

V
Wind

Tec

w

IPER
ows CE .NET 4.2

hnical Manual
companyaww.arcom.com

VIPER Windows CE .NET 4.2 Technical Manual

Definitions
Arcom is the trading name for Arcom Control Systems Inc and Arcom Control Systems Ltd.

Disclaimer
The information in this manual has been carefully checked and is believed to be accurate. Arcom assumes no responsibility
for any infringements of patents or other rights of third parties, which may result from its use.

Arcom assumes no responsibility for any inaccuracies that may be contained in this document. Arcom makes no commitment
to update or keep current the information contained in this manual.

Arcom reserves the right to make improvements to this document and/or product at any time and without notice.

Warranty
This product is supplied with a full 3 year warranty. Product warranty covers failure caused by any manufacturing defects.
Arcom will make all reasonable effort to repair the product or replace it with an identical variant. Arcom reserves the right to
replace the returned product with an alternative variant or an equivalent fit, form and functional product. Delivery charges will
apply to all returned products. Please go to www.arcom.com/support for information about Product Return Forms.

Trademarks
Windows CE .NET is a trademark of the Microsoft Corporation.
All other trademarks recognized.

Revision History

Manual PCB Date Comments

Issue A

Issue B

Issue C

Issue C

Issue D

V1 Issue 3

V1 Issue 4

V1 Issue 4

V1 Issue 4

V1 Issue 4

9th September 2003

5th November 2003

15th March 2004

21st June 2004

11th August 2004

First release

Updated for CE 4.2 release

Updated for CE 4.2 release 2

Minor updates

Minor edits, updated layout.

© 2004 Arcom.
Arcom is a subsidiary of Spectris plc.
For contact details, see page 40.

Arcom operates a company-wide

quality management system
which has been certified by the

British Standards Institution (BSI)
as compliant with ISO9001:2000

http://www.arcom.com/support

VIPER Windows CE .NET 4.2 Technical Manual Contents

Contents
Handling your board safely ..4

Environmental ..4
Anti-static handling...4
ElectroMagnetic Compatibility (EMC) ..4
Packaging ..4

About this manual ..5
Related documents ..5
Conventions ...5
Terminology..6

Operating system support..7
Version ...7
Flat panels and video modes ...8
Ethernet ...9
Touchscreen...10
Registry..11
UPS power supply ...12
Real time clock...12
Software tools ..13

Application development..14
Using .NET Compact Framework ..14
Using eMbedded Visual C++ ...14
Establishing a remote debugging connection ..16
Running applications directly from startup ...18
Web server...18
Accessing memory and peripherals directly ..19
Using the GPIO lines ...20

Support libraries...21
AIM104 board support ...21
Watchdog...38
SRAM...39

Appendix A – Contacting Arcom...40
Appendix B – Reference information ...41
Appendix C – Acronyms and abbreviations ...42
Index ..43

© 2004 Arcom Issue D 3

VIPER Windows CE .NET 4.2 Technical Manual Handling your board safely

Handling your board safely
Environmental

The VIPER enclosure is fitted with the VIPER-UPS. The battery fitted to the VIPER-
UPS is a 7-cell battery pack containing Varta V500 HRT NiMH (Nickel Metal Hydride)
cells. These cells contain 0% lead, 0% mercury and 0% cadmium.

Anti-static handling
The Viper and other circuit boards fitted inside the VIPER ICE contain CMOS devices.
These could be damaged in the event of static electricity being discharged through
them. At all times, please observe anti-static precautions when handling circuit boards.
This includes storing boards in appropriate anti-static packaging and wearing a wrist
strap when handling.

ElectroMagnetic Compatibility (EMC)
The VIPER is classified as a component with regard to the European Community EMC
regulations and it is the user’s responsibility to ensure that systems using the board are
compliant with the appropriate EMC standards.

Packaging
Please ensure that should a board need to be returned to Arcom it is adequately
packed preferably in the original packing material.

© 2004 Arcom Issue D 4

VIPER Windows CE .NET 4.2 Technical Manual About this manual

About this manual
This manual provides detailed information about the VIPER board supplied with the
Windows CE .NET 4.2 operating system pre-loaded. It provides:

Details about the hardware supported by the operating system. •

•

•

•

•

•

Information that you will find useful if you intend to develop applications for
Windows CE .NET.

Support libraries.

Related documents
More detailed information can be found in the Documentation folder on the User CD,
including:

The VIPER Board Manual (PDF).

The VIPER CE .NET Quickstart Manual (PDF).

Information about other items included in the Development Kit.

Conventions

Symbols
The following symbols are used in this guide:

Symbol Explanation

Note - information that requires your attention.

Tip - a handy hint that may provide a useful alternative or
save time.

Caution – proceeding with a course of action may damage
your equipment or result in loss of data.

© 2004 Arcom Issue D 5

VIPER Windows CE .NET 4.2 Technical Manual About this manual

Typographical conventions

Different fonts are used throughout the manual to identify different types of information,
as follows:

Font Explanation

Italics Parts of a command that should be substituted with
appropriate values.

Bold Information that you enter yourself.

Screen text Information that is displayed on screen.

Terminology
The following terms are used throughout this manual:

Term Definition

User CD The Arcom VIPER Windows CE .NET 4.2
Development Kit CD, supplied in the Development Kit.

VIPER CE
Quickstart

The VIPER CE .NET Quickstart Manual, contained in
the Documentation folder on the User CD.

© 2004 Arcom Issue D 6

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

Operating system support
Version

The board is supplied with a version of the Windows CE .NET 4.2 image, pre-loaded
onto the on-board flash.

The image size is 21MB, and the boot time is approximately 15 seconds.

Included components
A list of included components is included in the Documentation folder on the User CD.

Hardware supported in this release

The operating system supports the following hardware:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

LCD display.

Persistent registry.

Flash storage. (8MB storage space available. Formatted using TFAT).

CompactFlash storage cards.

USB storage.

USB human interface devices (keyboard/mouse).

Five COM ports1 - four RS232 and one RS422 / RS485.

Touchscreen interface.

10/100 baseT Ethernet support.

Audio.

PC/104 interface.

Watchdog.

UPS power supply.

GPIO lines.

1 COM3 is normally used for touchscreen support.

© 2004 Arcom Issue D 7

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

Flat panels and video modes
The image loaded onto the VIPER is configured for the supplied NEC NL3224BC35-20
QVGA flat panel.

Support is provided for other flat panels. If you want to use a different flat panel, you
must use the regpatch tool to run the supplied registry patch for the flat panel being
used.

See Software tools, page 13, for more details about regpatch.

The flat panels supported are listed below.

NEC

Type

Part number

Panel
size

Resolution

Standard
orientation

180o
rotation

TFT NL3224BC35-20 5.5" 320 x 240 tftqvga.reg tftqvgar.reg

TFT NL6448BC20-08E 6.5" 640 x 480 tft6448.reg tft6448r.reg

TFT NL6448BC26-01 8.4" 640 x 480 tft6448.reg tft6448r.reg

Hitachi

Type

Part number

Panel
size

Resolution

Standard
orientation

180o
rotation

TFT TX14D11VM1CAA 5.7" 320 x 240 tftqvga.reg tftqvgar.reg

STN SX14Q004-ZZA 5.7" 320 x 240 stnqvga.reg stnqvgar.reg

Other QVGA or VGA TFT flat panels with a digital 6-bit parallel interface may
also work. Please contact Arcom customer support for more details. (See
Appendix A – Contacting Arcom, page 40.)

© 2004 Arcom Issue D 8

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

© 2004 Arcom Issue D 9

Ethernet
The current build of Windows CE .NET 4.2 supports the on-board LAN91C111 Ethernet
controller.

If the CE system is not connected to a network with a DHCP server running, a static IP
address should be set up.

To set up a static IP address:

1 In the Control Panel choose Network and Dial-up Connections.

2 Double-click the LAN90001 adaptor.

3 Click the IP Address tab and specify the IP Address, Subnet Mask and Default
Gateway as required.

4 Click the Name Servers tab, and set the DNS as required.

5 Save the settings.

6 Reboot the CE system.

To check the IP configuration, run ipconfig from the command window.

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

© 2004 Arcom Issue D 10

Touchscreen
The touchscreen controller application automatically runs on power up.

The touchscreen is set up and calibrated during the production process. These settings
remain intact until you:

• Start from a cleared registry.
If the registry is cleared (see Clearing the registry, page 11), the Port and Mode
Detection process begins, followed immediately by the calibration process.

• Launch the calibration application.
If TouchCal.exe is run, the touchscreen calibration process begins without running
the Port and Mode Detection process.

Port and Mode Detection process
The Port and Mode Detection process detects which COM port the touchscreen is
plugged into, and the baud rate being used. Follow these steps:

1 Touch the cross in the center of the bottom half of the screen.

2 When prompted, lift the pointing device off the touchscreen.

3 Touch the cross again.

4 When prompted, lift the pointing device off the touchscreen.

Touchscreen calibration process
To calibrate the touchscreen using TouchCal.exe, follow these steps:

1 Touch the cross in the top left corner of the screen.

You can move the pointing device while keeping in contact with the
touchscreen, to get it into the exact position required.

2 Lift the pointing device off the touchscreen. (This is not prompted.)

3 Touch the cross in the lower right corner of the screen.

4 Lift the pointing device off the touchscreen. (This is not prompted.)

5 Touch the cross in the center of the screen.

6 Lift the pointing device off the touchscreen. (This is not prompted.)

7 Move the pointing device around the screen and check the accuracy of the pointer.

 If the accuracy is not acceptable, touch the ReCalibrate button and start the
calibration process again.

 If the accuracy is acceptable touch the Save button to save the settings.

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

© 2004 Arcom Issue D 11

Registry
The operating system image supports a persistent registry. The registry link should
normally be in the Retain Registry position (see the diagram below).

Saving the registry
Calling the RegFlushKey function from within an application saves the registry.

Arcom’s SaveReg.exe application uses RegFlushKey to save the registry. The
source code for SaveReg.exe is in the Examples folder on the User CD.

Clearing the registry
The registry can be reverted to its original default values. To do this, move the registry
link to the Clear Registry position while the board boots up. When the board has
booted, move the link back to the Retain Registry position.

These link positions are shown in the following diagram:

With the link in the Clear Registry position, the startup folder will not be
processed, and applications will not autorun.

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

UPS power supply
The UPS power supply control application is in the \FlashDisk\Startup folder, so that it
launches automatically on power up.

For more information about this application, please refer to the UPS power supply
application document in the Documentation folder on the User CD.

To enable the UPS battery, LK6 on the VIPER-UPS board must be fitted.

Real time clock
To change the date or time, double click on the clock in the task bar. The Date/Time
Properties dialog is displayed, from where you can make the changes you require.

The time and date can be retained in the event of power loss on the main VIPER 5V
supply by fitting an external battery to power the device. Details can be found in the
Power and power management section of the VIPER Technical manual, which is in the
documentation section of the User CD.

The default time zone is GMT. If you change the time zone, you must save
the registry. Failure to save the time zone in the registry can result in incorrect
daylight saving time adjustment dates.

© 2004 Arcom Issue D 12

VIPER Windows CE .NET 4.2 Technical Manual Operating system support

Software tools

Regpatch
The persistent registry can be patched with registry files (*.reg) using the regpatch tool.

To run a registry patch:

1 Copy the filename.reg file from the registry\files section of the User CD to the root
directory of the VIPER CE system.

2 Open a command prompt.

3 Enter regpatch filename.reg

 The registry is then patched. The following message is displayed when this is
complete:

 Registry saved

If this message does not appear, run savereg to save the registry changes.

4 Reboot the system.

Getflash
The entire 32MB StrataFlash can be captured to a binary file. This file can then be used
to duplicate other systems.

To capture the image onto a CompactFlash card:

1 Copy getflash.exe onto the CompactFlash card, then insert it into the VIPER.

2 Open a command prompt.

3 Enter \cfdisk\getflash \cfdisk\imagename.bin 04000000 02000000

Strataprog
Strataprog is used to restore a backed up StrataFlash image onto a VIPER board that is
running Windows CE.

To restore a StrataFlash image:

1 Copy the image file and strataprog.exe onto the CompactFlash card, then insert it
into the VIPER.

2 Open a command prompt.

3 Enter cfdisk\strataprog –b=04000000 \cfdisk\imagename.bin

© 2004 Arcom Issue D 13

VIPER Windows CE .NET 4.2 Technical Manual Application development

Application development
Applications for Windows CE .NET can be developed using .NET Compact Framework
or eMbedded Visual C++.

Using .NET Compact Framework
For details of application development using the .NET Compact Framework, see the
.NET Compact Framework section on the User CD.

Using eMbedded Visual C++

eMbedded Visual C++ 4.0
Install Microsoft eMbedded Visual C++ 4.0 according to Microsoft’s instructions.

The SDKs supplied with eMbedded Visual Tools are not required, but installing
the H/PC Pro SDK allows application emulation on the host system.

Emulation of Arcom hardware is not possible.

eMbedded Visual C++ 4.0 Service Pack 2
If installing Service Pack 2 was not an option on the eMbedded Visual C++ 4.0 disk, it
must be downloaded and installed before applications can be developed for a Windows
CE .NET 4.2 platform. It can be downloaded from:

http://msdn.microsoft.com/vstudio/device/embedded/download.asp

A link to this site is provided on the User CD.

Arcom Platform SDK
The Arcom Platform SDK for Visual C++ must be installed in order to build applications
for the Arcom VIPER board.

Select the Platform SDK section of User CD, then install the Visual C++ SDK.

© 2004 Arcom Issue D 14

http://msdn.microsoft.com/vstudio/device/embedded/download.asp

VIPER Windows CE .NET 4.2 Technical Manual Application development

CPU selection
When starting a new project, select the Win32 (WCE ARMV4I) processor in the CPUs
pane of the New dialog, Projects tab.

© 2004 Arcom Issue D 15

VIPER Windows CE .NET 4.2 Technical Manual Application development

Establishing a remote debugging connection
To establish a remote debugging connection, follow these steps:

1 Connect the host system and CE system using an ActiveSync connection, as
described in the VIPER Windows CE .NET 4.2 Quickstart manual.

2 Within Microsoft eMbedded Visual C++, select Configure Platform Manager
from the Tools menu:

The Windows CE Platform Manager Configuration dialog is displayed.

3 Select the SDK to be used, highlight the default device and click on Properties:

The Device Properties dialog is displayed for the device you chose.

© 2004 Arcom Issue D 16

VIPER Windows CE .NET 4.2 Technical Manual Application development

4 Select Microsoft ActiveSync as both the Transport and Startup Server and
click on Test.

 The connection is then established:

5 When a connection is established, click on OK to close all windows and return to
the eMbedded Visual Tools development environment.

© 2004 Arcom Issue D 17

VIPER Windows CE .NET 4.2 Technical Manual Application development

© 2004 Arcom Issue D 18

Running applications directly from startup

The Registry link must be in the Save registry position for the startup folder to
be processed. See the Registry section on page 11 for more details

In order to run files automatically when the system boots, a folder called Startup should
be created in the \FlashDisk folder.

.exe files placed in this folder are run when the system starts up.

To specify command line parameters, a startup.ini file should be placed in the startup
folder, based on the following sample:

.delay 1500
app1.exe
app2.exe /d /v:2

The .delay can be used to delay the start of an application, if required.

Any dlls that the applications require must also be copied to the
\FlashDisk\User folder.

Web server
The VIPER CE system can be used as a web page server.

The location of pages to be served is determined by a registry entry at:

HKEY_LOCAL_MACHINE\Comm\HTP\VROOTS\/

The initial value of this key is \windows\www\wwwpub

To preserve pages when the system is powered down, change this registry entry to a
non-volatile storage location, such as \FlashDisk\User.

An asp example is provided on the User CD.

VIPER Windows CE .NET 4.2 Technical Manual Application development

© 2004 Arcom Issue D 19

Accessing memory and peripherals directly
Windows CE allows application programs to have direct access to the system memory.
This means that developers may choose to drive their own IO devices directly rather
than writing a Windows CE driver for it.

Windows CE uses a memory manager to divide up the XScale’s memory space
between the various applications. These mappings change during normal operation and
the active application is placed into a 32MB space starting from address 0. In order to
access a peripheral, the application must map the address of the peripheral into the
space assigned to the application. This is done using the MmMapIoSpace function:

PVOID MmMapIoSpace(PHYSICAL_ADDRESS address, ULONG size, BOOLEAN cached)

The return value is a pointer that can be used directly in the application code.

In order to use the MmMapIoSpace function, ceddk.h must be included in the header
files and ceddk.lib must be added to the list of libraries in the project settings, as shown
in the following example:

#include <ceddk.h>
#include <stdio.h>

void main(void)
{
 PHYSICAL_ADDRESS address;
 unsigned char *pInputs;

 address.HighPart = 0;
 address.LowPart = 0x14500000;

 pInputs = (unsigned char *)MmMapIoSpace(address, 0x1000, false);
 printf(“Inputs: %d\n”, *pInputs);
 MmUnmapIoSpace(pInputs, 0x1000);
}

Please note:

• PHYSICAL_ADDRESS is a special 64-bit address used to keep
compatibility with other CPU types. For XScale the HighPart should always
be 0. 0x14500000 is the address of the GPIO input register on the VIPER.

• Although the register takes up only one byte, the size parameter has been
set to 0x1000 as the memory manager assigns space in blocks of 0x1000.

• Use MmUnmapIoSpace at the end of the code to release the space.

For peripherals with a number of registers, avoid doing an MmMapIoSpace for each
register by defining a structure that represents the device registers, then use a single
MmMapIoSpace to get a pointer to the structure.

If registers are relatively close together (less than 256k apart), create one large space
that covers both sets then use the same offsets within the mapped space.

For more information, refer to the GPIOTest example program on the User CD.

VIPER Windows CE .NET 4.2 Technical Manual Application development

© 2004 Arcom Issue D 20

Using the GPIO lines
The VIPER board has eight output and eight input lines available for use by
applications. The output lines are provided by GPIOs 20 through 27 from the XScale
CPU itself. The input lines are provided by a single 8-bit memory mapped input register.

A simple demo program called GPIOTest (available on the User CD) shows how to use
these lines directly from an application. It also serves as a more advanced example of
how to access peripherals directly from an application.

The vipergpio.cpp & vipergpio.h files can be used in user applications. These need to
be linked with ceddk.lib.

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

© 2004 Arcom Issue D 21

Support libraries
This section provides detailed information about:

• AIM104 board support. See below.

• Watchdog. See page 38.

• SRAM. See page 39.

AIM104 board support
The Arcom AIM104 DLL (aim104.dll) provides a simple set of functions that allow Arcom’s
range of AIM104 PC/104 expansion cards to be driven from application programs.

To use these functions, aim104.dll, gpio.dll and spinlock.dll must be in the
\Flashdisk\Arcom folder on the VIPER.

The expansion cards available, and the functions that can be used with each, are
explained on the following pages:

• AIM104-Relay8/IN8. See below.

• AIM104-IN16, page 25.

• AIM104 OUT-16, page 27.

• AIM104-IO32, page 29.

• AIM104-MULTI-IO, page 33.

AIM104-Relay8/IN8
The AIM104-Relay8/IN8 offers eight opto-isolated inputs and eight single pole double
throw relay outputs. The AIM104 DLL considers each board to have one group of eight
relays and one group of eight inputs.

In a multi-board system the first board contains relay and input group 0, the second board
contains relay and input group 1, and so on. Similarly the first board contains relay or input
0 through 7, the second contains 8 through 15, and so on.

#include file: relay8.h
Link file: aim104.lib
VIPER registry patch: relay8.reg

The functions available for use with the AIM104-Relay8/IN8 are explained on the
following pages.

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

© 2004 Arcom Issue D 22

long Relay8Enable(long nGroup, long nState)
Used to enable or disable a group of relays. After a system reset all relays are disabled.
Calling this function with a non-zero value for nState enables all relays in the given
group; the relays immediately take up the value in the relay output register. Calling this
function with a value of zero for nState disables all the relays in the given group; the
relays are switched off immediately, and value in the relay output register remains
unchanged. Enabling a group that is already enabled, or disabling a group that is
already disabled, has no effect.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The relay group to be enabled or disabled.

nState Zero to disable or non-zero to enable the group.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADGROUP nGroup value greater than the number of boards installed.

R8_HAWRWAREWRITE Low level problem accessing the hardware.

long Relay8RelayWrite(long nRelay, long nState)
Used to set the state of an individual relay without affecting any of the other relays in
the group. A non-zero value for nState turns on the given relay. A zero value turns it off.
If the corresponding group is disabled at the time it remains disabled but the new value
is written into the appropriate output register. Turning on a relay that is already on, or
turning off one that is already off, has no effect.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nRelay The relay group to be written to.

nState Zero to turn off or non-zero to turn on the relay.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADRELAY nRelay value greater than the number of available relays.

R8_HAWRWAREWRITE Low level problem accessing the hardware.

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long Relay8GroupWrite(long nGroup, long nData)
Allows all eight relays in a group to be written to simultaneously. The lower 8 bits of
nData are written to the relay output register. When a bit is set, the corresponding relay
is turned on. If the group is disabled at the time, the new value is written to the output
register, the relays remain disabled. Only the lower 8 bits of nData are significant.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The relay group to be written to.

nData New value for the outputs (lower 8 bits only).

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADGROUP nGroup value greater than the number of boards installed.

R8_HAWRWAREWRITE Low level problem accessing the hardware.

long Relay8RelayStatus(long nRelay, long *pStatus)
Used to test the state of a particular channel in the output register. If the value placed in
the variable pointed to by pStatus is zero then the corresponding channel is off; a non-
zero value indicates that the channel is on. This function returns the value in the output
register even if the corresponding group is disabled at the time.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nRelay The number of the relay to be read.

pStatus Pointer to a variable to receive the state of the channel.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADRELAY nRelay value greater than the number of available relays.

R8_HARDWAREREAD Low level problem accessing the hardware.

© 2004 Arcom Issue D 23

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long Relay8GroupStatus(long nGroup, long *pStatus)
Returns the current state of the output register. The value in the lower 8 bits placed into
the variable pointed to by pStatus reflects the current state of the output register. A zero
bit indicates that the corresponding channel is off. The higher order bits are always
zero. The value of the output register is returned even if the corresponding group is
disabled.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The relay group to be written to.

pStatus Pointer to a variable to receive the state of the channel.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADGROUP nGroup value greater than the number of boards installed.

R8_HAWRWAREWRITE Low level problem accessing the hardware.

long Relay8ReadInput(long nInput, long *pState)
Returns the state of an individual opto-isolated input. If the value placed in the variable
pointed to by pState is non-zero, then the corresponding input is on. If the value is zero
the input is off.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nInput The input to be read.

pState Pointer to a variable to receive the state of the channel.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADINPUT nInput value greater than the number of available inputs.

R8_HARDWAREREAD Low level problem accessing the hardware.

© 2004 Arcom Issue D 24

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long Relay8GroupInput(long nGroup, long *pState)
Allows all eight opto-isolated inputs in a group to be read simultaneously. The lower 8
bits of the value placed in the variable pointed to by pState indicate the state of each of
the eight channels. If a bit is zero the corresponding input is off.

This is the inverse of the actual data read back from the hardware, but having
a consistent ‘zero means off’ improves compatibility with other routines.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The relay group to be written to.

pState Pointer to a variable to receive the state of the channel.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADGROUP nGroup value greater than the number of boards installed.

R8_HARDWAREREAD Low level problem accessing the hardware.

AIM104-IN16
The AIM104-IN16 offers 16 opto-isolated inputs in two groups of 8. The AIM104 DLL
considers each board to have two groups of 8 inputs. In a multi-board system the first
board contains input groups 0 and 1, the second board contains input groups 2 and 3,
and so on. Similarly the first board contains individual inputs 0 through 15, the second
contains 16 through 3, and so on.

#include file: in16.h
Link file: aim104.lib
VIPER registry patch: in16.reg

The functions available for use with the AIM104-IN16 are explained on the following
pages.

© 2004 Arcom Issue D 25

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long IN16ReadInput(long nInput, long *pState)
Returns the state of an individual opto-isolated input. If the value placed in the variable
pointed to by pState is non-zero then the corresponding input is on. If the value is zero
the input is off.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nInput The input to be read.

pState Pointer to a variable to receive the state of the input.

Return value Explanation

IN16_NOERROR Success call has completed OK.

IN16_BADINPUT nInput value greater than the number of available inputs.

IN16_HARDWAREREAD Low level problem accessing the hardware.

long IN16GroupInput(long nGroup, long *pState)
Allows a group of eight opto-isolated inputs to be read simultaneously. The lower 8 bits
of the value place in the variable pointed to by pState indicate the state of each of the
eight channels. If a bit is zero the corresponding input is off.

This is the inverse of the actual data read back from the hardware, but having
a consistent ‘zero means off’ improves compatibility with other routines.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The input group to be read.

pState Pointer to a variable to receive the state of the channel.

Return value Explanation

IN16_NOERROR Success call has completed OK.

IN16_BADGROUP nGroup value greater than the number of boards installed.

IN16_HARDWAREREAD Low level problem accessing the hardware.

© 2004 Arcom Issue D 26

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

AIM104 OUT-16
The AIM104-OUT16 offers 16 opto-isolated outputs in two groups of 8. The AIM104 DLL
considers each board to have two groups of 8 outputs. In a multi-board system the first
board contains output groups 0 and 1, the second board contains input groups 2 and 3,
and so on. Similarly the first board contains individual outputs 0 through 15, the second
contains 16 through 31, and so on.

#include file: out16.h
Link file: aim104.lib
VIPER registry patch: out16.reg

The functions available for use with the AIM104 OUT-16 are explained below.

long OUT16WriteOutput(long nOutput, long nState)
Used to set the state of an individual output without affecting any other output in the
group. A non-zero value for nState turns on the given output. A zero value turns it off.
If the corresponding group is disabled at the time, it remains disabled but the new value
is written into the appropriate output register. Turning on an output that is already on, or
turning one off that is already off, has no effect.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nOutput The output to be written.

nState New state of the output zero for off non-zero for on.

Return value Explanation

OUT16_NOERROR Success call has completed OK.

OUT16_BADINPUT nOutput greater than the number of available outputs.

OUT16_HARDWAREWRITE Low level problem accessing the hardware.

© 2004 Arcom Issue D 27

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long OUT16GroupWrite(long nGroup, long nData)
Allows all eight outputs in a group to be written to simultaneously. The lower 8 bits of
nData are written to the output register. When a bit is set, the corresponding relay is
turned on. If the group is disabled at the time the new value is written to the output
register the relays remain disabled. Only the lower 8 bits of nData are significant.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The input group to be read.

nData New data for the output group.

Return value Explanation

OUT16_NOERROR Success call has completed OK.

OUT16_BADGROUP nGroup value greater than the number of boards installed.

OUT16_HARDWAREREAD Low level problem accessing the hardware.

long OUT16ReadStatus(long nOutput, long *pStatus)
Used to test the state of a particular channel in the output register. If the value placed in
the variable pointed to by pStatus is zero, the corresponding channel is off. A non-zero
value indicates that the channel is on. This function returns the value in the output
register even if the corresponding group is disabled at the time.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nOutput The number of the output to be read.

pStatus Pointer to a variable to receive the state of the channel.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADOUTPUT nOutput value greater than the number of available relays.

R8_HARDWAREREAD Low level problem accessing the hardware.

© 2004 Arcom Issue D 28

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long OUT16GroupStatus(long nGroup, long *pStatus)
Returns the current state of the output register. The value in the lower 8 bits placed into
the variable pointed to by pStatus reflect the current state of the output register. A zero
bit indicates that the corresponding channel is off. The higher order bits are always
zero. The value of the output register is returned even if the corresponding group is
disabled.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The relay group to be written to.

pStatus Pointer to a variable to receive the state of the channel.

Return value Explanation

R8_NOERROR Success call has completed OK.

R8_BADGROUP nGroup value greater than the number of boards installed.

R8_HARDWAREREAD Low level problem accessing the hardware.

AIM104-IO32
The AIM104-IO32 offers 32 TTL level open collector outputs. The state of each output
can also be monitored. When an output is off it may be driven by an external source
allowing the line to be used for input.

The AIM104 DLL considers each board to have four groups of 8 IO lines. Each group
may be accessed as inputs or outputs. In a multi-board system the first board contains
groups 0 through 3, the second board contains groups 4 through 7, and so on. Similarly
the first board contains individual IO lines 0 through 31, the second contains 32 through
63, and so on.

#include file: io32.h
Link file: aim104.lib
VIPER registry patch: io32.reg

The functions available for use with the AIM104-IO32 are explained on the following
pages.

© 2004 Arcom Issue D 29

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long IO32Enable(long nGroup, long nState)
Used to enable or disable a group of outputs. After a system reset all outputs are
disabled. The hardware on the AIM104-IO32 is only capable of enabling all four groups
simultaneously. However, to improve compatibility with other boards, this function still
considers each board to have four groups. Enabling any group on a board enables the
other three as well. Calling this function with a non-zero value for nState enables all
three groups; the outputs immediately take up the value in the output registers. Calling
this function with a value of zero for nState disables all three groups; the outputs are
switched off immediately but the value in the output registers is not changed. Enabling a
group that is already enabled or disabling a group that is already disabled has no effect.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The IO group to be enabled or disabled.

nState Zero to disable or non-zero to enable the group.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADGROUP nGroup value greater than the available groups.

IO32_HAWRWAREWRITE Low level problem accessing the hardware.

long IO32WriteOutput(long nOutput, long nState)
Used to set the state of an individual output without affecting any of the other output in
the group. A non-zero value for nState turns on the given output; a zero value turns it
off. If the corresponding group is disabled at the time, it remains disabled but the new
value is written into the appropriate output register. Turning on an output that is already
on, or turning off one that is already off, has no effect.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nOutput The output to be written.

nState New state of the output zero for off non-zero for on.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADINPUT nOutput greater than the number of available outputs.

IO32_HARDWAREWRITE Low level problem accessing the hardware.

© 2004 Arcom Issue D 30

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long IO32GroupWrite(long nGroup, long nData)
Allows all eight outputs in a group to be written to simultaneously. The lower 8 bits of
nData are written to the output register. When a bit is set the corresponding output is
turned on. If the group is disabled at the time the new value is written to the output
register, the outputs remain disabled. Only the lower 8 bits of nData are significant.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The input group to be read.

nData New data for the output group.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADGROUP nGroup value greater than the number of boards installed.

IO32_HARDWAREREAD Low level problem accessing the hardware.

long IO32ReadStatus(long nOutput, long *pStatus)
Used to test the state of a particular channel in the output register. If the value placed in
the variable pointed to by pStatus is zero, the corresponding channel is off; a non-zero
value indicates that the channel is on. This function returns the value in the output
register even if the corresponding group is disabled at the time.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nOutput The number of the output to be read..

pStatus Pointer to a variable to receive the state of the channel.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADOUTPUT nOutput value greater than the number of outputs.

IO32_HARDWAREREAD Low level problem accessing the hardware.

© 2004 Arcom Issue D 31

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long IO32GroupStatus(long nGroup, long *pStatus)
Returns the current state of the output register. The value in the lower 8 bits placed into
the variable pointed to by pStatus reflects the current state of the output register. A zero
bit indicates that the corresponding channel is off. The higher order bits are always
zero. The value of the output register is returned even if the corresponding group is
disabled.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The relay group to be written to.

pStatus Pointer to a variable to receive the state of the channel.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADGROUP nGroup value greater than the available groups.

IO32_HARDWAREREAD Low level problem accessing the hardware.

long IO32ReadInput(long nInput, long *pState)
Returns the state of an individual input. If the value placed in the variable pointed to by
pState is non-zero, the corresponding input is on. If the value is zero the input is off.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nInput The input to be read.

pState Pointer to a variable to receive the state of the input.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADINPUT nInput value greater than the number of available inputs.

IO32_HARDWAREREAD Low level problem accessing the hardware.

© 2004 Arcom Issue D 32

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long IO32GroupInput(long nGroup, long *pState)
Allows a group of eight inputs to be read simultaneously. The values in the lower 8 bits
placed into the variable pointed to by pState indicate the state of each of the eight
channels. If a bit is zero, the corresponding input is off. The upper bits of the value in
pState are always zero.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The input group to be read.

pState Pointer to a variable to receive the state of the channel.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADGROUP nGroup value greater than the number of boards installed.

IO32_HARDWAREREAD Low level problem accessing the hardware.

AIM104-MULTI-IO
The AIM104-MULTI-IO provides 8 opto-isolated digital inputs, 2 analog outputs (voltage
or current loop) and 16 single-ended or 8 differential analog inputs.

The code that implements the API must accommodate multiple boards, but you can
assume that they are contiguous in memory with all boards being set for either single-
ended or differential analog inputs (but not a mixture of both types).

In a multi-board system the first board contains analog output groups 0 and 1, the
second board contains groups 2 and 3, and so on. Similarly the first board contains
digital inputs 0 through 7, the second board contains 8 through 15, and so on.

If the boards are configured for single-ended analog inputs, the first board contains
channels 0 through 15, the second board contains channels 16 through 31, and so on.

If the boards are configured for differential analog inputs, the first board contains
channels 0 through 7, the second board contains channels 8 through 15, and so on.

The implementation routines must be thread and process safe. Where appropriate,
implementation routines should check that the group or input number given is within the
number of boards installed in the system.

#include file: multiio.h
Link file: aim104.lib
VIPER registry patch: multiio.reg

The functions available for use with the AIM104-MULTI-IO are explained on the
following pages.

© 2004 Arcom Issue D 33

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long MULTIIODAC(long nChan, long nData)
Used to set the value of an analog output. An nData value of 0 results in a –5V output,
an nData value of 2048 results in a 0V output and an nData value of 4095 results in a
+5V output.

A value of 0 or 1 on nChan uses channels 0 or 1 on the board at the base address.

A value of 2 or 3 on nChan uses channels 0 or 1 on the second board, which must be 4
addresses from the board at the base address.

A value of 4 or 5 on nChan uses channels 0 or 1 on the third board, which must be 8
addresses from the board at the base address.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nChan The Channel to be written to.

nData The value to be written 0 through 4095.

Return value Explanation

MULTIIO_NOERROR Success call has completed OK.

MULTIIO_BADCHAN nChan greater than the number of available channels.

long MULTIIOADC(long nChan, bool SingleEnded, long *pValue)

In single-ended mode (SingleEnded set as TRUE):

A value of 0 through 15 on nChan uses channels 0 through 15 on the board at the
base address.

•

•

•

•

•

•

A value of 16 through 31 on nChan uses channels 0 through 15 on the second
board, which must be 4 addresses from the board at the base address.

A value of 32 through 47 on nChan uses channels 0 through 15 on the third board,
which must be 8 addresses from the board at the base address.

An input value of –5V results in 0 being placed in the variable pointed to by pValue.

An input value of 0V results in 2048 being placed in the variable pointed to by
pValue.

An input value of +5V results in 4095 being placed in the variable pointed to by
pValue.

© 2004 Arcom Issue D 34

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

In differential mode (SingleEnded set as FALSE):

A value of 0 through 7 on nChan uses channels 0 through 7 on the board at the
base address.

•

•

•

•

•

•

A value of 8 through 15 on nChan uses channels 0 through 7 on the second board,
which must be 4 addresses from the board at the base address.

A value of 16 through 23 on nChan uses channels 0 through 7 on the third board,
which must be 8 addresses from the board at the base address.

A differential input value of –5V results in 0 being placed in the variable pointed to
by pValue.

A differential input value of 0V results in 2048 being placed in the variable pointed to
by pValue.

A differential input value of +5V results in 4095 being placed in the variable pointed
to by pValue.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nChan The Channel to be read.

SingleEnded True if using single-ended inputs. False if using differential
inputs.

pValue Pointer to a variable to receive the input.

Return value Explanation

MULTIIO_NOERROR Success call has completed OK.

MULTIIO_BADCHAN nChan value greater than the number of boards installed.

MULTIIO_BADDIFCHAN nChan value greater than the number of differential boards
installed.

© 2004 Arcom Issue D 35

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

long MULTIIOReadInput(long nInput, long *pStatus)
Returns the state of a single opto-isolated digital input.

A value of 0 through 8 on nInput uses input 0 through 8 on the board at the base
address.

A value of 9 through 16 on nInput uses the input 0 through 8 on the second board,
which must be 4 addresses from the board at the base address.

A value of 17 through 24 on nInput uses the input 0 through 8 on the third board, which
must be 8 addresses from the board at the base address.

If the value placed in the variable pointed to by pStatus is non-zero the corresponding
input is on. If the value is zero, the corresponding input is off.

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nInput The number of the input to be read.

pStatus Pointer to a variable to receive the state of the input.

Return value Explanation

MULTIIO_NOERROR Success call has completed OK.

MULTIIO_BADINPUT nInput value greater than the number of inputs.

long MULTIIOReadGroup(long nGroup, long *pStatus)
Allows a group of eight opto-isolated inputs to be read simultaneously.

A value of 0 on nGroup reads the inputs on the board at the base address.

A value of 1 on nGroup reads the inputs on the second board, which must be 4
addresses from the board at the base address.

A value of 2 on nGroup reads the inputs on the third board, which must be 8 addresses
from the board at the base address.

The value read is placed in the variable pointed to by pStatus. If a bit is set the
corresponding input is on. If a bit is zero, the corresponding input is off.

This is the inverse of the actual data read back from the hardware, but having
a consistent ‘zero means off’ improves compatibility with other routines.

© 2004 Arcom Issue D 36

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

nGroup The input group to be read.

pStatus Pointer to a variable to receive the state of the group.

Return value Explanation

IO32_NOERROR Success call has completed OK.

IO32_BADGROUP nGroup value greater than the number of groups.

© 2004 Arcom Issue D 37

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

© 2004 Arcom Issue D 38

Watchdog
The Arcom watchdog driver provides two functions that allow the watchdog to be
controlled by application programs.

To use these functions, #include “watchdog.h” and link with watchdog.lib

Once the watchdog has been enabled there is no way to disable it.

The functions available are explained below.

BOOL EnableWatchdog(void)

Enables the PXA255 watchdog (internal timer 3) to reset the processor if it times out.
The timeout is set to the longest possible value (about 1150 seconds).

There are no parameters to specify. The values that are returned are explained in the
following table:

Return value Explanation

True No errors were returned making this call.

False Errors were returned making this call.

BOOL ToggleWatchdog(DWORD dwTimeout)
Restarts the watchdog timeout. After calling EnableWatchdog, call this function to set
the required timeout. The application must call this function again within the timeout
period, otherwise the processor is reset.

The parameter you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

dwTimeout The next timeout interval in milliseconds.

Return value Explanation

True No errors were returned making this call.

False Errors were returned making this call.

VIPER Windows CE .NET 4.2 Technical Manual Support libraries

 SRAM
The onboard SRAM can be written to and read from using two SRAM functions. The
data in the SRAM can be made non-volatile by fitting an external battery to power the
device in the event of power loss on the main VIPER 5V supply. Details can be found in
the Power and power management section of the VIPER Technical manual, which is in
the documentation section of the USER CD.

To use these functions, #include “sram.h” and link with sram.lib

BOOL SRAMRead(DWORD dwAddress, DWORD dwSize, void *pBuffer)
The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

dwAddress Location in SRAM between 0 and 256.

dwSize Size of the data being read from SRAM.

pBuffer pointer to a buffer to receive data read.

Return value Explanation

True No errors were returned making this call.

False Errors were returned making this call.

BOOL SRAMWrite(DWORD dwAddress, DWORD dwSize, void *pBuffer)
The parameters you can specify and the values that are returned are explained in the
following tables:

Parameter Summary

dwAddress Location in SRAM between 0 and 256.

dwSize Size of the data being written to SRAM.

pBuffer Pointer to a buffer containing data to write.

Return value Explanation

True No errors were returned making this call.

False Errors were returned making this call.

© 2004 Arcom Issue D 39

VIPER Windows CE .NET 4.2 Technical Manual Appendix A – Contacting Arcom

Appendix A – Contacting Arcom
Arcom sales

Arcom’s sales team is always available to assist you in choosing the board that best
meets your requirements. Contact your local sales office or hotline.

Sales office US Sales office Europe
Arcom
7500W 161st Street
Overland Park
Kansas
66085
USA

Tel: 913 549 1000
Fax: 913 549 1002
E-mail: us-sales@arcom.com

Arcom
Clifton Road
Cambridge
CB1 7EA
UK

Tel: 01223 411 200
Fax: 01223 410 457
E-mail: euro-sales@arcom.com

Full information about all Arcom products is available on our Web site at www.arcom.com.

While Arcom’s sales team can assist you in making your decision, the final
choice of boards or systems is solely and wholly the responsibility of the buyer.
Arcom’s entire liability in respect of the boards or systems is as set out in
Arcom’s standard terms and conditions of sale. If you intend to write your own
low level software, you can start with the source code on the disk supplied. This
is example code only to illustrate use on Arcom’s products. It has not been
commercially tested. No warranty is made in respect of this code and Arcom
shall incur no liability whatsoever or howsoever arising from any use made of
the code.

Technical support
Arcom has a team of technical support engineers who can provide assistance if you
have any problems with your VIPER board.

Technical support US Technical support Europe

Tel: 913 549 1010

Fax: 913 549 1001

E-mail: us-support@arcom.com

Tel: +44 (0)1223 412 428

Fax: +44 (0)1223 403 409

E-mail: euro-support@arcom.com

© 2004 Arcom Issue D 40

mailto:us-sales@arcom.com
mailto:euro-sales@arcom.com
http://www.arcom.com/
mailto:us-support@arcom.com
mailto:euro-support@arcom.com

VIPER Windows CE .NET 4.2 Technical Manual Appendix B – Reference information

Appendix B – Reference information

Product information
Product notices, updated drivers, support material, 24hr-online ordering:

www.arcom.com

PC/104 Consortium
PC/104 specifications. Vendor information and available add on products.

www.PC/104.org

USB Information
Universal Serial Bus (USB) specification and product information

www.usb.org

CFA (CompactFlash Association)
CF+ and CompactFlash specification and product information

www.compactflash.org/

© 2004 Arcom Issue D 41

http://www.arcom.com/
http://www.pc104.org/
http://www.usb.org/
http://www.compactflash.org/

VIPER Windows CE .NET 4.2 Technical Manual Appendix C – Acronyms and abbreviations

Appendix C – Acronyms and abbreviations
API Application Program(ming) Interface
COM Communication Port
CPU Central Processing Unit (PXA255)
CMOS Complementary Metal Oxide Semiconductor
EMC Electromagnetic Compatibility
GPIO General Purpose Input/Output
IO Input/Output
LCD Liquid Crystal Display
NiMH Nickel Metal Hydride
OS Operating System
RTC Real Time Clock
SBC Single Board Computer
SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory
STN Super Twisted Nematic, technology of passive matrix liquid crystal
TFT Thin Film Transistor, a type of LCD flat-panel display screen
UPS Uninterruptible Power Supply
USB Universal Serial Bus
VGA Video Graphics Adapter, display resolution 640 x 480 pixels
VIPER-ICE VIPER-Industrial Compact Enclosure

© 2004 Arcom Issue D 42

VIPER Windows CE .NET 4.2 Technical Manual Index

© 2004 Arcom Issue D 43

Index

.

.NET Compact Framework · 14

1
10/100 baseT ethernet · 7

A
ActiveSync · 16, 17
AIM104 DLL · 21
AIM104-IN16 · 25
AIM104-IO32 · 29
AIM104-MULTI-IO · 33
AIM104-OUT16 · 27
AIM104-Relay8/IN8 · 21
Arcom Platform SDK · 14
audio · 7

B
battery, UPS · 12
BOOL EnableWatchdog · 38
BOOL SRAMRead · 39
BOOL SRAMWrite · 39
BOOL ToggleWatchdog · 38

C
C++ · 14
calibrate, touchscreen · 10
clear, registry · 11
cleared registry · 10
clock · 12
code, source · 40
COM · 7
CompactFlash · 7, 13
contact details · 40
CPU · 15

D
date · 12
DHCP · 9
dwAddress · 39
dwSize · 39
dwTimeout · 38

E
eMbedded Visual C++ · 14
ethernet · 7, 9

F
flash · 5, 7
flat panel · 8

G
GPIO · 7, 20

I
IN16_BADGROUP · 26
IN16_BADINPUT · 26
IN16_HARDWAREREAD · 26
IN16_NOERROR · 26
IO32_BADGROUP · 30, 31, 32, 33, 37
IO32_BADINPUT · 30, 32
IO32_BADOUTPUT · 31
IO32_HARDWAREREAD · 31, 32, 33
IO32_HARDWAREWRITE · 30
IO32_HAWRWAREWRITE · 30
IO32_NOERROR · 30, 31, 32, 33, 37
IP address, set · 9

K
keyboard · 7

L
LCD · 7
library · 21
long IN16GroupInput · 26
long IN16ReadInput · 26
long IO32Enable · 30
long IO32GroupInput · 33
long IO32GroupStatus · 32
long IO32GroupWrite · 31
long IO32ReadInput · 32
long IO32ReadStatus · 31
long IO32WriteOutput · 30
long MULTIIOADC · 34
long MULTIIODAC · 34

VIPER Windows CE .NET 4.2 Technical Manual Index

© 2004 Arcom Issue D 44

long MULTIIOReadGroup · 36
long MULTIIOReadInput · 36
long OUT16GroupStatus · 29
long OUT16GroupWrite · 28
long OUT16ReadStatus · 28
long OUT16WriteOutput · 27
long Relay8Enable · 22
long Relay8GroupInput · 25
long Relay8GroupStatus · 24
long Relay8GroupWrite · 23
long Relay8ReadInput · 24
long Relay8RelayStatus · 23
long Relay8RelayWrite · 22

M
Microsoft ActiveSync · 16, 17
mouse · 7
MULTIIO_BADCHAN · 34, 35
MULTIIO_BADDIFCHAN · 35
MULTIIO_BADINPUT · 36
MULTIIO_NOERROR · 34, 35, 36

N
nChan · 34, 35
nData · 23, 28, 31, 34
nGroup · 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33,

37
nInput · 24, 26, 32, 36
nOutput · 27, 28, 30, 31
nRelay · 22, 23
nState · 22, 27, 30

O
OUT16_BADINPUT · 27
OUT16_HARDWAREWRITE · 27
OUT16_NOERROR · 27

P
patch, registry · 8
pBuffer · 39
PC/104 · 21

consortium · 41
PC/104 interface · 7
persistent registry · 7, 11, 13
port and mode detection · 10
power supply · 7, 12
product information · 41
pState · 24, 25, 26, 32, 33
pStatus · 23, 24, 28, 29, 31, 32, 36, 37
pValue · 35

Q
QVGA · 8

R
R8_BADGROUP · 22, 23, 24, 25, 29
R8_BADINPUT · 24
R8_BADOUTPUT · 28
R8_BADRELAY · 22, 23
R8_HARDWAREREAD · 23, 24, 25, 28, 29
R8_HAWRWAREWRITE · 22, 23, 24
R8_NOERROR · 22, 23, 24, 25, 28, 29
registry · 11

clear · 11
cleared · 10
persistent · 13
save · 11

registry patch · 8
registry, persistent · 7
remote debugging · 16

S
save, registry · 11
SingleEnded · 35
source code · 40
spinlock.dll · 21
SRAM · 39
startup folder · 18
storage, USB · 7
support · 40

T
technical support · 40
TFAT · 7
time · 12
time zone · 12
touchscreen · 7, 10

calibrate · 10
touchscreen calibration · 10

U
UPS · 7, 12
UPS battery · 12
USB · 41
USB storage · 7
User CD · 6

V
version · 7
VGA · 8
VIPER CE Manual · 6
Visual C++ · 14

VIPER Windows CE .NET 4.2 Technical Manual Index

© 2004 Arcom Issue D 45

W
watchdog · 7
web server · 18

	VIPER Windows CE .NET 4.2 Technical Manual
	Contents
	Handling your board safely
	Environmental
	Anti-static handling
	ElectroMagnetic Compatibility (EMC)
	Packaging

	About this manual
	Related documents
	Conventions
	Terminology

	Operating system support
	Version
	Included components
	Hardware supported in this release

	Flat panels and video modes
	NEC
	Hitachi

	Ethernet
	Touchscreen
	Port and Mode Detection process
	Touchscreen calibration process

	Registry
	Saving the registry
	Clearing the registry

	UPS power supply
	Real time clock
	Software tools
	Regpatch
	Getflash
	Strataprog

	Application development
	Using .NET Compact Framework
	Using eMbedded Visual C++
	eMbedded Visual C++ 4.0
	eMbedded Visual C++ 4.0 Service Pack 2
	Arcom Platform SDK
	CPU selection

	Establishing a remote debugging connection
	Running applications directly from startup
	Web server
	Accessing memory and peripherals directly
	Using the GPIO lines

	Support libraries
	AIM104 board support
	AIM104-Relay8/IN8
	AIM104-IN16
	AIM104 OUT-16
	AIM104-IO32
	AIM104-MULTI-IO

	Watchdog
	SRAM

	Appendix A – Contacting Arcom
	Appendix B – Reference information
	Appendix C – Acronyms and abbreviations
	Index

