must be broken down into several fragments that are sent one after the other. To understand
how the receiver puts these fragments back together to get the original information, it is important to
understand the difference between a message, a segment, a sequence and an MTU.

Message

A message refers to information exchanged between 2 communicating partner stations. The length of a
message is not restricted by the Flatstream communication method. Nevertheless, module-specific limita-
tions must be considered.

Segment (logical division of a message):

A segment has a finite size and can be understood as a section of a message. The number of segments
per message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each
segment is preceded by a byte with additional information. This control byte contains information such as
the length of a segment and whether the approaching segment completes the message. This makes it
possible for the receiving station to interpret the incoming data stream correctly.

Sequence (how a segment must be arranged physically):

The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written suc-
cessively to the MTU and transferred to the receiving station where they are lined up together again. The
receiver stores the incoming sequences in a receive array, obtaining an image of the data stream in the
process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred se-
quences must be acknowledged by the receiving station to ensure the integrity of the transfer.

MTU (Maximum Transmission Unit) - Physical transport:

MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one
sequence and transfer it to the receiving station. A separate MTU is defined for each direction of commu-
nication. OutputMTU defines the number of Flatstream Tx bytes, and InputMTU specifies the number of
Flatstream Rx bytes. The MTUs are transported cyclically via the X2X Link network, increasing the load with
each additional enabled USINT register.

Properties

Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed
to transfer a particular message. Although the Rx and Tx registers are exchanged between the transmitter
and the receiver cyclically, they are only processed further if explicitly accepted by register "InputSequence"
or "OutputSequence".

Behavior in the event of an error (brief summary)

The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can
generally be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by
the receiver must be acknowledged. If Forward functionality is not used, then subsequent communication
is delayed for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is incre-
mented twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station
uses SequenceAck to determine that the transfer was faulty and that all affected sequences must be re-
peated.

1.04 35

Function description

3.8.3 The Flatstream principle

Requirements

Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both
communication partners cyclically query the sequence counter on the remote station. This checks to see if
there is new data that should be accepted.

Communication

If a communication partner wants to transmit a message to its remote station, it should first create a trans-
mit array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very
efficiently without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

Controller fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure

The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the
corresponding control bytes are created. The data is formed into a data stream made up of one control
bytes per associated segment. This data stream can be written to the transmit array. The maximum size of
each array element matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be re-
filled. It then copies the first element of the array or the first sequence to the Tx byte registers. The MTU is
transported to the receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal
that the data should be accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the remote station detects the incremented Sequence-
Counter. The current sequence is appended to the receive array and acknowledged by SequenceAck. This
acknowledgment signals to the transmitter that the MTU can now be refilled.

If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit
array. During the transfer, the receiving station must detect and evaluate the incoming control bytes. A
separate receive array should be created for each message. This allows the receiver to immediately begin
further processing of messages that are completely transferred.

36 1.04

 Function description

3.8.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small
amounts of data relatively easily.

Information:
The controller communicates directly with the field device via registers "OutputSequence"
and "InputSequence" as well as the enabled Tx and RxBytes bytes. For this reason, the user
must have sufficient knowledge of the communication protocol being used on the field
device.

3.8.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines
must be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to
ensure data consistency.

At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled
in with default values at the beginning and can be used immediately. These registers are used for additional
options, e.g. to transfer data in a more compact way or to increase the efficiency of the general procedure.

The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for
substantially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating
the program sequence.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the
registers names. Instead, they are used as synonyms for the currently enabled Tx or Rx
bytes.

Information:
The registers are described in "Flatstream registers" on page 90.

3.8.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module
(output direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control or secure communication, i.e. the
transmitter uses them to give instructions to apply data and the receiver confirms a successfully transferred
sequence.

Information:
The registers are described in "Flatstream registers" on page 90.

3.8.4.2.1 Format of input and output bytes

Name:

"Format of Flatstream" in Automation Studio

On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx
bytes) are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

1.04 37

Function description

3.8.4.2.2 Transporting payload data and control bytes

The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "In-
putMTU", respectively.
In the user program, only the Tx and Rx bytes from the controller can be used. The corresponding counter-
parts are located in the module and are not accessible to the user. For this reason, the names were chosen
from the point of view of the controller.

• "T" - "Transmit" → Controller transmits data to the module.
• "R" - "Receive" → Controller receives data from the module.

3.8.4.2.2.1 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control
bytes contain additional information about the data stream so that the receiver can reconstruct the original
message from the transferred segments.

Bit structure of a control byte
Bit Name Value Information

0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)
0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength

The segment length lets the receiver know the length of the coming segment. If the set segment length is
insufficient for a message, then the information must be distributed over several segments. In these cases,
the actual end of the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The
segment length is only derived from the bytes of payload data.

nextCBPos

This bit indicates the position where the next control byte is expected. This information is especially im-
portant when using option "MultiSegmentMTU".
When using Flatstream communication with MultiSegmentMTUs, the next control byte is no longer expect-
ed in the first Rx byte of the subsequent MTU, but transferred directly after the current segment.

MessageEndBit

"MessageEndBit" is set if the subsequent segment completes a message. The message has then been com-
pletely transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold
the entire message. The module will only process a message internally if this identifier is
detected.
The size of the message being transferred can be calculated by adding all of the message's
segment lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB
with ME) ME MessageEndBit

38 1.04

 Function description

3.8.4.2.3 Communication status

The communication status is determined via registers "OutputSequence" and "InputSequence".

• OutputSequence contains information about the communication status of the controller. It is written
by the controller and read by the module.

• InputSequence contains information about the communication status of the module. It is written by
the module and should only be read by the controller.

3.8.4.2.3.1 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the controller

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part in-
dicates to the remote station whether a channel should be opened or whether data should be accepted.
The high part is to acknowledge that the requested action was carried out.

SyncBit and SyncAck

If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchro-
nized", i.e. it is possible to send messages in this direction. The status bit of the remote station must be
checked cyclically. If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new
data can be transferred, the channel must be resynchronized.

SequenceCounter and SequenceAck

The communication partners cyclically check whether the low nibble on the remote station changes. When
one of the communication partners finishes writing a new sequence to the MTU, it increments its Sequence-
Counter. The current sequence is then transmitted to the receiver, which acknowledges its receipt with
SequenceAck. In this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All
messages that were transferred completely are processed.

1.04 39

Function description

3.8.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is
present and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication direc-
tions can be handled separately. They must be synchronized independently so that simplex communication
can theoretically be carried out as well.

Synchronization in the output direction (controller as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this,
Flatstream cannot be used at this point in time to transfer messages from the controller to the module.

Algorithm

1) The controller must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The controller must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the controller registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The controller continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyn-
cAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the controller registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The controller continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyn-
cAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely syn-
chronized before transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the controller can transmit data to the module.

Synchronization in the input direction (controller as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flat-
stream cannot be used at this point in time to transfer messages from the module to the controller.

Algorithm

The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The controller is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The controller must match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The controller is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The controller must match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The controller is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged
(see also "Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the controller.

40 1.04

 Function description

3.8.4.4 Transmitting and receiving

If a channel is synchronized, then the remote station is ready to receive messages from the transmitter.
Before the transmitter can send data, it must first create a transmit array in order to meet Flatstream
requirements.

The transmitting station must also generate a control byte for each segment created. This control byte
contains information about how the subsequent part of the data being transferred should be processed.
The position of the next control byte in the data stream can vary. For this reason, it must be clearly defined
at all times when a new control byte is being transmitted. The first control byte is always in the first byte
of the first sequence. All subsequent positions are determined recursively.

Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of
7 bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

1.04 41

Function description

The messages must first be split into segments. In the default configuration, it is important to ensure that
each sequence can hold an entire segment, including the associated control byte. The sequence is limited
to the size of the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.

MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

42 1.04

 Function description

3.8.4.4.1 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are
then transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most com-
pact transfers in the output direction, it is recommended to use the same design for the
transfer arrays in both communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Controller fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU

The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient
to transfer the entire message and the necessary control byte.

Algorithm

Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The controller must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The controller must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The controller must split up the message into valid segments and create the necessary control bytes.
- The controller must add the segments and control bytes to the transmit array.
2) Transmit:
- The controller transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The controller must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The controller must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect poten-
tial transfer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In
this way, the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold,
then the sequence can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

1.04 43

Function description

Message larger than OutputMTU

The transmit array, which must be created in the program sequence, consists of several elements. The user
must arrange the control and data bytes correctly and transfer the array elements one after the other. The
transfer algorithm remains the same and is repeated starting at the point Cyclic checks.

General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

44 1.04

 Function description

3.8.4.4.2 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must
then be reproduced in the receive array. The structure of the incoming data stream can be set with the
mode register. The algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm

0) Cyclic status query:
- The controller must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The controller must apply data from InputMTU and append it to the end of the receive array.
- The controller must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

1.04 45

Function description

General flowchart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

46 1.04

 Function description

3.8.4.4.3 Details

It is recommended to store transferred messages in separate receive arrays.

After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array.
The message is then complete and can be passed on internally for further processing. A new/separate array
should be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to
be part of one sequence. In the program, it is important to make sure that a sufficient
number of receive arrays can be managed. The acknowledge register is only permitted to
be adjusted after the entire sequence has been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with
the correct SequenceCounter is retried. This response prevents the transmitter from receiving any more
acknowledgments for transmitted sequences. The transmitter can identify the last successfully transferred
sequence from the remote station's SequenceAck and continue the transfer from this point.

Information:
This situation is very unlikely when operating without "Forward" functionality.

Acknowledgments must be checked for validity.

If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the val-
ue of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter
reads SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence
that has not yet been dispatched, then the transfer must be interrupted and the channel resynchronized.
The synchronization bits are reset and the current/incomplete message is discarded. It must be sent again
after the channel has been resynchronized.

1.04 47

Function description

3.8.4.5 Flatstream mode

In the input direction, the transmit array is generated automatically. Flatstream mode offers several options
to the user that allow an incoming data stream to have a more compact arrangement. These include:

• Standard
• MultiSegmentMTU allowed
• Large segments allowed:

Once enabled, the program code for evaluation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "Mul-
tiSegmentMTU" in the output direction. Compact transfer must be explicitly allowed only
in the input direction.

Standard

By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each se-
quence begins with a control byte so that the data stream is clearly structured and relatively easy to
evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently
does not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer
cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

48 1.04

 Function description

MultiSegmentMTU allowed

With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes
transfer the next control bytes and their segments. This allows the enabled Rx bytes to be used more effi-
ciently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTU)

Large segments allowed:

When transferring very long messages or when enabling only very few Rx bytes, then a great many segments
must be created by default. The bus system is more stressed than necessary since an additional control
byte must be created and transferred for each segment. With option "Large segments", the segment length
is limited to 63 bytes independently of InputMTU. One segment is permitted to stretch across several se-
quences, i.e. it is possible for "pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is
used and messages with more than 63 bytes occur, for example, then messages can still
be split up among several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

1.04 49

Function description

Using both options

Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTU)

3.8.4.6 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged
is also different. The following changes apply to the example given earlier.

MultiSegmentMTU

If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" oc-
cur if the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits
to be used to transfer the subsequent control bytes and segments. In the program sequence, the "nextCB-
Pos" bit in the control byte is set so that the receiver can correctly identify the next control byte.

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of
7 bytes. The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/Receive array (MultiSegmentMTU)

50 1.04

 Function description

The messages must first be split into segments. As in the default configuration, it is important for each
sequence to begin with a control byte. The free bits in the MTU at the end of a message are filled with data
from the following message, however. With this option, the "nextCBPos" bit is always set if payload data
is transferred after the control byte.

MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been
completely processed. In this example, there are 3 different segments within the second
sequence, i.e. the program must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

1.04 51

Function description

Large segments

Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These
large segments are divided among several sequences when transferred. It is possible for sequences to be
completely filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data
packet does not also have to be limited to 63 bytes.

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width
of 7 bytes. The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

The messages must first be split into segments. The ability to form large segments means that messages
are split up less frequently, which results in fewer control bytes generated.

Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

52 1.04

 Function description

Large segments and MultiSegmentMTU

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of
7 bytes. The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/Receive array (large segments and MultiSegmentMTU)

The messages must first be split into segments. If the last segment of a message does not completely fill
the MTU, it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set
if the control byte belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer
control bytes generated. Control bytes are generated in the same way as with option "Large segments".

Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated
to keep communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

1.04 53

Function description

3.8.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The
basic principle is also used in other technical areas such as "pipelining" for microprocessors.

3.8.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus
cycles are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase Sequence-
Counter

Cyclic synchronization of
MTU and module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Recipients
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences
are executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition
for enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the
timing. The transmitting station no longer waits for an acknowledgment from SequenceAck, which means
that the available bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver must still acknowl-
edge every sequence received. Only when SequenceAck has been changed and checked by the transmitter
is the sequence considered as having been transferred successfully.

54 1.04

 Function description

3.8.5.2 Configuration

The Forward function must only be enabled for the input direction. Flatstream modules have been opti-
mized in such a way that they support this function. In the output direction, the Forward function can be
used as soon as the size of OutputMTU is specified.

Information:
The registers are described in "Flatstream registers" on page 90.

3.8.5.2.1 Delay time

The delay time is specified in microseconds. This is the amount of time the module must wait after sending
a sequence until it is permitted to write new data to the MTU in the following bus cycle. The program routine
for receiving sequences from a module can therefore be run in a task class whose cycle time is slower than
the bus cycle.

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the controller is processing all of the incoming InputSe-
quences and InputMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction
and delayed reception in the input direction. In this way, the controller has more time to process the incom-
ing InputSequence or InputMTU.

1.04 55

Function description

3.8.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up
to 7 unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait
for the previous message to be acknowledged. Since the delay between writing and response is eliminated,
a considerable amount of additional data can be transferred in the same time window.

Algorithm for transmitting

Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The controller must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The controller must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The controller must split up the message into valid segments and create the necessary control bytes.
- The controller must add the segments and control bytes to the transmit array.
2) Transmit:
- The controller must transfer the current part of the transmit array to OutputMTU.
- The controller must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The controller is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The controller must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect poten-
tial transfer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In
this way, the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold,
then the sequence can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be de-
termined individually).

Algorithm for receiving

0) Cyclic status query:
- The controller must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The controller must apply data from InputMTU and append it to the end of the receive array.
- The controller must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

56 1.04

 Function description

Details/Background

1. Illegal SequenceCounter size (counter offset)
Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than per-
mitted, a transfer error occurs. In this case, all unacknowledged sequences must be repeated with the
old SequenceCounter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence
has been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple
times, a severe error occurs. The channel must be closed and resynchronized (same behavior as when
not using Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1
when using Forward.
An error does not occur in this case. The controller is permitted to consider all se-
quences up to the one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are cre-
ated and must be evaluated in the same way.

3.8.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are
being used side by side. The electrical and/or electromagnetic properties of these technical devices can
sometimes cause them to interfere with one another. These kinds of situations can be reproduced and
protected against in laboratory conditions only to a certain point.

Precautions have been taken for transfer via X2X Link in case such interference should occur. For example, if
an invalid checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives
the last valid data once more. With conventional (cyclic) data points, this error can often be ignored. In the
following cycle, the same data point is again retrieved, adjusted and transferred.

Using Forward functionality with Flatstream communication makes this situation more complex. The re-
ceiver receives the old data again in this situation as well, i.e. the previous values for SequenceAck/Se-
quenceCounter and the old MTU.

Loss of acknowledgment (SequenceAck)

If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is
permitted to continue processing with the next sequence. The SequenceAck is aligned with the associated
SequenceCounter and sent back to the transmitter. Checking the incoming acknowledgments shows that
all sequences up to the last one acknowledged have been transferred successfully (see sequences 1 and 2
in the image).

1.04 57

Function description

Loss of transmission (SequenceCounter, MTU):

If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no
data reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-
controlled MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive
array to be put together correctly, the receiver is only permitted to process transmissions whose Sequence-
Counter has been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and
no longer transmits back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are re-
turned, the transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3
and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment

In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowl-
edged in Step V of sequence 2.

Loss of transmission

In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends
back any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of
unacknowledged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully
sent transmissions.

58 1.04

 Commissioning

4 Commissioning

4.1 Configuring the IO-Link device

The following options are available for configuring an IO-Link device:

• Direct configuration
• Configuration via IODD/DTM support.

A corresponding IODD or DTM file must be provided by the vendor for this.
• Restoring a configuration using the parameter server.

For this, the IO-Link device must support the "parameter server" function per version 1.1 of the IO-Link
specification.

Information:
Library "AsIoLink" offers another option for configuring the IO-Link device. This library is
not part of this description.

4.1.1 Direct configuration

Direct configuration takes place independently of the B&R hardware and software used. The parameters
can be entered via an additional configuration device, integrated display or other operating elements on
the IO-Link device, for example.

Automation Studio
Automation Studio

project

PC (Windows)

PLC with
Automation Runtime IO-Link module

B&R hardware

IO-Link device

External
tool for

configuration

Third-party device

Firmware

Advantage

Advantageous for individual devices since the IO-Link device can be commissioned using the manufactur-
er's tools.

If problems occur during configuration of the IO-Link device, it is not necessary to check which software
component is causing the malfunction.

Disadvantage

Each IO-Link device must be individually preconfigured manually.

Several development environments may have to be used on the user's computer.

1.04 59

Commissioning

4.1.2 IODD/DTM support

IO-Link devices can be configured using Automation Studio and the integrated FDT container. IODD/DTM
support for IO-Link devices can be provided both online and offline.

Information:
To use Automation Studio to configure IO-Link devices, a corresponding hardware descrip-
tion file (IODD or DTM) must be downloaded and installed.

Information:
The DTM file must have a minimum version of 1.7.0.1 for this module. The current DTM file
can be downloaded from the B&R website. To do this, perform the following steps:

• Enter "DTM" in the search window on the B&R website.
• Download the EXE file: Minimum version 1.7.0.1.
• Execute the EXE file by double-clicking.

Information:
The following minimum versions are required for this module:

• Automation Studio 4.12
• Automation Runtime H4.93

4.1.2.1 IODD/DTM (online)

During online configuration, the Automation Studio FDT container communicates directly with the IO-Link
device. After the connection has been established, the configuration parameters can be adjusted as de-
sired.

Automation Studio
Automation Studio

project

PC (Windows)

PLC with
Automation Runtime IO-Link module

B&R hardware

IO-Link device

Third-party device

Configuration
of IODD/DTM

FDT
container

and
IODD/DTM

Advantage

No additional devices are generally required to configure the IO-Link device. All settings can be made by the
user in a single development environment.

Disadvantage

Each IO-Link device must be configured individually.

60 1.04

 Commissioning

4.1.2.2 IODD/DTM (offline)

With offline configuration, the parameter set that can be entered via the IODD or DTM file is stored in the
Automation Studio project. During the download, the parameter set for the IO-Link device is transferred to
the controller and from there imported into the IO-Link device via the module.

Procedure

1) When the IO-Link module is started, the checksum (CRCFDT) is calculated for the current parameter set.
2) If the previously stored checksum differs from the currently calculated checksum, the parameter set is

transferred to the IO-Link device.
3) After the parameter set is transferred, the associated checksum (CRCFDT) is saved on the IO-Link module

and can be used for future comparisons.
4) If the parameter set changes, a new checksum (CRCFDT) is generated the next time the controller is

restarted and steps 2 and 3 are repeated.

Automation Studio
Automation Studio

project

PC (Windows)

PLC with
Automation Runtime IO-Link module

B&R hardware

IO-Link device

Third-party device

Configuration
of IODD/DTM

CRC (FDT)FDT
container

and
IODD/DTM

Configuration
of IODD/DTM

Configuration
of IODD/DTM

and
CRC (FDT)
calculation

Advantage

The configuration parameters of the IO-Link device are stored as part of the Automation Studio project.
The user can work with one development environment and define all settings.

With series-produced machines, the IO-Link devices used later do not have to be preconfigured individually.

Disadvantage

The configuration options for the IO-Link device depend on the scope of the IODD or DTM file.

Information:
Before the parameter set is transferred to the IO-Link device, the controller checks whether
the connected device has the correct device ID. If the device ID is not correct, the procedure
is aborted. The parameter set is not transferred, and the checksum is not saved.

1.04 61

Commissioning

4.1.3 Parameter server

The "parameter server" function is defined in the IO-Link specification version 1.1 and later. This function
makes it possible to replace an IO-Link device without requiring special knowledge from maintenance per-
sonnel.

The configuration saved on the IO-Link device is stored on the IO-Link module for this purpose. In addition,
a checksum (CRCPServ) is calculated to enable simple comparison of the parameter sets.

Procedure

1) If the IO-Link device supports the "parameter server" function, it calculates the checksum (CRCPServ) for
its current parameter set during startup.

2) If the currently calculated checksum (CRCPServ) differs from the one previously stored on the IO-Link
module, the parameter set of the IO-Link device differs from the one currently stored on the module.

3) The values of the device ID and serial number of the IO-Link device are evaluated to decide whether the
parameter set must be downloaded from the device or from the IO-Link module.

a) If the device ID has changed, a different device type has been recognized. In this case, the para-
meter set of the IO-Link device must be read out and saved on the IO-Link module. The current
checksum (CRCPServ) is also stored on the IO-Link module.

b) If the device ID is unchanged but the serial number has changed, it is assumed that the IO-Link
device has been replaced with a device of the same type.
In this case, the parameter set stored in the IO-Link module is downloaded to the IO-Link device.

c) If the device ID and serial number are unchanged, it is assumed that the IO-Link device has received
a new configuration. In this case, the new parameter set of the IO-Link device is read out and saved
on the IO-Link module. The current checksum (CRCPServ) is also stored on the IO-Link module.

Automation Studio
Automation Studio

project

PC (Windows)

PLC with
Automation Runtime IO-Link module

B&R hardware

IO-Link device

External
tool for

configuration

Third-party device

Firmware
and

CRC (PServ)
calculation

Configuration of the
parameter servers

and
CRC (PServ)

62 1.04

 Commissioning

4.1.4 Using IODD/DTM and the parameter server together

IODD/DTM support and the parameter server can be used together. The two functions work independently
but influence each other.

Automation Studio
Automation Studio

project

PC (Windows)

PLC with
Automation Runtime IO-Link module

B&R hardware

IO-Link device

Third-party device

CRC (FDT)

Configuration of the
parameter servers

and
CRC (PServ)

FDT
container

and
IODD/DTM

Configuration
of IODD/DTM

Configuration
of IODD/DTM

and
CRC (FDT)
calculation Firmware

and
CRC (PServ)
calculation

4.1.4.1 Changing the configuration using IODD/DTM support

If the IO-Link device is reconfigured using an FDT container (IODD/DTM), the IO-Link device then calculates
the new checksum (CRCPServ). The changed data is then read back from the parameter server of the IO-Link
module.

4.1.4.2 Replacing the IO-Link device

If the IO-Link device is replaced, the system only checks the checksum (CRCPServ). The parameter set of the
FDT container remains disregarded since the checksum (CRCFDT) in the project on the controller still matches
the checksum (CRCFDT) stored on the IO-Link module (see "Parameter server" on page 62 for the procedure).

4.2 Configuring IO-Link timing characteristics

The module must manage records from 2 different communication standards at runtime. For efficient com-
munication on the X2X Link network, it must be ensured that the cycle time of all X2X modules corresponds
to the bus cycle time.

IO-Link specified cycle times

The IO-Link specification defines that an IO-Link device must be queried at certain intervals. This cycle is
referred to as the IO-Link cycle.
Valid IO-Link cycle times are in the range from 0.5 ms to 132.8 ms. A distinction is made between 3 different
areas.

Area Increment Calculation Valid cycle times
0.5 to 6.3 ms 0.1 ms Cycle time = 0.1 ms * n + 0.4 ms 0.5, 0.6 to 6.2, 6.3 ms
6.4 to 32.6 ms 0.4 ms Cycle time = 0.4 ms * n + 6.4 ms 6.4, 6.8, 7.2 to 32.2, 32.6 ms
32.0 to 132.8 ms 1.6 ms Cycle time = 1.6 ms * n + 32.0 ms 32.0, 33.6, 35.2 to 131.2, 132.8 ms

Module timer

The cycle of the module timer is automatically synchronized with the X2X cycle.

1.04 63

Commissioning

Synchronous operation

In contrast to free-running operation, in synchronous operation the synchronization cycle time can be set
individually for each channel.

Operating mode SYNCHRONIZED optimizes the interaction of X2X Link and IO-Link communication. The
resources of the module were designed for this mode; this configuration should therefore be used for the
channels of the module.

• In operating mode SYNCHRONIZED (automatic), the module calculates the required time parameters
by itself. An IO-Link cycle is determined that corresponds to the IO-Link specification. The selected IO-
Link cycle time corresponds to the smallest possible multiple of the module timer cycle time that meets
the following conditions:

– Valid IO-Link cycle time
– Greater than or equal to the minimum cycle time of the device

• In operating mode SYNCHRONIZED (manual), the user can manually configure the timing characteris-
tics of the module. The user can define both the synchronization cycle time and IO-Link cycle manually
using a factor.

• CycleMultiple
The synchronization cycle time of a channel can be manually set with this register.

Information:
If the value of register CycleMultiple is not defined for an IO-Link channel or set to zero,
the value is calculated automatically during module startup.

IO-Link cycle time
IO-Link cycle time = Synchronization cycle time * CfO_ReqCycleMultiple0x

The IO-Link cycle is set individually for each channel. If necessary, the IO-Link cycle of the channel can be
shifted using a channel-specific offset. Possible reasons for this:

• Channels should be aligned so that their requests end at the same time. With very short cycle times (<1
ms), it is possible that the data cannot be processed fast enough. The subsequent cycles are delayed
in this case, which is indicated by a reset of the status bit for synchronization.

• All channels run with the same cycle time. All channels will be ready at the same time in this case, which
may result in the module not processing all data in time. Offsets can be used to prevent such bottle-
necks and distribute the data volume more evenly.

Information:
If the IO-Link cycle is configured to be less than the minimum cycle time of the device, a
cycle is automatically selected that meets the following conditions:

• Multiple of the module timer cycle
• Valid IO-Link cycle time
• Greater than or equal to the minimum cycle time of the device

64 1.04

 Commissioning

Configuration example

X2X cycle 1 ms

Timer cycle 1 ms

Synchronization cycle 2 ms CycleRequesetEndNettime02

CycleStartNettime02 CycleEndNettime02

Synchronization cycle 3 ms

100 μs Cycle offset3 ms
Synchronization time

Multiple = 1
Offset = 0
Cycle time = 0.5 ms

Multiple = 2
Offset = 0
Cycle time = 2 ms

Multiple = 3
Offset = 0
Cycle time = 3 ms

Multiple = 3
Offset = 1
Cycle time = 3 ms

Channel 1:

Channel 2:

Channel 3:

Channel 4:

X2X cycle

Timer cycle

Module timer in this example

• The period duration of the module timer corresponds to the cycle time of the X2X Link network.

IO-Link communication in this example

• Parameter "Multiple" on page 72 is used to determine the channel-specific cycle time for IO-Link
communication.

• Channels 3 and 4 have a common synchronization cycle of 3 ms, shifted by the offset.
• Channels start the query simultaneously at the beginning of a common synchronization cycle.
• The IO-Link cycle of the fourth channel was delayed with an offset of 1 ms.
• All channels have a common synchronization cycle of 6 ms.

Free-running (asynchronous) operation

If the IO-Link and X2X Link cycle times cannot be synchronized, then the IO-Link cycle time can be specified
explicitly. IO-Link communication runs independently of the X2X cycle. No other NetTime data points can
be used except for "CycleEndNettime" on page 80. The cycle times of free-running IO-Link channels are
defined directly via the corresponding registers. However, deviations may occur if the module's resources
are exhausted.

Information:
• In free-running mode, no NetTime data points are permitted to be used except for "Cy-

cleEndNettime" on page 80.
• If the specified cycle time of the IO-Link communication undershoots the minimum

cycle time of the device, the IO-Link data is queried with the minimum cycle time of
the device.

• For efficient IO-Link communication, the set query cycle should correspond to the
specified IO-Link cycle times. If the value is unsuitable, the next suitable cycle time is
used automatically.

Information:
The registers are described in "Configuring IO-Link timing characteristics" on page 72.

1.04 65

Register description

5 Register description

5.1 General data points

In addition to the registers described in the register description, the module has additional general data
points. These are not module-specific but contain general information such as serial number and hardware
variant.

General data points are described in section "Additional information - General data points" in the X67 Sys-
tem user's manual.

5.2 Function model 0 - Standard

Read Write
Register Name Data type Cyclic Acyclic Cyclic Acyclic

Module configuration
513 CfO_SupplyConfig USINT ●
515 CfO_InputFilter USINT ●

3585 + N * 512 CfO_OperatingMode0N (index N = 1 to 8) USINT ●
Module communication

Additional digital inputs USINT
DigitalInputPin2_01 Bit 4
... ...

1

DigitalInputPin2_04 Bit 7

●

Additional digital inputs USINT
DigitalInputPin2_05 Bit 4

17

DigitalInputPin2_06 Bit 5

●

IO-Link configuration
3588 + N * 512 CfO_ChannelMode0N (index N = 1 to 8) UDINT ●
3611 + N * 512 CfO_IdentificationRevisionId0N (index N = 1 to 8) USINT ●
3614 + N * 512 CfO_IdentificationVendorId0N (index N = 1 to 8) UINT ●
3620 + N * 512 CfO_IdentificationDeviceId0N (index N = 1 to 8) UDINT ●
3598 + N * 512 CfO_ReqCycleMultiple0N (index N = 1 to 8) UINT ●
3606 + N * 512 CfO_ReqCycleOffset0N (index N = 1 to 8) UINT ●
3594 + N * 512 CfO_ReqCycleTime0N (index N = 1 to 8) UINT ●

IO-Link communication
3636 + N * 512 CfO_PDO_TypeInfo0N (index N = 1 to 8) UDINT ●
4345 + N * 8 OutputData01_N (index N = 1 to 8) (U)SINT
4346 + N * 8 OutputData01_N (index N = 1 to 8) (U)INT
4348 + N * 8 OutputData01_N (index N = 1 to 8) (U)DINT REAL

●

4857 + N * 8 OutputData02_N (index N = 1 to 8) (U)SINT
4858 + N * 8 OutputData02_N (index N = 1 to 8) (U)INT
4860 + N * 8 OutputData02_N (index N = 1 to 8) (U)DINT REAL

●

5369 + N * 8 OutputData03_N (index N = 1 to 8) (U)SINT
5370 + N * 8 OutputData03_N (index N = 1 to 8) (U)INT
5372 + N * 8 OutputData03_N (index N = 1 to 8) (U)DINT REAL

●

5881 + N * 8 OutputData04_N (index N = 1 to 8) (U)SINT
5882 + N * 8 OutputData04_N (index N = 1 to 8) (U)INT
5884 + N * 8 OutputData04_N (index N = 1 to 8) (U)DINT REAL

●

6393 + N * 8 OutputData05_N (index N = 1 to 8) (U)SINT
6394 + N * 8 OutputData05_N (index N = 1 to 8) (U)INT
6396 + N * 8 OutputData05_N (index N = 1 to 8) (U)DINT REAL

●

6905 + N * 8 OutputData06_N (index N = 1 to 8) (U)SINT
6906 + N * 8 OutputData06_N (index N = 1 to 8) (U)INT
6908 + N * 8 OutputData06_N (index N = 1 to 8) (U)DINT REAL

●

7417 + N * 8 OutputData07_N (index N = 1 to 8) (U)SINT
7418 + N * 8 OutputData07_N (index N = 1 to 8) (U)INT
7420 + N * 8 OutputData07_N (index N = 1 to 8) (U)DINT REAL

●

7929 + N * 8 OutputData08_N (index N = 1 to 8) (U)SINT
7930 + N * 8 OutputData08_N (index N = 1 to 8) (U)INT
7932 + N * 8 OutputData08_N (index N = 1 to 8) (U)DINT REAL

●

66 1.04

 Register description

Read Write
Register Name Data type Cyclic Acyclic Cyclic Acyclic

SIO: Digital outputs USINT
DigitalOutput01 Bit 0
... ...
DigitalOutput04 Bit 3
DisablePowerSupply01 Bit 4
... ...

7

DisablePowerSupply04 Bit 7

●

SIO: Digital outputs USINT
DigitalOutput05 Bit 0
... ...
DigitalOutput08 Bit 3
DisablePowerSupply05 Bit 4
... ...

23

DisablePowerSupply08 Bit 7

●

Additional power supply for power devices (P24 -
Class B port)

USINT

DisablePowerSupplyPin2_07 Bit 2

25

DisablePowerSupplyPin2_08 Bit 3

●

3628 + N * 512 CfO_PDI_TypeInfo0N (index N = 1 to 8) UDINT ●
4345 + N * 8 InputData01_N (index N = 1 to 8) (U)SINT
4346 + N * 8 InputData01_N (index N = 1 to 8) (U)INT
4348 + N * 8 InputData01_N (index N = 1 to 8) (U)DINT REAL

●

4857 + N * 8 InputData02_N (index N = 1 to 8) (U)SINT
4858 + N * 8 InputData02_N (index N = 1 to 8) (U)INT
4860 + N * 8 InputData02_N (index N = 1 to 8) (U)DINT REAL

●

5369 + N * 8 InputData03_N (index N = 1 to 8) (U)SINT
5370 + N * 8 InputData03_N (index N = 1 to 8) (U)INT
5372 + N * 8 InputData03_N (index N = 1 to 8) (U)DINT REAL

●

5881 + N * 8 InputData04_N (index N = 1 to 8) (U)SINT
5882 + N * 8 InputData04_N (index N = 1 to 8) (U)INT
5884 + N * 8 InputData04_N (index N = 1 to 8) (U)DINT REAL

●

6393 + N * 8 InputData05_N (index N = 1 to 8) (U)SINT
6394 + N * 8 InputData05_N (index N = 1 to 8) (U)INT
6396 + N * 8 InputData05_N (index N = 1 to 8) (U)DINT REAL

●

6905 + N * 8 InputData06_N (index N = 1 to 8) (U)SINT
6906 + N * 8 InputData06_N (index N = 1 to 8) (U)INT
6908 + N * 8 InputData06_N (index N = 1 to 8) (U)DINT REAL

●

7417 + N * 8 InputData07_N (index N = 1 to 8) (U)SINT
7418 + N * 8 InputData07_N (index N = 1 to 8) (U)INT
7420 + N * 8 InputData07_N (index N = 1 to 8) (U)DINT REAL

●

7929 + N * 8 InputData08_N (index N = 1 to 8) (U)SINT
7930 + N * 8 InputData08_N (index N = 1 to 8) (U)INT
7932 + N * 8 InputData08_N (index N = 1 to 8) (U)DINT REAL

●

SIO: Digital inputs USINT
DigitalInput01 Bit 0
... ...

1

DigitalInput04 Bit 3

●

SIO: Digital inputs USINT
DigitalInput05 Bit 0
... ...

17

DigitalInput08 Bit 3

●

IO-Link status response
Sync (status byte) USINT
Synchronized01 Bit 0
... ...
Synchronized04 Bit 3
CycleEnd01 Bit 4
... ...

3

CycleEnd04 Bit 7

●

Sync (status byte) USINT
Synchronized05 Bit 0
... ...
Synchronized08 Bit 3
CycleEnd05 Bit 4
... ...

19

CycleEnd08 Bit 7

●

Overload (status byte) USINT
Overload01 Bit 0
... ...

5

Overload04 Bit 3

●

Overload (status byte) USINT
Overload05 Bit 0
... ...

21

Overload08 Bit 3

●

1.04 67

Register description

Read Write
Register Name Data type Cyclic Acyclic Cyclic Acyclic

Overload of the additional power supply for power de-
vices (P24 - Class B port)

USINT

OverloadPin2_07 Bit 2

27

OverloadPin2_08 Bit 3

●

561 + N * 16 ChannelStatus0N (index N = 1 to 8) USINT ●
566 + N * 16 FrameCount0N (index N = 1 to 8) SINT ●

3906 + N * 512 CycleStartNettime0N (index N = 1 to 8) INT
3908 + N * 512 CycleStartNettime0N (index N = 1 to 8) DINT

●

3914 + N * 512 CycleEndNettime0N (index N = 1 to 8) INT
3916 + N * 512 CycleEndNettime0N (index N = 1 to 8) DINT

●

IO-Link event interface
305 EventPortSeq USINT ● ●
307 EventQualifier USINT ● ●
310 EventCode UINT ● ●
313 EventsLeft USINT ●
315 EventQuit USINT ● ●
315 EventQuitReadBack USINT ●

IO-Link parameter server
563 + N * 16 DsControl0N (index N = 1 to 8) USINT ● ●

3652 + N * 512 CfO_DS_Config0N (index N = 1 to 8) UDINT ●
3753 + N * 512 DsProgress0N (index N = 1 to 8) USINT ●

IO-Link timestamp
3930 + N * 512 IoLinkTimestampIn0N (index N = 1 to 8) INT
3932 + N * 512 IoLinkTimestampIn0N (index N = 1 to 8) DINT

●

3937 + N * 512 IoLinkTimestampInStatusSeq0N (index N = 1 to 8) USINT ●
3970 + N * 512 IoLinkTimestampOut0N (index N = 1 to 8) INT
3972 + N * 512 IoLinkTimestampOut0N (index N = 1 to 8) DINT

●

3977 + N * 512 IoLinkTimestampOutCtrlSeq0N (index N = 1 to 8) USINT ●
3939 + N * 512 IoLinkTimestampOutStatus0N (index N = 1 to 8) USINT ●

IO-Link device IDs
3714 + N * 512 VendorId0N (index N = 1 to 8) UINT ● ●
3724 + N * 512 DeviceId0N (index N = 1 to 8) UDINT ● ●
3718 + N * 512 FunctionId0N (index N = 1 to 8) UINT ● ●
3730 + N * 512 CycleTime0N (index N = 1 to 8) UINT ● ●
3734 + N * 512 CycleMultible0N (index N = 1 to 8) UINT ●
3742 + N * 512 MinCycleTime0N (index N = 1 to 8) UINT ●
3745 + N * 512 PDI_Size0N (index N = 1 to 8) USINT ●
3747 + N * 512 PDO_Size0N (index N = 1 to 8) USINT ●
3749 + N * 512 Baudrate0N (index N = 1 to 8) USINT ●
3751 + N * 512 IoLinkVersionID0N (index N = 1 to 8) USINT ●

Statistics counter registers
3778 + N * 512 RetryCnt0N (index N = 1 to 8) UINT ●
3782 + N * 512 SpiErrorCnt0N (index N = 1 to 8) UINT ●
3786 + N * 512 TransmErrCnt0N (index N = 1 to 8) UINT ●
3790 + N * 512 ParityErrCnt0N (index N = 1 to 8) UINT ●
3794 + N * 512 FrameErrCnt0N (index N = 1 to 8) UINT ●
3798 + N * 512 RxSizeErrCnt0N (index N = 1 to 8) UINT ●
3802 + N * 512 RxChksmErrCnt0N (index N = 1 to 8) UINT ●
3806 + N * 512 DeviceDlyErrCnt0N (index N = 1 to 8) UINT ●
3810 + N * 512 CycleTimeErrorCnt0N (index N = 1 to 8) UINT ●

Command interface
282 ParameterIndexOut UINT ● ●
285 ParameterSubIndexOut USINT ● ●
290 ParameterCtrlOut UINT ● ●
300 ParameterDataOut_0 UDINT ● ●
290 ParameterCtrlIn UINT ● ●
300 ParameterDataIn_0 UDINT ● ●

Flatstream
385 CfO_OutputMTU USINT ●
387 CfO_InputMTU USINT ●
389 CfO_FlatStreamMode USINT ●
391 CfO_Forward USINT ●
396 CfO_ForwardDelay UDINT ●
321 InputSequence USINT ●

321 + N * 2 RxByteN (index N = 1 to 27) USINT ●
321 OutputSequence USINT ●

321 + N * 2 TxByteN (index N = 1 to 27) USINT ●

68 1.04

 Register description

5.3 Module configuration

5.3.1 Configuring IO-Link power supply overload protection

Name:
CfO_SupplyConfig

This register can be used to define the behavior of the I/O power supply for all channels in the event of
overload. The following applies:

• The overload duration (bits 6-7) corresponds to the time that the power supply remains switched on
after an overload has been detected. The power supply is cut off only if the overcurrent occurs for the
entire set time.

• The switch-off duration (bits 4-5) corresponds to the time that the power supply remains switched off
after an overload-related cutoff until the power supply is switched on again.
Prolonged overcurrent therefore causes the I/O power supply to be switched on and off cyclically.

Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:

5.3.2 Filtering digital inputs

Name:
CfO_InputFilter

The value of the input filter affects the response time of all additional digital inputs:

• Low filter values reduce the dead time of the input.
• Higher filter values are recommended for noisy signals.

The filter value can be configured in increments of 100 µs. Since the input signals are sampled in an interval
of half the X2X Link cycle time, however, it makes sense to use values in corresponding increments.

Data type Values Information
0 No software filter (bus controller default setting)
1 0.1 ms
... ...

USINT

255 25.5 ms

Information:
This register has no effect on the digital inputs of the IO-Link channels in SIO mode.

5.3.3 OperatingMode

Name:
CfO_OperatingMode0X

This register is the same as the first byte of register "ChannelMode" on page 71 in the IO-Link configu-
ration. It contains all settings of an IO-Link channel that are permitted to be changed at runtime.

Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:

Bit Description Values Information
00 Mode: Inactive (bus controller default setting)
01 Mode: SIO output

The channel's C/Q connector is configured as a digital output.
10 Mode: SIO input

The channel's C/Q connector is configured as a digital input.

0 - 1 Channel mode

11 Mode: Operate
The channel's C/Q connector is configured for IO-Link data transfer.

2 - 7 Reserved -

1.04 69

Register description

5.4 Module communication

The module provides one additional digital input per IO-Link channel. Each of these inputs can be used
independently of the configuration for the individual IO-Link channels.

5.4.1 Additional digital inputs

Name:
DigitalInputPin2_0X

The current state of the additional digital inputs can be read in using these registers.

Data type Values
USINT See the bit structure.

Bit structure:

Inputs 1 to 4

Bit Description Values Information
0 - 3 Reserved -

4 DigitalInputPin2_01 0 or 1 Input state of additional digital input 1
5 DigitalInputPin2_02 0 or 1 Input state of additional digital input 2
6 DigitalInputPin2_03 0 or 1 Input state of additional digital input 3
7 DigitalInputPin2_04 0 or 1 Input state of additional digital input 4

Inputs 5 to 6

Bit Description Values Information
0 - 3 Reserved -

4 DigitalInputPin2_05 0 or 1 Input state of additional digital input 5
5 DigitalInputPin2_06 0 or 1 Input state of additional digital input 6

6 - 7 Reserved -

5.5 IO-Link configuration

The module establishes communication with the IO-Link device if register "ChannelMode" on page 71 of
the corresponding channel is configured. The other registers in this section can be used to adapt the data
exchange to the application requirements.  

70 1.04

 Register description

5.5.1 ChannelMode

Name:
CfO_ChannelMode0X

The user has the option of setting all channel-specific settings via this register.

Data type Values Bus controller default setting
UDINT See the bit structure. 0

Bit structure:

Bit Description Values Information
00 Mode: Inactive (bus controller default setting)
01 Mode: SIO output

The channel's C/Q connector is configured as a digital out-
put.

10 Mode: SIO input
The channel's C/Q connector is configured as a digital input.

0 - 1 Channel mode

11 Mode: Operate
The channel's C/Q connector is configured for IO-Link data
transfer.

2 - 15 Reserved -
00 Free-running (asynchronous) (bus controller default set-

ting)
01 Synchronous (manual)
10 Synchronous (automatic)

16 - 17 Mode for synchronization

11 Impermissible
18 - 19 Reserved -

0 Tests disabled (bus controller default setting)20 - 23 Inspection level
1 Testing VendorID and DeviceID

00 No timestamp (bus controller default setting)
01 Input timestamp
10 Output timestamp

24 - 25 IO-Link timestamp

11 Input and output timestamps
0 32-bit (DINT) (bus controller default setting)26 Format of the IO-Link output timestamp 1)

1 16-bit (INT)
27 - 32 Reserved -

1) This bit informs the module of the format used for the IoLinkTimestampOut output timestamp. In Automation Studio, this setting is made implicitly
in the I/O configuration together with the selection of the data type for the IO-Link timestamp.

5.5.2 IdentificationRevisionID

Name:
CfO_IdentificationRevisionId0X

If the identifiers (IDs) of the connected device should be verified during startup, the IO-Link revision with
which the check takes place can be disclosed in this register.

Data type Values Information
0 The revision read from the device is used.
16 The connected device is checked per revision V1.0.

USINT

17 The connected device is checked per revision V1.1.

If the device does not support this standard, error code 41 is output
in register "ChannelStatus" on page 79.

1.04 71

Register description

5.5.3 IdentificationVendorID

Name:
CfO_IdentificationVendorId0X

If the vendor ID should be verified during startup, the expected vendor ID must be entered into this register.
The check can be enabled by setting the inspection level in the register "ChannelMode" on page 71.

Information:
If the expected ID does not match the actual ID of the connected IO-Link device, communi-
cation for this channel is not started.

Data type Values Information
UINT 0 to 65535 Bus controller default setting: 0

5.5.4 IdentificationDeviceID

Name:
CfO_IdentificationDeviceId0X

If the device ID should be verified during startup, the expected ID of the IO-Link device must be entered
in this register. The check can be enabled by setting the inspection level in the register "ChannelMode" on
page 71.

Information:
If the expected ID does not match the actual ID of the connected IO-Link device, communi-
cation for this channel is not started.

Data type Values Information
UDINT 0 to 4,294,967,295 Bus controller default setting: 0

5.5.5 Configuring IO-Link timing characteristics

The module must manage records from 2 different communication standards at runtime. For efficient com-
munication on the X2X Link network, it must be ensured that the cycle time of all X2X modules corresponds
to the bus cycle time.

5.5.5.1 ReqCycleMultiple

Name:
CfO_ReqCycleMultiple0X

This register can be used to set an integer multiple of the synchronization cycle time of a channel and thus
change the IO-Link cycle time. See "Synchronous operation" on page 17 for an example.

Information:
If this register is not defined for an IO-Link channel or specified with zero, the values of reg-
isters CycleMultiple and CycleDivisor are calculated automatically during module startup.

Data type Values Information
UINT 0 to 65535 Bus controller default setting: 0

5.5.5.2 ReqCycleOffset

Name:
CfO_ReqCycleOffset0X

This register can be used to offset the IO-Link cycle of a channel to the synchronization cycle.
This offset can be useful if all channels operate with the same cycle time. All channels will be ready at the
same time in this case, which may result in the module not processing all data in time. Offsets can be used
to prevent such bottlenecks and distribute the data volume more evenly.

Data type Values Information
UINT 0 to 65535 Configured in timer cycles.

Bus controller default setting: 0

72 1.04

 Register description

5.5.5.3 ReqCycleTime

Name:
CfO_ReqCycleTime0X

This register is used for free-running (asynchronous) IO-Link communication. It contains the cycle time
directly specified for the IO-Link query in microseconds.

Information:
• In free-running mode, no NetTime data points are permitted to be used except for "Cy-

cleEndNettime" on page 80.
• If the specified cycle time of the IO-Link communication undershoots the minimum

cycle time of the device, the IO-Link data is queried with the minimum cycle time of
the device.

• For efficient IO-Link communication, the set query cycle should correspond to the
specified IO-Link cycle times. If the value is unsuitable, the next suitable cycle time is
used automatically.

Data type Values Information
UINT 0 to 65535 In 100 μs increments.

Bus controller default setting: 0

5.6 IO-Link communication

5.6.1 PDO_TypeInfo

Name:CfO_PDO_TypeInfo0X

In order to transfer process data to the IO-Link device, this register is used to configure which data type of
the individual "OutputData" on page 74 registers are used to merge the outgoing IO-Link process data
stream (IO-Link frame, see "IO-Link communication" on page 15). According to this configuration, Output-
Data registers are assigned to data points with the corresponding data type in Automation Studio (I/O
mapping).

Data type Values Bus controller default setting
UDINT See the bit structure. 0

Bit structure:

Bit Description Value Information
0000 Array[4] of Bytes (bus controller default setting)
0001 USINT
0010 SINT
0011 UINT
0100 INT
0101 UDINT
0110 DINT
0111 REAL

0 to 3 IO-Link information 1

1000 - 1111 Reserved
4 - 7 IO-Link information 2
8 - 11 IO-Link information 3
12 -15 IO-Link information 4
16 - 19 IO-Link information 5
20 - 23 IO-Link information 6
24 - 27 IO-Link information 7
28 - 31 IO-Link information 8

Possible values are identical with IO-Link information 1.

Information:
With setting 0 (array[4] of bytes), the bytes from the IO-Link data stream are unchanged
when copied. The byte order is changed in all other modes (from big-endian to little-endi-
an).

1.04 73

Register description

5.6.2 OutputData

Name:
OutputDataXX_1 to OutputDataXX_8

Output data from the IO-Link device in IO-Link communication mode. Alternatively, a byte array can be used.
The user must then manually allocate the bytes to the required data types.
Register "PDO_TypeInfo" on page 73 can be used to configure how many bytes from the output registers
should be applied to the IO-Link frame.

Data type Values
USINT 0 to 255
SINT -128 to 127
UINT 0 to 65535
INT -32768 to 32767
UDINT 0 to 4,294,967,295
DINT -2147483648 to 2147483647
REAL -3.4E38 to 3.4E38

5.6.3 Digital SIO outputs

Name:
DigitalOutput0X
DisablePowerSupply0X

If a channel is operated in SIO mode (SIO output), the SIO output of the IO-Link channel can be controlled
via this register. In addition, the power supply of each IO-Link channel can be switched on or off individually.

Data type Values
USINT See the bit structure.

Bit structure:

Channels 1 to 4

Bit Description Value Information
0 Reset digital SIO output 010 DigitalOutput01
1 Set digital SIO output 01

... ...
0 Reset digital SIO output 043 DigitalOutput04
1 Set digital SIO output 04
0 Switch power supply for IO-Link channel 01 on4 DisablePowerSupply01
1 Switch power supply for IO-Link channel 01 off

... ...
0 Switch power supply for IO-Link channel 04 on7 DisablePowerSupply04
1 Switch power supply for IO-Link channel 04 off

Channels 5 to 8

Bit Description Value Information
0 Reset digital SIO output 050 DigitalOutput05
1 Set digital SIO output 05

... ...
0 Reset digital SIO output 083 DigitalOutput08
1 Set digital SIO output 08
0 Switch power supply for IO-Link channel 05 on4 DisablePowerSupply05
1 Switch power supply for IO-Link channel 05 off

... ...
0 Switch power supply for IO-Link channel 08 on7 DisablePowerSupply08
1 Switch power supply for IO-Link channel 08 off

74 1.04

 Register description

5.6.4 Additional power supply for power devices (P24 - Class B port)

Name:
DisablePowerSupplyPin2_0X

Connections 7 and 8 are class B connections. This register can be used to switch the galvanically isolated
additional power supply on or off individually (see "IO-Link channels" on page 9 and "I/O power supply 24
VDC" on page 9).

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
0 - 1 Reserved -

0 Switches on additional power supply IO-Link channel 072 DisablePowerSupplyPin2_07
1 Switches off additional power supply IO-Link channel 07
0 Switches on additional power supply IO-Link channel 083 DisablePowerSupplyPin2_08
1 Switches off additional power supply IO-Link channel 08

4 - 7 Reserved -

5.6.5 PDI_TypeInfo

Name:CfO_PDI_TypeInfo0X

To transfer process data from the IO-Link device to the controller (application), the information is first
read from the module and saved temporarily. Typically, 4 bytes are reserved for each piece for registered
information (see "IO-Link communication" on page 15).

This register is used to configure how the incoming IO-Link process data stream (IO-Link frame) is divid-
ed. According to this configuration, the IO-Link process data is made available to the application via the
corresponding InputData registers. The InputData registers are assigned to individual data points with the
corresponding data type in the I/O mapping.

Data type Values Bus controller default setting
UDINT See the bit structure. 0

Bit structure:

Bit Description Value Information
0000 Array[4] of Bytes (bus controller default setting)
0001 USINT
0010 SINT
0011 UINT
0100 INT
0101 UDINT
0110 DINT
0111 REAL

0 to 3 IO-Link information 1

1000 - 1111 Reserved
4 - 7 IO-Link information 2
8 - 11 IO-Link information 3
12 -15 IO-Link information 4
16 - 19 IO-Link information 5
20 - 23 IO-Link information 6
24 - 27 IO-Link information 7
28 - 31 IO-Link information 8

Possible values are identical with IO-Link information 1.

Information:
With setting 0 (array[4] of bytes), the bytes from the IO-Link data stream are unchanged
when copied. The byte order is changed in all other modes (from big-endian to little-endi-
an).

1.04 75

Register description

5.6.6 InputData

Name:
InputDataXX_1 to InputDataXX_8

Input data from the IO-Link device in IO-Link communication mode. Alternatively, a byte array can be used.
The user must then manually allocate the bytes to the required data types.

Data type Values
USINT 0 to 255
SINT -128 to 127
UINT 0 to 65535
INT -32768 to 32767
UDINT 0 to 4,294,967,295
DINT -2147483648 to 2147483647
REAL -3.4E38 to 3.4E38

5.6.7 Digital SIO inputs

Name:
DigitalInput0X

If a channel is operated in SIO mode (SOI input), the input state of the channel can be read in via this register.

Data type Values
USINT See the bit structure.

Bit structure:

Inputs 1 to 4

Bit Description Value Information
0 Digital SIO input 01 reset0 DigitalInput01
1 Digital SIO input 01 set

... ...
0 Digital SIO input 04 reset3 DigitalInput04
1 Digital SIO input 04 set

4 - 7 Reserved -

Inputs 5 to 8

Bit Description Value Information
0 Digital SIO input 05 reset0 DigitalInput05
1 Digital SIO input 05 set

... ...
0 Digital SIO input 08 reset3 DigitalInput08
1 Digital SIO input 08 set

4 - 7 Reserved -

76 1.04

 Register description

5.7 IO-Link status response

The status registers for IO-Link communication are explained in the following chapter. The status informa-
tion provides information about the current situation between the module and IO-Link device. It can be
retrieved from the controller and evaluated in the application task.

5.7.1 Sync (status byte)

Name:
Synchronized0X
CycleEnd0X

The module uses this status register to report whether error-free communication with the device was pos-
sible during the last module cycle.

• The CycleEnd bits indicate whether the last data sent to the IO-Link device has been processed. The
CycleEnd bits are reset after each X2X cycle.

• The Synchronized bits indicate that the channel is synchronized without errors.

Data type Values
USINT See the bit structure.

Bit structure:

Channels 1 to 4

Bit Description Value Information
0 Synchronization for channel 1 not OK0 Synchronized01
1 Synchronization for channel 1 OK

... ...
0 Synchronization for channel 4 not OK3 Synchronized04
1 Synchronization for channel 4 OK
0 I/O cycle end: No new IO-Link data4 CycleEnd01
1 I/O cycle end: New data transmitted and received

... ...
0 I/O cycle end: No new IO-Link data7 CycleEnd04
1 I/O cycle end: New data transmitted and received

Channels 5 to 8

Bit Description Value Information
0 Synchronization for channel 5 not OK0 Synchronized05
1 Synchronization for channel 5 OK

... ...
0 Synchronization for channel 8 not OK3 Synchronized08
1 Synchronization for channel 8 OK
0 I/O cycle end: No new IO-Link data4 CycleEnd05
1 I/O cycle end: New data transmitted and received

... ...
0 I/O cycle end: No new IO-Link data7 CycleEnd08
1 I/O cycle end: New data transmitted and received

1.04 77

Register description

5.7.2 Overload (status byte)

Name:
Overload0X

The module uses this status register to report whether an overload in the form of overcurrent or overtem-
perature has occurred on the channel power supply or data line.

Data type Values
USINT See the bit structure.

Bit structure:

Channels 1 to 4

Bit Description Value Information
0 Channel 1: No overload0 Overload01
1 Channel 1: Overload

... ...
0 Channel 4: No overload3 Overload04
1 Channel 4: Overload

4 - 7 Reserved -

Channels 5 to 8

Bit Description Value Information
0 Channel 5: No overload0 Overload05
1 Channel 5: Overload

... ...
0 Channel 8: No overload3 Overload08
1 Channel 8: Overload

4 - 7 Reserved -

5.7.3 Overload of the additional power supply for power devices (P24 - Class B port)

Name:
OverloadPin2_0X

The module uses this status register to report whether overcurrent has occurred on the additional power
supply.

Information:
A module revision ≥B2 is required for overcurrent detection.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
0 - 1 Reserved -

0 Channel 7: No overload2 OverloadPin2_07
1 Channel 7: Overload
0 Channel 8: No overload3 OverloadPin2_08
1 Channel 8: Overload

4 - 7 Reserved -

78 1.04

 Register description

5.7.4 ChannelStatus

Name:
ChannelStatus0X

This register is used to display the current status of the IO-Link channel.

Data type Values Information State
0 Channel inactive Disabled
1 Used as a digital SIO output
2 Used as a digital SIO input

SIO mode

3 IO-Link device startup, mode PREOPERATIONAL Communication is running,
but no process data is being
exchanged. However, acyclic
access is possible.

4 Operation, OPERATE mode
5 Operation, parameter server data OK

Communication in progress

6 Parameter server: Upload active
7 Parameter server: Download active
8 Parameter server: Delete active
9 IODD parameters are written.

Communication is running
and process data is being
provided.

10 to 20 Reserved
21 General error in the parameter server, e.g.

• The parameter server is not supported.
• Error accessing an object managed by the parameter

server
• Internal error

22 The parameter server is locked by the IO-Link device.
23 Parameter server empty:

An attempt was made to load data to the IO-Link device al-
though no data is stored in the EEPROM of the DS module.

24 New serial number detected:
The user must use register "DsControl" on page 82 to de-
cide what should be done (upload - download - restore de-
fault values).

25 Parameter server incompatible (new device ID or new ven-
dor ID detected):
The data in EEPROM does not match the connected IO-
Link device. The user must use register "DsControl" on page
82 to decide whether an upload should be performed.

26 Upload request received:
The user must use register "DsControl" on page 82 to
decide what should be done (upload - download - restore
default values).

27 The parameter checksum of the IO-Link device has changed:
The user must use register "DsControl" on page 82 to
decide what should be done (upload - download - restore
default values).

28 Error transmitting the SAVE command

Communication in progress.
However, an error has oc-
curred on the parameter
server.
Parameter server errors can
be acknowledged via register
"DsControl" on page 82.

29 Reserved
30 Process data invalid Communication in progress.

However, the device marked
the process data as invalid.

31 to 39 Reserved
40 No connection No communication
41 The configured revision ID is not supported by the connect-

ed device.
42 The device ID or vendor ID of the connected IO-Link device

does not match the specified IDs.
43 The configured serial number does not match the serial

number of the connected device.
44 Timestamp error

The IO-Link device does not support IO-Link timestamps.

Communication is running,
but no process data is being
exchanged. However, acyclic
access is possible.

45 Error during device startup. No communication

USINT

46 to 255 Reserved

5.7.5 FrameCount

Name:
FrameCount0X

The received IO-Link frames are counted in this register. In contrast to the sync bits, register FrameCount
ensures that all frames are really recognized, even if X2X cycles are lost or if the IO-Link cycle is faster than
the X2X cycle.

Data type Values
SINT -128 to 127

1.04 79

Register description

5.7.6 CycleStartNettime

Name:
CycleStartNettime0X

This register is used to read out the NetTime value at the start time of the last IO-Link cycle.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 31.

Data type Values
INT -32768 to 32767
DINT -2147483648 to 2147483647

5.7.7 CycleEndNettime

Name:
CycleEndNettime0X

This register is used to read out the NetTime value at the end time of the last IO-Link cycle.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 31.

Data type Values
INT -32768 to 32767
DINT -2147483648 to 2147483647

5.8 IO-Link event interface

The event interface involves interrupt-controlled background communication. It enables the connected IO-
Link devices to transmit special messages, or "event codes", to the master.

5.8.1 EventPortSeq

Name:
EventPortSeq

As soon as a new event is generated by an IO-Link device, the sequence number is increased in this register.
The affected channel number is also displayed.

Data type Values
USINT 0 to 255

Bit structure:

Bit Description Value Information
0 - 3 Sequence number 0 to 15

0001 IF1 (channel 1)
0010 IF2 (channel 2)
0011 IF3 (channel 3)
0100 IF4 (channel 4)
0101 IF5 (channel 5)
0110 IF6 (channel 6)
0111 IF7 (channel 7)

4 - 7 IO-Link channel number

1000 IF8 (channel 8)

80 1.04

 Register description

5.8.2 EventQualifier

Name:
EventQualifier

This register contains additional information about the event.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
000 Unknown
001 Hardware
010 Data exchange layer of the IO-Link device
011 Application layer of the IO-Link device

0 - 2 Instance layer that generated the event

100 Application
0 Device3 Cause of the event
1 Master

00 Reserved
01 Information
10 Warning

4 - 5 Type of event

11 Error
00 Reserved
01 One-time event
10 Event no longer reported (e.g. voltage OK again)

6 - 7 Event mode

11 Event reported (e.g. voltage too low)

5.8.3 EventCode

Name:
EventCode

This register contains the event code of the transferred event. The event codes can consist of vendor-spe-
cific event codes or event codes specified by the IO-Link specification.

Data type Values
UINT 0 to 65535

5.8.4 EventsLeft

Name:
EventsLeft

This register specifies the number of events in FIFO memory that have not yet been processed.

Data type Values
USINT 0 to 15

5.8.5 EventQuit

Name:
EventQuit

This register can be used to acknowledge events. This is done by copying the sequence number of the event
to be acknowledged to this register.

Data type Values
USINT 0 to 15

5.8.6 EventQuitReadBack

Name:
EventQuitReadBack

This register contains the sequence number of the last acknowledged event.

Data type Values
USINT 0 to 15

1.04 81

Register description

5.9 IO-Link parameter server

The parameter server permits the module to read configuration parameters of the connected IO-Link de-
vice. The data of the third-party device is stored in the EEPROM and can then be restored automatically,
e.g. after replacing the IO-Link device.

5.9.1 DsControl

Name:
DsControl0X

This register is used to manually control the "parameter server" on page 24. Each action is executed exactly
one time when the corresponding value is set. If the same action should be executed several times, this
register must be set to the value 0 between them.

Data type Values Information
0 No action (bus controller default setting)
1 Parameter server operating mode: Automatic upload and download
2 Upload if data storage parameters are available in the device
3 Download if data storage parameters are available in controller memory and the device can

process data memory parameters
4 Acknowledge error state from parameter server.

(See "ChannelStatus" on page 79: Error messages 21 to 28.)
5 Delete data memory parameters in controller memory
6 Start dummy upload. Starts an upload without saving the data. Can be used to acknowl-

edge an upload request.

USINT

7 to 255 Reserved

5.9.2 DsProgress

Name:
DsProgress0X

The module uses these registers to report the progress of the upload or download from the parameter
server. Values from 0 to 100 can be used to implement a progress indicator, for example.

Data type Values
USINT 0 to 100

82 1.04

 Register description

5.9.3 CfO_DS_Config

Name:
CfO_DS_Config0X

The parameter server behavior can be set using these registers (when the parameter server is operated
manually). A corresponding reaction can be assigned to each trigger event here.

Data type Values Bus controller default setting
UDINT See the bit structure. 0

Bit structure:

Bit Event Value Reaction
000 No reaction (bus controller default setting)
001 Cancel
010 User-defined reaction. See "ChannelStatus" on page 79:

Status message 25

0 - 3 The device ID of the connected device does not match the
device ID stored together with the parameters.

011 Upload
000 No reaction (bus controller default setting)
001 Cancel
010 User-defined reaction. See "ChannelStatus" on page 79:

Status message 26

4 - 7 The device transmitted an upload request.

011 Upload
000 No reaction (bus controller default setting)
001 Cancel
010 User-defined reaction. See "ChannelStatus" on page 79:

Status message 27
011 Upload

8 - 11 A new parameter checksum was detected during device
startup.

100 Download
000 No reaction (bus controller default setting)
001 Cancel
010 User-defined reaction. See "ChannelStatus" on page 79:

Status message 24
011 Upload

12 - 15 The serial number of the connected device does not match
the serial number stored together with the parameters.

100 Download
16 - 23 Reserved -

000 Device ID, serial number, upload request, parameter check-
sum (bus controller default setting)

001 Device ID, serial number, parameter checksum, upload re-
quest

010 Device ID, upload request, parameter checksum, serial num-
ber

011 Device ID, upload request, serial number, parameter check-
sum

100 Device ID, parameter checksum, upload request, serial num-
ber

24 - 26 Specifies the order in which the individual events are
checked.

101 Device ID, parameter checksum, serial number, upload re-
quest

27 - 31 Reserved -

5.10 IO-Link timestamp

The IO-Link timestamp registers allow the assignment of IO-Link timestamps to the NetTime of a controller,
and vice versa.

5.10.1 IoLinkTimestampIn

Name:
IoLinkTimestampIn0X

This register indicates the NetTime instant at which the application event occurred.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 31.

Data type Values
INT -32768 to 32767
DINT -2147483648 to 2147483647

1.04 83

Register description

5.10.2 IoLinkTimestampInStatusSeq

Name:
IoLinkTimestampInStatusSeq0X

This register indicates information about the input timestamp.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
0 - 3 Sequence number 0 to 15 The sequence number is incremented by 1 with each valid

timestamp received. In the event that the sequence number
has been increased by more than 1, an event has been lost.

4 Event 1 triggered by the application x Signal state at occurrence of the timestamp
5 Event 2 triggered by the application x Signal state at occurrence of the timestamp

Example: Signal state at occurrence of the timestamp

– Light barrier was interrupted → This bit = 0
– Light barrier free → This bit = 1

6 Reserved -
0 No error7 Timestamp error
1 An error occurred on the IO-Link device. Possible causes:

• More timestamps were generated than could be
transferred.

• The value of the IO-Link timestamp exceeded the per-
missible range of values.

In both cases, reducing the IO-Link cycle time can help.

5.10.3 IoLinkTimestampOut

Name:
IoLinkTimestampOut0X

The user can write the NetTime for the output timestamp to this register.
The NetTime is automatically converted to an IO-Link timestamp. The event is triggered at the defined
NetTime. Register "IoLinkTimestampOutStatus" on page 85 is used for acknowledgment.

For additional information about NetTime and timestamps, see "NetTime Technology" on page 31.

Information:
The NetTime must be at least three IO-Link cycles in the future; otherwise, a warning is set
in IoLinkTimestampOutStatus.

The data type of this register must be identical to the data type defined in bit 26 of register
"ChannelMode" on page 71.

Data type Values Information
INT -32768 to 32767
DINT -2147483648 to 2147483647

Bus controller default setting: 0

5.10.4 IoLinkTimestampOutCtrlSeq

Name:
IoLinkTimestampOutCtrlSeq0X

This register is used to control how the timestamp is applied.

Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:

Bit Description Value Information
0 - 3 Sequence number 0 to 15 The output timestamp and application event bits are ap-

plied when the sequence number is incremented by 1.
4 Application event 1 x Initial state at timestamp
5 Application event 2 x Initial state at timestamp

0 Do not acknowledge (bus controller default setting)6 Acknowledge warning
1 Acknowledge warning
0 Do not acknowledge (bus controller default setting)7 Acknowledge error
1 Acknowledge error

84 1.04

 Register description

5.10.5 IoLinkTimestampOutStatus

Name:
IoLinkTimestampOutStatus0X

This register is used to indicate the status of the output timestamp.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
0 - 3 Sequence number acknowledgment 0 to 15 If an output timestamp could be applied, then the sequence

number from "IoLinkTimestampOutCtrlSeq" on page 84
is acknowledged here.

4 - 5 Reserved -
0 No warning6 Warning
1 A timestamp was not at least 3 cycles ahead, so its output

may have been delayed.
0 No error7 Error
1 More timestamps were transferred to the module than

could be output.

5.11 IO-Link device IDs

IO-Link device IDs are defined by the manufacturer of the IO-Link device and cannot be modified by the user.

5.11.1 VendorId

Name:
VendorId0X

This register contains the unique vendor ID of the IO-Link device.

Data type Values
UINT 0 to 65535

5.11.2 DeviceId

Name:
DeviceId0X

This register contains the unique ID of the IO-Link device.

Data type Values
UDINT 0 to 4,294,967,295

5.11.3 FunctionId

Name:
FunctionId0X

This register contains the function class of the device assigned by the vendor.

Data type Values
UINT 0 to 65535

5.11.4 CycleTime

Name:
CycleTime0X

Some IO-Link devices cannot cope with high-speed cycles and require a higher cycle time. This register can
be used to read back the current IO-Link cycle time of the channel. The time used for communication is
always a multiple of 100 µs, e.g. 50 for a 5 ms cycle time.

Data type Values Information
UINT 0 to 65535 Specified in 1 μs increments

1.04 85

Register description

5.11.5 CycleMultiple

Name: CycleMultible0X

This register can be used to read back the "multiplier" on page 72 currently applied for the IO-Link cycle.

Data type Values
UINT 0 to 65535

5.11.6 MinCycleTime

Name:
MinCycleTime0X

The minimum IO-Link cycle time can be read back in this register. The minimum IO-Link cycle time depends
on the IO-Link device and is read out by the module after communication with the IO-Link device has been
established.

Data type Values
UINT 0 to 65535

5.11.7 PDI_Size

Name:
PDI_Size0X

The size of the input process data specified by the device can be read back in this register. This value is read
out during startup of the IO-Link device.

Data type Values
USINT 0 to 255

5.11.8 PDO_Size

Name:
PDO_Size0X

The size of the output process data defined by the IO-Link device can be read back in this register. This
value is read out during startup of the IO-Link device.

Data type Values
USINT 0 to 255

5.11.9 Baud rate

Name:
Baudrate0X

The baud rate specified by the IO-Link device can be read back in this register. This value is read out during
startup of the IO-Link device.

Data type Values Information
1 COM1 = 4.8 kbit/s
2 COM2 = 38.4 kbit/s

USINT

3 COM3 = 230.4 kbit/s

5.11.10 IoLinkVersionID

Name:
IoLinkVersionID0X

The IO-Link version can be read back in this register.

Data type Values Information
16 (0x10) V1.0USINT
17 (0x11) V1.1

5.12 Statistics counter

Communication errors that have occurred between individual IO-Link components are mapped in the sta-
tistics counter.

86 1.04

 Register description

5.12.1 Number of command retries

Name:
RetryCnt0X

These registers contain the number of command retries caused by communication errors between the I/
O processor and IO-Link device.

Data type Values
UINT 0 to 65535

5.12.2 Number of checksum errors for the controller

Name:
SpiErrorCnt0X

These registers contain the number of checksum errors between the I/O processor and channel-specific
IO-Link interface.

Data type Values
UINT 0 to 65535

5.12.3 Number of communication errors

Name:
TransmErrCnt0X

These registers contain the number of communication errors between the I/O processor and channel-spe-
cific IO-Link interface.

Data type Values
UINT 0 to 65535

5.12.4 Number of parity errors

Name:
ParityErrCnt0X

These registers contain the number of parity errors between the channel-specific IO-Link interface and IO-
Link device.

Data type Values
UINT 0 to 65535

5.12.5 Number of protocol errors

Name:
FrameErrCnt0X

These registers contain the number of protocol errors between the channel-specific IO-Link interface and
IO-Link device.

Data type Values
UINT 0 to 65535

5.12.6 Number of byte count errors

Name:
RxSizeErrCnt0X

These registers contain the number of faulty bytes received between the channel-specific IO-Link interface
and IO-Link device.

Data type Values
UINT 0 to 65535

1.04 87

Register description

5.12.7 Number of checksum errors for the IO-Link device

Name:
RxChksmErrCnt0X

These registers contain the number of checksum errors between the channel-specific IO-Link interface and
IO-Link device.

Data type Values
UINT 0 to 65535

5.12.8 Number of response errors

Name:
DeviceDlyErrCnt0X

These registers contain the number of response errors. These occur if the IO-Link device does not respond
in time to the request frame of the master or if the pause between the individual bytes in the response
frame is too large.

Data type Values
UINT 0 to 65535

5.12.9 Number of cycle errors

Name:
CycleTimeErrorCnt0X

These registers contain the number of cycle errors. These occur if an IO-Link cycle is started before the
previous one could be completed and processed. These errors can be corrected by setting a lower cycle time.

Data type Values
UINT 0 to 65535

5.13 IO-Link communication via the command interface

The command interface provides the possibility of accessing the object dictionary of the IO-Link device via
index and subindex. Alternatively, access can also take place using library AsIoLink or the Flatstream.

5.13.1 ParameterIndexOut

Name:
ParameterIndexOut

This register is used to define the index of the object in the object dictionary that should be accessed.

Data type Values
UINT 0 to 65535

5.13.2 ParameterSubIndexOut

Name:
ParameterSubIndexOut

This register is used to define the subindex of the object in the object dictionary that should be accessed.

Data type Values
USINT 0 to 255

88 1.04

 Register description

5.13.3 ParameterCtrlOut

Name:
ParameterCtrlOut

This register is used to define the type of access desired.

Data type Values
UINT See the bit structure.

Bit structure:

Bit Description Value Information
0 - 1 Sequence number 0 to 3

0 IF1 (channel 1)
1 IF2 (channel 2)
2 IF3 (channel 3)
3 IF4 (channel 4)
4 IF5 (channel 5)
5 IF6 (channel 6)
6 IF7 (channel 7)

2 - 4 IO-Link channel number

7 IF8 (channel 8)
5 - 7 Reserved -

8 - 10 Data length 0 to 4
0 Read11 Read or write
1 Write

12 - 15 Reserved -

5.13.4 ParameterDataOut

Name:
ParameterDataOut_0

This register contains the data that should be written.

Data type Values
UDINT 0 to 4,294,967,295

5.13.5 ParameterCtrlIn

Name:
ParameterCtrlIn

This register is used to monitor the access status.

Data type Values
UINT See the bit structure.

Bit structure:

Bit Description Value Information
0 - 1 Sequence confirmation 0 to 3

0 IF1 (channel 1)
1 IF2 (channel 2)
2 IF3 (channel 3)
3 IF4 (channel 4)
4 IF5 (channel 5)
5 IF6 (channel 6)
6 IF7 (channel 7)

2 - 4 IO-Link channel number

7 IF8 (channel 8)
5 - 7 Reserved -

8 - 10 Data length 0 to 4
0 No error11 Error bit
1 Error. The error code is indicated in "ParameterDataIn" on

page 90.
12 - 15 Reserved -

1.04 89

Register description

5.13.6 ParameterDataIn

Name:
ParameterDataIn_0

This register contains the input data after successful read access or the error codes in the event of error.

Data type Values
UDINT 0 to 4,294,967,295

Error display
• If the "error code" on page 23 is not equal to 8 (i.e. error reported by the device), then the LSB contains

the error code.
• In the event of an error reported by the device, the error specified by the IO-Link device is also displayed.

UDINT
MSB LSB

Reserved IO-Link error code Additional IO-Link error code 8

5.14 Flatstream registers

At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled
in with default values at the beginning and can be used immediately. These registers are used for additional
options, e.g. to transfer data in a more compact way or to increase the efficiency of the general procedure.

Information:
For detailed information about Flatstream, see "Flatstream communication" on page 34.

5.14.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU

These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence.
The user must consider that the more bytes made available also means a higher load on the bus system.

Data type Values
USINT See the register overview.

5.14.2 Transporting payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN

(The value the number N is different depending on the bus controller model used.)

The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "In-
putMTU", respectively.

• "T" - "Transmit" → Controller transmits data to the module.
• "R" - "Receive" → Controller receives data from the module.

Data type Values
USINT 0 to 255

90 1.04

 Register description

5.14.3 Communication status of the controller

Name:
OutputSequence

This register contains information about the communication status of the controller. It is written by the
controller and read by the module.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction

0 Output direction (disable)3 OutputSyncBit
1 Output direction (enable)

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter

The OutputSequenceCounter is a continuous counter of sequences that have been issued by the controller.
The controller uses OutputSequenceCounter to direct the module to accept a sequence (the output direc-
tion must be synchronized when this happens).

OutputSyncBit

The controller uses OutputSyncBit to attempt to synchronize the output channel.

InputSequenceAck

InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the con-
troller has received a sequence successfully.

InputSyncAck

The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates
that the controller is ready to receive data.

1.04 91

Register description

5.14.4 Communication status of the module

Name:
InputSequence

This register contains information about the communication status of the module. It is written by the mod-
ule and should only be read by the controller.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction

0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter

The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The
module uses InputSequenceCounter to direct the controller to accept a sequence (the input direction must
be synchronized when this happens).

InputSyncBit

The module uses InputSyncBit to attempt to synchronize the input channel.

OutputSequenceAck

OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the
module has received a sequence successfully.

OutputSyncAck

The OutputSyncAck bit acknowledges the synchronization of the output channel for the controller. This
indicates that the module is ready to receive data.

5.14.5 Flatstream mode

Name:
FlatstreamMode

A more compact arrangement can be achieved with the incoming data stream using this register.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

92 1.04

 Register description

5.14.6 Number of unacknowledged sequences

Name:
Forward

With register "Forward", the user specifies how many unacknowledged sequences the module is permitted
to transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7

Data type Values
USINT 1 to 7

Default: 1

5.14.7 Delay time

Name:
ForwardDelay

This register is used to specify the delay time in microseconds.

Data type Values
UINT 0 to 65535 [µs]

Default: 0

5.15 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors
occurring. It is important to note that very fast cycles reduce the idle time available for handling monitoring,
diagnostics and acyclic commands.

Minimum cycle time
Without IO-Link (all channels in SIO mode) ≥400 µs

With IO-Link ≥1 ms

5.16 Minimum I/O update time

The minimum I/O update time specifies how far the bus cycle can be reduced so that an I/O update is
performed in each cycle.

Minimum I/O update time
Without IO-Link (all channels in SIO mode) ≥400 µs

With IO-Link ≥1 ms (depending on the minimum IO-Link cycle time of the IO-Link device)

1.04 93

	1 General information
	1.1 Other applicable documents
	1.2 Order data
	1.3 Module description
	1.4 System requirements

	2 Technical description
	2.1 Technical data
	2.2 LED status indicators
	2.2.1 LED signal pattern

	2.3 Connection elements
	2.3.1 X2X Link
	2.3.2 Pinout
	2.3.2.1 IO-Link channels

	2.3.3 I/O power supply 24 VDC
	2.3.3.1 Feed of the I/O power supply
	2.3.3.2 Feed of the I/O class B power supply

	2.4 Connection examples
	2.5 Input circuit diagram
	2.5.1 Input diagram for connectors X1 to X6
	2.5.2 Input diagram for connectors X7 and X8

	2.6 Overload protection

	3 Function description
	3.1 Digital input filter
	3.2 IO-Link
	3.2.1 IO-Link communication
	3.2.2 Configuring IO-Link timing characteristics
	3.2.3 IO-Link event interface
	3.2.4 IO-Link device IDs
	3.2.5 IO-Link status response
	3.2.6 IO-Link timestamp
	3.2.7 Error codes

	3.3 Parameter server
	3.4 Statistics counter
	3.5 Communication via the command interface
	3.6 Flatstream communication
	3.6.1 General handling of the Flatstream
	3.6.2 IO-Link information for the Flatstream
	3.6.3 IO-Link data
	3.6.3.1 Access to the object dictionary
	3.6.3.2 Access to process data
	3.6.3.3 Access to event data
	3.6.3.4 Enabling or disabling event forwarding
	3.6.3.5 Announcement of a forwarded event

	3.7 NetTime Technology
	3.7.1 Time information
	3.7.1.1 Controller data points
	3.7.1.2 X2X Link - Reference time point
	3.7.1.3 POWERLINK - Reference time point
	3.7.1.4 Synchronization of system time/POWERLINK time and I/O module

	3.7.2 Timestamp functions
	3.7.2.1 Time-based inputs
	3.7.2.2 Time-based outputs
	3.7.2.3 Time-based measurements

	3.8 Flatstream communication
	3.8.1 Introduction
	3.8.2 Message, segment, sequence, MTU
	3.8.3 The Flatstream principle
	3.8.4 Registers for Flatstream mode
	3.8.4.1 Flatstream configuration
	3.8.4.2 Flatstream operation
	3.8.4.2.1 Format of input and output bytes
	3.8.4.2.2 Transporting payload data and control bytes
	3.8.4.2.2.1 Control bytes

	3.8.4.2.3 Communication status
	3.8.4.2.3.1 Relationship between OutputSequence and InputSequence

	3.8.4.3 Synchronization
	3.8.4.4 Transmitting and receiving
	3.8.4.4.1 Transmitting data to a module (output)
	3.8.4.4.2 Receiving data from a module (input)
	3.8.4.4.3 Details

	3.8.4.5 Flatstream mode
	3.8.4.6 Adjusting the Flatstream

	3.8.5 Example of function "Forward" with X2X Link
	3.8.5.1 Function principle
	3.8.5.2 Configuration
	3.8.5.2.1 Delay time

	3.8.5.3 Transmitting and receiving with Forward
	3.8.5.4 Errors when using Forward

	4 Commissioning
	4.1 Configuring the IO-Link device
	4.1.1 Direct configuration
	4.1.2 IODD/DTM support
	4.1.2.1 IODD/DTM (online)
	4.1.2.2 IODD/DTM (offline)

	4.1.3 Parameter server
	4.1.4 Using IODD/DTM and the parameter server together
	4.1.4.1 Changing the configuration using IODD/DTM support
	4.1.4.2 Replacing the IO-Link device

	4.2 Configuring IO-Link timing characteristics

	5 Register description
	5.1 General data points
	5.2 Function model 0 - Standard
	5.3 Module configuration
	5.3.1 Configuring IO-Link power supply overload protection
	5.3.2 Filtering digital inputs
	5.3.3 OperatingMode

	5.4 Module communication
	5.4.1 Additional digital inputs

	5.5 IO-Link configuration
	5.5.1 ChannelMode
	5.5.2 IdentificationRevisionID
	5.5.3 IdentificationVendorID
	5.5.4 IdentificationDeviceID
	5.5.5 Configuring IO-Link timing characteristics
	5.5.5.1 ReqCycleMultiple
	5.5.5.2 ReqCycleOffset
	5.5.5.3 ReqCycleTime

	5.6 IO-Link communication
	5.6.1 PDO_TypeInfo
	5.6.2 OutputData
	5.6.3 Digital SIO outputs
	5.6.4 Additional power supply for power devices (P24 - Class B port)
	5.6.5 PDI_TypeInfo
	5.6.6 InputData
	5.6.7 Digital SIO inputs

	5.7 IO-Link status response
	5.7.1 Sync (status byte)
	5.7.2 Overload (status byte)
	5.7.3 Overload of the additional power supply for power devices (P24 - Class B port)
	5.7.4 ChannelStatus
	5.7.5 FrameCount
	5.7.6 CycleStartNettime
	5.7.7 CycleEndNettime

	5.8 IO-Link event interface
	5.8.1 EventPortSeq
	5.8.2 EventQualifier
	5.8.3 EventCode
	5.8.4 EventsLeft
	5.8.5 EventQuit
	5.8.6 EventQuitReadBack

	5.9 IO-Link parameter server
	5.9.1 DsControl
	5.9.2 DsProgress
	5.9.3 CfO_DS_Config

	5.10 IO-Link timestamp
	5.10.1 IoLinkTimestampIn
	5.10.2 IoLinkTimestampInStatusSeq
	5.10.3 IoLinkTimestampOut
	5.10.4 IoLinkTimestampOutCtrlSeq
	5.10.5 IoLinkTimestampOutStatus

	5.11 IO-Link device IDs
	5.11.1 VendorId
	5.11.2 DeviceId
	5.11.3 FunctionId
	5.11.4 CycleTime
	5.11.5 CycleMultiple
	5.11.6 MinCycleTime
	5.11.7 PDI_Size
	5.11.8 PDO_Size
	5.11.9 Baud rate
	5.11.10 IoLinkVersionID

	5.12 Statistics counter
	5.12.1 Number of command retries
	5.12.2 Number of checksum errors for the controller
	5.12.3 Number of communication errors
	5.12.4 Number of parity errors
	5.12.5 Number of protocol errors
	5.12.6 Number of byte count errors
	5.12.7 Number of checksum errors for the IO-Link device
	5.12.8 Number of response errors
	5.12.9 Number of cycle errors

	5.13 IO-Link communication via the command interface
	5.13.1 ParameterIndexOut
	5.13.2 ParameterSubIndexOut
	5.13.3 ParameterCtrlOut
	5.13.4 ParameterDataOut
	5.13.5 ParameterCtrlIn
	5.13.6 ParameterDataIn

	5.14 Flatstream registers
	5.14.1 Number of enabled Tx and Rx bytes
	5.14.2 Transporting payload data and control bytes
	5.14.3 Communication status of the controller
	5.14.4 Communication status of the module
	5.14.5 Flatstream mode
	5.14.6 Number of unacknowledged sequences
	5.14.7 Delay time

	5.15 Minimum cycle time
	5.16 Minimum I/O update time

