TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX245F,TC74LCX245FW,TC74LCX245FT,TC74LCX245FK

Low-Voltage Octal Bus Transceiver with 5-V Tolerant Inputs and Outputs

The TC74LCX245F/FW/FT/FK is a high-performance CMOS octal bus transceiver. Designed for use in $3.3-\mathrm{V}$ systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to $5-\mathrm{V}$ supply environment for both inputs and outputs.

The direction of data transmission is determined by the level of the DIR input. The enable input ($\overline{\mathrm{OE}}$) can be used to disable the device so that the busses are effectively isolated.

All inputs are equipped with protection circuits against static discharge.

Features (Note)

- Low-voltage operation: $\mathrm{VCC}=2.0$ to 3.6 V
- High-speed operation: $\mathrm{t}_{\mathrm{pd}}=7.0 \mathrm{~ns}(\max)(\mathrm{VCC}=3.0$ to 3.6 V$)$
- Ouput current: $|\mathrm{IOH}| / \mathrm{IOL}=24 \mathrm{~mA}(\mathrm{~min})(\mathrm{VCC}=3.0 \mathrm{~V})$
- Latch-up performance: $\pm 500 \mathrm{~mA}$
- Available in JEDEC SOP, JEITA SOP and TSSOP
- Bidirectional interface between 5.0 V and 3.3 V signals
- Power-down protection provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 245 type

Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.
All floating (high impedance) bus pins must have their input levels fixed by means of pull-up or pull-down resistors.

Note: $x x x F W$ (JEDEC SOP) is not available in Japan.

TC74LCX245F

SOP20-P-300-1.27A

SOP20-P-300-1.27
TC74LCX245FW

SOL20-P-300-1.27
TC74LCX245FT

TSSOP20-P-0044-0.65A
TC74LCX245FK

VSSOP20-P-0030-0.50

Weight	
SOP20-P-300-1.27A	$: 0.22 \mathrm{~g}$ (typ.)
SOP20-P-300-1.27	$: 0.22 \mathrm{~g}$ (typ.)
SOL20-P-300-1.27	$: 0.46 \mathrm{~g}$ (typ.)
TSSOP20-P-0044-0.65A	$: 0.08 \mathrm{~g}$ (typ.)
VSSOP20-P-0030-0.50	$: 0.03 \mathrm{~g}$ (typ.)

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Inputs		Outputs	Function	
$\overline{\mathrm{OE}}$	DIR		A-Bus	B-Bus
L	L	$A=B$	Output	Input
L	H	$B=A$	Input	Output
H	X	Z		

X: Don't care
Z: High impedance

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	-0.5 to 7.0	V
DC input voltage (DIR, $\overline{\mathrm{OE}}$)	V_{IN}	-0.5 to 7.0	V
		-0.5 to 7.0 (Note 2)	
DC bus I/O voltage	$\mathrm{V}_{\text {I/O }}$	$-0.5 \text { to } V_{\mathrm{CC}}+0.5$ (Note 3)	V
Input diode current	IIK	-50	mA
Output diode current	IOK	$\pm 50 \quad$ (Note 4)	mA
DC output current	IOUT	± 50	mA
Power dissipation	PD	180	mW
DC $\mathrm{V}_{\text {cc }}$ /ground current	$\mathrm{I}_{\text {CC }} / \mathrm{I}_{\text {GND }}$	± 100	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: Output in OFF state
Note 3: High or low state. Iout absolute maximum rating must be observed.
Note 4: VOUT < GND, VOUT > VCC

Recommended Operating Conditions (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	2.0 to 3.6	V
		1.5 to 3.6 (Note 2)	
Input voltage (DIR, $\overline{\mathrm{OE}}$)	V_{IN}	0 to 5.5	V
Bus I/O voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	0 to 5.5 (Note 3)	V
		0 to $\mathrm{V}_{\text {CC }}$ (Note 4)	
Output current	$\mathrm{lOH}^{\prime} / \mathrm{OL}$	± 24 (Note 5)	mA
		± 12 (Note 6)	
Operating temperature	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns / V

Note 1: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only
Note 3: Output in OFF state
Note 4: High or low state
Note 5: $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
Note 6: $V_{C C}=2.7$ to 3.0 V
Note 7: $\mathrm{V}_{\mathrm{IN}}=0.8$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Electrical Characteristics

DC Characteristics ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Condition			Min	Max	Unit	
Input voltage	H-level	V_{IH}	-		2.7 to 3.6	2.0	-	V	
	L-level	$\mathrm{V}_{\text {IL }}$			2.7 to 3.6	-	0.8		
Output voltage	H-level	V_{OH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or V_{IL}	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$	2.7 to 3.6	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -0.2 \end{gathered}$	-	V	
				$\mathrm{IOH}=-12 \mathrm{~mA}$	2.7	2.2	-		
				$\mathrm{IOH}=-18 \mathrm{~mA}$	3.0	2.4	-		
				$\mathrm{IOH}=-24 \mathrm{~mA}$	3.0	2.2	-		
	L-level	V_{OL}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{lOL}=100 \mu \mathrm{~A}$	2.7 to 3.6	-	0.2		
				$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$	2.7	-	0.4		
				$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0	-	0.4		
				$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$	3.0	-	0.55		
Input leakage current		IIN	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V		2.7 to 3.6	-	± 5.0	$\mu \mathrm{A}$	
3-state output OFF state current		Ioz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		2.7 to 3.6	-	± 5.0	$\mu \mathrm{A}$	
Power-off leakage current		lofF	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		0	-	10.0	$\mu \mathrm{A}$	
Quiescent supply current		$I_{\text {cc }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		2.7 to 3.6	-	10.0		
		$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=3.6$ to 5.5 V	2.7 to 3.6	-	± 10.0	$\mu \mathrm{A}$			
Increase in Icc per input			$\Delta \mathrm{l}$ CC	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		2.7 to 3.6	-	500	

AC Characteristics ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition		Min	Max	Unit
			$\mathrm{V}_{\text {Cc }}(\mathrm{V})$			
Propagation delay time	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Figure 1, Figure 2	2.7	-	8.0	ns
			3.3 ± 0.3	1.5	7.0	
Output enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pZL}} \\ & \mathrm{t}_{\mathrm{pZH}} \end{aligned}$	Figure 1, Figure 3	2.7	-	9.5	ns
			3.3 ± 0.3	1.5	8.5	
Output disable time	$\begin{gathered} \mathrm{t}_{\mathrm{pLZ}} \\ \mathrm{t}_{\mathrm{pHZ}} \end{gathered}$	Figure 1, Figure 3	2.7	-	8.5	ns
			3.3 ± 0.3	1.5	7.5	
Output to output skew	$\begin{aligned} & \mathrm{t}_{\mathrm{OSLH}} \\ & \mathrm{t}_{\mathrm{osHL}} \end{aligned}$		2.7	-	-	ns
			3.3 ± 0.3	-	1.0	

Note: Parameter guaranteed by design.
($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{pLH}}-\mathrm{t}_{\mathrm{pLHn}}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\mathrm{pHLm}}-\mathrm{t}_{\mathrm{pHLn}}\right|\right)$

Dynamic Switching Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Characteristics	Symbol	Test Condition		Typ.	Unit
			$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$		
Quiet output maximum dynamic V_{OL}	Volp	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
Quiet output minimum dynamic V_{OL}	\|Volvl	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V

Capacitive Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition		$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Typ.	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$	DIR, $\overline{\mathrm{OE}}$		3.3	7	pF
Bus input capacitance	$\mathrm{C}_{1 / \mathrm{O}}$	An, Bn		3.3	8	pF
Power dissipation capacitance	CPD	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$	(Note)	3.3	25	pF

Note: $\quad C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.
Average operating current can be obtained by the equation:

$$
\mathrm{I}_{\mathrm{CC}}(\mathrm{opr})=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 8 \text { (per bit) }
$$

AC Test Circuit

Parameter	Switch
$\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$	Open
$\mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pZL}}$	6.0 V
$\mathrm{t}_{\mathrm{pHZ}}, \mathrm{t}_{\mathrm{pZH}}$	GND

Figure 1

AC Waveform

Figure $2 \mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$

Figure $3 \mathrm{t}_{\mathrm{pLz}}, \mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{pzL}}, \mathrm{t}_{\mathrm{pzH}}$

Package Dimensions

```
SOP20-P-300-1.27A
```


Weight: 0.22 g (typ.)

Package Dimensions

SOP20-P-300-1.27

Unit: mm

Weight: 0.22 g (typ.)

Package Dimensions (Note)

SOL20-P-300-1.27

Unit : mm

Note This package is not available in Japan.
Weight: 0.46 g (typ.)

Package Dimensions

TSSOP20-P-0044-0.65A

Unit: mm

Weight: 0.08 g (typ.)

Package Dimensions

VSSOP20-P-0030-0.50
Unit: mm

Weight: 0.03 g (typ.)

Note: Lead (Pb)-Free Packages
SOP20-P-300-1.27A TSSOP20-P-0044-0.65A VSSOP20-P-0030-0.50

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_в
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

