4-INPUT 1MUTE VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2293 is a switching IC for switching over from one audio or video input signal to another. It is a higher efficiency video switch, featuring the operating voltage 4.75 to 13 V , the frequency feature 7 MHz , and then the Crosstalk 75 dB (at 4.43 MHz).

- FEATURES

- 4 Input-1 Output
- Operating Voltage (+4.75 to +13V)
- Crosstalk 75dB (at 4.43 MHz)
- Wide Bandwidth Frequency 7 MHz ($2 \mathrm{~V}_{\mathrm{Pp}}$ Input)
- Package Outline DIP16, DMP16
- Bipolar Technology

- RECOMMENDED OPERATING CONDITION

- Operating Voltage
V^{+}
4.75 to 13.0 V

- APPLICATIONS

- VCR, Video Camera, AV-TV, Video Disk Player.

- BLOCK DIAGRAM

MAXIMUM RATINGS	$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V^{+}	14	V
Power Dissipation	PD_{D}	(DIP16) 700	mW
Operating Temperature Range	$\mathrm{T}_{\mathrm{opr}}$	(DMP16) 350	mW
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-40 to +85	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	$\mathrm{l}_{\mathrm{C} 1}$	$\mathrm{V}^{+}=5 \mathrm{~V}$ (Note1)	4.5	6.5	8.5	mA
Operating Current (2)	lcC_{2}	$\mathrm{V}^{+}=9 \mathrm{~V}$ (Note1)	5.8	8.3	10.8	mA
Voltage Gain	Gv	$\mathrm{V}_{1}=100 \mathrm{kHz}, 2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{V}_{\mathrm{O}} / \mathrm{V}_{1}$	-0.7	-0.2	+0.3	dB
Frequency Gain (1)	$\mathrm{G}_{\mathrm{F}} 1$	$\mathrm{V}_{\mathrm{l}}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{V}_{\mathrm{O}}(7 \mathrm{MHz}) / \mathrm{V}_{\mathrm{O}}(100 \mathrm{kHz})$	-1.0	0	+1.0	dB
Frequency Gain (2)	GF2	$\mathrm{V}_{1}=1 \mathrm{~V}_{\text {P.P. }}, \mathrm{V}_{0}(10 \mathrm{MHz}) / \mathrm{V}_{0}(100 \mathrm{kHz})$	-	0	-	dB
Differential Gain	DG	$V_{1}=2 V_{\text {P-P }}$, Standard Staircase Signal	-	0.3	-	\%
Differential Phasa	DP	$V_{1}=2 V_{\text {P-P }}$, Standard Staircase Signal	-	0.3	-	deg
Output offset Voltage	Vos	(Note2)	-4.5	0	+45	mV
Crosstalk	CT	$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} 4.43 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}$	-	-75	-	dB
Switch Change Over Voltage	V_{CH}	All inside Switches ON	2.5	-	-	V
Switch Change Over Voltage	V_{CL}	All inside Switches OFF	-	-	1.0	V

(Note1) S1 = S2 = S3 = S4 = S5 = S6 = S7 = 1
(Note2) S1 = S2 = S3 = S4 =1 Measure the output DC voltage difference
a) $\mathrm{S} 5=\mathrm{S} 6=\mathrm{S} 7=1, \mathrm{~b}) \mathrm{S} 7=2, \mathrm{~S} 5=\mathrm{S} 6=1$
c) $\mathrm{S} 6=2, \mathrm{~S} 5=1$ d) $\mathrm{S} 5=2$

- TEST CIRCUIT

- TERMINAL EXPLANATION

PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
$\begin{gathered} 7 \\ 9 \\ 14 \\ 16 \end{gathered}$	IN 1 IN 2 IN 3 IN 4 [Input]	2.5 V	
$\begin{gathered} 8 \\ 12 \\ 3 \end{gathered}$	CTL 1 CTL2 CTL 3 [Switching]		
1	OUT [Output]	1.8 V	
6	V ${ }^{+}$	5 V	
$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	GND 1 GND 2 GND 3		

- APPLICATION

This IC requires 0.1μ F capacitor between INPUT and GND for bias type input at mute mode.

