ReNESAS

FEATURES:

- Std., A, and C grades
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- CMOS power levels
- True TTL input and output compatibility:
- $\mathrm{VOH}=3.3 \mathrm{~V}$ (typ.)
- $\mathrm{Vol}=0.3 \mathrm{~V}$ (typ.)
- High Drive outputs (-15 mA Іон, 64 mA IOL)
- Meets or exceeds JEDEC standard 18 specifications
- Military product compliant to MIL-STD-883, Class B and DESC listed (dual marked)
- Power off disable outputs permit "live insertion"
- Available in the following packages:
- Industrial: SOIC, SSOP, QSOP, TSSOP
- Military: CERDIP, LCC

DESCRIPTION:

The IDT octal bidirectional transceivers are built using an advanced dual metal CMOS technology. The FCT245T is designed for asynchronous twoway communication between data buses. The transmit/receive (T / \bar{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active high) enables data from A ports to B ports, and receive (active low) from B ports to A ports. The output enable ($\overline{\mathrm{OE}}$) input, when high, disables both A and B ports by placing them in high Z condition.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

CERDIPI SOICI SSOPI QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed V cc by +0.5 V unless otherwise noted.
2. Inputs and Vcc terminals only.
3. Output and I/O terminals only.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	6	10	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
$\bar{O} \bar{E}$	Output Enable Inputs (Active LOW)
T / \bar{R}	Transmit/Recieve Input
$A_{0}-A_{7}$	Side A Inputs or 3-State Outputs
$B_{0}-B_{7}$	Side B Inputs or 3-State Outputs

FUNCTION TABLE(1)

Inputs		Outputs
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	$\mathrm{T} / \overline{\mathrm{R}}$	
L	L	Bus A Data to Bus B
L	H	HighZState
H	X	

NOTE:

1. H = HIGH Voltage Level

X = Don't Care
L = LOW Voltage Level
Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$; Military: $\mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		-	-	0.8	V
11.	Input HIGH Current ${ }^{(4)}$	Vcc = Max.	V I $=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IIL	Input LOW Current ${ }^{(4)}$	Vcc $=$ Max.	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IozH	High Impedance Output Current (3-State output pins) ${ }^{(4)}$	Vcc = Max	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Iozl			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1	
11	Input HIGH Current ${ }^{(4)}$	Vcc = Max., VI = Vcc (Max.)		-	-	± 1	$\mu \mathrm{A}$
VIK	Clamp Diode Voltage	$\mathrm{Vcc}=\mathrm{Min}, \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
VH	Input Hysteresis	- -		-	200	-	mV
ICC	Quiescent Power Supply Current	Vcc = Max., VIn = GND or Vcc		-	0.01	1	mA

OUTPUT DRIVECHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & \text { VCC = Min } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\begin{aligned} & \text { IOH }=-6 \mathrm{~mA} \mathrm{MIL} \\ & \mathrm{IOH}=-8 \mathrm{~mA} \mathrm{IND} \end{aligned}$	2.4	3.3	-	V
			$\begin{aligned} & \text { IOH }=-12 \mathrm{~mA} \mathrm{MIL} \\ & \mathrm{IOH}=-15 \mathrm{~mA} \text { IND } \end{aligned}$	2	3	-	
VoL	OutputLOWVoltage	$\begin{aligned} & \hline \text { VCC }=\operatorname{Min} \\ & \text { VIN }=\text { VIH or } \text { VIL }^{2} \end{aligned}$	$\begin{aligned} & \text { IOL }=48 \mathrm{~mA} \mathrm{MIL} \\ & \mathrm{IOL}=64 \mathrm{~mA} \text { IND } \end{aligned}$	-	0.3	0.55	V
Ios	Short Circuit Current	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=\mathrm{GND}{ }^{(3)}$		-60	-120	-225	mA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. The test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{Vcc}=\mathrm{Max} \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	2	mA
ICCD	Dynamic Power Supply Current(4)	Vcc $=$ Max. Outputs Open $\overline{\mathrm{OE}}=\mathrm{T} / \overline{\mathrm{R}}=\mathrm{GND}$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & \text { VIN }=\mathrm{VCC} \\ & \text { VIN }=\mathrm{GND} \end{aligned}$	-	0.15	0.25	$\begin{aligned} & \mathrm{mAl} \\ & \mathrm{MHz} \end{aligned}$
Ic	Total Power Supply Current(6)	$\begin{aligned} & \text { Vcc = Max. } \\ & \text { Outputs Open } \\ & \text { fi }=10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VcC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.5	3.5	mA
		$\begin{aligned} & 50 \% \text { Duty Cycle } \\ & \overline{\text { OE }}=\mathrm{T} / \overline{\mathrm{R}}=\mathrm{GND} \\ & \text { One Bit Toggling } \end{aligned}$	$\begin{aligned} & \text { VIN }=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.8	4.5	
		Vcc = Max. Outputs Open $\mathrm{fi}=2.5 \mathrm{MHz}$	$\begin{aligned} & \text { VIN }=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	3	6 (5)	
		50\% Duty Cycle $\overline{\mathrm{OE}}=\mathrm{T} / \overline{\mathrm{R}}=\mathrm{GND}$ Eight Bits Toggling	$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	5	14(5)	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input; (VIn = 3.4V). All other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of Δ Icc formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + IINPUTS + IDYNAMIC
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC}$ DHNT $+\mathrm{ICCD}(\mathrm{fcP} / 2+\mathrm{fiNi})$
Icc = Quiescent Current
$\Delta \mathrm{Icc}=$ Power Supply Current for a TTL High Input (VIN $=3.4 \mathrm{~V}$)
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{fi}_{\mathrm{i}}=$ Output Frequency
$\mathrm{Ni}=$ Number of Outputs at fi_{i}
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE-INDUSTRIAL

Symbol	Parameter	Condition ${ }^{(1)}$	74FCT245AT		74FCT245CT		Unit
			Min. ${ }^{2}$)	Max.	Min. ${ }^{(2)}$	Max.	
	Propagation Delay A to B, B to A	$\begin{aligned} C L & =50 \mathrm{pF} \\ \mathrm{RL} & =500 \Omega \end{aligned}$	1.5	4.6	1.5	4.1	ns
	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B		1.5	6.2	1.5	5.8	ns
tPHZ	OutputDisable Time $\overline{\mathrm{OE}}$ to A or B		1.5	5	1.5	4.8	ns
tPZH	OutputEnable Time T / \bar{R} to A or $B^{(3)}$		1.5	6.2	1.5	5.8	ns
tPHZ	OutputDisable Time T / \bar{R} to A or $B^{(3)}$		1.5	5	1.5	4.8	ns

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - MILITARY

Symbol	Parameter	Condition ${ }^{(1)}$	54FCT245T		54FCT245AT		54FCT245CT		Unit
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay A to B, B to A	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	1.5	7.5	1.5	4.9	1.5	4.5	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B		1.5	10	1.5	6.5	1.5	6.2	ns
tPHZ	OutputDisable Time $\overline{\mathrm{OE}}$ to A or B		1.5	10	1.5	6	1.5	5.2	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time T / \bar{R} to A or $B^{(3)}$		1.5	10	1.5	6.5	1.5	6.2	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	OutputDisable Time T / \bar{R} to A or $B^{(3)}$		1.5	10	1.5	6	1.5	5.2	ns

NOTES:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Octal Link

Test Circuits for All Outputs

Set-Up, Hold, and Release Times

Octal Link
Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width
Octal Link

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

Datasheet Document History

09/29/2009
Pg. 7
Updated the ordering information by removing the "IDT" notation and non RoHS part.
12/12/2016
Pg. 7
Updated the ordering information by adding detailed package information and Tape \& Reel.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Renesas Electronics:
74FCT245CTPGG 74FCT245CTSOG 74FCT245CTPYG 54FCT245CTDB 54FCT245CTLB 74FCT245ATPYG 74FCT245ATPGG 74FCT245ATQG8 74FCT245ATSOG 74FCT245CTSOG8 54FCT245ATDB 54FCT245ATLB 54FCT245TLB 54FCT245TDB 74FCT245ATPGG8 74FCT245ATPYG8 74FCT245CTPYG8 5962-9221401MRA 5962-9221401M2A 74FCT245CTQG 74FCT245CTPGG8 5962-9221403M2A 5962-9221403MRA 74FCT245ATQG 74FCT245CTQG8 5962-9221405M2A 5962-9221405MRA 74FCT245ATSOG8

