
Teensy Getting Started Guide

Teensy Getting Started Guide ... 1

Step #1: Teensy First Use ... 3

HalfKay Bootloader Mode .. 4

Understanding When Each Program Runs .. 4

Loading New Programs .. 4

Step #2: The Teensy Loader Application .. 5

Command Line Version .. 6

Revision History .. 6

1.15 ... 6

1.07 ... 6

1.06 ... 6

1.05 ... 6

1.04 ... 6

1.03 ... 6

1.02 ... 6

1.01 ... 7

1.00 ... 7

Using The Teensy Loader on Mac OS X ... 7

Mac OS 10.4 Tiger (does not work) .. 10

Using The Teensy Loader on Ubuntu Linux .. 10

Using The Teensy Loader on Windows XP .. 13

Using The Teensy Loader on Windows Vista ... 16

Teensy Loader, Command Line... 19

Compiling From Source .. 20

Usage and Command Line Options ... 20

Required command line parameters: ... 20

Optional command line parameters: .. 21

System Specific Setup .. 21

Makefile Integration .. 22

PlatformIO Integration ... 22

Errata .. 22

Step #3: The GCC Compiler and Tools .. 22

Macintosh OS X ... 23

Linux, Ubuntu 8.10 .. 23

Windows XP & Vista & 7 & 8 .. 23

Using Make to Compile Blinky ... 23

Understanding the Makefile .. 25

Details In The Blinky Source Code .. 26

Step #4: The HID Listen Program ... 27

Download HID Listen .. 27

Running HID Listen .. 27

Macintosh OS X 10.5 ... 27

Linux .. 28

Windows XP & Vista ... 29

Step #1: Teensy First Use

The first step is to plug your new Teensy in using the USB cable.

Simply plug the Teensy board in to a USB port to get started.

All brand new Teensy boards come with the LED blink program pre-loaded. You should
see the Orange LED blink slowly, 1 second on, 1 second off.

LED blink program is pre-programmed on all new Teensy boards

If your Teensy is not brand new, it will run whatever program the previous owner
loaded, perhaps causing your computer to recognize new hardware and require drivers.
Just cancel any driver setup. In the next step you will load the LED blink program.

If your Teensy should blink but does not, please check the USB cable to make sure it is
properly connected. Your computer must be on so it provides power to the USB port. If
you still experience problems, try a different USB port or different computer.

HalfKay Bootloader Mode

Your Teensy contains 2 programs, the LED blink (user program) and the HalfKay
bootloader. HalfKay, together with the Teensy Loader software, allows you to easily
load new programs. Normally, the user program will run. To run HalfKay, press and
release the tiny pushbutton.

Press and release the pushbutton to enter HalfKay bootloader mode.

The LED blinking will stop, because HalfKay never lights the LED.

Your computer may briefly display a message or beep to indicate new hardware.
Windows, MacOS-X and Linux have built-in drivers that are automatically used, so you
never need to install drivers for HalfKay!

Understanding When Each Program Runs

User Program Runs When... HalfKay Runs When... Nothing Runs When...

 Power is applied
 Reboot button clicked in

Teensy Loader
 (In Auto mode) Immediately

after download

 Pushbutton is pressed (and
released)

 If user program jumps to
Teensy code

 Pushbutton held
down

Loading New Programs

The next step is to install and use the Teensy Loader application to download different
programs to your Teensy board.

http://pjrc.com/teensy/loader.html

Step #2: The Teensy Loader

Application

The Teensy Loader program communicates with your Teensy board when the HalfKay

bootloader is running, so you can download new programs and run them.

Update: Teensy 3.0 is supported by Teensyduino. After installation, Teensy Loader is
in hardware/tools. It is run automatically when using Verify or Upload within the Arduino
software.

Teensy Loader is available for these operating systems:

Macintosh OS X 10.5

Linux (Ubuntu)

Windows XP

Windows 7 & Vista

http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/loader_mac.html
http://pjrc.com/teensy/loader_mac.html
http://pjrc.com/teensy/loader_mac.html
http://pjrc.com/teensy/loader_mac.html
http://pjrc.com/teensy/loader_linux.html
http://pjrc.com/teensy/loader_linux.html
http://pjrc.com/teensy/loader_linux.html
http://pjrc.com/teensy/loader_linux.html
http://pjrc.com/teensy/loader_xp.html
http://pjrc.com/teensy/loader_xp.html
http://pjrc.com/teensy/loader_xp.html
http://pjrc.com/teensy/loader_xp.html
http://pjrc.com/teensy/loader_vista.html
http://pjrc.com/teensy/loader_vista.html
http://pjrc.com/teensy/loader_vista.html
http://pjrc.com/teensy/loader_vista.html
http://pjrc.com/teensy/loader_mac.html
http://pjrc.com/teensy/loader_linux.html
http://pjrc.com/teensy/loader_xp.html
http://pjrc.com/teensy/loader_vista.html

Command Line Version

The Teensy Loader is also available in a command line version for advanced users. It

works on Mac, Windows, Linux and BSD Unix.

Revision History

The Teensy Loader version is shown in the About window, available from the Help

menu, or "Teensy" menu on Mac OS X.

1.15

 Version number is now synchronized to Teensyduino
 Improve .elf chip detection for Teensy 3.0

1.07

 Support for Teensy 3.0

1.06

 Fix off-screen issues with Windows multiple monitor desktops
 Support for Teensyduino 0.9

1.05

 Support Teensy 2.0 board
 Improve .elf chip detection
 Program EEPROM, if found in .elf file

1.04

 Do not program when .elf file is clearly compiled for the wrong chip
 Display Teensy++ image when communicating with a Teensy++ board
 More careful program close, hopefully fixes crash-on-quit on Mac OS X

1.03

 Wait for reboot, (hopefully) solves incorrect auto mode disable, especially on
Windows

 More status reported to Teensyduino (to be used by version 0.4)
 Fix memory leaks on Mac OS X

1.02

 More remote control features (for Teensyduino 0.2)

http://pjrc.com/teensy/loader_cli.html

 Never show "stale lock" message at startup on Mac OS X and Linux
 Add support for AT90USB646 chip

1.01

 Add remote control support (for Teensyduino)
 Add universal binary for Mac OS X
 Fix drag and drop on Mac OS X
 Fix filename disappearing on Linux and Windows
 USB HID messages now appear in verbose info window

1.00

 Initial Release

Using The Teensy Loader on Mac OS X

Update: Teensy 3.0 is supported by Teensyduino. After installation, Teensy Loader is
in hardware/tools. It is run automatically when using Verify or Upload within the Arduino
software. This version on this web page has not been updated for Teensy 3.0. Please
install Teensyduino to use Teensy 3.0.

Files to download:

 Teensy Loader Disk Image (3.5 megabytes, Mac OS X 10.5 and later)
 LED Blink, Both Slow & Fast

When you open the disk image, it contains 1 item, the Teensy Loader application.

http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/teensy.dmg
http://pjrc.com/teensy/blink_both.zip

You may copy the Teensy Loader to your hard drive, perhaps even add it to your dock.
But it will run perfectly directly from the disk image, so just double click it.

Yes, the Teensy Loader is safe, so click Open.

The Teensy Loader should appear as a small window. If the Teensy board is running
the LED blink, or not connected, you should see this window.

If HalfKay is running, you should see this. If not, simply make sure your Teensy board
is connected, and press the pushbutton to run HalfKay. The Teensy Loader will quickly
recognize it.

From the File name, choose "Open HEX File" and open blink_fast.hex, which you
downloaded using the link at the top of this page. You can also open the file using the
toolbar button, or using drag-and-drop onto the upper portion of the window. When the
file is opened, the filename and percentage usage of the Teensy's memory are shown.

Select "Program" from the "Operations" menu, or click the Program button on the tool
bar. The download should be very quick, perhaps too fast to see a tiny progress bar
appear, but you should see the "Download Complete" message.

Choose "Reboot" from the "Operations" menu, or click the Reboot button on the tool
bar. Your Teensy board should immediately begin running the fast LED blink program!

To try Automatic mode, simply click the "Auto" button, or choose "Automatic Mode"
from the Operations menu. The Auto button should illuminate bright green. Then, open
the slow LED blink HEX file.

When you press the button on your Teensy board, Automatic Mode will quickly program
and reboot your board. Normally, while working on a project, you can leave the Teensy
Loader in Automatic Mode. Teensy Loader always reads the latest version of your HEX
file, so you can just compile your code, then press the pushbutton to program and run
your code.

Mac OS 10.4 Tiger (does not work)

Apple changed their HID manager API in 10.5 Leopard. Apple Technical Note 2187 has
all the details. Teensy Loader uses this API and the IOHIDDeviceSetReport function to
write your code.

Apple's earlier API does not seem to have any functions that can write to HID reports.
All functions only read. If you know of any way to set HID reports in Tiger's HID API,
please email paul@pjrc.com

Using The Teensy Loader on Ubuntu
Linux

Update: Teensy 3.0 is supported by Teensyduino. After installation, Teensy Loader is
in hardware/tools. It is run automatically when using Verify or Upload within the Arduino
software. This version on this web page has not been updated for Teensy 3.0. Please
insta ll Teensyduino to use Teensy 3.0.

Files to download:

 Download Teensy Program (32 bit)
 Download Teensy Program (64 bit)
 Download Teensy Program+Utils (Raspberry Pi - Experimental)
 LED Blink, Both Slow & Fast
 Linux udev rules

Ubuntu and other modern Linux distibutions use udev to manage device files when
USB devices are added and removed. By default, udev will create a device with read-
only permission which will not allow to you download code. You must place the udev
rules file at /etc/udev/rules.d/49-teensy.rules

http://developer.apple.com/technotes/tn2007/tn2187.html
http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/teensy.gz
http://pjrc.com/teensy/teensy.64bit.gz
http://pjrc.com/teensy/teensy_raspberrypi.tar.gz
http://pjrc.com/teensy/blink_both.zip
http://pjrc.com/teensy/49-teensy.rules

The file is gzip compressed, so you must extract it and then give it execute permission,
and then you may run it. Here are sample commands. Please adjust as necessary, for
example the download directory.

cd Desktop
sudo cp 49-teensy.rules /etc/udev/rules.d/
gzip -d teensy.gz
chmod 755 teensy
./teensy &

The Teensy Loader should appear as a small window. If the Teensy board is running
the LED blink, or not connected, you should see this window.

If HalfKay is running, you should see this. If not, simply make sure your Teensy board
is connected, and press the pushbutton to run HalfKay. The Teensy Loader will quickly
recognize it.

From the File name, choose "Open HEX File" and open blink_fast.hex, which you
downloaded using the link at the top of this page. You can also open the file using the
toolbar button, or using drag-and-drop onto the upper portion of the window. When the
file is opened, the filename and percentage usage of the Teensy's memory are shown.

Select "Program" from the "Operations" menu, or click the Program button on the tool
bar. The download should be very quick, perhaps too fast to see a tiny progress bar
appear, but you should see the "Download Complete" message.

Choose "Reboot" from the "Operations" menu, or click the Reboot button on the tool
bar. Your Teensy board should immediately begin running the fast LED blink program!

To try Automatic mode, simply click the "Auto" button, or choose "Automatic Mode"
from the Operations menu. The Auto button should illuminate bright green. Then, open
the slow LED blink HEX file.

When you press the button on your Teensy board, Automatic Mode will quickly program
and reboot your board. Normally, while working on a project, you can leave the Teensy
Loader in Automatic Mode. Teensy Loader always reads the latest version of your HEX
file, so you can just compile your code, then press the pushbutton to program and run
your code.

Using The Teensy Loader on Windows
XP

Update: Teensy 3.0 is supported by Teensyduino. After installation, Teensy Loader is
in hardware/tools. It is run automatically when using Verify or Upload within the Arduino
software. This version on this web page has not been updated for Teensy 3.0. Please
insta ll Teensyduino to use Teensy 3.0.

Files to download:

 Teensy Loader Program
 LED Blink, Both Slow & Fast

TEENSY.EXE is a single file application, so there is no installer required. You may copy
it anywhere on your computer.

http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/teensy.exe
http://pjrc.com/teensy/blink_both.zip

Simply double click the application to run it. The first time it runs, Microsoft will ask you
to confirm. This window should show "PJRC.COM, LLC" as the publisher.

The Teensy Loader should appear as a small window. If the Teensy board is running
the LED blink, or not connected, you should see this window.

If HalfKay is running, you should see this. If not, simply make sure your Teensy board
is connected, and press the pushbutton to run HalfKay. The Teensy Loader will quickly
recognize it.

From the File name, choose "Open HEX File" and open blink_fast.hex, which you
downloaded using the link at the top of this page. You can also open the file using the
toolbar button, or using drag-and-drop onto the upper portion of the window. When the
file is opened, the filename and percentage usage of the Teensy's memory are shown.

Select "Program" from the "Operations" menu, or click the Program button on the tool
bar. The download should be very quick, perhaps too fast to see a tiny progress bar
appear, but you should see the "Download Complete" message.

Choose "Reboot" from the "Operations" menu, or click the Reboot button on the tool
bar. Your Teensy board should immediately begin running the fast LED blink program!

To try Automatic mode, simply click the "Auto" button, or choose "Automatic Mode"
from the Operations menu. The Auto button should illuminate bright green. Then, open
the slow LED blink HEX file.

When you press the button on your Teensy board, Automatic Mode will quickly program
and reboot your board. Normally, while working on a project, you can leave the Teensy
Loader in Automatic Mode. Teensy Loader always reads the latest version of your HEX
file, so you can just compile your code, then press the pushbutton to program and run
your code.

Using The Teensy Loader on Windows
Vista

Update: Teensy 3.0 is supported by Teensyduino. After installation, Teensy Loader is
in hardware/tools. It is run automatically when using Verify or Upload within the Arduino
software. This version on this web page has not been updated for Teensy 3.0. Please
insta ll Teensyduino to use Teensy 3.0.

Files to download:

 Teensy Loader Program (1.3 megabytes)
 LED Blink, Both Slow & Fast

TEENSY.EXE is a single file application, so there is no installer required. You may copy
it anywhere on your computer.

http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/teensy.exe
http://pjrc.com/teensy/blink_both.zip

Simply double click the application to run it. The first time it runs, Microsoft will ask you
to confirm. This window should show "PJRC.COM, LLC" as the publisher.

The Teensy Loader should appear as a small window. If the Teensy board is running
the LED blink, or not connected, you should see this window.

If HalfKay is running, you should see this. If not, simply make sure your Teensy board
is connected, and press the pushbutton to run HalfKay. The Teensy Loader will quickly
recognize it.

From the File name, choose "Open HEX File" and open blink_fast.hex, which you
downloaded using the link at the top of this page. You can also open the file using the
toolbar button, or using drag-and-drop onto the upper portion of the window. When the
file is opened, the filename and percentage usage of the Teensy's memory are shown.

Select "Program" from the "Operations" menu, or click the Program button on the tool
bar. The download should be very quick, perhaps too fast to see a tiny progress bar
appear, but you should see the "Download Complete" message.

Choose "Reboot" from the "Operations" menu, or click the Reboot button on the tool
bar. Your Teensy board should immediately begin running the fast LED blink program!

To try Automatic mode, simply click the "Auto" button, or choose "Automatic Mode"
from the Operations menu. The Auto button should illuminate bright green. Then, open
the slow LED blink HEX file.

When you press the button on your Teensy board, Automatic Mode will quickly program
and reboot your board. Normally, while working on a project, you can leave the Teensy
Loader in Automatic Mode. Teensy Loader always reads the latest version of your HEX
file, so you can just compile your code, then press the pushbutton to program and run
your code.

Teensy Loader, Command Line

The Teensy Loader is available in a command line version for advanced users who

want to automate programming, typically using a Makefile. For most uses, the graphical

version in Automatic Mode is much easier.

Files to download:

 Teensy Loader Command Line Source (github)
 Linux: udev rules for Teensy
 FreeBSD: device conf for Teensy

https://github.com/PaulStoffregen/teensy_loader_cli
http://pjrc.com/teensy/49-teensy.rules
http://pjrc.com/teensy/freebsd-teensy.conf

Compiling From Source

The command line version is provided as source code for most platforms. To compile,

you must have gcc or mingw installed. Edit the Makefile to select your operating

system, then just type "make". If you have a BSD compatible make, replace "Makefile"

with "Makefile.bsd".

Version 2.0 has been tested on Ubuntu 9.04, Mac OS-X 10.5, Windows XP, FreeBSD
8.0, OpenBSD (20-Jan-2010 snapshot), and NetBSD 5.0.1. All versions of NT-based
Windows with USB support (2000 and later) are believed to work.

On Ubuntu, you may need to install "libusb-dev" to compile.

 sudo apt-get install libusb-dev

Usage and Command Line Options

A typical usage from the command line may look like this:

teensy_loader_cli -mmcu=atmega32u4 -w blink_fast.hex

Required command line parameters:

-mmcu=<MCU> : Specify Processor. You must specify the target processor. This
syntax is the same as used by gcc, which makes integrating with your Makefile easier.
Valid options are:

-mmcu=mk20dx256 : Teensy 3.1 (linux & mac only)

-mmcu=mk20dx128 : Teensy 3.0 (linux & mac only)

-mmcu=mkl26z64 : Teensy-LC (linux & mac only)

-mmcu=atmega32u4 : Teensy 2.0

-mmcu=at90usb1286 : Teensy++ 2.0

-mmcu=at90usb162 : Teensy 1.0

-mmcu=at90usb646 : Teensy++ 1.0

Caution: HEX files compiled with USB support must be compiled for the correct chip. If you load a
file built for a different chip, often it will hang while trying to initialize the on-chip USB controller
(each chip has a different PLL-based clock generator). On some PCs, this can "confuse" your
USB port and a cold reboot may be required to restore USB functionality. When a Teensy has
been programmed with such incorrect code, the reset button must be held down BEFORE the
USB cable is connected, and then released only after the USB cable is fully connected.

Optional command line parameters:

-w : Wait for device to appear. When the pushbuttons has not been pressed and
HalfKay may not be running yet, this option makes teensy_loader_cli wait. It is safe to
use this when HalfKay is already running. The hex file is read before waiting to verify it
exists, and again immediately after the device is detected.

-r : Use hard reboot if device not online. Perform a hard reset using a second
Teensy running this rebootor code, with pin C7 connected to the reset pin on your main
Teensy. While this requires using a second board, it allows a Makefile to fully automate
reprogramming your Teensy. No manual button press is required!

-s : Use sort reboot if device not online. Perform a sort reset request by searching
for any Teensy running USB Serial code built by Teensyduino. A request to reboot is
transmitted to the first device found.

-n : No reboot after programming. After programming the hex file, do not reboot.
HalfKay remains running. This option may be useful if you wish to program the code but
do not intend for it to run until the Teensy is installed inside a system with its I/O pins
connected.

-v : Verbose output. Normally teensy_loader_cli prints only error messages if any
operation fails. This enables verbose output, which can help with troubleshooting, or
simply show you more status information.

System Specific Setup

Linux requires UDEV rules for non-root users.

FreeBSD requires a device configuration file for non-root users.

OpenBSD's make is incompatible with most AVR makefiles. Use "pkg_add -r gmake",
and then compile code with "gmake all" to obtain the .hex file.

On Macintosh OS-X 10.8, Casey Rodarmor shared this tip:

I recently had a little trouble getting the teensy cli loader working on Mac OSX 10.8. Apple moved the

location of the SDKs around, so that they now reside inside of the xcode app itself. This is the line in the

makefile that got it working for me:

SDK ?=
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacO
SX10.8.sdk

http://pjrc.com/teensy/rebootor.zip

Makefile Integration

You can use teensy_loader_cli from your Makefile, to autoamtically program your

freshly compiled code. Here is an example:

Create final output files (.hex, .eep) from ELF output file.

%.hex: %.elf

 @echo

 @echo $(MSG_FLASH) $@

 $(OBJCOPY) -O $(FORMAT) -R .eeprom -R .fuse -R .lock -R .signature $< $@

 teensy_loader_cli -mmcu=$(MCU) -w -v $@

Make requires the white space before any command to be a tab character (not 8
spaces), so please make sure you use tab.

If you connect a second Teensy using the rebootor code, add the "-r" option and your
code will always be programmed automaticallly without having to manually press the
reset button!

Scott Bronson contributed a Makefile patch to allow "make program" to work for the
blinky example.

PlatformIO Integration

http://platformio.org

Errata

Compiling on Mac OS-X 10.6 may require adding "-mmacosx-version-min=10.5" to the

Makefile. Thanks to Morgan Sutherland for reporting this.

Step #3: The GCC Compiler and Tools

Update: This page only applies to Teensy 2.0. Teensy 3.0 is supported by

Teensyduino. To use Teensy 3.0 without Arduino, first install Teensyduino. A sample

makefile is installed in hardware/teensy/cores/teensy3. The makefile comments explain

how to detete the unnecessary portions of Arduino, if you wish to use only the makefile.

To compile C and C++ programs, you will need a collection of programs including avr-
gcc, the avr-libc C library and avr-binutils. Installing all the required pieces separately
can be difficult. Fortunately, there are complete, easy to install packages for all major
platforms.

http://pjrc.com/teensy/loader_cli.makefile.patch
http://platformio.org/
http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/td_download.html

Macintosh OS X
Download AVR MacPack. The MacPack disk image has an installer that does

everything for you. The following command may need to be entered (in Terminal) to

choose the version of gcc which works with Teensy.

avr-gcc-select 4

Linux, Ubuntu 8.10
Ubuntu provides packages, so you can just install them using this command.

sudo apt-get install gcc-avr binutils-avr avr-libc

Windows XP & Vista & 7 & 8
Download WinAVR, which includes everything you need, with a nice installer.

Using Make to Compile Blinky

Download: Blinky Example Source Code (zip file)

Now that you have the compiler installed, a first step is to compile the blinky source into
a .HEX file you can put onto your Teensy using the Teensy Loader. Of course, if you
skipped the previous step, you'll need to install the Teensy Loader to make use of the
.HEX file created here.

Make is a command line program that automatically runs the compiler and other related
programs to perform all the steps necessary to compile your code into the .HEX file.
Fortunately, make is very simple to use. At the command prompt, just type "make".

On Windows XP or Vista, you need to run "Command Prompt" which is in the Start
menu under All Programs -> Accessories. On Mac OS X, run Terminal, which is found
in Applications/Utilities. Linux systems have many ways to access the command line.
On all systems, the command line works in basically the same way.

The command line interface accesses a single directory, which is usually shown in the
prompt. You can type the "cd" command to change this directory. If you find typing
commands cumbersome, just take notice of which directory is used and place the
blinky files in that location. For example, in the screenshot below the directory is
"C:\Documents and Settings\me" and the files from blinky.zip were just copied to that
location.

Just type make and it will do everything and give you detailed information.

http://www.obdev.at/products/avrmacpack/download.html
http://winavr.sourceforge.net/download.html
http://pjrc.com/teensy/blinky.zip
http://pjrc.com/teensy/loader.html

That is a lot of information! Really, the most important is what is NOT shown, any errors
that prevent make from completing the job. Normally when you run make, if you see the
size summary at the end, you've got a .HEX file and you just reach over and press the
pushbutton and (if Teensy Loader is in Auto mode) within a few seconds your freshly
compiled code starts running!

Blinky blinks messages in Morse Code on the LED, so you should see patterns of
Morse Code messages when the Blinky starts running.

The size summary is usually worth reading. In this example, "text" is 1926 bytes, "data"
is 0, and "bss" is 3 bytes. The "dec" and "hex" are just the sum of these other numbers.
So what to these names really mean?

Section Meaning

text Compiled C code, in Flash memory

data Variables that get initialized at startup, Flash and RAM

bss Variables that are zero at startup, RAM only

Just add the text and data numbers to get the total flash memory used. The Teensy
Loader also shows the percentage of the chip your HEX file consumes.

RAM usage is more difficult to understand. The data and bss variables are placed at
the beginning of the RAM. Local variables, function call return addresses and
temporary memory used by interrrupt routines are allocated on a stack that starts at the
highest RAM address and grows downward, towards your variables. There is no easy
way to know exactly how much memory the stack will use.

Understanding the Makefile

When you run make, it reads a file named "Makefile" for instructions to build your code.

The Makefile can be edited with any text editor. It is long and complicated, but

fortunately only a few very simple settings need to be edited for most projects.

Near the beginning of the file, you will find these definitions. TARGET is the name of
your project. You may want a better name than "blinky".

Target file name (without extension).

TARGET = blinky

SRC is the list of all your source files. There are generally 3 reasons to structure your
program into different files.

1. Related functions can be grouped into separate files, usually so you do not need
to bother seeing them as you edit other code.

2. Make detects which files have changed and only recompiles those, reducing total
compile time for incremental changes.

3. Code you download from this site and others comes as separate C files. Adding
them to your Makefile is the easiest way to use them. Especially if the C code is
updated, keeping it separate from others makes replacing the old version much
easier than if you copy-and-paste code into one giant file.

Usually #3 is the compelling reason!
List C source files here. (C dependencies are automatically generated.)

SRC = $(TARGET).c \

 usb_debug_only.c

As you add more files to your project, just include each one in this list. The backward
slash "\" at the end of a line means the SRC list continues on the next line, so be sure
every line except the last ends in a backward slash.

Usually each .c file will have a .h header that you use with #include in the other .c files
that will call its functions or access its variables. The "C dependencies are automatically
generated" means you to NOT need to specify the .h files and which .c files include
them. Make will examine your code and learn all those dependencies automatically.

Details In The Blinky Source Code

Near the top of blinky.c are these definitions, for using the LED.

#define LED_CONFIG (DDRD |= (1<<6))

#define LED_ON (PORTD &= ~(1<<6))

#define LED_OFF (PORTD |= (1<<6))

PORTD and DDRD are the actual hardware registers that control the port D pins, and
these definitions provide easy-to-read names for the LED. See the using I/O pins
page for details.

Several definitions follow, including some unusual string syntax.

void morse_string_P(const char *s);

#define morse(s) morse_string_P(PSTR(s))

Normally, all variables (even string constants) are placed in RAM. But there isn't much
RAM available and string constants are rather wasteful, because a copy would be in
flash anyway to initialize the RAM at startup! The PSTR macro causes the string to be
placed in flash memory. By convention, functions ending in "_P" do special operations
to read from flash instead of RAM.

Blinky's main loop is very simple. It will just blink "SOS" 6 times, then blink a long
question, and repeat forever. The _delay_ms() function is provided by the C library.

 while (1) {

 for (i=0; i<6; i++) {

 morse("SOS");

 _delay_ms(1500);

 }

 morse("DOES ANYBODY STILL KNOW MORSE CODE?");

 _delay_ms(4000);

 }

Inside the morse_character() function, which blinks a single character in Morse Code,
there are calls to usb_debug_putchar() and print(), which just calls
usb_debug_putchar().

 if (c < 'A' || c > 'Z') {

 print("Opps, unsupported character: ");

 usb_debug_putchar(c);

 print("\n");

 return;

 }

http://pjrc.com/teensy/pins.html
http://pjrc.com/teensy/pins.html

The HID Listen program is used to receive and display all these characters. If your
Teensy is blinking Morse Code, now is the time to install HID Listen to see these
messages.

Step #4: The HID Listen Program

Update: This page only applies to Teensy 2.0. Teensy 3.0 is supported by

Teensyduino. To use Teensy 3.0 without Arduino, first install Teensyduino. A sample

makefi le is installed in hardware/teensy/cores/teensy3. The makefile comments

explain how to detete the unn ecessary portions of Arduino, if you wish to use only the

makefile.

In the previous step you compiled and loaded blinky.hex onto your Teensy board. While
it's blinking Morse Code, blinky also sends characters by calling usb_debug_putchar(),
which you can display with the HID Listen program. Other examples use these same
functions, so HID Listen is a valuable tool for "seeing" what your code is doing.

If you didn't compile blinky, you can also find a copy of blinky.hex in the source code
package here.

Download HID Listen

 Macintosh OS X executable
 Linux executable (32 bit only)
 Windows executable
 Source Code + all 3 executables + blinky.hex

No driver installation is required. All major operating systems have the USB HID drivers

built in.

Running HID Listen

HID Listen is a command line program, so you need to run it from the command line. A

GUI-based version is planned, but for now the only option is this simple command line

version.

Macintosh OS X 10.5
Just run the hid_listen.mac program in Terminal. You may need to give the file execute

permission with the "chmod" command before you can run it.

http://pjrc.com/teensy/hid_listen.html
http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/td_download.html
http://pjrc.com/teensy/gcc.html
http://pjrc.com/teensy/hid_listen.mac
http://pjrc.com/teensy/hid_listen
http://pjrc.com/teensy/hid_listen.exe
http://pjrc.com/teensy/hid_listen_1.01.zip

Linux
On Ubuntu Linux, the /dev/hidraw device files are not readable by default for normal

users. You could create a custom udev rule, or simply run hid_listen with sudo.

Update, Jan 1, 2011: The 32 bit linux binary does not work on 64 bit linux systems
(2.6.32 tested), likely because of missing hidraw 32 bit ioctl support
(HIDIOCGDEVINFO, HIDIOCGVERSION, HIDIOCAPPLICATION). Future kernels may
fix this. Until then, hid_listen must be recompiled from the source to work on 64 bit
linux.

Windows XP & Vista
On Windows, simply double click the hid_listen.exe program. Windows will

automatically launch the command prompt and run hid_listen in it.

