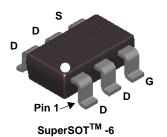
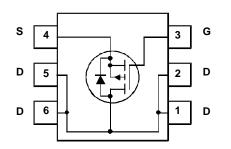


FDC3535 P-Channel Power Trench[®] MOSFET -80 V, -2.1 A, 183 m Ω

Features

- Max $r_{DS(on)}$ = 183 m Ω at V_{GS} = -10 V, I_D = -2.1 A
- Max $r_{DS(on)}$ = 233 m Ω at V_{GS} = -4.5 V, I_D = -1.9 A
- High performance trench technology for extremely low r_{DS(on)}
 High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL Tested
- RoHS Compliant




General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Applications

- Load Switch
- Synchronous Rectifier

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units V	
V _{DS}	Drain to Source Voltage	-80			
V _{GS}	Gate to Source Voltage		±20	V	
	Drain Current -Continuous	(Note 1a)	-2.1	•	
D	-Pulsed		-10	Α	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	37	mJ	
Ĺ	Power Dissipation	(Note 1a)	1.6	W	
PD	Power Dissipation	(Note 1b)	0.7	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	30	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1	a) 78	C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.535	FDC3535	SSOT-6	7 "	8 mm	3000 units

June 2010

Max	Units
	V
	mV/°C
-1	μA
±100	nA
-3	V
	mV/°C
183	
233	mΩ
307	1
	S
880	nF

nC

FDC3535 P-Channel Power Trench[®] MOSFET

033		D -				
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		-64		mV/°
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -64 V, V _{GS} = 0 V		-	-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-1	-1.6	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		5		mV/°0
		V _{GS} = -10 V, I _D = -2.1 A		147	183	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -4.5 V, I _D = -1.9 A		176	233	mΩ
		V _{GS} = -10 V, I _D = -2.1 A, T _J = 125 °C		246	307	
9 _{FS}	Forward Transconductance	V _{DD} = -10 V, I _D = -2.1 A		6.3		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V 40.V V 0.V		659	880	pF
C _{oss}	Output Capacitance	$V_{DS} = -40 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ = 1 MHz		49	65	pF
C _{rss}	Reverse Transfer Capacitance			24	40	pF
R _g	Gate Resistance			5.7		Ω
Switchin	g Characteristics					
t _{d(on)}	Turn-On Delay Time			6.5	13	ns
t _r	Rise Time	V _{DD} = -40 V, I _D = -2.1 A,		3.1	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = -10 V, R_{GEN} = 6 Ω		23	38	ns
t _f	Fall Time			2.9	10	ns
0	Total Gate Charge	$V_{GS} = 0 V \text{ to } -10 V$		14	20	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } -4.5 \text{ V} \text{ V}_{DD} = -40 \text{ V}$		6.8	10	nC
Q _{gs}	Total Gate Charge	I _D = -2.1 A		1.6		nC

Test Conditions

 $I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$

Min

-80

Тур

Drain-Source Diode Characteristics

Gate to Drain "Miller" Charge

Electrical Characteristics T_J = 25 °C unless otherwise noted

Parameter

Drain to Source Breakdown Voltage

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -2.1 A$	(Note 2)	-0.81	-1.3	V
t _{rr}	Reverse Recovery Time	I _E = -2.1 A, di/dt = 100 A/		25	40	ns
Q _{rr}	Reverse Recovery Charge	F = -2.1 A, u/ut = 100 A/	μο	23	38	nC

NOTES:

 Q_{gd}

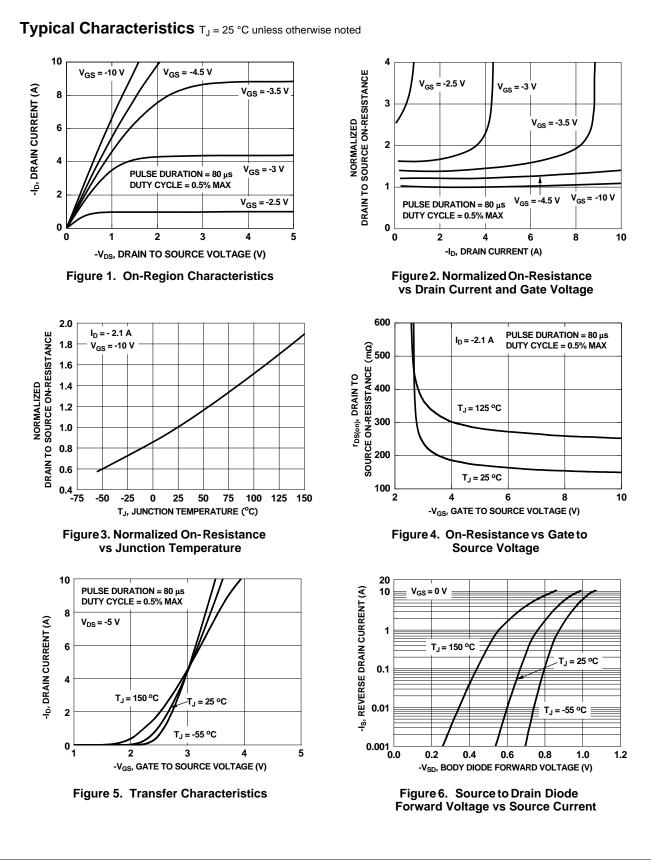
Symbol

BV_{DSS}

Off Characteristics

1. R_{eUA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{eUC} is guaranteed by design while R_{eCA} is determined by the user's board design.

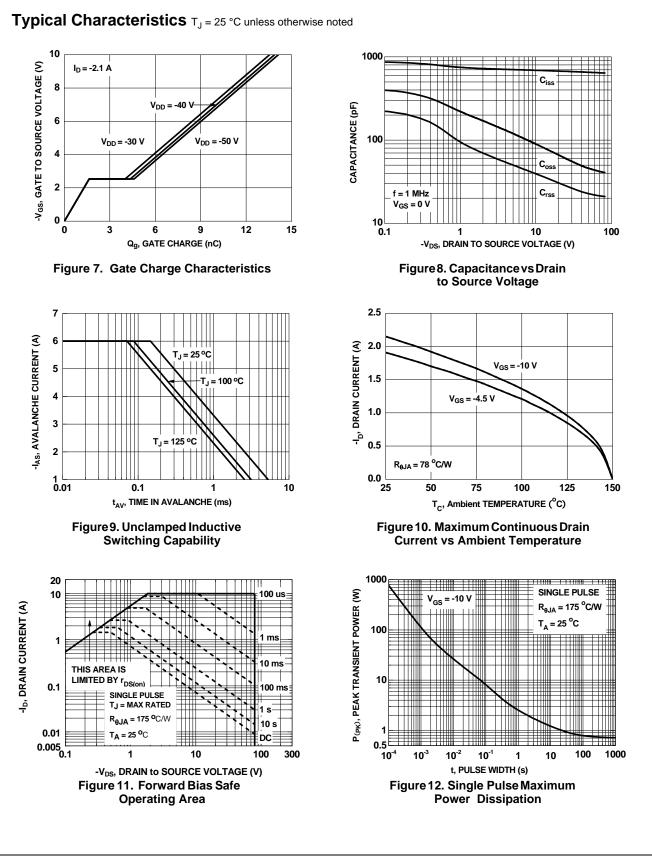
a. 78 °C/W when mounted on a 1 in² pad of 2 oz copper


b.175 °C/W when mounted on a minimum pad of 2 oz copper

2.7

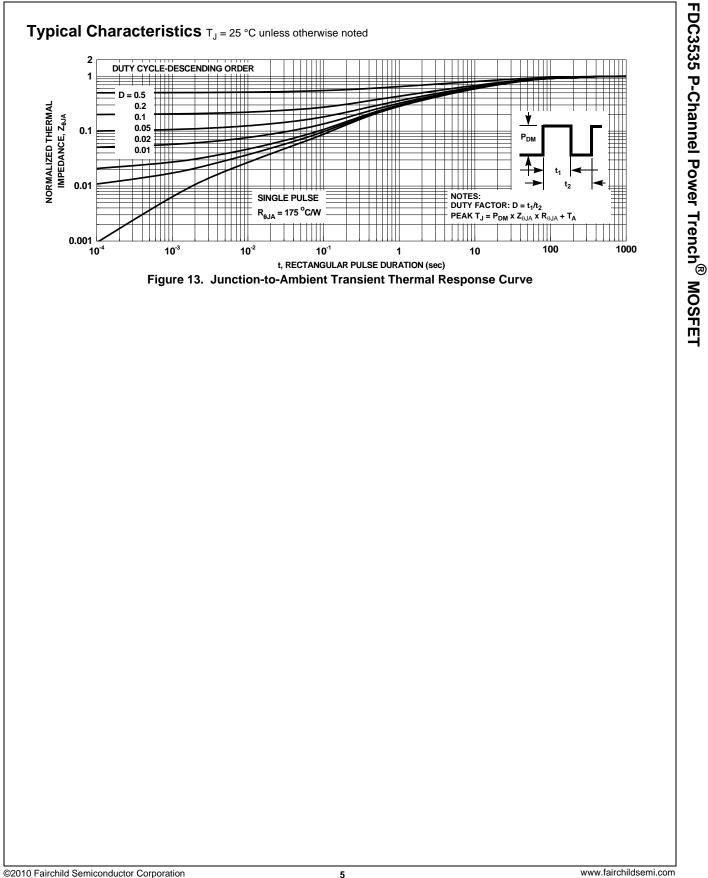
2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.

3. Starting T_J = 25 °C, L = 3 mH, I_{AS} = -5 A, V_{DD} = -80 V, V_{GS} = -10 V.

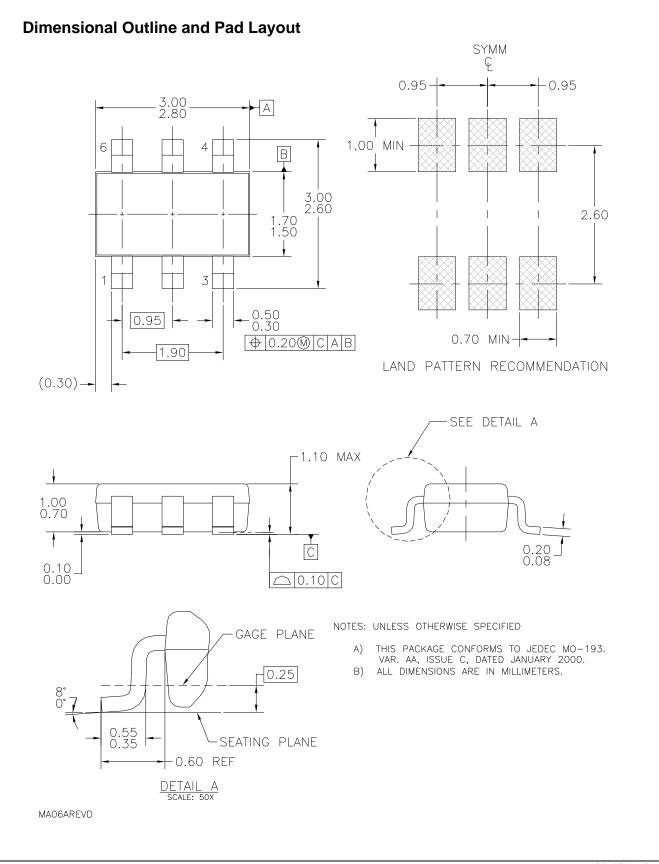

©2010 Fairchild Semiconductor Corporation FDC3535 Rev. C

©2010 Fairchild Semiconductor Corporation FDC3535 Rev. C

3


www.fairchildsemi.com

©2010 Fairchild Semiconductor Corporation FDC3535 Rev. C


www.fairchildsemi.com

FDC3535 P-Channel Power Trench[®] MOSFET

FDC3535 Rev. C

www.fairchildsemi.com

©2010 Fairchild Semiconductor Corporation FDC3535 Rev. C

6

www.fairchildsemi.com

FDC3535 P-Channel Power Trench[®] MOSFET

Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.