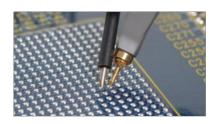
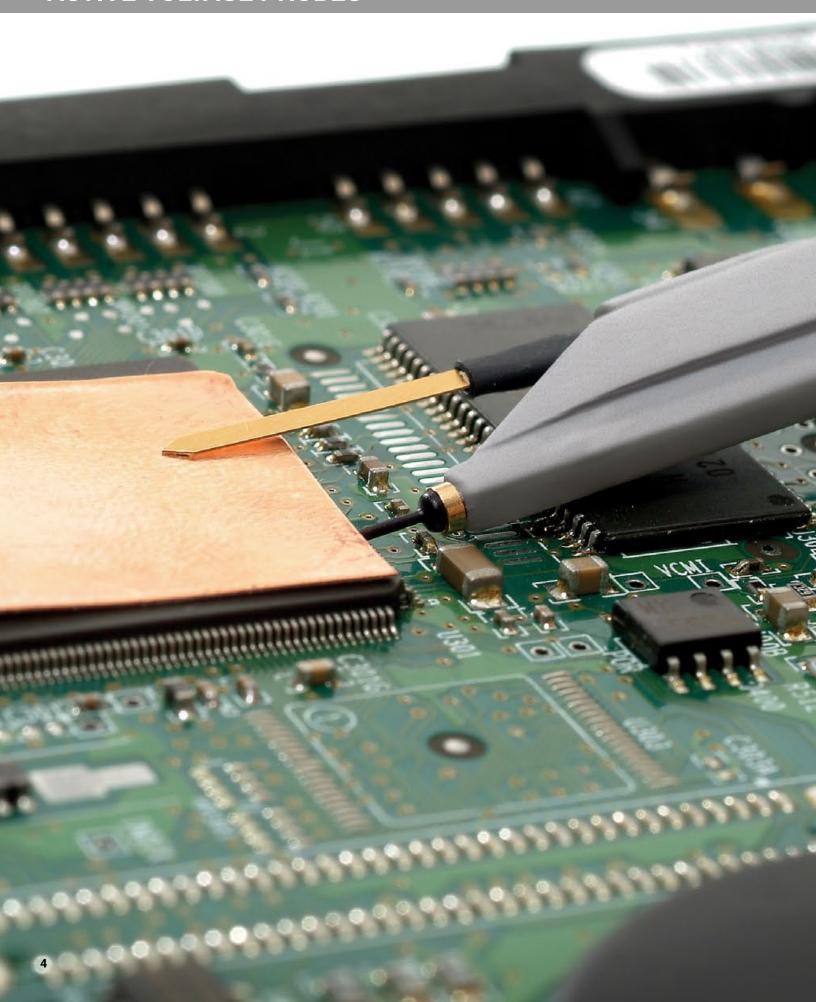


Oscilloscope Probes and Probe Accessories


PROBE SELECTION

Teledyne LeCroy has a wide variety of world class probes and amplifiers to compliment its product line. From the ZS high impedance active probes to the WaveLink differential probing system which offers bandwidths up to 25 GHz, Teledyne LeCroy probes and probe accessories provide optimum mechanical connections for signal measurement.

Front Cover: ZS Series High Impedence Active Probes	Wavesurf	Mavesurer 300 Oscillosco.	HO4000/MS-8/MSO	Walestunes Scilosoms	100000 5; 188 High Dogo/ 118	HOOOO Collosop	MDA800 Oscilloson	HRO 12-4.	Wave of Collosopes	Wavendasterro	SIZIZ BROOKO SOOS	Labinaster 3.	,02',40'soilog
		Sa Sa	3.5.5 3.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6		, 96 9.5 8.4	, 989 9.59 9.59	, 0880	` {\chi_{Q}}	Vale Scillos		, Nasi	is _e Nq,	
Z' Z'		-2.	7.27	70	7.27	7.27	\$.	¥	70	-0	- 7		
Active Voltage Probes - p. 4 - 7	/	1	√		1	√	√			1	/		
ZS1000										<u> </u>	<u> </u>		
ZS1500 ZS2500		V				· · · · · · · · · · · · · · · · · · ·	V					√	
ZS4000											✓	✓	
Current Probes - p. 8 -11			_	_					_				
CP030		✓	✓		1	√	√			/			
CP030A													
CP031	<u> </u>	✓					√						
CP031A		√				√				√			
CP150	✓	1			/	/	/	/		/	/		
CP500	1	✓		/	/	/	/	√	/	/			
CA10	,		√	1	1	✓	√	1	1	√	√		
Differential Probes - p. 12 - 21													
ZD200	√	✓	√	1	1	✓	1	✓	1	✓	✓	✓	
ZD500	✓	✓	✓	1	1	✓	✓	1	1	✓	1	✓	
ZD1000	✓	✓	✓	✓	1	✓	✓	✓	✓	✓	✓	✓	
ZD1500		✓	√	√	√	√	✓	√	√	✓	/	✓	
AP033	✓	✓	✓	√	√	✓	✓	√	✓	✓	✓		
D410-PS										✓		✓	
D420-PS												✓	
D400A-AT									/	/	/	/	
D610-PS										/	/	✓	
D620-PS													
D600A-AT				/					/	<u>/</u>	✓ ✓	<u>/</u>	
D830-PS D1030-PS											<u> </u>	<u> </u>	
D1330-PS												√	
D1305-A-PS										✓	<u> </u>	✓	
D1605-A-PS													
D2005-A-PS												√	
D2505-A-PS										/			
High Voltage Differential Probes - p. 2	2 - 27												
HVD3102	/	1								/			
HVD3106	✓	1	√	1	1	√	✓	1	1	1	1		
HVD3106-6M	✓	✓	✓	/	1	√	✓	/	/	√			
HVD3206	✓	✓	✓	1	1	√	✓	1	1	1	✓		
HVD3605	✓	✓	✓	1	1	✓	✓	1	1	✓	1		
ADP300	✓	✓	✓	1	1	✓	✓	1	1	✓	✓		
ADP305	✓	✓	✓	1	1	✓	✓	1	1	1	1		
AP031 ✓ ✓	✓	✓	✓	1	1	1	✓	1	1	✓	✓		



													.90		
				Mayesufer 10	HOGOO HOS ANSO	Waveninion Oscillosope	HO0000/H	HOOOO NOT HOO WAS THE	MD4800M	HAO 12-bis	i i	Waven Spes UDA/Zi/Zi A		Labhaster In	, S
	Wavedce Oscili	S	Wavesure.	ijo Nj	8	હું હું	•	\$ 8°		4.	Wayer Oscilosopes	~ **	S. S.	<i>®</i>	cillo
		Ş	Ş	Ó	HO 4000 / HXS-	\$ jj	: ~	<i>9</i>	<i>&</i>	بچ	بري	Ø.	Ž.	ő	ర్థ
		ર્જુ -	Š	2 3	ડે છેં ક	20 6	v	30, 8	5 \(\sqrt{\chi}	Õ))) })) ,	7	××
	Š			~ &			ž Š			ė į	S 8	ğ ş	g 6	,	>
	ب	<u>ج</u>		30	i si					, A	20,8	, Z	, į	, j	
	\$	Š	S.	9.8	9,0		0,0	0,0	480	~``			Ž	Z	
	Zō	Ž	20	22	ŦŹ	Wavepunion Oscillo	ŦĘĠ	ŦŹ	Ž.	<i>¥</i>	Wavepro/SDA	Wavenasters	96)	<i>9</i> e5	
Differential Amplifie	ers - p. 28 - 3	1	-	_	_	-	_	_	_	_	-	-	_		
DXC200	по р. 10 с		1	1	1	1	/	1	1	1	1	/	_/		
DA101			✓	✓	✓	✓	1	✓	✓	✓	✓	✓	✓	✓	
DA1855A			✓	✓	1	1	✓	✓	✓	1	1	✓	✓	✓	
DA1855A-PR2			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
DA1855A-PR2-RM			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	
DA1855A-RM			/	/		/	/	/	/		/	/	/	/	
DXC-5100				/			/	· /	/			/			
DXC100A			1	✓	✓	1	/	✓	✓	✓	1	✓	✓	1	
High Voltage Probes	s - p. 32 - 37 ✓	1	/	/		/		/	/				✓ /		
HVP120 PPE1.2KV	✓	<u> </u>			√		✓ ✓			√	✓ ✓	✓ ✓			
PPE1.2KV	✓	✓		✓		✓	✓		✓		✓	✓			
PPE4KV	→														
PPE5KV	<u> </u>	✓	✓	✓	<u> </u>	✓	√	✓	✓	<u> </u>	✓	<u> </u>	✓		
PPE6KV	✓	/	√	√	/	√		√	√	/	√	/			
Optical Probes - p. 3	38 - 41														
OE425						1					1	1	√	√	
OE455						✓					✓	✓	✓	✓	
OE525											✓	✓		✓	
OE555											/	/	/	✓	
OE695G														/	
Passive Probes - p.	42 - 45	√													
PP006A											✓	/	✓		
PP007-WR PP008				/		/						•			
PP009				✓		✓									
PP010		/		•		•				•					
PP011				1							1	/	/		
PP016	✓														
PP017					/										
PP018					1		✓	✓	✓						
PP019			✓												
PP020															
Probe Adapters - p.	46 -49														
CA10								<i></i>	<i>\</i>						
TPA10)	0 51 -	✓		✓	✓	√	✓	✓	✓	✓	✓			
Transmission Line P PP066	Tobes - p. 5	J - 51									/	/	√	/	
1°F 000											•	,			

Note: Some probes require purchase of the amplifier and platform/cable assembly separately – Reference detailed literature for more information.

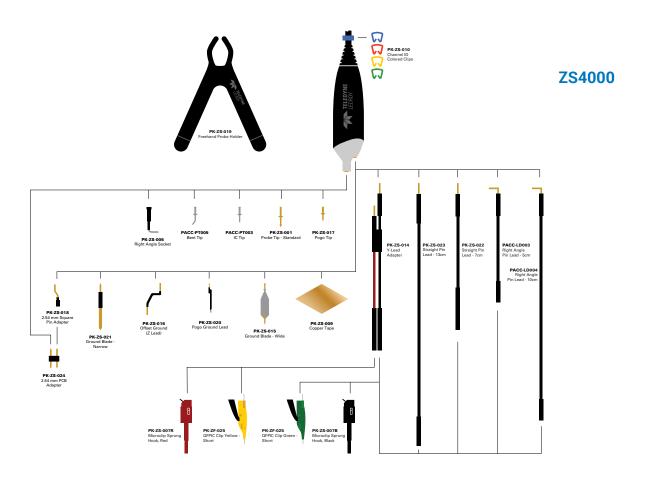
ACTIVE VOLTAGE PROBES

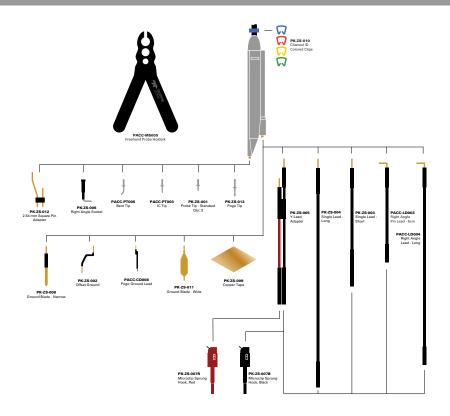
ACTIVE VOLTAGE PROBES

Engineers must commonly probe high-frequency signals with high signal fidelity. Typical passive probes with high input R and C provide good response at lower frequencies, but inappropriately load the circuit and distort signals at higher frequencies. Active voltage probes feature both high input R and low input C to reduce circuit loading across the entire probe/oscilloscope bandwidth. With low circuit loading and a form factor that allows probing in confined areas, the active voltage probe becomes the everyday probe for all different types of signals and connection points.

Teledyne LeCroy Active Voltage Probe <u>Model Nu</u>mbers:

> ZS1000 ZS1500 ZS2500 ZS4000


ZS SERIES ACTIVE PROBES



Teledyne LeCroy Active Voltage Probe Model Numbers:

ZS1000 ZS1500 ZS2500 ZS4000 The ZS Series probes are high impedance, low capacitance active probes that maintain high signal fidelity through 4 GHz. A small form factor and a wide variety of accessories ensures the ZS probe meets every difficult probing challenge.

Engineers must commonly probe high frequency signals with high signal fidelity. Typical passive probes with high input R and C provide good response at lower frequencies but inappropriately load the circuit and distort signals at higher frequencies. The ZS Series features both high input R (1 M Ω) and low input C (0.6 pF and 0.9 pF) to reduce circuit loading across the entire probe/oscilloscope bandwidth. The ZS1000 is ideal for 200–600 MHz oscilloscopes. The ZS1500 is ideal for 1 GHz oscilloscopes, the ZS2500 is ideal for 2 GHz oscilloscopes, and the ZS4000 is ideal for 2.5 GHz and 4 GHz oscilloscopes.

ZS1000 ZS1500 ZS2500

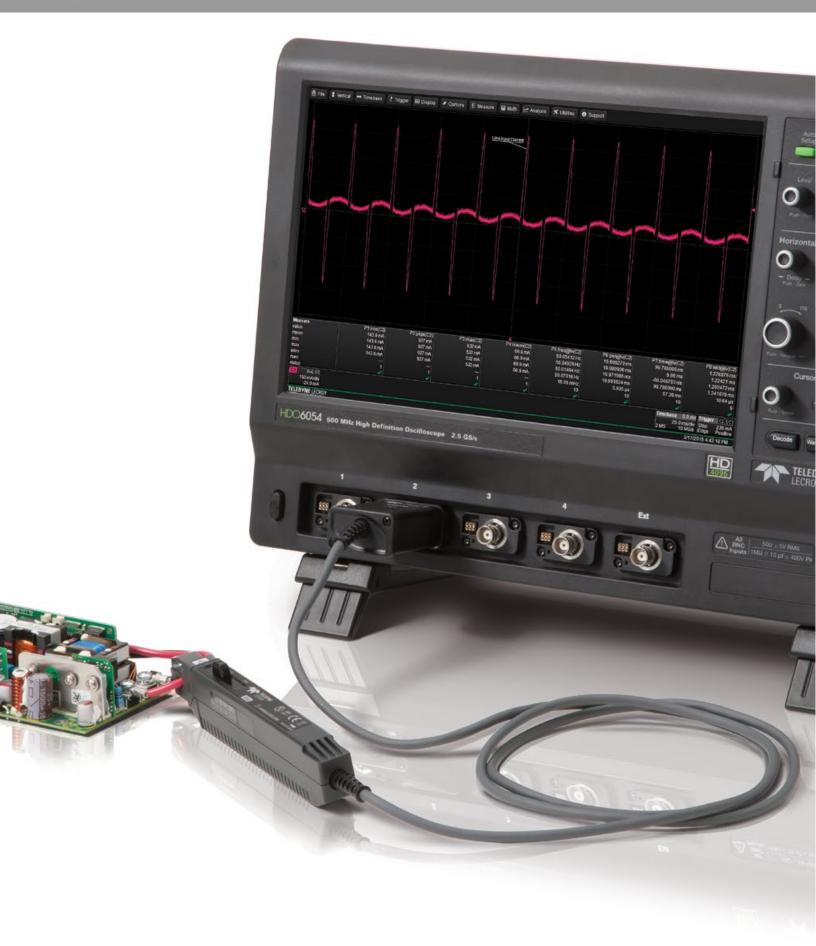
Ordering Information

Product Description	Product Code
4 GHz, 0.6 pF, 1 M Ω High Impedance Active Probe	ZS4000
2.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS2500
1.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS1500
1 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS1000
Set of 4 ZS2500, 2.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probes	ZS2500-QUADPAK
Set of 4 ZS1500, 1.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probes	ZS1500-QUADPAK
Set of 4 ZS1000, 1 GHz, 0.9 pF, 1 M Ω High Impedance Active Probes	ZS1000-QUADPAK

Specifications ZS1000 ZS1500 ZS2500 ZS4000

Electrical Characteristics								
Probe Bandwidth	1 GHz	1.5 GHz	2.5 GHz	4 GHz				
Input Capacitance	0.9 pF 0.6 p							
DC Input Resistance	1 ΜΩ							
Probe Offset Range	N/A		±12 V					
Attenuation		÷10						
Input Dynamic Range		±	:8 V					
Non-destruct Voltage		2						

General Characteristics


Cable Length 1.3 m

Standard Accessory/Quantity

Accessory Deceription	Replacement Part Number	ZS1000 ZS1500	704000
Accessory Description		ZS2500	ZS4000
2.54 mm PCB Adaptor	PK-ZS-024		5
2.54mm Square Pin Adapter	PK-ZS-012	1	
2.54mm Square Pin Adaptor	PK-ZS-018		1
IC Tip	PACC-PT003	1	1
Bent Tip	PACC-PT005	1	1
Channel ID Clips (Set of 4 colors)	PK-ZS-010	4	1
Copper Tape Pad	PK-ZS-009	2	2
Freehand Probe Holder	PK-ZS-019		1
Freehand Probe Holder	PACC-MS005	1	
Ground Blade – Narrow	PK-ZS-008	1	
Ground Blade – Wide	PK-ZS-011	1	
Ground Blade, Narrow	PK-ZS-021		1
Ground Blade, Wide	PK-ZS-015		2
Micro-Grabber Pair	PK-ZS-007R and PK-ZS-007B	1	2
Offset Ground	PK-ZS-016		2

Accessory Description	Replacement Part Number	ZS1000 ZS1500 ZS2500	ZS4000
Offset Ground – Z Lead	PK-ZS-002	1	
Pogo Ground Lead	PK-ZS-020		1
Pogo Ground Lead	PACC-CD008	1	
Pogo Tip	PK-ZS-017		3
Pogo Tip	PK-ZS-013	1	
Probe Tip – Standard	PK-ZS-001	3	3
QFPIC Clips (set of 2)	PK-ZS-025		1
Right Angle Lead – Long	PACC-LD004	1	1
Right Angle Lead – Short	PACC-LD003	1	1
Right Angle Socket	PK-ZS-006	1	1
Straight Pin Lead – Long	PK-ZS-023		1
Straight Pin Lead – Long	PK-ZS-004	1	
Straight Pin Lead – Short	PK-ZS-022		1
Straight Pin Lead – Short	PK-ZS-003	1	
Y Lead Adapter	PK-ZS-005	1	
Y Lead Adaptor	PK-ZS-014		1

CURRENT PROBES

Teledyne LeCroy current probes do not require the breaking of a circuit or the insertion of a shunt to make accurate and reliable current measurements. Based on a combination of Hall effect and transformer technology, Teledyne LeCroy current probes are ideal for making accurate AC, DC, and impulse current measurements.

Wide Range of Applications

Teledyne LeCroy current probes are available in a variety of models for a wide range of applications. The full range of Teledyne LeCroy current probes includes models with bandwidths up to 100 MHz, peak currents up to 700 A and sensitivities to 1 mA/div. Teledyne LeCroy current probes are often used in applications such as the design and test of switching power supplies, motor drives, electric vehicles, and uninterruptible power supplies.

High Sensitivity

The CP030A and CP031A provide a high sensitivity of 1 mA/div. This allows for more precise low current measurements on Teledyne LeCroy oscilloscopes. When used with HD0 high definition oscilloscopes with HD4096 technology, users will obtain highly accurate, low current waveforms with unmatched 12-bit resolution for improved debug and analysis.

Fully Integrated

All Teledyne LeCroy current probes are powered through the Teledyne LeCroy ProBus® connection and require no additional hardware. Along with providing power, the ProBus connection allows the current probe and oscilloscope to communicate, resulting in current waveforms automatically displayed on screen in Amps, and calculated power traces scaled correctly in Watts. This full integration also allows for Degauss and Autozero functions to be done directly from the oscilloscope's user interface.

Deskew Calibration Source

The DCS015 deskew calibration source has both voltage and current timealigned signals, which enables the precise deskew of voltage and current probes. Most voltage probes along with the CP030, CP030A, CP031, and CP031A are compatible with the DSC015. Teledyne LeCroy Current Probe and Adapter Model Numbers: CP030A

CP030A CP031A CP031A CP150 CP500 DCS015

Opposite page: CP031, 30A, 100 MHz Current Probe.

CURRENT PROBES

Teledyne LeCroy Current Probe and Adapter **Model Numbers: CP030 CP030A CP031 CP031A CP150 CP500 DCS015 CA10**

Features

- ProBus active probe interface withautomatic scaling in A/div
- Autozero and degauss capabilities built into instrument's user interface
- Wide range of input currents and bandwidth capabilities

- CP030
 - 30 A_{ms} continuous current
 - 50 A_{peak} current
 - 50 MHz bandwidth

- CP030A
 - 30 A_{ms} continuous current

 - 50 A_{peak} current
 50 MHz bandwidth
 - 1 mA/div sensitivity

- CP031
 - 30 A_{rms} continuous current
 - 50 A_{peak} current
 - 100 MHz bandwidth

- **CP031A**
 - 30 A_{ms} continuous current
 - 50 A_{peak} current
 - 100 MHz bandwidth
 - 1 mA/div sensitivity

- **CP150**
 - 150 A_{rms} continuous current
 - 500 A_{peak} current
 - 10 MHz bandwidth

- **CP500**
 - 500 A_{ms} continuous current
 - 700 A_{peak} current
 - 2 MHz bandwidth

DCS015

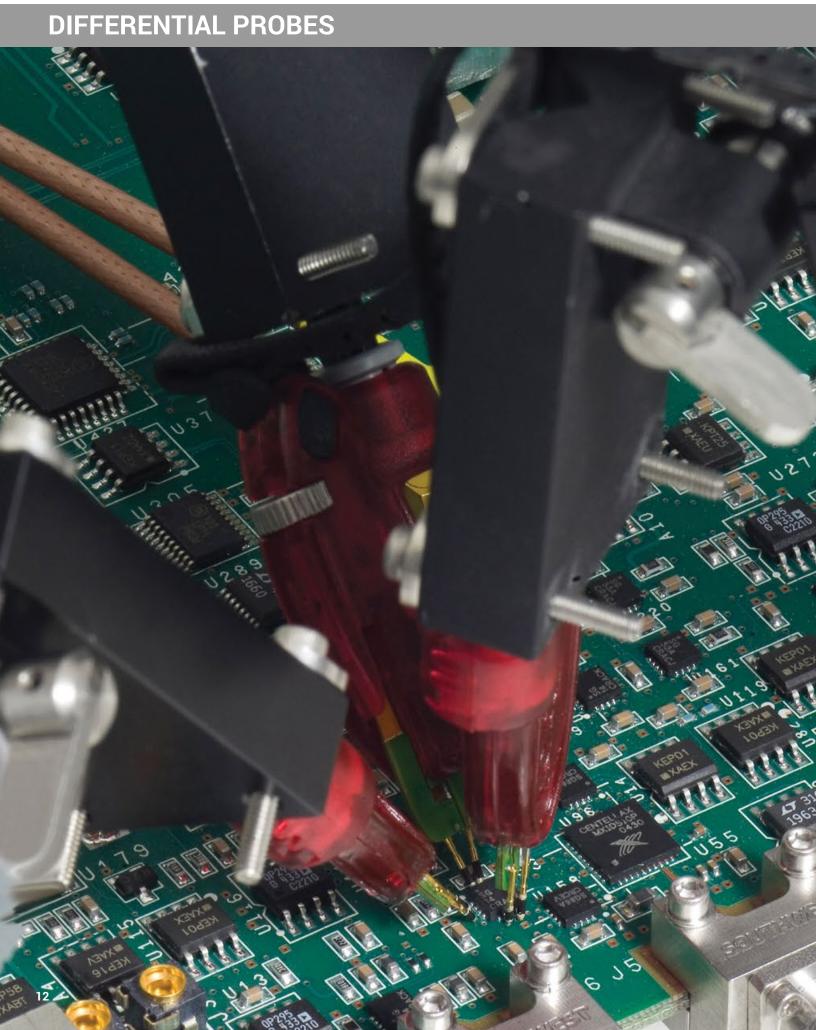
- Precise deskew of voltage and current probes.
- Compatible with the CP031,CP031A, CP030, and CP030A

• CA10 Current Sensor Adapter

The CA10 enables a third-party current measurement device to operate like a Teledyne LeCroy probe. The CA10 is programmable and customizable to work with third-party current measurement devices that output voltage or current signals proportional to measured current. (See page 48 for more information and specifications).

Specifications Electrical Characteristics*	CP030 [†]	CP030A [†]	CP031 [†]	CP031A [†]	CP150	CP500	
Max. Continuous Input Current		30 A _{ms} 150 A _{ms}					
Bandwidth	50	MHz	100	MHz	10 MHz	2 MHz	
Rise Time (typical)	≤ 1	ns ns	≤ 3	.5 ns	≤ 35 ns	≤ 175 ns	
Max. Peak Current	50 A _{peak} (non-continuous) 300 A _{peak} non-continuous; 500 Apeak ≤ 30 μs r				700 A _{,peak} non-continuous		
Output Voltage	0.1 V/A	0.1 V/A & 1 V/A	0.1 V/A	0.1 V/A & 1 V/A	0.01 V/	Ά	
Max Continuous Input Current at 1 V/A (100mA/div or less)	-	5 A	-	5 A	_		
Offset Range at 1V/A (100mA/div or less)	-	±5 A	-	±5 A	_		
Minimum Sensitivity	10 mA/div	1 mA/div	10 mA/div	1 mA/div	100 mA/	div	
Low-Frequency Accuracy				1%			
AC Noise at 20 MHz BWL	≤ 2.5 mA	≤ 150 µA	≤ 2.5 mA	≤ 150 µA	≤ 6.0 mA	≤ 8.0 mA	
Coupling				AC, DC, GND			

General Characteristics


Cable Length	1.5 m 2					6 m	
Weight	240 g	240 g 260 g 240 g 260 g 500 g					
Max. Conductor Size (Diameter)		5 m	nm	20 mm			
Interface	ProBus, 1 MΩ only						
Usage Environment	Indoor						
Operating Temperature	0° C to 40° C						
Max. Relative Humidity		80%					
Max. Altitude	2000 m						
Maximum Insulated Wire Voltage	300 V CAT II 600 V CAT II, 300 V CAT III					0 V CAT III	

^{*} Electrical Characteristics Guaranteed at 23 °C ±3 °C

Ordering Information

Product Description	Product Code
ProBus Current Sensor Adapter	CA10
Set of 4 CA10, ProBus Current Sensor Adapters	CA10-QUADPAK
30 A; 50 MHz Current Probe – AC/DC; 30 Arms; 50 A Peak Pulse	CP030
30 A; 50 MHz High Sensitivity Current Probe – AC/DC; 30 Arms; 50 A Peak Pulse	CP030A
30 A; 100 MHz Current Probe – AC/DC; 30 Arms; 50 A Peak Pulse	CP031
30 A; 100 MHz High Sensitivity Current Probe – AC/DC; 30 Arms; 50 A Peak Pulse	CP031A
150 A; 10 MHz Current Probe – AC/DC; 150 A _{rms} ; 500 A Peak Pulse	CP150
500 A; 2 MHz Current Probe – AC/DC; 500 Arms; 700 A Peak Pulse	CP500
Deskew Calibration Source for CP031,CP031A, CP030, CP030A and AP015	DCS015

[†] The CP031 and CP030 require the Teledyne LeCroy oscilloscope to be running firmware version 4.3.1.1 or greater. The CP031A and CP030A require firmware version 7.8.x.x or greater.

DIFFERENTIAL PROBES

Differential active probes are like two probes in one. Instead of measuring a test point in relation to a ground point (like single-ended active probes), differential probes measure the difference in voltage of a test point in relation to another test point.

Teledyne LeCroy Differential Probe **Model Numbers:** ≤ 1.5 GHz **ZD200 ZD500 ZD1000 ZD1500 AP033** 4 GHz - 6 GHz **D410-PS D420-PS D400A-AT D610-PS D620-PS D600A-AT** 8 GHz - 13 GHz **D830-PS** D1030-PS D1330-PS 13 GHz - 25 GHz D1305-PS D1605-PS D2005-PS D2505-PS

1.5 GHz DIFFERENTIAL PROBES

Teledyne LeCroy ≤1.5 GHz Differential Probe Model Numbers:

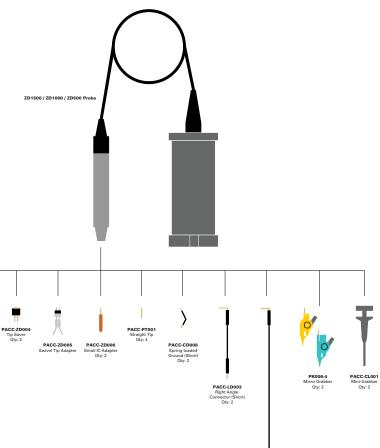
ZD200 ZD500 ZD1000 ZD1500 AP033 The ZD Series probes provide wide dynamic range, excellent noise and loading performance and an extensive set of probe tips, leads, and ground accessories to handle a wide range of probing scenarios. The low 1 pF capacitance means this probe is ideal for all frequencies. The ZD Series differential probes provide full system bandwidth for all Teledyne LeCroy Oscilloscopes 1.5 GHz and lower.

Fully Integrated

With the ProBus interface, the ZD500, 1000, and 1500 become an integral part of the oscilloscope. All probe gain and offset controls are transparent to the user, making it easier to probe the circuit without concern for which gain setting to choose. When used with a Teledyne LeCroy digital oscilloscope, no external power supply is required.

Wide Dynamic Range

The ZD500, 1000, 1500 probes provide transparent probe attenuation so signals are always optimized for the display. The differential range is $18 \, V_{p-p}$ with a differential offset of $\pm 8V$ and common mode range of $\pm 10 \, V$, making these probes versatile for every probing application.


Wide Applications

The wide dynamic range of $16 \text{ V}_{\text{p-p}}$ and offset range of $\pm 8\text{V}$ suit this probe to a wide range of applications and signal types. The ZD differential probes are ideally suited for Automotive, Serial Data, power, and general purpose use.

Specifications	ZD200	ZD500	ZD500 ZD1000				
Electrical Characteristics							
Bandwidth (Warranted)	200 MHz	500 MHz	1000 MHz	1500 MHz			
Bandwidth (Typical)	-	650 MHz	1200 MHz	1700 MHz			
Risetime 10-90% (Typical)	1.75 ns	650 ps	375 ps	270 ps			
Risetime 20-80% (Typical)	-	500 ps	280 ps	200 ps			
LF Attenuation Accuracy (Warranted)	1%		2%				
Zero Offset (Typical) (within 15 minutes after autozero)	-	5 mV					
System Noise (Typical)	-	1.3 mV _{rms} 1.75 mV _{rms}					
Probe Noise Density (Typical)	3 mV _{rms}	38 nV/rt (Hz)					
Input Differential Range (Nominal)	± 20 V	±8 V (16 V _P -p)					
Differential Offset Range (Nominal)	=	±18 V					
Offset Gain Accuracy (Typical)	-	2%					
Common Mode Range (Nominal)	± 60 V		±10 V				
Maximum Non-destruct Voltage (Nominal)	-	30 V					
CMRR (Typical)	80 dB @ 60 Hz 50 dB@10 MHz	60 dB 50/60 Hz 30 dB 20 MHz 25 dB 500 MHz	60 dB 50/60 Hz 30 dB 20 MHz 25 dB @ 1000 MHz	60 dB 50/60 Hz 30 dB 20 MHz 25 dB @ 1500 MHz			
DC Input Resistance (Nominal)	250 k Ω (Common Mode) 1 M Ω (Differential Mode)	50 kΩ (Common Mode) 120 kΩ (Differential Mode)					
Differential Input Capacitance (Typical)	3.5 pF	< 1.0 pF					

Ordering Information

Product Description	Product Code
200 MHz, 3.5 pF, 1 M Ω Active Differential Probe	ZD200
500 MHz, 1.0 pF Active Differential Probe, ±8 V	ZD500
1 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1000
1.5 GHz, 1.0 pE Active Differential Probe, +8 V	7D1500

D001 PACC-ZD002 ad Solder-in-Lead oty: 2

AP033

High bandwidth, excellent common-mode rejection ratio (CMRR) and low noise make these active differential probes ideal for applications such as disk drive design and failure analysis, as well as wireless and data communication design.

Specifications

Bandwidth	500 MHz
Gain	x10, x1, ÷10 (÷100 with plug-on ÷10 attenuator)
DC Accuracy	1% in x1 without external attenuator
Input Resistance	1 M Ω each input to ground 2 M Ω differential between inputs
Differential Mode Range	±400 mV (x1) ±40 mV (x10) ±4 V (÷10) ±40 V (÷100)
Offset Range	±400 mV (x1, x10) ±4 V (±10) ±40 V (±100)
Common-Mode Range	±42 V peak (±10) +4.2 V peak (±100)
CMRR	70 Hz 10,000:1 (80 dB) 100 kHz 10,000:1 (80 dB) 1 MHz 1000:1 (60 dB) 10 MHz 100:1 (40 dB) 250 MHz 5:1 (14 dB)

Ordering Information

Product Description 500 MHz Differential Probe

Product Code AP033

4 GHz - 6 GHz DIFFERENTIAL PROBES

Teledyne LeCroy 4 GHz - 6 GHz Differential Probe Model Numbers:

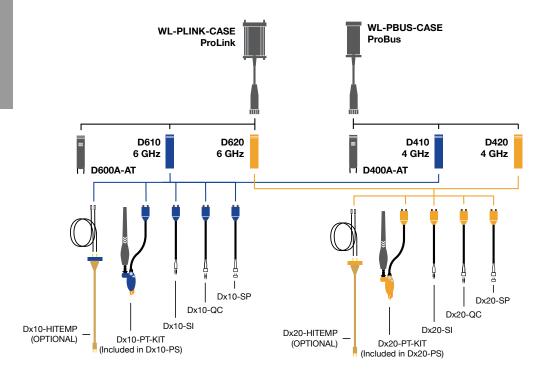
D410-PS

D420-PS

D400A-AT

D610-PS

D620-PS


D600A-AT

WaveLink® probes provide industry leading technology for wideband signal connection to test instruments. The first differential probes to employ SiGe technology, they deliver full system bandwidth when used with oscilloscopes up to 6 GHz.

WaveLink probes:

- Maintain good loading characteristics across the frequency span
- Optimized for gain, noise and bandwidth for optimal performance
- Offer broad range of dynamic range and noise over gain settings by incorporating automatic probe attenuation changes

WaveLink is the first differential probe to use a unique calibration process to achieve superb waveform fidelity for routine voltage measurements. Calibration coefficients "fine tune" the frequency response of each WaveLink probe and are individually determined during factory calibration and programmed into the probe. The oscilloscopes read this data and use it to digitally compensate the entire system response for superior fidelity.

4 GHz - 6 GHz DIFFERENTIAL PROBES

	D610, D610-PS	D620, D620-PS	D410, D410-PS	D420, D420-PS	D600A-AT	D400A-AT
Bandwidth* (Probe Only, Guaranteed) (System Bandwidth, Typical)	Dx10-SI and Dx10-PT Tips 6 GHz	Dx20-SI and Dx20-PT Tips 6 GHz	Dx10-SI, Dx10-HiTemp, Dx10-QC and Dx10-PT Tips 4 GHz	Dx20-SI, Dx20-HiTemp, Dx20-QC and Dx20-PT Tips 4 GHz	6 GHz	4 GHz
	Dx10-HiTemp 5 GHz	Dx20-HiTemp 5 GHz	Dx10-SP Tip 3 GHz	Dx20-SP Tip 3 GHz		
	Dx10-QC Tip 4 GHz	Dx20-QC Tip 4 GHz				
	Dx10-SP Tip 3 GHz	Dx20-SP Tip 3 GHz				
Rise Time* (10-90%)	Dx10-SI and Dx10-PT Tips 75 ps (typical)	Dx20-SI and Dx20-PT Tips 75 ps (typical)	Dx10-SI, Dx10-HiTemp, and Dx10-PT Tips 112 ps (typical)	Dx20-SI, Dx20-HiTemp, and Dx20-PT Tips 112 ps (typical)	<75 ps (typical)	<112 ps (typical)
	Dx10-HiTemp 90 ps (typical)	Dx20-HiTemp 90 ps (typical)	Dx10-QC Tip 122.5 ps (typical)	Dx20-QC Tip 122.5 ps (typical)		
	Dx10-QC Tip 122.5 ps (typical)	Dx20-QC Tip 122.5 ps (typical)	Dx10-SP Tip 150 ps (typical)	Dx20-SP Tip 150 ps (typical)		
	Dx10-SP Tip 150 ps (typical)	Dx20-SP Tip 150 ps (typical)				
Rise Time* (20-80%)	Dx10-SI and Dx10-PT Tips 56 ps (typical)	Dx20-SI and Dx20-PT Tips 56 ps (typical)	Dx10-SI, Dx10-HiTemp, and Dx10-PT Tips 84 ps (typical)	Dx20-SI, Dx20-HiTemp, and Dx20-PT Tips 84 ps (typical)	56 ps (typical)	84 ps (typical)
	Dx10-HiTemp 67.5 ps (typical)	Dx20-HiTemp 67.5 ps (typical)	Dx10-QC Tip 92 ps (typical)	Dx20-QC Tip 92 ps (typical)		
	Dx10-QC Tip 92 ps (typical)	Dx20-QC Tip 92 ps (typical)	Dx10-SP Tip 113 ps (typical)	Dx20-SP Tip 113 ps (typical)		
	Dx10-SP Tip 113 ps (typical)	Dx20-SP Tip 113 ps (typical)				
Noise (System)	<36 nV/√Hz (2.8 mV _{rms}) (typical) Referred to input, 6 GHz bandwidth	<61 nV/√Hz (4.8 mV _{rms}) (typical) Referred to input, 6 GHz bandwidth	<36 nV/√Hz (2.3 mV _{rms}) (typical) Referred to input, 4 GHz bandwidth	<67 nV/vHz (4.3 mV _{rms}) (typical) Referred to input, 4 GHz bandwidth	<74 nV/√Hz (5.8 mV _{rms}) (typical) Referred to input, 6 GHz bandwidth	<74 nV/VHz (4.1 mV _{rms}) (typical) Referred to input, 4 GHz bandwidth
Input						
Input Dynamic Range (Nominal)	2.5V _{pk-pk} , ±1.25V	5V _{pk-pk} , ±2.5V	2.5V _{pk-pk} , ±1.25V	5V _{pk-pk} , ±2.5V	4.8V _{pk-pk} , ±2.4V	
Input Common Mode Voltage Range (Nominal)			±4 V		±2.4	Vmax
Input Offset Voltage Range		±3 V Diff	erential (nominal)		n/a	
Non-destructive Input Range (Nominal)	±20 V				±1.	8 V
Attenuation	1.7X / 1.0X (nominal)	3.2X / 1.9X (nominal)	1.7X / 1.0X (nominal)	3.2X / 1.9X (nominal)		5X
DC Input Resistance (Nominal)	100 kΩ Differential 50 kΩ Common Mode				2 kΩ Com	ferential mon Mode
Impedance (Zmin, Typical)	Dx10-SI Lead, Dx10-HiTemp >175 Ω Differential [†]	Dx20-SI Lead, Dx20-HiTemp >250 Ω Differential [†]	Dx10-SI Lead, Dx10-HiTemp >200 Ω Differential [†]	Dx20-SI Lead, Dx20-HiTemp >350 Ω Differential [†]	>200 Ω Differential	>450 Ω Differential through entire frequency range
	Dx10-PT Tip >175 Ω Differential [†]	Dx20-PT Tip >175 Ω Differential [†]	Dx10-PT Tip >175 Ω Differential [†]	Dx20-PT Tip >175 Ω Differential [†]		
	Dx10-QC Tip >125 Ω Differential [†]	Dx20-QC Tip >125 Ω Differential [†]	Dx10-QC Tip >100 Ω Differential [†]	Dx20-QC Tip >100 Ω Differential [†]		
	Dx10-SP Tip >40 Ω Differential [†]	Dx20-SP Tip >40 Ω Differential [†]	Dx10-SP Tip >40 Ω Differential [†]	Dx20-SP Tip >40 Ω Differential [†]		

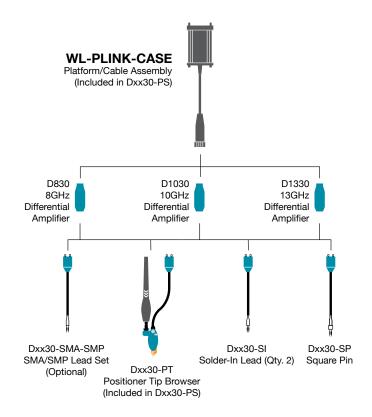
 $^{{}^{\}star}\textit{All bandwidth and rise time measurements are made with an oscilloscope bandwidth greater or equal to the probe bandwidth $† Through entire frequency range$

Product Description	Product Code
Complete Probe Systems	
4 GHz Complete Probe System with Dx10-SI Solder-In Tip (Qty. 1),	D410-PS
Dx10-SP Square Pin (Qty. 1), Dx10-QC Quick Connect (Qty. 1), and	
Dx10-PT-KIT Positioner Tip Browser (Qty. 1)	
4 GHz Complete Probe System with Dx20-SI Solder-In Tip (Qty. 1),	D420-PS
Dx20-SP Square Pin (Qty. 1), Dx20-QC Quick Connect (Qty. 1), and	
Dx20-PT-KIT Positioner Tip Browser (Qty. 1)	
6 GHz Complete Probe System with Dx10-SI Solder-In Tip (Qty. 1),	D610-PS
Dx10-SP Square Pin (Qty. 1), Dx10-QC Quick Connect (Qty. 1), and	
Dx10-PT-KIT Positioner Tip Browser (Qty. 1)	
6 GHz Complete Probe System with Dx20-SI Solder-In Tip (Qty. 1),	D620-PS
Dx20-SP Square Pin (Qty. 1), Dx20-QC Quick Connect (Qty. 1), and	
Dx20-PT-KIT Positioner Tip Browser (Qty. 1)	
Amplifier and Probe Tip Modules	
WaveLink D410 4 GHz/2.5Vp-p Differential Probe Amplifier with	D410
Dx10-SI Solder-In Tip (Qty. 1), Dx10-SP Square Pin (Qty. 1), and	
Dx10-QC Quick Connect (Qty. 1)	
WaveLink D420 4 GHz/5Vp-p Differential Probe Amplifier with	D420
Dx20-SI Solder-In Tip (Qty. 1), Dx20-SP Square Pin (Qty. 1), and	
Dx20-QC Quick Connect (Qty. 1)	
WaveLink D610 6 GHz/2.5Vp-p Differential Probe Amplifier with	D610
Dx10-SI Solder-In Tip (Qty. 1), Dx10-SP Square Pin (Qty. 1), and	
Dx10-QC Quick Connect (Qty. 1)	
WaveLink D620 6 GHz/5Vp-p Differential Probe Amplifier with	D620
Dx20-SI Solder-In Tip (Qty. 1), Dx20-SP Square Pin (Qty. 1), Dx20-	
QC Quick Connect (Qty. 1)	

Product Description	Product Code
Amplifier and Probe Tip Modules (cont'd)	
WaveLink D300A-AT 4 GHz/4.8Vp-p Differential Amplifier	D400A-AT
Module with Adjustable Tip	
WaveLink D600A-AT 6 GHz/4.8Vp-p Differential Amplifier	D600A-AT
Module with Adjustable Tip	
Positioner Tip (Browser) Kits	
WaveLink Dx10-PT Adjustable Positioner Tip Kit.	Dx10-PT-KIT
For use with Dx10 amplifiers.	
WaveLink Dx20-PT Adjustable Positioner Tip Kit.	Dx20-PT-KIT
For use with Dx20 amplifiers.	
Probe Platform/Cable Assemblies and Adapters	
WaveLink ProLink Platform/Cable Assembly Kit with	WL-PLINK-CASE
complete soft carrying case for all probe items.	
WaveLink ProBus Platform/Cable Assembly Kit with	WL-PBUS-CASE
complete soft carrying case for all probe items.	
Hi-Temp Leads	
WaveLink Temperature Extension Cables for Dx10.	Dx10-HiTemp
Includes set of Matched 30" High Temperature Cables (Qty. 1)	
and solder-in lead set (Qty. 1)	D 00 117
WaveLink Temperature Extension Cables for Dx20.	Dx20-HiTemp
Includes set of Matched 30" High Temperature Cables (Qty. 1) and solder-in lead set (Qty. 1)	
and solder in lead set (Qty. 1)	

8 GHz - 13 GHz DIFFERENTIAL PROBES

Teledyne LeCroy 8 GHz - 13 GHz Differential Probe Model Numbers:


D830-PS D1030-PS D1330-PS

General Purpose Probe with Range of Capabilities

Teledyne LeCroy's WaveLink 8-13 GHz Differential Probes are a medium bandwidth, general purpose probing solution with high input dynamic range and offset range capability. These probes support solder-in, positioner (browser), square pin and SMA/SMP cabled tip/lead connections. The range of capabilities is ideal for a variety of high speed DDR signals where high dynamic range and large offset requirements are common.

Features and Benefits

- Choice of 8, 10, or 13 GHz bandwidth models
- •• 3.5 V_{pk-pk} dynamic range
- ±4 V offset range
- Ideal for DDR3, DDR4, LPDDR3
- Deluxe soft carrying case
- Wide variety of tips and leads
 - Solder-In Lead
 - Positioner (Browser) Tip
 - SMA/SMP Lead
 - Square Pin Lead
- SMA/SMP lead set accessory does not require purchase of a different amplifier

8 GHz - 13 GHz DIFFERENTIAL PROBES

	D830, D830-PS	D1030, D1030-PS	D1330, D1330-PS		
3andwidth	Dxx30-SI, Dxx30-SMA-SMP, and Dxx30-PT Tips 8 GHz (probe only, guaranteed) 8 GHz (system bandwidth, when used with 808Zi/Zi-A, typical)	Dxx30-SI, Dxx30-SMA-SMP, and Dxx30-PT Tips 10 GHz (probe only, guaranteed) 10 GHz (system bandwidth, when used with 813Zi/Zi-A, typical)	Dxx30-SI and Dxx30-SMA-SMP Tips 13 GHz (probe only, guaranteed) 13 GHz (system bandwidth, when used with 813Zi/Zi-A, typical) Dxx30-PT Tip		
	Dxx30-SP Tip 3 GHz (probe only, guaranteed) 3 GHz (system bandwidth,	Dxx30-SP Tip 3 GHz (probe only, guaranteed) 3 GHz (system bandwidth, 3 GHz (system bandwidth,	10 GHz (probe only, guaranteed) 10 GHz (system bandwidth, when used with 813Zi/Zi-A, typical)		
	when used with 808Zi/Zi-A, typical)	when used with 813Zi/Zi-A, typical)	Dxx30-SP Tip 3 GHz (probe only, guaranteed) 3 GHz (system bandwidth, when used with 813Zi/Zi-A, typical)		
Rise Time (10-90%)	Dxx30-SI, Dxx30-SMA-SMP, and Dxx30-PT Tips 50 ps (typical) System rise time measured with ≥8 GHz oscilloscope	Dxx30-SI, Dxx30-SMA-SMP, and Dxx30-PT Tips 40 ps (typical) System rise time measured with ≥13 GHz oscilloscope	Dxx30-SI and Dxx30-SMA-SMP Tips 35 ps (typical) System rise time measured with ≥13 GHz oscilloscope Dxx30-PT Tip		
	Dxx30-SP Tip 132 ps (typical) System rise time measured with ≥8 GHz oscilloscope	Dxx30-SP Tip 132 ps (typical) System rise time measured with ≥13 GHz oscilloscope	40 ps (typical) System rise time measured with ≥13 GHz oscilloscope Dxx30-SP Tip 132 ps (typical) System rise time measured with ≥13 GHz oscilloscope		
Rise Time (20–80%)	Dxx30-SI, Dxx30-SMA-SMP, and Dxx30-PT Tips 37.5 ps (typical) System rise time measured with ≥8 GHz oscilloscope Dxx30-SP Tip 100 ps (typical) System rise time measured with ≥8 GHz oscilloscope	Dxx30-SI, Dxx30-SMA-SMP, and Dxx30-PT Tips 30 ps (typical) System rise time measured with ≥13 GHz oscilloscope Dxx30-SP Tip 100 ps (typical) System rise time measured with ≥13 GHz oscilloscope	Dxx30-SI and Dxx30-SMA-SMP Tips 26 ps (typical) System rise time measured with ≥13 GHz oscilloscope Dxx30-PT Tip 30 ps (typical) System rise time measured with ≥13 GHz oscilloscope Dxx30-SP Tip 100 ps (typical) System rise time measured with ≥13 GHz oscilloscope		
Noise (Probe)	<48 nV/√Hz (4.3 mVrms) (typical) Referred to input, 8 GHz bandwidth.	<48 nV/√Hz (4.8 mVrms) (typical) Referred to input, 10 GHz bandwidth.	<48 nV/√Hz (5.5 mVrms) (typical) Referred to input, 13 GHz bandwidth.		
Noise (System)	<52 nV/√Hz (4.6 mVrms) (typical) Referred to input, 8 GHz bandwidth.	<52 nV/√Hz (5.2 mVrms) (typical) Referred to input, 10 GHz bandwidth.	<52nV/√Hz (5.9 mVrms) (typical) Referred to input, 13 GHz bandwidth.		
nput		2 Flydy ply 11 7Fly (pageing)			
Input Dynamic Range Input Common Mode Voltage Range		3.5Vpk-pk, ±1.75V (nominal) ±5 V (nominal)			
nput Common Mode Voltage Range nput Offset Voltage Range		±5 V (nominal) ±4 V Differential (nominal)			
Non-destructive Input Range		±4 v Differential (norminal)			
Attenuation					
	3.75x (nominal) 200 k Ω Differential				
		200 k litterential			
DC Input Resistance (Nominal)					
	5250 O.I	200 k Ω Differential 50 k Ω Common mode Differential through entire frequency range using	a SI tin		

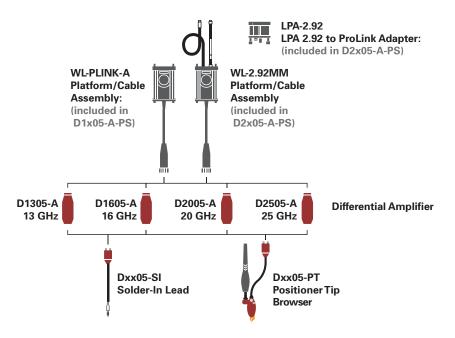
 $\begin{array}{c} \textbf{Dxx30-SI Lead} \\ 470~\Omega~\text{at 4 GHz, } 320~\Omega~\text{at 6 GHz, } 260~\Omega~\text{at 8 GHz, } 250~\Omega~\text{at 9 GHz, } 260~\Omega~\text{at 10 GHz, } 350~\Omega~\text{at 13 GHz} \end{array}$

Dxx30-PT Tip 155 Ω at 4 GHz, 210 Ω at 6 GHz, 140 Ω at 8 GHz, 80 Ω at 9 GHz, 40 Ω at 10 GHz

Product Description Complete Probe Systems	Product Code	Product Description Positioner Tip (Browser) Kits	Product Code
8 GHz Complete Probe System with Dxx30-SI Solder-In Tip (Qty. 2), Dxx30-SP Square Pin (Qty. 1), and	D830-PS	WaveLink Dxx30-PT (up to 10 GHz rating) Adjustable Positioner Tip Kit. For use with Dxx30 amplifiers.	Dxx30-PT-KIT
Dxx30-PT-KIT Positioner Tip Browser (Qty. 1)		Probe Platform/Cable Assemblies and Adapters	
10 GHz Complete Probe System with Dxx30-SI Solder-In Tip (Qty. 2), Dxx30-SP Square Pin (Qty. 1), and Dxx30-PT-KIT Positioner Tip Browser (Qty. 1)	D1030-PS	WaveLink ProLink Platform/Cable Assembly Kit with complete soft carrying case for all probe items.	WL-PLINK-CASE
13 GHz Complete Probe System with Dxx30-SI Solder-In Tip (Qty. 2), Dxx30-SP Square Pin (Qty. 1), and	D1330-PS	SMA/SMP Lead Set	
Dxx30-PT-KIT Positioner Tip Browser (Qty. 1)		Lead set consisting of WaveLink	Dxx30-SMA-SMP-LEADS
Amplifier and Probe Tip Modules		Dxx30-SMA-SMP-LEADS for use with Dxx30 amplifiers.	
WaveLink D830 8 GHz/3.5V _{p-p} Differential Probe	D830	'	
Amplifier with Dxx30-SI Solder-In Tip (Qty. 2) and		Accessories	
Dxx30-SP Square Pin (Qty. 1)		Cascade Microtech EZ-Probe Positioner	EZ PROBE
WaveLink D1030 10 GHz/3.5V _{p-p} Differential Probe Amplifier with Dxx30-SI Solder-In Tip (Qty. 2) and	D1030	Probe Deskew and Calibration Test Fixture	TF-DSQ
Dxx30-SP Square Pin (Qty. 1)		Calibration Options	
WaveLink D1330 13 GHz/3.5V _{p-p} Differential Probe	D1330	NIST Calibration for D830. Includes test data.	D830-CCNIST
Amplifier with Dxx30-SI Solder-In Tip (Qty. 2) and	2,000	NIST Calibration for D1030. Includes test data.	D1030-CCNIST
Dxx30-SP Square Pin (Qty. 1)		NIST Calibration for D1330. Includes test data.	D1330-CCNIST

13 GHz - 25 GHz DIFFERENTIAL PROBES

Teledyne LeCroy 13 GHz - 25 GHz **Differential** Probe **Model Numbers:**


D1305-A-PS D1605-A-PS D2005-A-PS D2505-A-PS

Ultra-wideband Architecture for Superior Signal Fidelity

Teledyne LeCroy's WaveLink® high bandwidth differential probes utilize advanced differential traveling wave (distributed) amplifier architecture to achieve superior high frequency true analog broadband performance. Traveling wave (distributed) amplifiers are commonly used in ultra high frequency broadband amplifiers. This multi-stage amplifier architecture maximizes gain per stage and minimizes probe attenuation, which provides very low probe noise and fast rise times.

Features & Benefits

- Up to 25 GHz bandwidth (probe + oscilloscope)
- System rise time as fast as 13 ps (20-80%)
- 25 GHz Solder-in solution
- 22 GHz ultra-compact browser tip
- Superior probe impedance minimizes AC loading on device under test (DUT)
- Carbon-composite browser tips optimize signal fidelity and minimize loading
- Probe noise as low as 14 nV/√Hz (1.6 mV_{rms})
- Low probe attenuation
- Large operating voltage range ±4 V common mode range ±2.5 V offset range 2.0 V_{pk-pk} dynamic range
- Long length Solder-In tip with field replaceable resistors

13 GHz - 25 GHz DIFFERENTIAL PROBES

	D1305-A, D1305-A-PS	D1605-A, D1605-A-PS	D2005-A, D2005-A-PS	D2505-A, D2505-A-PS	
Bandwidth	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI Lead	
	13 GHz (probe only, guaranteed)	16 GHz (probe only, guaranteed)	20 GHz (probe only, guaranteed)	25 GHz (probe only, guaranteed)	
	13 GHz (system bandwidth,	16 GHz (system bandwidth,	20 GHz (system bandwidth,	25 GHz (system bandwidth,	
	when used with 813Zi, typical)	when used with 816Zi, typical)	when used with 820Zi, typical)	when used with 825Zi, typical)	
				Dxx05-PT Tip	
				22 GHz (system bandwidth,	
				when used with 825Zi, typical) 20 GHz (probe only, guaranteed)	
Rise Time (10-90%)	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI Lead	
Tilise Tillie (10 30%)	32.5 ps (typical)	28 ps (typical)	20 ps (typical)	17.5 ps (typical)	
	System rise time measured	System rise time, measured	System rise time measured	System rise time measured with	
	with ≥ 13 GHz oscilloscope)	with ≥ 16 GHz oscilloscope	with ≥ 20 GHz oscilloscope	≥ 25 GHz oscilloscope	
				Dxx05-PT Tip	
				19 ps (typical)	
				System rise time measured with ≥ 25 GHz oscilloscope	
Rise Time (20-80%)	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI and Dxx05-PT Tips	Dxx05-SI Lead	
Tilise Tillie (20 00%)	24.5 ps (typical)	21 ps (typical)	15 ps (typical)	13 ps (typical)	
	System rise time measured	System rise time measured	System rise time measured	System rise time measured with	
	with ≥ 13 GHz oscilloscope	with ≥ 16 GHz oscilloscope	with ≥ 20 GHz oscilloscope	≥ 25 GHz oscilloscope	
				Dxx05-PT Tip	
				14 ps (typical)	
				System rise time measured with ≥ 25 GHz oscilloscope	
Noise (Probe)	< 14 nV/√Hz (1.6 mV _{rms})	< 14 nV/√Hz (1.8 mV _{rms})	< 18 nV/√Hz (2.5 mV _{rms})	< 18 nV/√Hz (2.8 mV _{rms})	
, ,	(typical)	(typical)	(typical)	(typical)	
	Referred to input,	Referred to input,	Referred to input,	Referred to input,	
	13 GHz bandwidth	16 GHz bandwidth	20 GHz bandwidth	25 GHz bandwidth	
Noise (System)	< 23 nV/√Hz (2.7 mV _{rms}) (typical) Referred to input,	< 23 nV/√Hz (2.9 mVrms) (typical) Referred to input,	< 28 nV/√Hz (4.0 mV _{rms}) (typical) Referred to input,	< 28 nV/√Hz (4.5 mV _{rms}) (typical) Referred to input,	
	13 GHz bandwidth	16 GHz bandwidth	20 GHz bandwidth	25 GHz bandwidth	
Input	10 driz bariawiani	10 0112 ballawidali	20 GHZ Barlawidin	20 OH2 Barrawian	
Input Dynamic Range		2.0 V _{pk-pk} , (±1.0	V) (nominal)		
Input Common Mode Voltage Range		±4 V (no			
Input Offset Voltage Range		±2.5 V Different			
Non-destructive Input Range		±10 V (no			
Attenuation	3.5x (n	ominal)	4.5x (no	ominal)	
DC Input Resistance (Nominal)	1.1 k Ω Differential 100 k Ω Common mode				
Impedance (Zmin, typical)	Dxx05-SI Lead	Dxx05-SI Lead	Dxx05-SI Lead	Dxx05-SI Lead	
. , , , ,	> 300 Ω Differential through	> 300 Ω Differential through	> 230 Ω Differential through	> 120 Ω Differential through	
	entire frequency range	entire frequency range	entire frequency range	entire frequency range	
	Dxx05-PT Tip	Dxx05-PT Tip	Dxx05-PT Tip	Dxx05-PT Tip	
	>160 Ω Differential through	>160 Ω Differential through	>160 Ω Differential through	>160 Ω Differential through	
	entire frequency range	entire frequency range	entire frequency range	entire frequency range	
Impedance (mid-band, typical)	Dxx05-SI Lead: 3	$800~\Omega$ at 6 GHz, 525 Ω at 13 GHz, 60	$00~\Omega$ at 16 GHz, 300 Ω at 20 GHz, 1:	20 Ω at 25 GHz	

Dxx05-PT Tip: 160 Ω at 6 GHz, 450 Ω at 13 GHz, 240 Ω at 16 GHz, 210 Ω at 20 GHz

Product Description	Product Code
Complete Probe Systems	
13 GHz Complete Probe System with Solder-In Tip (13 GHz) and Positioner Tip Browser (13 GHz)	D1305-A-PS
16 GHz Complete Probe System with Solder-In Tip (16 GHz) and Positioner Tip Browser (16 GHz)	D1605-A-PS
20 GHz Complete Probe System with Solder-In Tip (20 GHz) and Positioner Tip Browser (20 GHz)	D2005-A-PS
25 GHz Complete Probe System with Solder-In Tip (25 GHz) and Positioner Tip Browser (22 GHz)	D2505-A-PS
Amplifier and Probe Tip Modules	
WaveLink D1305 13 GHz/1.6 V_{pk-pk} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D1305-A
WaveLink D1605 16 GHz/1.6 V _{pk-pk} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D1605-A
WaveLink D2005 20 GHz/1.6 V _{pk-pk} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D2005-A
WaveLink D2505 25 GHz/1.6 $V_{\rm pk:p}$ Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D2505-A
Positioner Tip (Browser) Kits	
WaveLink Dxx05-PT (Up to 22 GHz Rating) Adjustable Positioner Tip Kit. For use with Dxx05 Amplifiers	Dxx05-PT-KIT
Probe Platform/Cable Assemblies and Adapters	
WaveLink ProLink Platform/Cable Assembly Kit for ≥ 13 GHz WaveLink Probes	WL-PLINK-A-CASE
WaveLink 2.92 mm Platform/Cable Assembly Kit for ≥ 20 GHz WaveLink Probes	WL-2.92MM-CASE
ProLink to 2.92 mm Adapter with Probe Power and Communication Pass Through	LPA-2.92

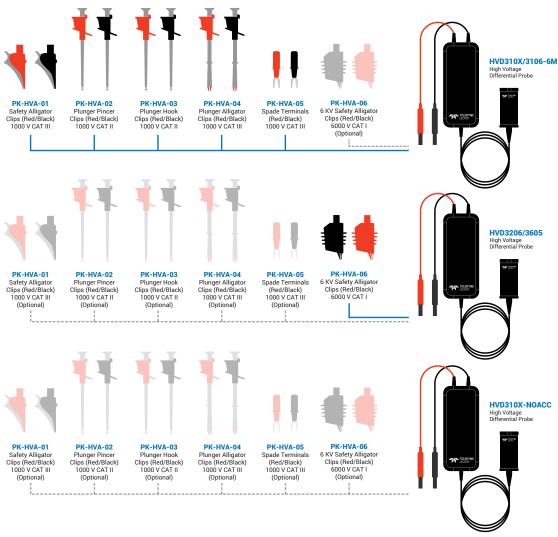
Product Description	Product Code		
Accessories			
Cascade Microtech EZ-Probe Positioner	EZ PROBE		
Probe Deskew and Calibration Test Fixture	TF-DSQ		
Calibration Options			
NIST Calibration for D1305. Includes Test Data	D1305-A-CCNIST		
NIST Calibration for D1605. Includes Test Data	D1605-A-CCNIST		
NIST Calibration for D2005. Includes Test Data	D2005-A-CCNIST		
NIST Calibration for D2505. Includes Test Data	D2505-A-CCNIST		
Replacement Parts			
Replacement Dxx05-SI 13-25 GHz Solder-In Lead with Qty. 5 Spare Resistors	Dxx05-SI		
Replacement SI Resistor Kit for Dxx05-SI Solder-In Tip	Dxx05-SI-RESISTORS		
Replacement Dxx05-PT Positioner Tip	Dxx05-PT		
Qty. 4 Replacement Carbon Composite Pogo-pin Tips	Dxx05-PT-TIPS		
Replacement Probe Tip Holder Kit	PK600ST-3		
Replacement Platform/Cable Assembly Mounting Kit	PK600ST-4		
Qty. 1 Package of Black Adhesive Pads (10/pkg.) and Qty. 1 Package of White Adhesive Pads (10/pkg.)	Dxx0-PT-TAPE		
Qty. 1 Package of Adhesive Probe Connection Guides (200 individual guides/package)	Dxx05-PT-GUIDES		

Differential active probes are like two probes in one. Instead of measuring a test point in relation to a ground point (like single-ended active probes), differential probes measure the difference in voltage of a test point in relation to another test point.

Teledyne LeCroy
High Voltage
Differential Probe
Model Numbers:
HVD3102
HVD3106-6M
HVD3206
HVD3605
AP031
ADP300
ADP305

Teledyne LeCroy High Voltage Differential Probe Model Numbers:

HVD3102 HVD3106 HVD3106-6M HVD3206 HVD3605



The HVD3000 series high voltage differential probes provide high CMRR over a broad frequency range to simplify the measurement challenges found in noisy, high common-mode power electronics environments. The probe's design is easy-to-use and enables safe, precise high voltage floating measurements.

Key Features

- 1 kV, 2 kV, 6 kV CAT safety rated models
- World's only 1500 V_{dc} safety rated probe per IEC/EN 61010-031:2015
- Widest differential voltage ranges available
- Exceptional common-mode rejection ratio (CMRR) across a broad frequency range
- 1% gain accuracy
- High offset capability at both high and low attenuation
- AC and DC coupling
- ProBus active probe interface with automatic scaling
- Auto-zero capabilities
- Wide oscilloscope compatibility

	HVD3102	HVD3102-NOACC	HVD3106	HVD3106-NOACC	HVD3106-6M	HVD3206	HVD3605
Bandwidth	25 MHz	25 MHz	120 MHz	120 MHz	80 MHz	120 MHz	100 MHz
Differential	1500 V	1500 V	1500 V	1500 V	1500 V	2000 V	7000 V
Voltage Range	(DC + peak AC) (2000V maximum typical measurable before saturation)	(DC + peak AC) (2000V maximum typical measurable before saturation	(DC + peak AC) (2000V maximum typical measurable before saturation)	(DC + peak AC) (2000V maximum typical measurable before saturation)	(DC + peak AC) (2000V maximum typical measurable before saturation)	(DC + peak AC)	(DC + peak AC) (7600 V maximum typical measurable before saturation)
Max Safe Input Voltage	1000 Vrms CAT III	1000 V _{rms} CAT III	1000 Vrms CAT III	1000 V _{rms} CAT III	1000 V _{rms} CAT III	1000 Vrms CAT III 1500 Vdc CAT III 2000 V (DC + peak AC) CAT I	8485 V (DC + peak AC) CAT I 6000 V _{rms} CAT I 1000 V _{rms} CAT III 1500 V _{dc} CAT III
Gain Accuracy	1%	1%	1%	1%	1%	1%	1%
Cable Length	2 meters	2 meters	2 meters	2 meters	6 meters	2 meters	6 meters
Included Tip Accessories	Yes	No	Yes	No	Yes	Yes	Yes

Ordering Information

Product Description	Product Code
1 kV, 25 MHz High Voltage Differential Probe with 2 m cable	HVD3102
1 kV, 120 MHz High Voltage Differential Probe with 2 m cable	HVD3106
1 kV, 80 MHz High Voltage Differential Probe with 6m cable	HVD3106-6M
1 kV, 25 MHz High Voltage Differential Probe with 2 m cable without tip Accessories	HVD3102-NOACC
1 kV, 120 MHz High Voltage Differential Probe with 2 m cable without tip Accessories	HVD3106-NOACC
2 kV, 120 MHz High Voltage Differential Probe with 2 m cable	HVD3206
6 ky, 100 MHz High Voltage Differential Probe with 6 m cable	HVD3605
High Voltage Replacement Accessories Kit (Includes 2 each, 1 Black, 1 Red):	PK-HV-001

Teledyne LeCroy High Voltage Differential Probe Model Numbers:

AP031 ADP300 ADP305

AP031

The AP031 is a low cost, battery operated active differential probe intended for measuring higher voltages. The differential techniques employed permit measurements to be taken at two points in a circuit without reference to the ground, allowing the oscilloscope to be safely grounded without the use of opto-isolators or isolating transformers.

Features

- Safe floating measurements
- 15 MHz bandwidth
- 700 V maximum input voltage
- Works with any 1 M Ω input oscilloscope

Specifications

Attenuation	÷10 / ÷100
Bandwidth	15 MHz
Input R	$4 extsf{M}\Omega$
Differential Mode Range	±70 V / ±700 V DC + Peak AC
Common Mode Range	±700 V DC + Peak AC
CMRR	86 dB @ 50 Hz
	56 dB @ 200 kHz

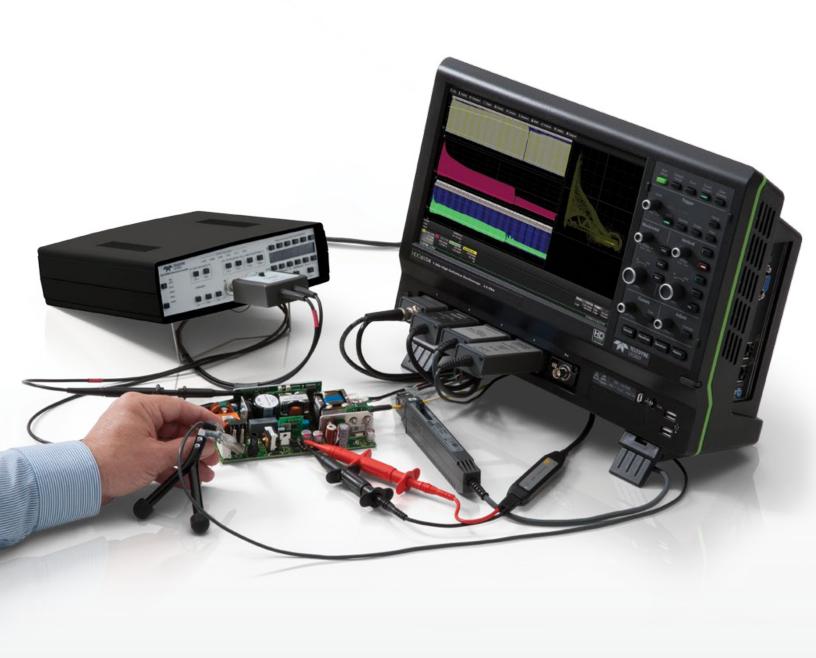
Power Requirements: four AA batteries

Ordering Information

Product Description	Product Code
700 V, 15 MHz Differential Probe (÷10, ÷100)	AP031
1,400 V, 20 MHz High-Voltage Differential Probe	AP300
1,400 V, 100 MHz High-Voltage Differential Probe	AP305

ADP30X

ADP30X high-voltage active probes are safe, easy-to-use, and ideally suited for measuring power electronics. The ADP300 is designed for troubleshooting low-frequency power devices and other circuits where the reference potential is elevated from the ground or the location of the ground is unknown. The ADP305 is designed for measuring the high-speed floating voltages found in today's power electronics.


Features

- 20 MHz and 100 MHz bandwidth
- 1,000 V_{rms} common mode voltage
- 1,400 V_{peak} differential voltage
- EN 61010 CAT III
- 80 dB CMRR at 50/60 Hz
- ProBus system
- Full remote control

Specifications

Electrical Characteristics					
Bandwidth	20 MHz (ADP300)				
	100 MHz (ADP305)				
Differential Voltage	1,400 V peak				
Common Mode Voltage 1,000 V rms CAT III					
-Frequency Accuracy (Probe Only) 1% of Reading					
CMRR	50/60 Hz 80 dB (10,000:1)				
	100 kHz 50 dB (300:1)				
Max. Slew Rate (Referenced to Input)	60,000 V/µs (ADP300)				
	300,000 V/µs (ADP305)				
AC Noise (Referenced to Input) 50 mV rms					
Attenuation ÷100/÷1000 (automatically selected by s					
Input Impedance	Between inputs $8 M\Omega$, $6 pF$				
	Each input to ground $4 M\Omega$, $1 pF$				
Sensitivity	1 V/div to 350 V/div (ADP300)				
	200 mV/div to 350 V/div (ADP305)				
Interface	ProBus, 1 MΩ*				
General Characteristics					
Overall Length	2 m				
Input Connectors	4 mm Shrouded Banana Plug				
Operating Temperature	0 °C to 50 °C				
Warranty 1 year					

^{*}Requires AP-1M for oscilloscopes with 50 Ω only inputs

Differential amplifiers are intended to act as signal conditioning preamplifiers for oscilloscopes and network and spectrum analyzers, providing differential measurement capability to instruments having only a single-ended input. The "-PR2" version of each amplifier is a dual channel unit. The DXC series differential input cables are matched to the characteristics of the amplifier.

Teledyne LeCroy Differential Amplifier and Accessory Model Numbers:

DA1855A
DA1855-PR2
DA1855A-RM
DA1855A-PR2-RM
DXC5100
DXC100A
DXC200
DA101

Teledyne LeCroy Differential Amplifier and Accessory Model Numbers:

DA1855A
DA1855-PR2
DA1855A-RM
DA1855A-PR2-RM
DXC5100
DXC100A
DXC200
DA101

DA1855A

The DA1855A is a stand-alone, high-performance 100 MHz differential amplifier. It is intended to act as a signal conditioning preamplifier for oscilloscopes, digitizers and spectrum analyzers, providing differential measurement capability to instruments having only a single-ended input. When used with a DA1855A, oscilloscopes can obtain Common Mode Rejection Ratio (CMRR) and overdrive recovery performance levels previously unobtainable.

Amplifier gain can be set to 1 or 10 A built-in input attenuator can be separately set to attenuate signals by a factor of 10, providing gains of 10, 1, or 0.1 and common mode dynamic range of ±15.5 V (÷1) or ±155 V (÷10). Optional probes increase the maximum input signal and common mode ranges

in proportion to their attenuation ratio but do not exceed their maximum input voltage rating. Effective gain of the DA1855A, including probe attenuation, amplifier gain and attenuator settings, is automatically displayed.

The DA1855A features a built-in Precision Voltage Generator (PVG) that can be set to any voltage between $\pm 15.5 \text{ V} (\pm 10 \text{ V} \text{ in Differential Offset})$ with up to $100 \, \mu\text{V}$ resolution. The PVG's output can be selected as an input to the inverting (-) input of the amplifier for operation as a differential comparator, or applied internally as a true differential offset voltage independent of oscilloscope offset. The differential amplifier is also available in a 2 channel model. In addition, a rackmount is available for each model for easy installation with other instruments.

DXC100A

÷100 or ÷10 Selectable, 250 MHz Passive Differential Probe Pair

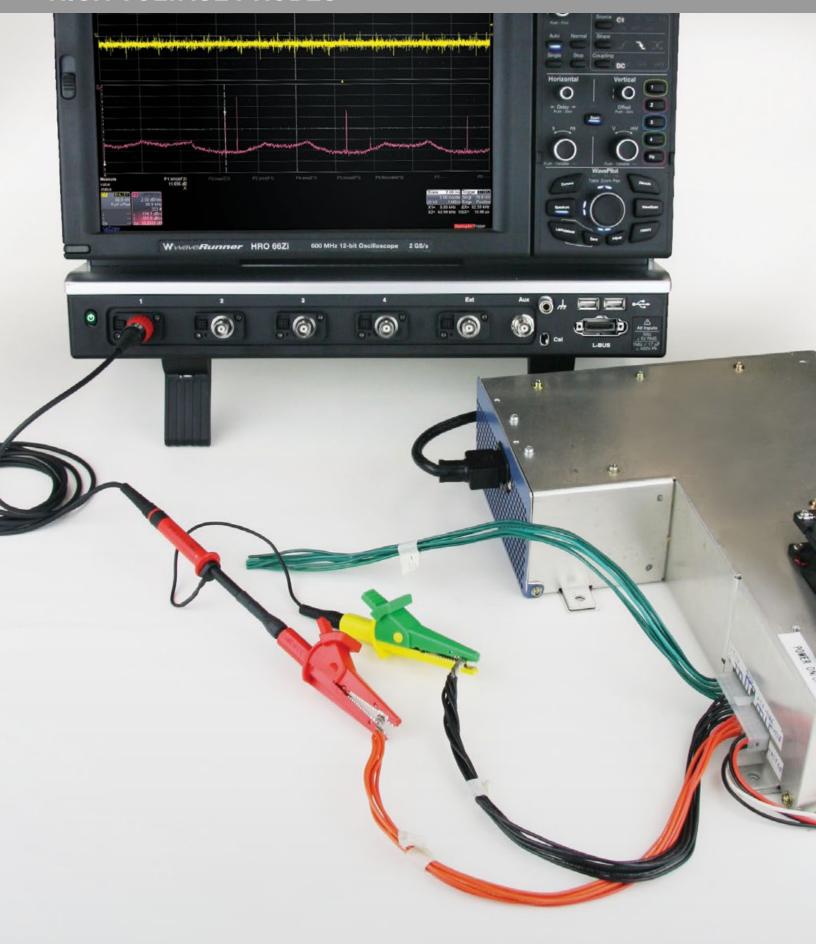
- DC to 100 MHz Bandwidth with DA1855A
 DC to 10 MHz Bandwidth with DA1822
- Max Input Voltage 500 V
- Selectable 10 or 100 Attenuation Factor
- 1.2 m Cable Length

DXC200

- ÷1, 50 MHz, Passive Differential Probe Pair
- DC to 50 MHz with DA1855A
 DC to 10 MHz with DA1822A
- Max Input Voltage 500 V (Limited to Amplifier Max Input Voltage)
- x1 Differential Probe Pair
- 0.7 m Cable Length

DXC5100

÷100, 2.5KV Passive High Voltage Probe Pair. Requires DA101 for full performance



DA101

 \div 10, 1M Ω Passive Attenuator for DXC series probes

Ordering Information

Product Description	Product Code
1 Ch, 100 MHz Differential Amplifier with Precision Voltage Source	DA1855A
2 Ch,100 MHz Differential Amplifier with Precision Voltage Source	DA1855A-PR2
DA1855A with Rackmount	DA1855A-RM
DA1855A with Rackmount (must be ordered at time of purchase, no retrofit)	DA1855A-PR2-RM
÷100 or ÷10 Selectable, 250 MHz Passive Differential Probe Pair	DXC100A*
÷1, 50 MHz Passive Differential Probe Pair	DXC200*
÷100, 250 MHz 2.5 kV, High Voltage Probe Pair (requires DA101 for full performance)	DXC-5100*
÷10 1 MΩ Passive Attenuator for DXC Series Probes	DA101*

High voltage probes are suitable for a wide range of applications where high-voltage measurements must be made safely and accurately. There are several fixed attenuation probes covering a range from 1 kV to 6 kV and varying transient overvoltage ratings. All of these high voltage probes feature a spring loaded probe tip and a variety of standard accessories to make probing high voltages safe and easy. Additionally, all of the high voltage probe have a probe sense pin to automatically configure the oscilloscope for use with the probe.

Teledyne LeCroy High Voltage Probe Model Numbers:

> HVP120 PPE1.2KV PPE2KV PPE4KV PPE5KV PPE6KV

Teledyne LeCroy High Voltage Probe Model Number: HVP120

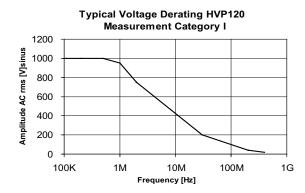
The HVP120 is a high voltage passive probe designed for probing up to 1,000 Vrms and capable of handling up to 6,000 V peak transients. Its fast rise time and excellent frequency response make it suitable for a wide variety of high voltage measurement applications. The HVP120 features a spring loaded probe tip and a variety of standard accessories to make probing high voltages safe and easy.

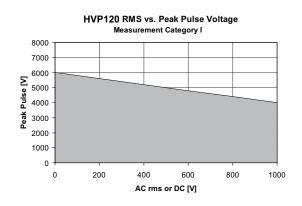
Features

- 400 MHz probe bandwidth
- 900 ps rise time
- 1000 Vrms maximum input
- Up to 6 kV transient overvoltage

Electrical Characteristics

Election onalaction	
Bandwidth	400 MHz
Risetime (10% - 90%)	900 ps (typical)
Maximum Input Voltage*	
Measurement Category II	1000 Vrms
Measurement Category I	4000V Transient Overvoltage at 1000 Vrms
	6000V Transient Overvoltage at 0 Vrms
Pollution Degree*	2
Input Capacitance	7.5 pF (typical)
Compensation Range	10 pF - 50 pF (typical)
Attenuation Ratio	100:1 ± 2%


Environmental


Temperature (Operating)	0°C to 50°C
Temperature (Non-Operating)	-40°C to 71°C
Humidity (Operating)	80% RH (Non-Condensing) up to 31°C, decreasing linearly to 40% RH at 50°C
Altitude (Operating)	up to 2,000 m
Altitude (Non-Operating)	up to 15,000 m

General Characteristics

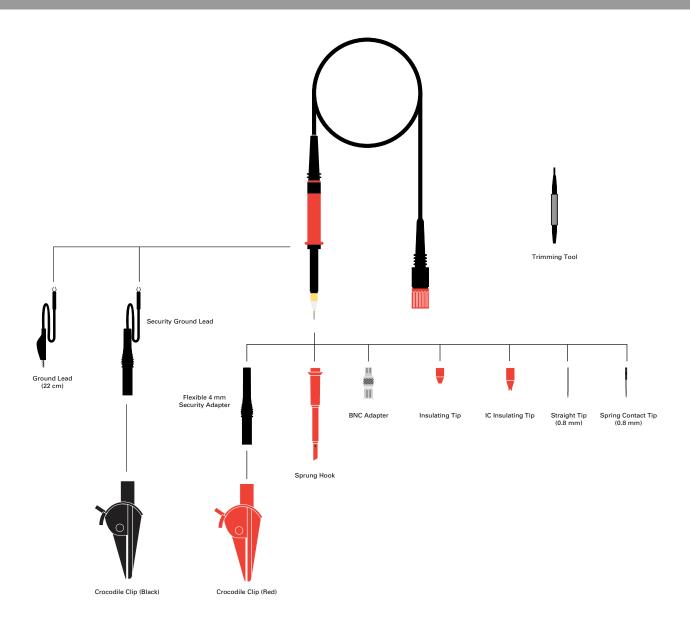
Weight (probe)	67 g (0.15 lbs)
Cable Length	2 m (6.56 ft)
Probe Tip Diameter	5 mm (0.20 inches)

^{*} As defined in IEC 61010-031

Product Description	Product Code
400 MHz, High Voltage Passive Probe	HVP120
High Voltage Replacement Accessories Kit	PK-HV-002
Replacement Accessories	
One of each of the following accessories are included with the HVP120. Replacement quantities are listed below.	
Coding Rings (set) 4 Colors (Qty 3 also included standard)	PK1-5MM-106
Ground Lead 22 cm to 4 mm Banana plug (Qty 1)	PK1-5MM-122
Solid Tip 0.8 mm (Qty 5)	PK1-5MM-125
Spring Tip 0.8 mm (Qty 5)	PK1-5MM-126
BNC Adapter 5.0-L (Qty 1)	PK1-5MM-127
Insulating Cap 5.0-L (Qty 1)	PK1-5MM-128
Protection Cap 5.0-L (Qty 1)	PK1-5MM-129
Sprung Hook 5.0-L (Qty 1)	PK1-5MM-130
Adjustment Tool T (Qty 1)	PK1-5MM-131
Flexible Adapter 5.0-L (Qty 1)	PK1-5MM-132
Safety Alligator Clip red (Qty 1)	PK1-5MM-133
Ground Lead 22 cm (Qty 1)	PK1-5MM-134

Teledyne LeCroy High Voltage Probe Model Numbers:

PPE1.2KV PPE2KV PPE4KV PPE5KV PPE6KV


The PPE series includes four fixed-attenuation probes covering a range from 2 kV to 6 kV, and one switchable probe providing $\div 10/\div 100$ attenuation for voltage inputs up to 1.2 kV. All fixed-attenuation, standard probes automatically rescale compatible Teledyne LeCroy oscilloscopes for the appropriate attenuation of the probe.

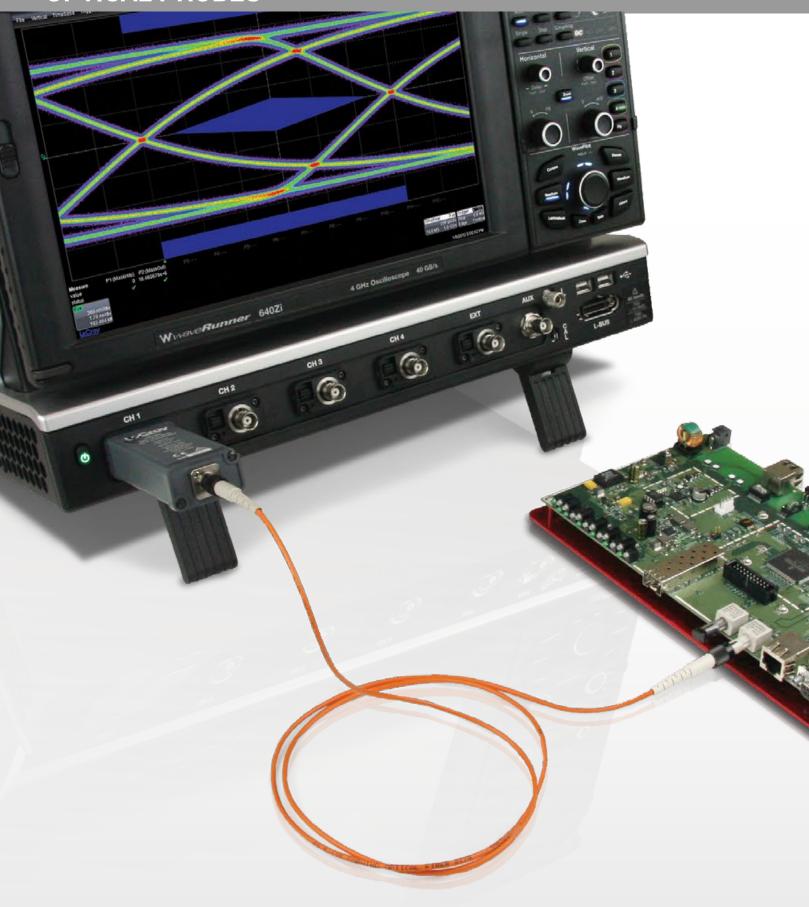
Features

- Safe, accurate high-voltage measurement
- 1.2 kV to 6 kV

High-Voltage Probes Selection Guide Specifications

Types	Bandwidth	Input R	Input C	Attenuation	Maximum	Probe	Cable
	(MHz)	(Ω)	(pF)		Voltage	Encoding	
PPE1.2kV*	400	50 M	< 6	÷10 / ÷100	600 V/1.2 kV	No	2 m
PPE2kV*	400	50 M	< 6	÷100	2 kV	Yes	2 m
PPE4kV*	400	50 M	< 6	÷100	4 kV	Yes	2 m
PPE5kV*	400	50 M	< 6	÷100	5 kV	Yes	2 m
PPE6kV*	400	50 M	< 6	÷1000	6 kV	Yes	2 m

Ordering Information


Product Description	Product Code
÷10/÷100; 200/300 MHz; 5 M Ω /50 M Ω High-Voltage Probe, 600 V/1.2 kV max. Voltage DC	PPE1.2KV
÷100; 400 MHz; 50 MΩ High-Voltage Probe, 2 kV max. Voltage DC and Peak AC	PPE2KV
÷100; 400 MHz; 50 MΩ High-Voltage Probe, 4 kV max. Voltage DC and Peak AC	PPE4KV
÷100; 400 MHz; 50 MΩ High-Voltage Probe, 5 kV max. Voltage DC and Peak AC	PPE5KV
÷1000; 400 MHz; 50 MΩ High-Voltage Probe, 6 kV max. Voltage DC and Peak AC	PPE6KV
Accessory Kit for PPE1.2kV, 2kV, 4kV, 5kV, and 6kV	PK103
Sprung Hook (red)	PK103-1
Ground Lead (22 cm)	PP005-GL22
Crocodile Clip	PK30x-2
Probe Tip to BNC Adapter	PP005-BNC
Spring Tip (0.8 mm)	PP005-ST8
Rigid Tip V2A	PP005-RT

Supplied with probe:

^{*} Probe Kit: Trimming tool, ground lead, rigid tip, IC insulator, BNC adapter, tip insulator, spring hook, red crocodile clip.

⁴ mm safety ground lead, and green/yellow crocodile clip.

OPTICAL PROBES

OPTICAL PROBES

Teledyne LeCroy's wide-band multi-mode optical-to-electrical converters are designed for measuring optical communications signals. Their broad wavelength range and multi-mode input optics make these devices ideal for applications including Ethernet, Fibre Channel, and ITU telecom standards. Available to support optical data rates up to 11.3 Gb/s with reference receivers, or slightly higher without reference receivers.

These wide- band multi-mode optical-to-electrical converters are designed for measuring optical communications signals. They connect to Teledyne LeCroy real-time oscilloscopes and provide capability for physical layer signal assessment using a variety of oscilloscope tools, such as SDAIII-CompleteLinQ Serial Data Eye, Jitter, Noise and Crosstalk Analysis, mask testing, serial triggering and decoding, and other compliance and debug tools. Maximum data rate test capability is >11.317 Gb/s with reference receiver, or 12.5 Gb/s without.

Teledyne LeCroy Optical Probe Model Numbers:

> OE695G OE425 OE455 OE525 OE555

OPTICAL PROBES

Teledyne LeCroy Optical Probe Model Numbers:

OE695G OE425 OE455 OE525 OE555

OE695G

Teledyne LeCroy's OE695G wide-band optical-to-electrical converter is ideal for measuring optical datacom and telecom signals with data rates from 622 Mb/s to 12.5+ Gb/s. Connection to a real-time Teledyne LeCroy oscilloscope is through the 2.92mm interface, with a provided adapter to connect to ProLink interfaces.

Features

- Compatible with Teledyne LeCroy WavePro 7 Zi/Zi-A, WaveMaster 8 Zi/Zi-A, LabMaster 9 Zi-A, and LabMaster 10 Zi oscilloscopes
- Frequency range DC to 9.5 GHz (electrical, -3 dB)
- Reference receiver support from 8GFC to 10GFC FEC, or Custom (<12.5Gb/s)
- Full bandwidth mode (no reference receiver applied)
- 62.5/125 µm multi-mode or single-mode fiber input
- +7 dBm (5 mW) max peak optical power
- Low noise (as low as 25 pW/√Hz)
- Ideal for Eye Mask, Extinction Ratio, and Optical Modulation Amplitude (OMA) testing

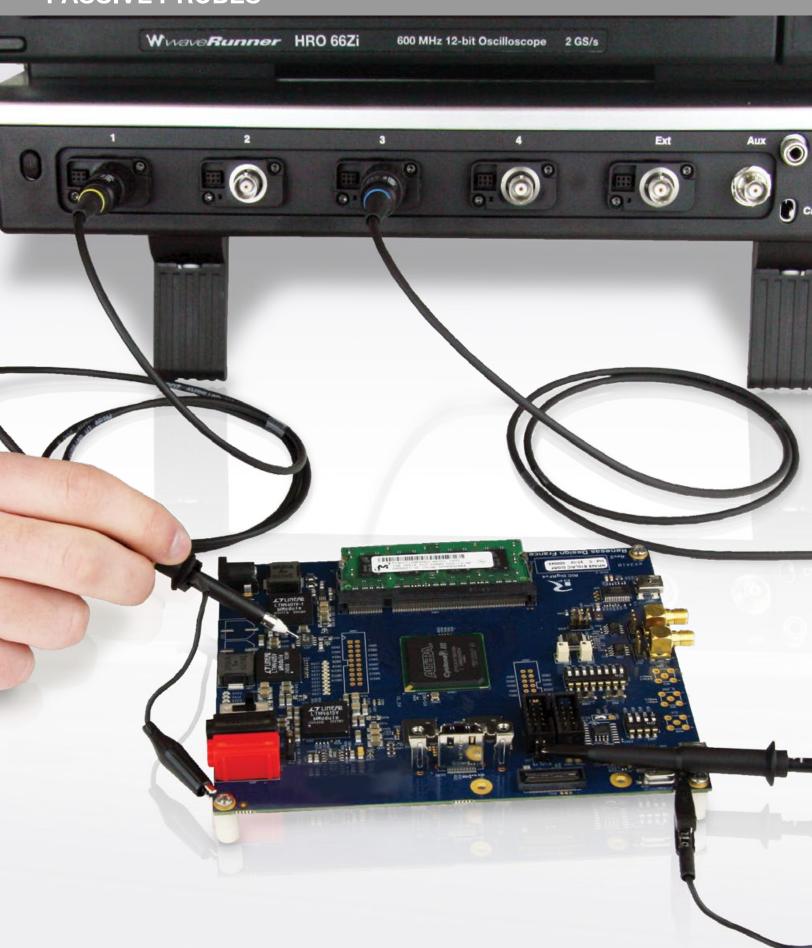
Specifications

•	
Optical Wavelength Range	780 to 1550 nm (calibrated range) 750 to 1650 nm (usable range)
Maximum Modulation Bandwidth	DC to 8.625 GHz (-3 dBe, electrical) DC to 11.64 GHz (-3 dBo, optical) (Reference Receiver Applied) DC to 9.5 GHz (-3 dBe) DC to 12 GHz (-6 dBe) DC to 17 GHz (-14 dBe) (+/-1 dBe passband variations typical, no Reference Receiver Applied)
Reference Receiver Uncertainty	±1.6 dBe up to Fref =0.75*bit rate ±4 dBe 2*Fref setting (typical) ±0.85 dBe up to Fref =0.75*bit rate ±4 dBe 2*Fref setting (on matched oscilloscope input channel 4 with 11, 17, 20, 30, 39, 50, 75, 90, or 100 mV/div gain ranges) with purchase of OE695G- REFCAL)
Reference Receiver Settings	8GFC, OC192/STM64,10GBASE-W,10GBASE-R, 10GFC, ITU-T G.975 FEC, ITU-T G.709 FEC, 10GbE FEC, 10GFC FEC, Custom (622 Mb/s to 12.5 Gb/s), None (Maximum Bandwidth)
Noise Equivalent Power	25 pW/√Hz @ 1310 nm (typical) 50 pW/√Hz @ 850 nm (typical) Average noise spectral density 0-10 GHz using most sensitive vertical scale
Rise Time (10-90%)	33 ps (typical, no reference receiver applied)
Connector Type	FC/PC, compatible with 62.5/125 µm Multi-Mode fiber, or mechanically compatible Single-Mode fiber
Maximum Optical Linear Input (1 dB Compression Point)	-2 dBm (typical), -3 dBm (minimum) at 1550/1310 nm +4 dBm (typical), +3 dBm (minimum) at 850 nm
Maximum Optical Power	+7 dBm (5 mW) Peak
Conversion Gain (typical)	0.17 V/mW (785 nm) 0.21 V/mW (850 nm) 0.33 V/mW (1310 nm) 0.33 V/mW (1550 nm)

OE425/OE455/OE525/OE555

The O/E converters contain calibration data that can be used to create optical reference receivers for SONET/SDH (up to OC48/STM16), Fibre Channel, Gigabit Ethernet, and other optical standards. This feature is available when the O/E is used on a supported oscilloscope. The universal reference receiver supports any data rate up to 3 GHz and remains calibrated on any channel of the oscilloscope.

Features


- Frequency range to 5 GHz (6 GHz optical)
- 62.5 µm or narrower multi-mode or single-mode fiber input
- Broad wavelength range:
 - 500-870 nm (OE425, OE525)
 - 950-1630 nm (OE455, OE555)
- High responsivity
- Low noise
- Included Accessories:
 Multi-mode optical fiber jumper FC-FC
 FC to ST adapter
 FC to SC adapter

Specifications	OE425/OE525	OE455/OE555
Wavelength Range	500 – 870 nm	950 – 1630 nm
	460 – 870 nm	800 – 1630 nm
	(0.1 V/mW)	(0.1 V/mW)
Conversion Gain	0.5 V/mW	1.1 V/mW
Bandwidth	5 GHz	3.5 GHz
	(6 GHz optical)	(4.5 GHz optical)
Equivalent Noise	2.2 µW rms	1.0 μW rms
Maximum Optical Power	2.2 mW	1.0 mW
(at 5% Saturation)		
Rise Time	90 ps	108 ps
Maximum Safe Input	5.5 mW	2.5 mW
Temperature Drift	0.00275 dB / °C	0.00275 dB / °C
Frequency Response Ripple	1.1 dB	1.1 dB
Connector Type	FC/PC	FC/PC

Ordering Information

Product Description	Product Code
Optical-to-Electrical Converter, 785 to 1550 nm, 2.92 mm connector with ProLink adapter	OE695G
Optical-to-Electrical Converter, 500-870 nm ProBus BNC Connector	OE425
Optical-to-Electrical Converter, 950-1630 nm ProBus BNC Connector	OE455
Optical-to-Electrical Converter, 500-870 nm ProLink BMA Connector	OE525
Optical-to-Electrical Converter, 950-1630 nm ProLink BMA Connector	OE555

PASSIVE PROBES

PASSIVE PROBES

Passive probes are the standard probe provided with most oscilloscopes. Typical passive probes provide a $\div 10$ attenuation and feature a high input resistance of $10~\text{M}\Omega$. This high input resistance means that passive probes are the ideal tool for low frequency signals since circuit loading at these frequencies is minimized. Passive probes are designed to handle voltages of at least 400 V, some as high as 600 V. Teledyne LeCroy passive probes feature an attenuation sense pin which tells the oscilloscope to scale the waveforms automatically requiring no user input.

Teledyne LeCroy Passive Probe Model Numbers: PP006A

PP006A PP007-WR PP008 PP009 PP010 PP011 PP016 PP017

> PP019 PP020

PASSIVE PROBES

Teledyne LeCroy Passive Probe Model Numbers:

PP006A PP007-WR

PP008

PP009

PP010

PP011

PP016

PP017

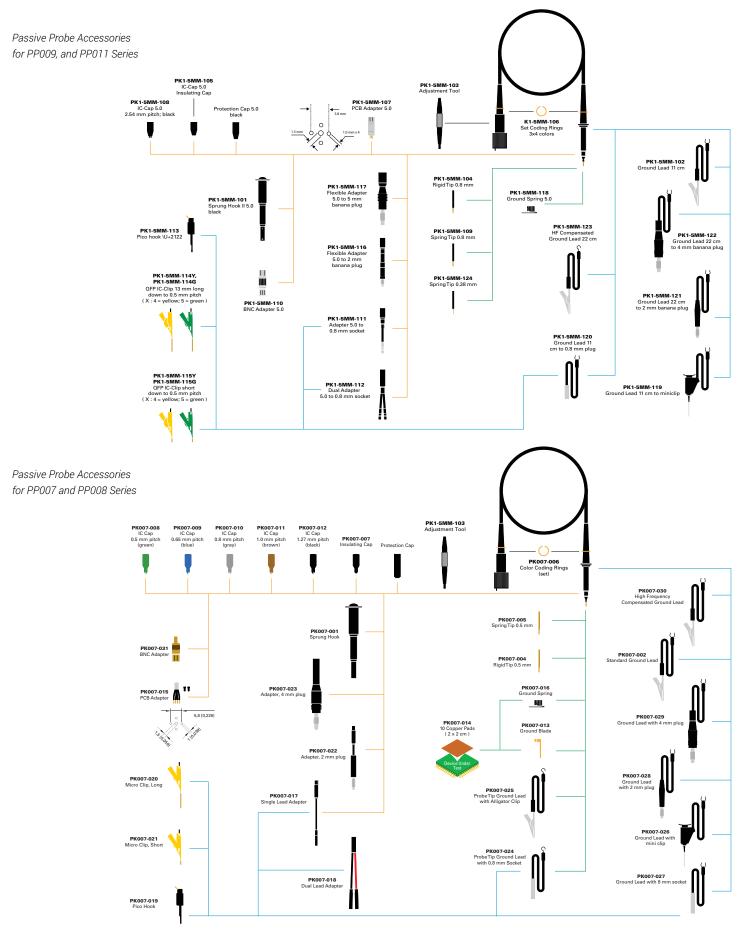
PP018

PP019

PP020

Each passive probe is recommended for a certain oscilloscope, using the right passive probe with the right oscilloscope means that the probe can be properly compensated across the entire bandwidth. Using probes with a different oscilloscope will only let you compensate for low frequencies.

Features


- Bandwidth from 200 MHz to 500 MHz
- Probe encoding ring for automatic scale factor readout on Teledyne LeCroy oscilloscopes

Specifications

Types	Bandwidth	Input R	Input C	Attenuation	Maximum Voltage	Diameter
PP006A	500 MHz	10 ΜΩ	12 pF	÷10	600 V	5 mm
PP007-WR	500 MHz	10 ΜΩ	9.5 pF	÷10	400 V	2.5 mm
PP008	500 MHz	10 ΜΩ	9.5 pF	÷10	400 V	2.5 mm
PP009	500 MHz	10 ΜΩ	9.5 pF	÷10	400 V	2.5 mm
PP010	500 MHz	10 ΜΩ	9.5 pF	÷10	400 V	2.5 mm
PP011	50 MHz	10 ΜΩ	9.5 pF	÷10	400 V	5 mm
PP016	300 MHz/	$10~\text{M}\Omega/$	12 pF/	÷10/	600 V	5 mm
	10 MHz	1 ΜΩ	46 pF	÷1		
PP017	200 MHz	10 ΜΩ	12 pF	÷10	600 V	5 mm
PP018	500 MHz	10 ΜΩ	10 pF	÷10	600 V	5 mm
PP019	200 MHz	10 ΜΩ	12 pF	÷10	500 V	5 mm
PP020	500 MHz	10 ΜΩ	11 pF	÷10	500 V	5 mm

Ordering Information

Product Description	Product Code
÷10, 500 MHz 10 M Ω Passive Probe	PP006A
÷10, 500 MHz 10 M Ω Passive Probe	PP007-WR
÷10, 500 MHz 10 MΩ Passive Probe	PP008
÷10, 500 MHz 10 MΩ Passive Probe	PP009
÷10, 200 MHz 10 M Ω Passive Probe	PP010
÷10, 500 MHz 10 MΩ Passive Probe	PP011
÷10, 300 MHz 10 MΩ Passive Probe	PP016
÷10, 250 MHz 10 M Ω Passive Probe	PP017
\pm 10, 500 MHz 10 M Ω Passive Probe	PP018
÷10, 200 MHz 10 M Ω Passive Probe	PP019
÷10, 500 MHz 10 M Ω Passive Probe	PP020

PROBE ADAPTERS

PROBE ADAPTERS

Probe adapters provide simple and easy interface of third-party probes as well as change between the different Teledyne LeCroy Oscilloscope input and cable types (ProBus, ProLink, K/2.92 mm, BNC and SMA). Depending on the adapters, changing between the Teledyne LeCroy Oscilloscope's input type may have an effect on the overall performance of the channel.

Teledyne LeCroy Probe Adapter Model Numbers: CA10 TPA10

CA10 Key Features

CA10

TPA10

- Provides ability for third party current sensor to operate like a Teledyne LeCroy probe
- Programmable EEPROM for saving third party current sensor parameters
- Allows for addition of shunt resistor and RLC filter components
- ProBus Active interface with automatic scaling in A/div
- Easy to use, saves time and possible errors

CA10

The CA10 is a programmable and customizable interface device that seamlessly incorporates third party current transducers/transformers with Teledyne LeCroy oscilloscopes or motor drive analyzers. The easy to use interface provides the ability for the CA10 to be programmed to contain the specifications of the current sensor allowing it to automatically correct for the gain or attenuation and display results in Ampere units. This allows the third party device to be recognized and operate as if it were a Teledyne LeCroy probe.

Specifications

Input Coupling	DC, AC, Both
Input Termination	1MΩ or 50Ω
Programmable Bandwidth Filters	Full, 200 MHz, 20 MHz
Transformer/Transducer Interface	BNC
Scaling Factors	Programmable
Resistive Termination (if required)	Customizable (See Operator's Manual for details)
Oscilloscope Interface	Teledyne LeCroy ProBus

Note: Some third party devices will require a separate power supply or batteries. The CA10 does not have the ability to supply the power to these devices.

Ordering Information

Product Description	Product Code
ProBus Current Sensor Adapter	CA10
Set of 4 CA10. ProBus Current Sensor Adapter	CA10-OUADPAK

Included with Standard Configuration CA10

Description	Qty
CA10 ProBus Current Adapter	1
Heat-Shrink tubing (6" length)	1
Removable Labels (sheet of 20)	1

Included with Standard Configuration CA10-QUADPAK

Description	Qty
CA10 ProBus Current Adapter	4
Carrying Case	1
Heat-Shrink tubing (24" length)	1
Removable Labels (sheet of 20)	4

PROBE ADAPTERS

TPA10

The TPA10 ProBus™ Probe Adapter enables you to connect select TekProbe interface level II probes to any ProBus-equipped Teledyne LeCroy instrument. The TPA10 supplies all necessary power and offset control to the probe and automatically detects which probe is attached.

TPA10 Key Features

- Allows TekProbe™ interface level II probes to work with any ProBus-equipped Teledyne LeCroy oscilloscope
- Automatic probe detection
- Provides all necessary power and offset control to the attached probe
- Supports probes up to 4 GHz
- Easy firmware updates
- Wide variety of probes supported including:
 - Preamplifiers
 - Current Probes
 - Single-Ended Active Probes
 - Differential Active Probes

Specifications

Electrical Characteristics

Bandwidth	4 GHz (adapter only)
Power Supplies	+15V, -15V, +5V, -5V (each 2%)
Offset Voltage	±1V (1%)
Max. Input Voltage	47 V _{pk} , 33 V _{rms}

Environmental

Operating Temperature Range	0 to 50 °C
Non-operating Temperature Range	-40 to +70 °C
Humidity	5% to 95% RH (10 to 40 °C); 5% to 75% (above 40 °C); RH not controlled below 10 °C
Operating Altitude	3000 meters maximum

Physical

Dimensions (WxHxD)	39 mm x 31.1 mm x 88.6 mm (1.54" x 1.22" x 3.49")
Weight	119 g (0.26 lb)

The TPA10 requires the Teledyne LeCroy oscilloscope to be running firmware version 7.8.0.0 or greater.

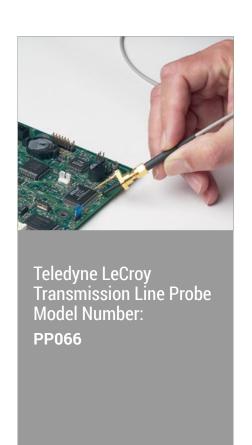
Ordering Information

1 MHz Differential Preamplifier

Product Description	Product Code
TPA10 ProBus Adapter	TPA10
Set of 4 TPA10, TPA10 ProBus Adapters	TPA10-QUADPAK

Supported Probes

The following TekProbe devices are supported for use with TPA10:


Preamplifiers

50 MHz AC/DC Current Probe	TCP202/TCP202A
Single-ended Active Probes	
750 MHz Single-ended Active Probe	P6205
1 GHz Single-ended Active Probe	P6243
1.5 GHz Single-ended Active Probe	P6245
4 GHz Single-ended Active Probe	P6241
4 GHz Single-ended Active Probe	P6249

Ziii Ci Ciittai / toti C i / obec	
100 MHz Differential Probe	P5205/P5205A
50 MHz Differential Probe	P5210/P5210A
400 MHz Differential Probe	P6246
1 GHz Differential Probe	P6247
1.5 GHz Differential Probe	P6248
500 MHz Differential Probe	P6250
1 GHz Differential Probe	P6251

ADA400A

TRANSMISSION LINE PROBES

Transmission line probes are a special type of passive probe designed for use at very high frequencies. They replace the high impedance probe cable found in a traditional passive probe with a precision transmission line, with a characteristic impedance that matches the oscilloscope input (50 Ω). This greatly reduces the input capacitance to a fraction of a picofarad, minimizing the loading of high frequency signals. A matching network at the tip increases the DC input resistance. While they have lower DC input resistance than a traditional passive probe (usually 500 Ω to 5 $k\Omega$), the input impedance of these probes remains nearly constant over their entire frequency range. A traditional $\div 10$ passive probe will have a 10 $M\Omega$ input impedance at DC, however this impedance drops rapidly with frequency, passing below the input impedance of a transmission line probe at less than 100 MHz.

In some applications, transmission line probes offer advantages over active probes. In addition to being less expensive, their passive design is more robust to over voltage and ESD exposure. They are useful in applications producing fast rising, narrow pulses with amplitudes which exceed the dynamic range of active probes. They also tend to have less parasitic effects on frequency response.

TRANSMISSION LINE PROBES

PP066

The PP066 is a high-bandwidth passive probe designed for use with the WaveMaster and other high-bandwidth oscilloscopes with 50 Ω input termination. This very low capacitance probe provides an excellent solution for higher frequency applications, especially the probing of transmission lines with 20–100 Ω impedance. The PP066 accommodates a wide range of applications, including probing of analog and digital ICs commonly found in computer, communications, data storage, and other high-speed designs.

Features:

- Interchangeable attenuator tips
- Signal integrity at high bandwidth
- Standard SMA cable connection
- Ultra low capacitance

Electrical Characteristics

Bandwidth	DC to 7.5 GHz
Risetime	< 47 ps
Input Capacitance	< 0.20 pF
Input Resistance	500 Ω (÷10 cartridge)
	1000 Ω (÷20 cartridge)
Maximum Voltage	15 V rms
Cable Length	1 m

Ordering Information

Product Description Product Code

PP066

7.5 GHz Low Capacitance Passive Probe ($\div 10$, 1 k Ω ; $\div 20$, 500 Ω)

Included with PP0066

PACC-AD001, SMA to BNC Adapter

