

PIC32MX1XX/2XX 28/44-pin XLP Family Silicon Errata and Data Sheet Clarification

The PIC32MX1XX/2XX 28/44-pin XLP family devices that you have received conform functionally to the current Device Data Sheet (DS60001404**B**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC32MX1XX/ 2XX 28/44-pin XLP family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A1).

Data Sheet clarifications and corrections start on page 11.

The silicon revision level can be identified using the current version of MPLAB[®] X IDE and Microchip's programmers, debuggers and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

TABLE 1: SILICON DEVREV VALUES

For example, to identify the silicon revision level using MPLAB X IDE in conjunction with a hardware debugger:

- 1. Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB X IDE project.
- 3. Configure the MPLAB X IDE project for the appropriate device and hardware debugger.
- Select <u>Window > Dashboard</u>, and then click the **Refresh Debug Tool Status** icon (20).
- 5. The part number and the Device and Revision ID values appear in the **Output** window.
- **Note:** If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The Device and Revision ID values for the various PIC32MX1XX/2XX 28/44-pin XLP family silicon revisions are shown in Table 1.

Dent Number	Device ID ⁽¹⁾	Revision ID for Silicon Revision ⁽¹⁾
Part Number		A1
PIC32MX154F128B	0x07900053	
PIC32MX174F256B	0x07901053	
PIC32MX254F128B	0x07908053	
PIC32MX274F256B	0x07903053	0.1
PIC32MX154F128D	0x07904053	0x1
PIC32MX174F256D	0x07905053	
PIC32MX254F128D	0x07906053	
PIC32MX274F256D	0x07907053	

Note 1: Refer to the "**Memory Organization**" and "**Special Features**" chapters in the current Device Data Sheet (DS60001404B) for a detailed information on Device and Revision IDs for your specific device.

PIC32MX1XX/2XX 28/44-PIN XLP

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	ltem	Issue Summary	Affected Revisions ⁽¹⁾
				A1
ADC	IVref	1.	Reading internal IVREF from the ADC module is not supported.	Х
CLKO	Clock Output	2.	A clock signal is present on the CLKO pin, regardless of the clock source and setting of the CLKO Enable Configuration bit, during a Power-on Reset (POR) condition.	x
Configuration Words	Mismatch	3.	Configuration word mismatch logic is non-functional.	x
СТМИ	Edge-sensitive Trigger	4.	Edge-sensitive trigger is not functioning for generating an Asynchronous pulse.	x
CTMU	CTED Input	5.	The EDGEN bit generates a glitch on the CTED input causing a false trigger.	х
CTMU	Temperature Sensor	6.	Temperature sensor measurement is not supported for CTMUCON<1:0> = range 2 or 3.	х
CTMU	Temperature Sensor	7.	Internal temperature sensor accuracy does not meet the data sheet specification.	х
CTMU	Idle	8.	CTMU current source isn't enabled in Idle mode (CTMUSIDL bit = 1), which prevents ADC, if enabled in Idle mode, from being able to measure the CTMU temperature sensor.	x
CTMU	Current Sourcing	9.	The CTMU module does not meet the current sourcing range data sheet specifications.	x
CTMU	Time Generation	10.	When Time Generation mode is enabled by setting the TGEN bit (CTMUCON<12>), the manual current sourcing set by the EDG1STAT bit (CTMUCON <24>) from the CTMU is non-functional.	x
Deep Sleep	_	11.	The user application must not attempt to enter Deep Sleep mode for a period of 50 µs after exiting Reset on start-up or the device will never recover and is no longer able to be erased and/or reprogrammed.	x
Deep Sleep	DSGPR1 Register	12.	On transition from Deep Sleep mode to VBAT mode, semaphore DSGPR1 register does not retain data.	х
Deep Sleep	Configuration Word	13.	If a rare Configuration Word bit mismatch occurs while in Deep Sleep mode, the device will be non-functional until a POR.	x
Deep Sleep	DSBOR	14.	Inconsistent DSBOR status bit (DSCON<1>) values occur after a Deep Sleep BOR event.	х
Deep Sleep	Current Specification	15.	The Deep Sleep Current specification is not met at less than 0°C operation.	x
Deep Sleep	DSWAKE	16.	Upon wake-up from Deep Sleep mode, the DSWAKE register does not always indicate the correct wake-up event source.	х
Deep Sleep	DPSLP Status Bit	17.	The DPSLP Deep Sleep Mode status bit, DPSLP (RSCON<10>), is incorrectly set even though Deep Sleep mode was not entered on a drop from VDD nominal to a VPOR reset trip.	х
FSCM	Interrupts	18.	The Fail-Safe Clock Monitor should be a NMI interrupt instead of a user-selectable IEC0<29> interrupt.	Х
I ² C	Idle	19.	The I ² C module resets after Idle mode when the SIDL bit (I2CxCON<13>) is set.	Х
I ² C	Start/Restart	20.	When the I ² C module is in Slave mode, Start and Restart Interrupt are not functional on all devices.	x

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

TABLE 2:	SILICON ISSUE SUMMARY	(CONTINUED)
----------	-----------------------	-------------

Module	Feature	ltem	Issue Summary	Affected Revisions ⁽¹⁾		
				A1		
I ² C	Start/Stop	21.	The I^2C Start bit, S (I2C1STAT<3>), is not cleared and the Stop bit, P (I2C1STAT<4>), is not set when an external I^2C master creates a Stop condition immediately after a Start condition.			
TDO	Programming	22.	Hardware automatically configures and enables the TDO output pin function, which toggles when any PGECx/PGEDx pair are used during programming.	х		
I/O	Injection Current	23.	Non-5v tolerant I/O pins do not support the high-side injection current parameter specification (DI60b) VIN > VDD.	Х		
Input Capture	Debug	24.	Freeze in Debug is not supported when using ICAP with DMA.	Х		
LVD	Interrupt	25.	An HLVD interrupt is a NMI type instead of a user-selectable IEC0<29> interrupt.	Х		
LVD	_	26.	The LVD module is non-functional and the HLVD module trip thresholds do not meet the data sheet specifications.	Х		
SOSC	SOSC Crystals	27.	SOSC crystals with ESR < 50 k Ω fail to oscillate at -40°C.	Х		
PMP	Input/Output Buffers	ttput 28 The PMP input buffer full flag, IB0F, and the output buffer underflow, OBUF, are getting set as soon as the PMP module				
PMP	Interrupts	29.	No PMP interrupts are generated in EPSP mode when the WAITE<1:)> bits (PMMODE<1:0>) are equal to '0'.	Х		
RCON	Deep Sleep	30.	If the DSEN bit (DSCON<15>) is equal to '1', Deep Sleep Enable is set during a VDD nominal to BOR back to VDD nominal event, the Deep Sleep Status bit, DPSLP (RCON<10>) is set even though Deep Sleep mode was never entered.			
RTCC	RTCC	31.	The RTCC module does not function in VBAT mode.	Х		
SPI	TMR1 Register	32.	The Shift Register Empty Status bit, SRMT (SPIxSTAT<7>), may be incorrect when the shift register becomes empty when a transmit becomes empty at the same time.	х		
Timer1	TMR1 Register	33.	In Asynchronous mode, the TMR1 register remains at the initial set value for 5 external clock pulses after wake-up from Sleep mode.	х		
Timer1	Counter Mode	34.	In asynchronous external counter mode, Timer1 does not reflect the first count from an external T1CLK input.	Х		
Timer1	Asynchronous Mode	35.	In Asynchronous mode, Timer 1 counts beyond the period value when the period is 0x01.	Х		
Timer1	Gated Mode	36.	Timer1 does not work properly in Gated mode with the prescaler enabled.	Х		
Timer1	TMR1 Register Writes	37.	Back-to-back writes to the TMR1 register are not allowed for four PBCLK cycles.	Х		
Timer1	Asynchronous Timer	38.	The Asynchronous Timer Write Disable bit, TWDIS (TxCON<12>), and the Asynchronous Timer Write in Progress bit, TWIP (TxCON<11>), are non-functional.	х		
Timer1	Reset	39.	The Timer1 TCK input propagates undefined values if left floating after a Reset.	х		

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Module	Feature	ltem	Issue Summary	Affected Revisions ⁽¹⁾
				A1
Timer2- Timer5	Debug Breakpoint	40.	On a debug breakpoint, TMRx, x=2-5, may not be representative of the correct value.	х
Timer2- Timer5	Internal Output Clock	41.	The Timerx internal output clock to various peripherals, such as Output Compare modules, are not gated OFF on an active TxCK input, despite the TGATE bit (TxCON<7>) being disabled (i.e., set to '0').	х
Timer2- Timer5	Period Match	42.	Timer TMR event trigger/interrupt on a period match may not occur if it coincides with entry into Sleep mode.	х
USB	Interrupts	43.	UIDLE interrupts cease if the UIDLE interrupt flag is cleared.	Х
USB	Specifications	44.	USB D+/D- Rise/Fall Times do not meet the data sheet specifications with five meter cable greater than +55°C.	х
USB	Low-Speed Operation	45.	When the USB module is configured for Low-Speed operation, (i.e., LSPD bit (U1EPx<7>) = 1), the interrupt timer sets the T1MSECIF interrupt status flag (U1OTGIR <t1msecif>) every 8 ms instead of the expected 1 ms.</t1msecif>	х
USB	Activity Status	46.	If SYSCLK slowed to less than 16 MHz while the USB link is idle, powered-down, or deattached, software may not receive indication of USB activity Resume, SRP, HNP or reattach soon enough to meet the USB protocol. USB interrupts may also not be asserted in time.	х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A1).

1. Module: ADC

Converting the Internal IVREF Band Gap, 1.2V, (internal AN14), the voltage source is not supported and will yield indeterminate results.

Work around

None.

Affected Silicon Revisions

A1				
Х				

2. Module: CLKO

During any active reset, the OSC2/CLKO/RPA3/ RA3 pin defaults temporarily to the CLKO output pin. A clock signal is present on the CLKO pin, regardless of the clock source and setting of the CLKO Enable Configuration bit, while the device is in Reset.

Work around

None.

Affected Silicon Revisions

A1				
Х				

3. Module: Configuration Words

Configuration Words mismatch logic is nonfunctional. Conversely, no device Reset as defined by the CMR bit (RCON<9>) would result from a very rare run-time Flash Configuration Word(s) bit change.

Work around

None.

Affected Silicon Revisions

A1				
Х				

4. Module: CTMU

Edge Sequencing mode, controlled by the EDGSEQUEN bit (CTMUCON<2>), and Edge mode are not functional.

Work around

Use level modes instead.

Affected Silicon Revisions

A1				
Х				

5. Module: CTMU

When set, the Edge Enable bit, EDGEN (CTMUCON<11>), generates a glitch on the selected CTEDx input, which causes a false trigger.

Work around

None.

Affected Silicon Revisions

A1				
Х				

6. Module: CTMU

Temperature sensor measurement is not supported for the IRNG<1:0> bits (CTMUCON<1:0>) = `0b01 and `0b10, current range 1 or 2.

Work around 1

Use IRNG<1:0> bit `0b00 or '0b11.

Work around 2

Set the ADC sample rate for the temperature sensor to less than 1 ksps.

Affected Silicon Revisions

A1				
Х				

7. Module: CTMU

Internal temperature sensor accuracy does not meet $\pm 2^{\circ}$ C specification, instead it is $\pm 6^{\circ}$ C.

Work around

None.

A1				
Х				

8. Module: CTMU

If the ADC module is enabled in Idle mode, it should override the setting of the CTMUSIDL bit (CTMUCON<13>) = 1, (i.e., discontinue CTMU module operation when the device enters Idle mode), and if the ADC module attempts to make a CTMU temperature sensor measurement. However, it cannot because CTMU current sources aren't enabled in Idle mode.

Work around

Set the CTMUSIDL bit to '0' to continue module operation when the device enters Idle mode.

Affected Silicon Revisions

A1				
Х				

9. Module: CTMU

The CTMU is greater than the maximum current sourcing range specifications in the data sheet when the IRNG bits in the CTMUCON register are set to `0b00 (715 μ A max.) and '0b11 (71.5 μ A max.), and when the device ambient temperature is less than +90°C.

Work around

None.

Affected Silicon Revisions

A1				
Х				

10. Module: CTMU

When Time Generation mode is enabled by setting the TGEN bit (CTMUCON<12>), the manual current sourcing set by the EDG1STAT bit (CTMUCON <24>) from the CTMU is non-functional.

Work around

None.

Affected Silicon Revisions

A1				
Х				

11. Module: Deep Sleep

The user application must not attempt to enter Deep Sleep mode for a period of 50 µs after exiting Reset on start-up or the device will never recover and is no longer able to be erased and/or reprogrammed.

Work around

Insure application does not enter deep sleep mode for at least 50 μ s after any reset. Institute 50 μ s delay using timer or software delay loop.

Affected Silicon Revisions

A1				
Х				

12. Module: Deep Sleep

On transition from Deep Sleep mode to VBAT mode, the semaphore DSGPR1 register does not retain its content as expected.

Work around

Enable DSBOR.

Affected Silicon Revisions

A1				
Х				

13. Module: Deep Sleep

If a rare Configuration Word bit mismatch occurs while in Deep Sleep, the device will be non-functional until a POR.

Work around

None.

Affected Silicon Revisions

A1				
Х				

14. Module: Deep Sleep

Inconsistent DSBOR status bit (DSCON<1>) values occur after a Deep Sleep BOR event.

Work around

None.

A1				
Х				

15. Module: Deep Sleep

Exceeds maximum Deep Sleep current specification at less than +25°C:

- At 0°C, 5000 nA instead of 500 nA
- At -40°C, 7500 nA instead of 150 nA

Work around

None.

Affected Silicon Revisions

A1				
Х				

16. Module: Deep Sleep

Upon wake-up from Deep Sleep, the DSWAKE register does not always indicate the correct wake-up event source.

Work around

None.

Affected Silicon Revisions

A1				
Х				

17. Module: Deep Sleep

When Deep Sleep is enabled, DPSLP bit (RCON<10>) = 1, the DPSLP Deep Sleep Mode status bit (DPSLP) is incorrectly set on exit from VBAT even though Deep Sleep mode was not entered after a BOR/POR reset event.

Work around

None.

Affected Silicon Revisions

A1				
Х				

18. Module: FSCM

The Fail-Safe Clock Monitor should be a Nonmaskable Interrupt (NMI) instead of a general purpose user-selectable IEC0<29> interrupt.

Work around

None.

Affected Silicon Revisions

A1				
Х				

19. Module: I²C

The l^2C module and SFRs are reset after entry into Idle mode when the SIDL bit (l2CxCON<13>) is set to '1' and module operation discontinues when the device enters Idle mode.

Work around

None.

Affected Silicon Revisions

A1				
Х				

20. Module: I²C

When the I²C module is in Slave mode, Start and Restart Interrupts are not occurring or properly reflected in the IFSx flag bits on all devices.

Work around

Use software polling to test the I^2C Start/Restart status bit, S (I2CxSTAT<3>).

Affected Silicon Revisions

A1				
Х				

21. Module: I²C

The I²C Start bit, S (I2C1STAT<3>), is not cleared and the Stop bit, P (I2C1STAT<4>), is not set when an external I²C master creates a Stop condition immediately after a Start condition.

Work around

None.

Affected Silicon Revisions

A1				
Х				

22. Module: TDO

Hardware automatically configures and enables the TDO output pin function, which toggles when any PGECx/PGEDx pair is used during programming.

Work around

None.

A1				
Х				

23. Module: I/O

Non-5v tolerant I/O pins do not support the highside injection current parameter specification DI60b (i.e., VIN > VDD). Even if the injection current is limited to less than 5 mA, a device reset can occur.

Work around

None.

Affected Silicon Revisions

A1				
Х				

24. Module: Input Capture

Freeze in Debug not supported when using ICAP with DMA.

Work around

None.

Affected Silicon Revisions

A1				
Х				

25. Module: LVD

A HLVD interrupt is a NMI type instead of a general purpose user selectable IEC0<29> interrupt.

Work around

None

26. Module: LVD

The LVD module is non-functional the HLVD module trip thresholds do not meet the data sheet specifications.

Work around

None.

Affected Silicon Revisions

A1				
Х				

27. Module: SOSC

SOSC crystals with ESR less than 50 k Ω fail to oscillate at -40°c.

Work around

Select SOSC crystals with an ESR greater than or equal to 50 k Ω .

Affected Silicon Revisions

A1				
Х				

28. Module: PMP

The PMP input buffer full flag, IB0F, and the output buffer underflow flag, OBUF, are set as soon as the PMP module is enabled in Slave mode (PMPTTL bit (PMCON<10>) is equal to '1').

Work around

During PMP slave mode initialization and before PMP interrupts are enabled, clear the input buffer full flag (IB0F bit (PMSTAT<8>) and the output buffer underflow flag (OBUF bit (PMSTAT<6>) when clearing any pending IFSx interrupt flags.

Affected Silicon Revisions

A1				
Х				

29. Module: PMP

No PMP interrupts are generated in Enhanced Parallel Salve Port (EPSP) mode when the WAITE<1:0> bits (PMMODE<1:0>) are equal to '0'.

Work around

None.

A1				
Х				

30. Module: RCON

If the DSEN bit (DSCON<15>) is equal to '1', Deep Sleep Enable is set during a VDD to BOR back to VDD event, the Deep Sleep Status bit, DPSLP (RCON<10>) is set even though Deep Sleep mode was never entered.

Work around

None.

Affected Silicon Revisions

A1				
Х				

31. Module: RTCC

The RTCC module does not function in VBAT mode. The RTCC timer does not increment, and therefore, does not keep time.

Work around

None.

Affected Silicon Revisions

A1				
Х				

32. Module: SPI

The Shift Register Empty status bit, SRMT (SPIxSTAT<7>), may be incorrect when the shift register becomes empty when a transmit becomes empty at the same time.

Work around

None.

Affected Silicon Revisions

A1				
Х				

33. Module: Timer1

In Asynchronous mode, (i.e., TCS bit (T1CON<1> = 1, TSYNC bit (T1CON<2> = 0, and TECS<1:0> (T1CON<9:8> = 0b01), the TMR1 register remains at the initial set value for 5 external clock pulses after wake-up from Sleep mode.

Work around

None.

Affected Silicon Revisions

A1				
Х				

34. Module: Timer1

In Asynchronous mode, (i.e., TCS bit (T1CON<1> = 1, TSYNC bit (T1CON<2> = 0, and TECS<1:0> (T1CON<9:8> = `0b01), Timer1 does not reflect the first count from an external T1CLK input

Work around

None.

Affected Silicon Revisions

A1				
Х				

35. Module: Timer1

Timer1 counts beyond the period value in Asynchronous mode when the period is 0x01.

Work around

Set Timer1 period, PR1 to greater than 1.

Affected Silicon Revisions

A1				
Х				

36. Module: Timer1

Timer1 does not work properly in Gated mode (i.e., TGATE bit (T1CON<7>) = 1, TCS bit (T1CON<1> = 0) with the prescaler enabled (TCKPS<1:0> bits (T1CON<5:4>) = 0000).

Work around

None.

Affected Silicon Revisions

A1				
Х				

37. Module: Timer1

Back-to-back CPU writes to the TMR1 register are not allowed for at least four PBCLK cycles.

Work around

None.

A1				
Х				

38. Module: Timer1

The Asynchronous Timer Write Disable bit, TWDIS (TxCON<12>), and the Asynchronous Timer Write in Progress bit, TWIP (TxCON<11>), are non-functional.

Work around

None.

Affected Silicon Revisions

A1				
Х				

39. Module: Timer1

The Timer1 external TCK input pin propagates undefined values if left floating after a Reset.

Work around

Place a 10k pull-down resistor on the T1CLK pin.

Affected Silicon Revisions

A1				
Х				

40. Module: Timer2-Timer5

On a debug breakpoint, TMRx, where 'x' = 2-5, may not be representative of the correct count value.

Work around

None

Affected Silicon Revisions

A1				
Х				

41. Module: Timer2-Timer5

The Timerx internal output clock to various peripherals, such as Output Compare modules, are not gated OFF on an active TxCK input, despite the TGATE bit (TxCON<7>) being disabled (i.e., set to '0'). This condition may affect other peripherals that may utilize them.

Work around

None.

Affected Silicon Revisions

A1				
Х				

42. Module: Timer2-Timer5

A Timer TMR event trigger/interrupt on a period match may not occur if it coincides with entry into Sleep mode.

Work around

None.

Affected Silicon Revisions

A1				
Х				

43. Module: USB

If the Idle Detect Interrupt Enable bit (IDLEIE bit (U1IE<4>)), is equal to '1' and the bus has been idle for more than 3 ms while the UIDLE interrupt flag is set; if software clears the interrupt flag and the bus remains idle, the UIDLE interrupt flag will not re-trigger a second time even after an additional 3 ms of J-state bus Idle condition.

Work around

Software can leave the UIDLE bit set until it has received some indication of bus resumption like "Resume" or "Reset". If, any time, the UIDLE bit is set, it would be acceptable to suspend the USB module, as long as this code is protected by USB Sleep Entry Guard (USLPGRD (U1PWRC<4>)) and USB Activity Pending (UACTPND (U1PWRC<7>)). Note that this will require software to clear the UIDLE interrupt enable bit to exit the USB ISR if using interrupt-driven code.

Affected Silicon Revisions

A1				
Х				

44. Module: USB

USB D+/D- Rise/Fall Times do not meet the specification with a 5 meter cable greater than $+55^{\circ}$ C. This will not affect certification as it is performed at $+25^{\circ}$ C.

Work around 1

Insure the USB cable is less than 3 meters in length.

Work around 2

Insure ambient device temperature of less than $+55^{\circ}C$.

A1				
Х				

45. Module: USB

When the USB module is configured for Low-Speed operation, (i.e., LSPD bit (U1EPx<7>) = 1), the interrupt timer sets the T1MSECIF interrupt status flag (U1OTGIR<T1MSECIF>) every 8 ms instead of the expected 1 ms.

Work around

Instead, use a general purpose timer for a period of 1 ms.

Affected Silicon Revisions

A1				
Х				

46. Module: USB

If SYSCLK is slowed to less than 16 MHz while the USB link is idle, powered-down, or deattached the software may not receive indication of USB activity Resume, SRP, HNP, or reattach soon enough to meet the USB protocol. USB interrupts may also not be asserted in time.

Work around

None.

Affected Silicon Revisions

A1				
Х				

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS60001404 \mathbf{B}):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

No issues to report.

APPENDIX A: REVISION HISTORY

Rev A Document (4/2017)

Initial release of this document for revision A1 silicon, which includes the following silicon issues:

1. ADC, 2. CLKO, 3. Configuration Words, 4. CTMU, 4. CTMU, 5. CTMU, 6. CTMU, 7. CTMU, 8. CTMU, 9. CTMU, 10. CTMU, 11. Deep Sleep, 12. Deep Sleep, 13. Deep Sleep, 14. Deep Sleep, 15. Deep Sleep, 16. Deep Sleep, 17. Deep Sleep, 18. FSCM, 19. I^2 C, 20. I^2 C, 21. I^2 C, 22. TDO, 23. I/O, 24. Input Capture, 25. LVD, 26. LVD, 27. SOSC, 28. PMP, 29. PMP, 30. RCON, 31. RTCC, 32. SPI, 33. Timer1, 34. Timer1, 35. Timer1, 36. Timer1, 37. Timer1, 38. Timer1, 39. Timer1, 40. Timer2-Timer5, 41. Timer2-Timer5, 42. Timer2-Timer5, 43. USB, 44. USB, 45. USB, and 46. USB.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV — ISO/TS 16949 —

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1673-9

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820