SKKD80S12

SEMITRANS® 2N

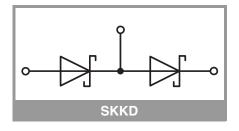
SiC Rectifier Diode Module

SKKD80S12

Features*

- SiC Schottky diode
- Low inductance case
- Heat transfer through aluminium oxide ceramic insulated metal baseplate
- UL recognized, file no. E63532

Typical Applications


- Uncontrollable rectifiers for DC/DC converters
- High frequency rectifier applications

Remarks

Recommended $T_{j,op} = -40 \dots +150$ °C

Absolute Maximum Ratings										
Symbol	Conditions		Values	Unit						
Diode										
ĪFAV	Tj = 175 °C	Tc = 85 °C	68	Α						
		Tc =100 °C	61	Α						
IFRM			168	Α						
lғм	PW = 10µs, square	e, T _j = 25°C	1116	Α						
IFSM	M + 10 ma	T _j = 25 °C	370	Α						
	$t_p = 10 \text{ ms}$	T _j = 150 °C	258	Α						
i ² t	t _p = 10 ms	T _j = 25 °C	684	A ² s						
		T _j = 150 °C	333	A ² s						
VRSM	T _j = 25°C		1200	V						
VRRM	T _j = 25°C		1200	V						
Tj			-40 175	°C						
Module										
Tstg			-40 125	°C						
Visol	0 0 : E0 Uz: r m 0	1 min	4000	V						
	a.c.; 50 Hz; r.m.s.	1 s	4800	V						

Characteristics									
Symbol	Conditions	min.	typ.	max.	Unit				
Diode									
VF	IF = 80 A	T _j = 25 °C			1.60	V			
	chiplevel	T _j = 150 °C			2.10	V			
VF0	chiplevel	T _j = 25 °C			1.05	V			
		T _j = 150 °C			0.90	V			
rF	chiplevel	T _j = 25 °C			6.9	mΩ			
		T _j = 150 °C			15	mΩ			
lr	VR = VRRM, T _j = 25 °C				1.8	mA			
Cj	f = 1 MHz, V _R = 800 V, T _j = 25 °C			0.340		nF			
Qc	V _R = 800 V, di/dt = 500 A/µs,T _j = 25 °C			0.26		μC			
Rth(j-c)	per diode				0.36	K/W			
	per module			0.18	K/W				
Module									
LCE				20		nH			
Rth(c-s)	per diode ($\lambda_{grease} = 0.81 \text{ W/(m*K)}$)			0.08		K/W			
	per module ($\lambda_{grease} = 0.81 \text{ W/(m*K)}$)			0.04		K/W			
Rcc'+EE'	measured per diode	Tc = 25 °C		0.65		mΩ			
		Tc =125 °C		1.0		mΩ			
Ms	to heatsink M6		3.0		5.0	Nm			
Mt	to terminals M5		2.5		5.0	Nm			
а					5 * 9.81	m/s ²			
W				160		g			

SKKD80S12

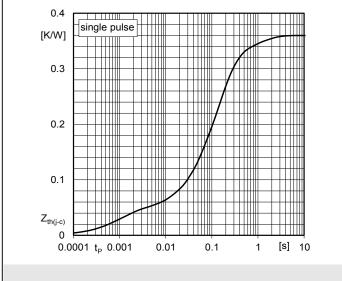


Fig. 1: Transient thermal impedance vs. time

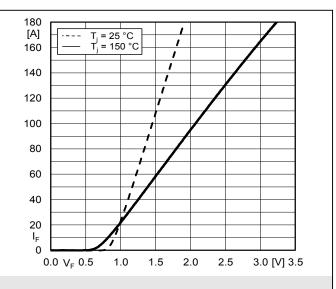


Fig. 2: Typical forward characteristic (chip level)

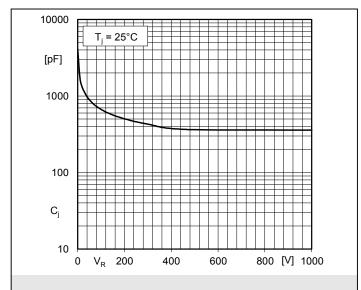
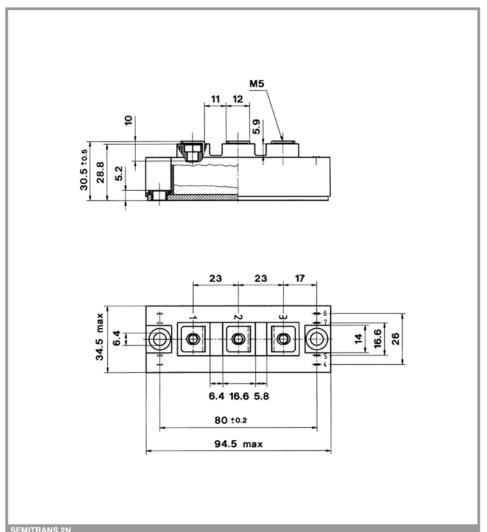
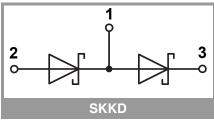




Fig. 3: Typ. capacitance-voltage charact. (1 MHz)

SKKD80S12

This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.*

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as any guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of SEMIKRON products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Resulting from this, application adjustments of any kind may be necessary. Any user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing any physical injury, fire or other problem, also if any SEMIKRON product becomes faulty. Any user is responsible for making sure that the application design and realization are compliant with all laws, regulations, norms and standards applicable to the scope of application. Unless otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not convey any license under its or a third party's patent rights, copyrights, trade secrets or other intellectual property rights, neither does it make any representation or warranty of non-infringement of intellectual property rights of any third party which may arise from a user's applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all previous SEMIKRON information of comparable content and scope. SEMIKRON may update and/or revise this document at any time.