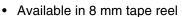
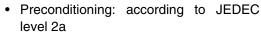
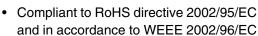
AUTOMOTIVE

GREEN (5-2008)**

VISHAY.


Vishay Semiconductors


Standard SMD LED PLCC-2



FEATURES

- · High efficient InGaN technology
- · EIA and ICE standard package
- Compatible with IR reflow, vapor phase and wave solder processes acc. to CECC 00802 and J-STD-020

- ESD-withstand voltage: up to 2 kV according to JESD22-A114-B
- AEC-Q101 qualified
- Find out more about Vishay's Automotive Grade Product requirements at:
 www.vishav.com/applications

DESCRIPTION

This device has been designed to meet the increasing demand for blue SMD LED.

The package of the VLMB41.. is the PLCC-2.

It consists of a lead frame which is embedded in a white thermoplast. The reflector inside this package is filled with clear epoxy.

PRODUCT GROUP AND PACKAGE DATA

Product group: LED
Package: SMD PLCC-2
Product series: standard
Angle of half intensity: ± 60°

APPLICATIONS

- Automotive: backlighting in dashboards and switches
- Telecommunication: indicator and backlighting in telephone and fax
- · Backlighting for audio and video equipment
- Backlighting in office equipment
- Indoor and outdoor message boards
- · Flat backlight for LCDs, switches and symbols
- Illumination purposes, alternative to incandescent lamps
- · General use

PARTS TABLE				
PART COLOR, LUMINOUS INTENSITY		TECHNOLOGY		
VLMB41P1Q2-GS08	Blue, I _V = (45 to 112) mcd	InGaN on Sapphire		
VLMB41P1Q2-GS18	Blue, I _V = (45 to 112) mcd	InGaN on Sapphire		
VLMB41P1Q1-GS08	Blue, I _V = (45 to 90) mcd	InGaN on Sapphire		
VLMB41P1Q1-GS18	Blue, I _V = (45 to 90) mcd	InGaN on Sapphire		
VLMB41P2Q2-GS08	Blue, I _V = (56 to 112) mcd	InGaN on Sapphire		
VLMB41P2Q2-GS18	Blue, I _V = (56 to 112) mcd	InGaN on Sapphire		
VLMB41P2R1-GS08	Blue, I _V = (56 to 140) mcd	InGaN on Sapphire		
VLMB41Q1R1-GS08	Blue, I _V = (71 to 140) mcd	InGaN on Sapphire		

^{**} Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Document Number 81641 Rev. 1.3, 23-Apr-10

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLMB41					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
DC forward current	T _{amb} ≤ 80 °C	I _F	20	mA	
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	Α	
Power dissipation		P _V	84	mW	
Junction temperature		Tj	110	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Thermal resistance junction/ ambient	Mounted on PC board (pad size > 16 mm²)	R _{thJA}	360	K/W	

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) VLMB41, BLUE							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		VLMB41P1Q2	I _V	45		112	mcd
		VLMB41P1Q1	I _V	45		90	mcd
Luminous intensity	I _F = 10 mA	VLMB41P2Q2	I _V	56		112	mcd
		VLMB41P2R1	I _V	56		140	mcd
		VLMB41Q1R1	I _V	71		140	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	462		476	nm
Peak wavelength	I _F = 10 mA		λ_{p}		464		nm
Angle of half intensity	I _F = 10 mA		φ		± 60		deg
Forward voltage	I _F = 20 mA		V _F		3.2	4.2	V
Temperature coefficient of V _F	I _F = 10 mA		TC _{VF}		- 3		mV/K
Temperature coefficient of I _V	I _F = 10 mA		TC _{IV}		- 0.4		%/K

Note:

Not designed for reverse operation

LUMINOUS INTENSITY CLASSIFICATION				
GROUP	LIGHT INTENSITY (mcd)			
STANDARD	OPTIONAL	MIN.	MAX.	
Р	1	45	56	
Г	2	56	71	
Q	1	71	90	
	2	90	112	
R	1	112	140	

Note:

Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). In order to ensure availability, single brightness groups are not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel.

In order to ensure availability, single wavelength groups are not be orderable.

COLOR CLASSIFICATION				
	BLUE DOM. WAVELENGTH (nm)			
GROUP				
	MIN.	MAX.		
3	462	468		
4	466	472		
5	470	476		

Note:

Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of \pm 1 nm.

CROSSING TABLE		
VISHAY	OSRAM	
VLMB41	LBT67C	

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

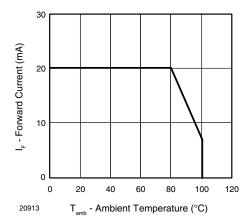


Figure 1. Forward Current vs. Ambient Temperature

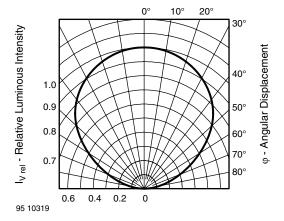


Figure 2. Rel. Luminous Intensity vs. Angular Displacement

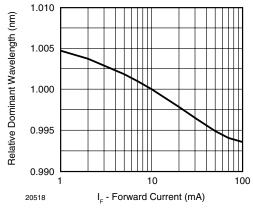


Figure 3. Relative Dominant Wavelength vs. Forward Current

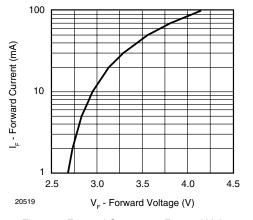


Figure 4. Forward Current vs. Forward Voltage

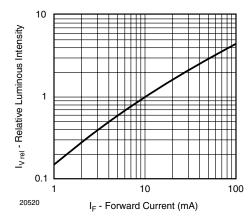


Figure 5. Relative Luminous Intensity vs. Forward Current

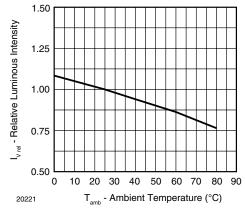
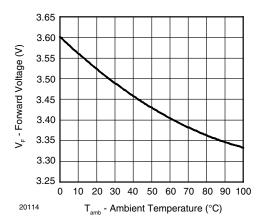
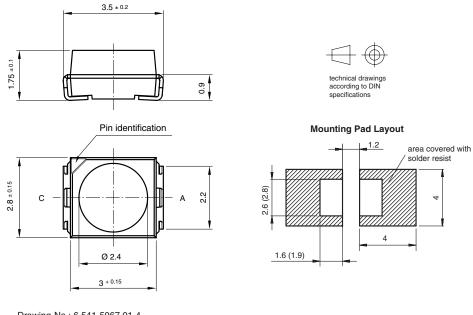
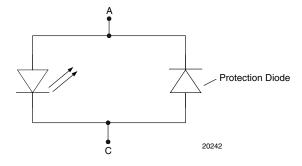


Figure 6. Rel. Luminous Intensity vs. Ambient Temperature

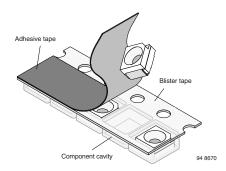




Figure 7. Forward Voltage vs. Ambient Temperature

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.541-5067.01-4 Issue: 5; 04.11.08

20541



METHOD OF TAPING/POLARITY AND TAPE AND REEL

SMD LED (VLM.3.../.4... - SERIES)

Vishay's LEDs in SMD packages are available in an antistatic 8 mm blister tape (in accordance with DIN IEC 40 (CO) 564) for automatic component insertion. The blister tape is a plastic strip with impressed component cavities, covered by a top tape.

TAPING OF VLM.3.../.4...

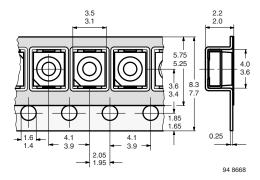


Figure 8. Tape Dimensions in mm for PLCC-2

REEL PACKAGE DIMENSION IN MILLIMETERS FOR SMD LEDS, TAPE OPTION GS08 (= 1500 PCS.)

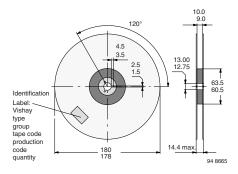


Figure 9. Reel Dimensions - GS08

REEL PACKAGE DIMENSION IN MILLIMETERS FOR SMD LEDS, TAPE OPTION GS18 (= 8000 PCS.) PREFERRED

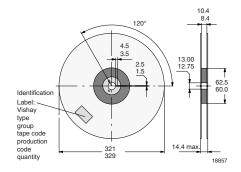


Figure 10. Reel Dimensions - GS18

SOLDERING PROFILE

IR Reflow Soldering Profile for Lead (Pb)-free Soldering Preconditioning acc. to JEDEC level 2a

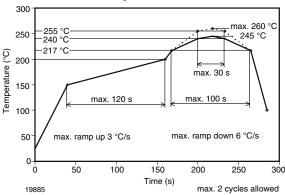


Figure 11. Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020)

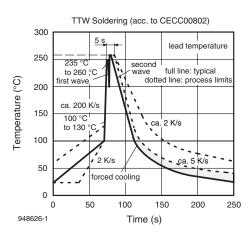
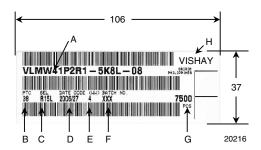
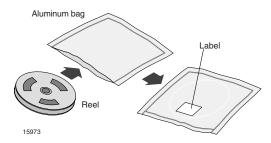



Figure 12. Double Wave Soldering of Opto Devices (all Packages)

BAR CODE PRODUCT LABEL EXAMPLE:

- A) Type of component
- B) Manufacturing plant
- C) SEL selection code (bin):


e.g.: R1 = code for luminous intensity group

5L = code for chrom. coordinate group

- D) Date code year/week
- E) Day code (e.g. 4: Thursday)
- F) Batch no.
- G) Total quantity
- H) Company code

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

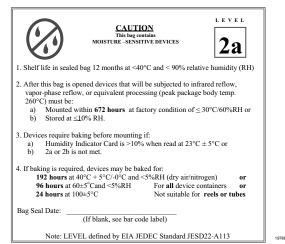
The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 672 h under these conditions moisture content will be too high for reflow soldering.


In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at $40 \,^{\circ}\text{C} + 5 \,^{\circ}\text{C/-} \, 0 \,^{\circ}\text{C}$ and $< 5 \,^{\circ}\text{KH}$ (dry air/nitrogen) or

96 h at 60 $^{\circ}$ C + 5 $^{\circ}$ C and < 5 $^{\circ}$ RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JESD22-A112 level 2a label is included on all dry bags.

Example of JESD22-A112 level 2a label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08