Solo Smoke Detector Tester #425-2889 # **RS Components Pty Ltd** Chemwatch: **4818-31** Version No: **11.1.1.1** Safety Data Sheet according to WHS and ADG requirements ## Chemwatch Hazard Alert Code: 3 Issue Date: **14/09/2015** Print Date: **01/08/2017** L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | Solo Smoke Detector Tester #425-2889 | |-------------------------------|--------------------------------------| | Chemical Name | 1,1,1,2-tetrafluoroethane | | Synonyms | Not Available | | Proper shipping name | AEROSOLS | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Application is by spray atomisation from a hand held aerosol pack
Smoke simulation. | |--------------------------|--| |--------------------------|--| ## Details of the supplier of the safety data sheet | Registered company name | RS Components Pty Ltd | |-------------------------|-------------------------------------| | Address | 25 Pavesi Street NSW 2164 Australia | | Telephone | 1300 656 636 | | Fax | 1300 656 696 | | Website | Not Available | | Email | Not Available | ## Emergency telephone number | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | 1800 039 008 | | Other emergency telephone numbers | 03 95733112 | ## **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # CHEMWATCH HAZARD RATINGS | | Min | Max | !
! | |--------------|-----|-----|-------------------------| | Flammability | 3 | | ! | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low
2 = Moderate | | Reactivity | 1 | | 3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | |-------------------------------|--| | Classification ^[1] | Gas under Pressure (Compressed gas), Flammable Liquid Category 1, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects) | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | ## Label elements Chemwatch: **4818-31** Page **2** of **9** Solo Smoke Detector Tester #425-2889 Issue Date: **14/09/2015** Print Date: **01/08/2017** # Hazard pictogram(s) SIGNAL WORD DANGER ## Hazard statement(s) Version No: 11.1.1.1 | H280 | Contains gas under pressure; may explode if heated. | |--------|---| | H224 | Extremely flammable liquid and vapour. | | H319 | Causes serious eye irritation. | | H336 | May cause drowsiness or dizziness. | | AUH044 | Risk of explosion if heated under confinement | # Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | |------|---|--| | P271 | Use only outdoors or in a well-ventilated area. | | | P240 | Ground/bond container and receiving equipment. | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | ## Precautionary statement(s) Response | P370+P378 | In case of fire: Use alcohol resistant foam or fine spray/water fog for extinction. | | |----------------|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | | P410+P403 | Protect from sunlight. Store in a well-ventilated place. | # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** # Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | |----------|-----------|---------------------------| | 811-97-2 | 50-100 | 1,1,1,2-tetrafluoroethane | | 67-63-0 | 10-25 | isopropanol | # **SECTION 4 FIRST AID MEASURES** ## Description of first aid measures | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | Not considered a normal route of entry. For advice, contact a Poisons Information Centre or a doctor. Avoid giving milk or oils. Avoid giving alcohol. | Chemwatch: 4818-31 Page 3 of 9 Issue Date: 14/09/2015 ### Solo Smoke Detector Tester #425-2889 Version No: 11.1.1.1 Print Date: 01/08/2017 - If swallowed do NOT induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Seek medical advice. ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. for intoxication due to Freons/ Halons; A: Emergency and Supportive Measures - Maintain an open airway and assist ventilation if necessary - Freat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV. - B: Specific drugs and antidotes: - ► There is no specific antidote C: Decontamination - ▶ Inhalation; remove victim from exposure, and give supplemental oxygen if available - Ingestion; (a) Prehospital: Administer activated charcoal, if available. DO NOT induce vomiting because of rapid absorption and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric lavage only if the ingestion was very large and recent (less than 30 minutes) D: Enhanced elimination: There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal. POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition - ▶ Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability. - No specific antidote. - Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician. - If lavage is performed, suggest endotracheal and/or esophageal control. - ▶ Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach. - ▶ Treatment based on judgment of the physician in response to reactions of the patient ## **SECTION 5 FIREFIGHTING MEASURES** ### Extinguishing media SMALL FIRE: Water spray, dry chemical or CO2 LARGE FIRE: Water spray or fog. # Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc, as ignition may result | |----------------------|--| ### Advice for firefighters | Advice for firefighters | | |-------------------------|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. | | Fire/Explosion Hazard | Non combustible. Not considered to be a significant fire risk. Heating may cause expansion or decomposition leading to violent rupture of containers. Aerosol cans may explode on exposure to naked flames. Decomposition may produce toxic fumes of: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. | | HAZCHEM | 2Y | # **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Clean up all spills immediately. Avoid breathing vapours/ aerosols/ or dusts and avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. | |--------------|--| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. | Chemwatch: 4818-31 Page 4 of 9 Solo Smoke Detector Tester #425-2889 Issue Date: 14/09/2015 Print Date: 01/08/2017 ▶ Wear breathing apparatus plus protective gloves. Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** ### Precautions for safe handling Version No: 11.1.1.1 # Safe handling - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - Other information ▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can ### Conditions for safe storage, including any incompatibilities ### Suitable container - Aerosol dispenser. - ▶ Check that containers are clearly labelled. - ► Avoid reaction with oxidising agents ► Avoid strong acids, bases. - Storage incompatibility - Segregate from: powdered metals such as aluminium, zinc and - alkali metals such as sodium, potassium and lithium. May attack, soften or dissolve rubber, many plastics, paints and coatings # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ## **Control parameters** ### OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------------|---------------------------|-----------------------|----------------------|---------------|---------------| | Australia Exposure Standards | 1,1,1,2-tetrafluoroethane | 1,1,1,2-Tetrafluoroethane | 4240 mg/m3 / 1000 ppm | Not Available | Not Available | Not Available | | Australia Exposure Standards | isopropanol | Isopropyl alcohol | 983 mg/m3 / 400 ppm | 1230 mg/m3 / 500 ppm | Not Available | Not Available | # **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------------|---|---------------|---------------|---------------| | 1,1,1,2-tetrafluoroethane | HFC 134a; (Tetrafluoroethane, 1,1,1,2-) | Not Available | Not Available | Not Available | | isopropanol | Isopropyl alcohol | 400 ppm | 2000 ppm | 12000 ppm | | Ingredient | Original IDLH | Revised IDLH | |---------------------------|---------------|-----------------| | 1,1,1,2-tetrafluoroethane | Not Available | Not Available | | isopropanol | 12,000 ppm | 2,000 [LEL] ppm | # MATERIAL DATA # **Exposure controls** | | Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. | |-------------------------|---| | Appropriate engineering | The basic types of engineering controls are: | | controls | Process controls which involve changing the way a job activity or process is done to reduce the risk. | | | Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. | | | TOTAL | ### Personal protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: Eye and face protection - ► Safety glasses with side shields - ▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. # Skin protection # See Hand protection below ▶ No special equipment needed when handling small quantities. # Hands/feet protection - ▶ OTHERWISE: ▶ For potentially moderate exposures: - ► Wear general protective gloves, eg. light weight rubber gloves. No special equipment needed when handling small quantities. - For potentially heavy exposures: - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear. ### **Body protection** See Other protection below # Other protection OTHERWISE: Overalls. ▶ Skin cleansing cream. Issue Date: **14/09/2015**Print Date: **01/08/2017** ► Eyewash unit. Thermal hazards Not Available ### Recommended material(s) ### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the $\ computer-generated$ selection: Solo Smoke Detector Tester #425-2889 | Material | СРІ | |-------------------|-----| | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVC | С | ^{*} CPI - Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | AX-AUS | - | AX-PAPR-AUS /
Class 1 | | up to 50 x ES | - | AX-AUS / Class
1 | - | | up to 100 x ES | - | AX-2 | AX-PAPR-2 ^ | ### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties | Appearance | Colourless liquid aerosol with a characteristic odour; does not with v | vater | | |--|--|---|------------------| | Physical state | Liquid | Relative density (Water = 1) | 1.132 @ 20 deg.C | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature
(°C) | 425 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | -26 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 13 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 12.0 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 2.0 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 520 @ 20 deg.C | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | 195 | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | Chemwatch: 4818-31 Page 6 of 9 Solo Smoke Detector Tester #425-2889 Issue Date: **14/09/2015**Print Date: **01/08/2017** ### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects Version No: 11.1.1.1 Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. ### Inhaled Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. ### WARNING: Intentional misuse by concentrating/inhaling contents may be lethal Exposure to high concentrations of fluorocarbons may produce cardiac arrhythmias or cardiac arrest due sensitisation of the heart to adrenalin or noradrenalin. Deaths associated with exposures to fluorocarbons (specifically halogenated aliphatics) have occurred in occupational settings and in inhalation of bronchodilator drugs. Bronchospasm consistently occurs in human subjects inhaling fluorocarbons. At a measured concentration of 1700 ppm of one of the commercially available aerosols there is a biphasic change in ventilatory capacity, the first reduction occurring within a few minutes and the second delayed up to 30 minutes. Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved. ### Ingestion Overexposure is unlikely in this form. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments # Skin Contact Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Spray mist may produce discomfort In common with other halogenated aliphatics, fluorocarbons may cause dermal problems due to a tendency to remove natural oils from the skin causing irritation and the development of dry, sensitive skin. They do not appear to be appreciably absorbed. Open cuts, abraded or irritated skin should not be exposed to this material Principal route of occupational exposure to the gas is by inhalation. ### Eye Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. # Chronic ١ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. It is generally accepted that the fluorocarbons are less toxic than the corresponding halogenated aliphatic based on chlorine. Repeated inhalation exposure to the fluorocarbon FC-11 does not produce pathologic lesions of the liver and other visceral organs in experimental animals. There has been conjecture in non-scientific publications that fluorocarbons may cause leukemia, cancer, sterility and birth defects; these have not been verified by current research. The high incidence of cancer, spontaneous abortion and congenital anomalies amongst hospital personnel, repeatedly exposed to fluorine-containing general anaesthetics, has caused some scientists to call for a lowering of the fluorocarbon exposure standard to 5 ppm since some are mutagens. # Solo Smoke Detector Tester #425-2889 | TOXICITY | į. | IRRITATION | |---------------|----|---------------| | Not Available | I | Not Available | # 1,1,1,2-tetrafluoroethane | TOXICITY | Ĺ | IRRITATION | |---|---|---------------| | Inhalation (rat) LC50: >500000 ppm/4hr ^[1] | | Not Available | # isopropanol | TOXICITY | IRRITATION | |---|-----------------------------------| | Dermal (rabbit) LD50: 12800 mg/kg ^[2] | Eye (rabbit): 10 mg - moderate | | Inhalation (rat) LC50: 32000 ppm/8hr ^[2] | Eye (rabbit): 100 mg - SEVERE | | Oral (rat) LD50: 5000 mg/kg ^[2] | Eye (rabbit): 100mg/24hr-moderate | | | Skin (rabbit): 500 mg - mild | ### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances ### 1,1,1,2-TETRAFLUOROETHANE Disinfection by products (DBPs) re formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. Numerous haloalkanes and haloalkenes have been tested for carcinogenic and mutagenic activities. * with added oxygen - ZhongHao New Chemical Materials MSDS Excessive concentration can have a narcotic effect; inhalation of high concentrations of decomposition products can cause lung oedema. Chemwatch: 4818-31 Page 7 of 9 Issue Date: 14/09/2015 Version No: 11.1.1.1 ### Solo Smoke Detector Tester #425-2889 Print Date: 01/08/2017 ISOPROPANOL For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | 0 | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification ✓ – Data available to make classification ○ – Data Not Available to make classification ## **SECTION 12 ECOLOGICAL INFORMATION** ### Toxicity | Solo Smoke Detector Tester #425-2889 ENDPOINT Not Available | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---|----------|--------------------|-------------------------------|------------------|------------------| | | | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 450mg/L | 2 | | 1,1,1,2-tetrafluoroethane | EC50 | 48 | Crustacea | 980mg/L | 5 | | | EC50 | 72 | Algae or other aquatic plants | >114mg/L | 2 | | | NOEC | 72 | Algae or other aquatic plants | ca.13.2mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | >1400mg/L | 4 | | | EC50 | 48 | Crustacea | 12500mg/L | 5 | | isopropanol | EC50 | 72 | Algae or other aquatic plants | >1000mg/L | 1 | | | EC29 | 504 | Crustacea | =100mg/L | 1 | | | NOEC | 5760 | Fish | 0.02mg/L | 4 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data # DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------|---------------------------|--------------------------| | 1,1,1,2-tetrafluoroethane | HIGH | HIGH | | isopropanol | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------------|---------------------| | 1,1,1,2-tetrafluoroethane | LOW (LogKOW = 1.68) | | isopropanol | LOW (LogKOW = 0.05) | ## Mobility in soil | Ingredient | Mobility | |---------------------------|-------------------| | 1,1,1,2-tetrafluoroethane | LOW (KOC = 96.63) | | isopropanol | HIGH (KOC = 1.06) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods Version No: 11.1.1.1 Solo Smoke Detector Tester #425-2889 Product / Packaging disposal - ▶ Consult State Land Waste Management Authority for disposal. - Discharge contents of damaged aerosol cans at an approved site. - ► Allow small quantities to evaporate. - ▶ DO NOT incinerate or puncture aerosol cans. ## **SECTION 14 TRANSPORT INFORMATION** ### **Labels Required** | Marine Pollutant | NC | |------------------|----| | HAZCHEM | 2Y | ### I and transport (ADG) | Land transport (ADG) | | |------------------------------|--| | UN number | 1950 | | UN proper shipping name | AEROSOLS | | Transport hazard class(es) | Class 2.2 Subrisk Not Applicable | | Packing group | Not Applicable | | Environmental hazard | Not Applicable | | Special precautions for user | Special provisions 63 190 277 327 344 Limited quantity 1000ml | # Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS ## Sea transport (IMDG-Code / GGVSee) | | · | |------------------------------|---| | UN number | 1950 | | UN proper shipping name | AEROSOLS | | Transport hazard class(es) | IMDG Class 2.2 IMDG Subrisk Not Applicable | | Packing group | Not Applicable | | Environmental hazard | Not Applicable | | Special precautions for user | EMS Number F-D, S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000ml | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** ### Safety, health and environmental regulations / legislation specific for the substance or mixture # \parallel 1,1,1,2-TETRAFLUOROETHANE(811-97-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists # ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs | National Inventory | Status | |----------------------------------|--| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (1,1,1,2-tetrafluoroethane; isopropanol) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Y | | Japan - ENCS | N (isopropanol) | | Korea - KECI | Y | Issue Date: 14/09/2015 Print Date: 01/08/2017 Chemwatch: 4818-31 Page 9 of 9 Issue Date: 14/09/2015 Version No: 11.1.1.1 Print Date: 01/08/2017 ### Solo Smoke Detector Tester #425-2889 | New Zealand - NZIoC | Y | |---------------------|---| | Philippines - PICCS | Y | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 OTHER INFORMATION** ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.