
SYBEX Sample Chapter

Mastering AutoCAD© VBA
Marion Cottingham

Chapter 7: Macro-izing Solid Areas

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication
may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph,
magnetic or other record, without the prior agreement and written permission of the publisher.

ISBN: 0-7821-2871-8

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the USA and other countries.

TRADEMARKS: Sybex has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer. Copyrights and trademarks of all products and services listed or described herein
are property of their respective owners and companies. All rules and laws pertaining to said copyrights and trademarks are inferred.

This document may contain images, text, trademarks, logos, and/or other material owned by third parties. All rights reserved. Such
material may not be copied, distributed, transmitted, or stored without the express, prior, written consent of the owner.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturers. The
author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Chapter 7

Macro-izing Solid Areas

2871c07.qxd 3/19/01 10:50 AM Page 221

T his chapter introduces VBA techniques for working with
solid areas. You’ll learn how to add a circle to your drawing
and fill it with color. Also covered are freeform shapes: how

to draw them and calculate the area they cover from a VBA macro.
The ComboBox control is introduced, and you’ll see how to format
points displayed in the drawing space. Island Detection styles are
discussed. Input boxes are used to communicate and retrieve input
from the user. The final project in this chapter creates a drawing of
a range top by prompting the user for its outside dimensions and
number of burners. Then the project calculates the size and positions
for the burners and draws them, all from a macro.

This chapter covers the following topics:

• Drawing circles

• Drawing freeform shapes

• Calculating areas of shapes

• Filling objects using inner and outer loops

• Working with input boxes

• Drawing a range top from a macro

2871c07.qxd 3/19/01 10:50 AM Page 222

Drawing Circles
Drawing a circle requires calling the AddCircle method with two arguments—an array
containing the coordinates defining its center, and a radius to define the circle’s size.
The AddCircle method creates a Circle object and adds it to the specified ModelSpace,
PaperSpace, or Blocks collection. The Circle object is accessed by a variable that’s set up
to contain a reference to it.

You can specify the values required for the center and radius in the following
three ways:

• Assign values in code, which has the disadvantage of producing identical circles
each time it is run (although sometimes this is exactly what is required). This
is achieved in the same way that the endpoints of a line were assigned in the
CreateLine macro from Listing 5.3 in Chapter 5.

• Create a UserForm and ask the user to enter values into text box controls. This
requires the user to enter the three coordinates defining the center into text
boxes in much the same way as for the Line Input UserForm from Chapter 6,
except the three textboxes for the second endpoint are replaced by one text box
to contain the radius.

• Use methods from the Utility object to prompt the user to enter values into the
AutoCAD command line, or to mouse-click points in the Model Space. This
technique is demonstrated in Exercise 7.1.

You can also use combinations of these methods.

EXERCISE 7.1: THE DRAWCIRCLE MACRO

Listing 7.1 uses the third technique mentioned above: putting the Utility object to
work. It shows how a circle can be generated from a macro using the Utility object’s
methods to interact with the user. We prompt them to provide the center and radius in
much the same way as for adding an Arc object in Chapter 6.

For this exercise, start a new project and place the macro into the ThisDrawing
module so that it will appear in the Macros dialog box on your computer.

LISTING 7.1: DRAWCIRCLE MACRO

1 Public Sub DrawCircle()
2 Dim CircleObject As AcadCircle
3 Dim Center As Variant
4 Dim Radius As Double
5 ‘give instructions to user in the command line

DRAWING CIRCLES 223

2871c07.qxd 3/19/01 10:50 AM Page 223

6 With ThisDrawing.Utility
7 Center = .GetPoint(, “Click the position ↵

for the center.”)
8 Radius = .GetDistance(Center, “Enter the radius.”)
9 End With
10 ‘create a Circle object and draw it in red
11 Set CircleObject = ThisDrawing.ModelSpace.AddCircle↵

(Center, Radius)
12 CircleObject.Color = acRed
13 CircleObject.Update
14 End Sub

ANALYSIS

• Line 1 starts the DrawCircle macro that prompts the user to input the center
and radius of a circle, and then draws a red circle to the user specifications.

• Line 2 declares CircleObject as a variable that can be set up to refer to a
Circle object.

• Line 3 declares Center as a Variant type. This is an excellent way of getting
around the fact that normally the values of an array’s elements must be
assigned individually. The Center variable is assigned the value returned from
the GetPointmethod (line 7), which is a Variant type containing a three-element
array of doubles that contain the x-, y-, and z-coordinates of the point clicked
by the user. After this assignment, you can retrieve each coordinate’s value sep-
arately from the Center variable just as if you had declared it as an array; for
example, X = Center(0).

• Line 4 declares the Radius variable, which is assigned the value returned by the
GetDistance method of the Utility object (returned by the Utility property of
ThisDrawing).

• Line 6 starts the With statement block and uses the Utility property to retrieve
the Utility object from the ThisDrawing collection. The Utility object is used
to set up the automatic qualifier for the items starting with a period character
(.) inside the With statement block.

• Line 7 calls the GetPoint method of the Utility object to prompt the user to
click on the position for the circle’s center. The text passed as the second argu-
ment appears in the AutoCAD command line. This method returns the three
coordinates of the point clicked, which are assigned to the Center variable.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS224

2871c07.qxd 3/19/01 10:50 AM Page 224

• Line 8 calls the GetDistance method to prompt the user to enter the circle’s
radius. The Center is passed as the first argument to act as the base point. A
rubber-band line anchored at this base point appears to follow the mouse cur-
sor around as the user moves it.

• Line 9 ends the With statement block.

• Line 11 uses the AddCircle method to create a Circle object with the user’s
specifications and adds it to the ModelSpace collection. A reference to this
new Circle object is assigned to the variable CircleObject that was declared
in line 2 as an AcadCircle type.

• Line 12 assigns the value of the AutoCAD constant acRed to the Color prop-
erty, which will be the color of the boundary of the Circle object.

• Line 13 uses the Update method to refresh the drawing space to draw the circle.

Figure 7.1 shows a circle generated using this macro. Notice how the Circle object’s
color property refers only to the color of its circumference and that no color fill has
been performed.

Figure 7.1 Circle produced by the
DrawCircle macro in Listing 7.1

Drawing Filled Circles
In this section you’ll learn how to fill a circle with color by employing a Hatch object
that can fill any area with a solid fill or one of the industry-standard hatch patterns
available. AutoCAD gives you a choice of over 50 such patterns. You can also use pat-
terns from external libraries or define your own patterns based on the current linetype.

DRAWING CIRCLES 225

2871c07.qxd 3/19/01 10:50 AM Page 225

The AddHatch Method
A Hatch object is created and added to the ModelSpace collection using the AddHatch
method. This method has three parameters:

PatternType The PatternType parameter specifies one of three AutoCAD
constants:

• acHatchPatternTypePredefined, which uses the PatternName string to
search for the pattern in AutoCAD’s default pattern file acad.pat

• acHatchPatternTypeUserDefined, which uses the current linetype to define
a new pattern

• acHatchPatternTypeCustomDefined, which uses the PatternName string
to search for the pattern in .pat library files rather than the default
acad.pat file

PatternName The PatternName argument is a string containing the name of the
hatch pattern to be used. AutoCAD uses the PatternType setting to determine
whether to look in the default acad.pat file for the named pattern, or to look in
one of the other .pat files that contain custom-defined patterns.

Associativity The Associativity argument is set to True if the hatch is to be asso-
ciated with the boundary that contains it, and False otherwise. When set to True,
an associative hatch will change when its boundary is modified. On the other
hand, a nonassociative hatch is independent of its boundary, so the hatch pattern
will remain in place even after the original boundary is modified or removed.

Like all objects in VBA, the AddHatch method should always be in an assignment
statement, using the Set statement to set to a variable the reference to the Hatch object
being created.

Remember, the first statement after creating your Hatch object should be a call to the AppendOuterLoop
method, to ensure that the outer boundary for the hatch pattern is closed. If any other operation is
attempted, then AutoCAD cannot predict what will happen next.

EXERCISE 7.2: DRAWING A FILLED CIRCLE

For this exercise, start a new project and place the macro into ThisDrawing’s Code
window. That way it will appear in the Macros dialog box on your PC so that it can be
run from the AutoCAD window.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS226

2871c07.qxd 3/19/01 10:50 AM Page 226

LISTING 7.2: DRAWFILLEDCIRCLE MACRO

1 Sub DrawFilledCircle()
2 ‘HatchObject will reference the new Hatch object
3 Dim HatchObject As AcadHatch
4 ‘OuterCircle becomes the circle defining the outer ↵

loop boundary
5 Dim OuterCircle(0) As AcadCircle
6 Dim Center As Variant
7 Dim Radius As Double
8 ‘get Center position and radius from the user
9 With ThisDrawing.Utility
10 Center = .GetPoint(, “Click the position ↵

for the center.”)
11 Radius = .GetDistance(Center, “Enter the radius.”)
12 End With
13 ‘create Circle object and assign reference ↵

to OuterCircle
14 Set OuterCircle(0) = ThisDrawing.ModelSpace.AddCircle↵

(Center, Radius)
15 OuterCircle(0).Color = acYellow
16 OuterCircle(0).Update
17 ‘create Hatch object and assign reference to HatchObject
18 Set HatchObject = ThisDrawing.ModelSpace.AddHatch↵

(acHatchPatternTypePredefined, “SOLID”, True)
19 ‘add the outer loop boundary to the Hatch object
20 HatchObject.AppendOuterLoop (OuterCircle)
21 HatchObject.Evaluate
22 HatchObject.Update
23 End Sub

ANALYSIS

• Line 1 starts the DrawFilledCircle macro, which prompts the user in the
command line to input the center and radius of a circle. These values are used
to create the circle that forms the outer loop boundary when the circle is filled
with solid color.

• Line 3 declares HatchObject as a variable capable of referencing a Hatch object.

• Line 5 declares OuterCircle as being a single-element array capable of contain-
ing a reference to a Circle object. Notice how it is declared with a dimension of

DRAWING CIRCLES 227

2871c07.qxd 3/19/01 10:50 AM Page 227

zero; this can also be written as 0 to 0, and is interpreted as containing one
element. OuterCircle needs to be an array because it is passed as an argument
to the AppendOuterLoop method (line 20) that expects an array of one or
more objects collectively defining the closed boundary that can be used for
doing the filling.

• Line 6 declares Center as a Variant type so that it can be assigned the x-, y-,
and z-coordinates returned by the GetPoint method in a single assignment
statement, and thereafter can be treated like an array with an index value to
access each coordinate separately.

• Lines 9 through 12 contain the With statement block that uses methods from
the Utility object to prompt the user to enter the center and radius of the circle
to be filled. The user can respond by entering values into the command-line
window, or by checking points in the Model tab.

• Line 14 uses the AddCircle method to add a Circle object to the user’s specifi-
cations to the ModelSpace collection, and assigns a reference to this new object
to the first and only element in the OuterCircle array.

• Line 15 changes the color of the circle to yellow.

• Line 16 updates the screen to show the yellow circle.

• Line 18 calls the AddHatch method to create a Hatch object, and adds it to the
ModelSpace collection. The first argument passed to this method is the Auto-
CAD constant acHatchPatternTypePredefined, to instruct the interpreter to
search the default acad.pat file for the definition of the pattern named in the
second argument as SOLID. The third argument passes the value True to the
Associativity parameter so that the pattern is associated with the circular
boundary.

• Line 20 uses the AppendOuterLoop method to set the outer-loop boundary
for the fill. The one-element array OuterCircle that references the Circle
object is passed as the argument to provide the boundary. Lines 18 and 20
should always be treated as an inseparable pair, because if line 20 were omit-
ted, AutoCAD would enter an unpredictable state.

• Line 21 calls the Evaluate method that finds the point where the pattern defi-
nition lines intersect with the hatch boundary. When solid-fill hatch patterns
have been requested, as is the case here, the Evaluate method divides the hatch
area into triangles and fills each one with the fill color. If the boundary passed

CHAPTER SEVEN • MACRO-IZING SOLID AREAS228

2871c07.qxd 3/19/01 10:50 AM Page 228

to the AppendOuterLoop method (line 20) is not a single closed loop, this fact
will be picked up by Evaluate, and the application will simply stop and give an
error message.

• Line 22 calls the Update method of the Hatch object to draw the filled circle in
the Model tab.

• Line 23 ends the DrawFilledCircle macro.

Figure 7.2 shows the result of running the DrawFilledCircle macro.

Figure 7.2 Circle created and filled by
the DrawFilledCircle macro (Listing 7.2)

Circle of Bricks Application
When you have a specific effect in mind, filling a circle with a Hatch pattern may not
give you the look you want. Suppose you want a circle of brick pavers, for example.
Figure 7.3 shows the result of changing SOLID to BRICK at Line 18 of Listing 7.2.

EXERCISE 7.3: DRAW CIRCULAR PAVERS APPLICATION

Let’s create an application that provides a much better visual solution than the circle
filled with a BRICK hatch pattern. The following steps show you how it’s done:

1. Start a new project and add a UserForm. Place a TextBox and accompanying
Label, a Frame containing two OptionButtons, and two command buttons, as
shown in Figure 7.4.

2. Change the object values in the Properties window to those shown in Table 7.1.

CIRCLE OF BRICKS APPLICATION 229

2871c07.qxd 3/19/01 10:50 AM Page 229

Figure 7.3 Circle filled with BRICK hatch
pattern instead of SOLID.

Figure 7.4 GUI for the
Circle of Bricks application

3. Enter the code shown in Listing 7.3 into the UserForm’s Code window.

The DrawCircularPavers procedure draws all the red circles and calls the
DrawMortar procedure to draw the lines between bricks. Both procedures are
private by default, so they won’t be listed in the AutoCAD Macros dialog box.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS230

2871c07.qxd 3/19/01 10:50 AM Page 230

Table 7.1 Property Values for Controls in Circle of Bricks Application

OLD NAME NEW NAME CAPTION

UserForm1 frmCircleOfBricks Circle of Bricks

Label1 Number of circles of bricks

TextBox1 txtNumberOfCircles

Frame1 — Select the middle for drawing points

OptionButton1 optBrickOrthogonal Brick orthogonal to radius

OptionButton2 optBrickParallel Brick parallel to radius

CommandButton1 cmdCreatePavers Create Pavers

CommandButton2 cmdCancel Cancel

LISTING 7.3: DRAWCIRCULARPAVERS PROCEDURE

1 Sub DrawCircularPavers()
2 Dim BrickCircles() As AcadCircle
3 Dim Center As Variant, Radius As Double
4 Dim Counter As Integer
5 ReDim BrickCircles(txtNumberOfCircles)
6 ‘get Center position and radius from the user
7 With ThisDrawing.Utility
8 Center = .GetPoint(↵

, “Click the position for the center.”)
9 Radius = .GetDistance(Center, “Enter the radius.”)
10 End With
11 ‘create Brick circle objects
12 For Counter = 0 To txtNumberOfCircles - 1
13 Set BrickCircles(Counter) = ↵

ThisDrawing.ModelSpace.AddCircle(Center, ↵
Radius - Counter * Radius / txtNumberOfCircles)

14 BrickCircles(Counter).Color = acRed
15 BrickCircles(Counter).Update
16 DrawMortar Center, Counter, Radius
17 Next
18 End Sub
19
20 Sub DrawMortar(Center As Variant, Counter As Integer, ↵

Radius As Double)
21 ‘declare variables for end points for line

CIRCLE OF BRICKS APPLICATION 231

2871c07.qxd 3/19/01 10:50 AM Page 231

22 Dim StartPoint(0 To 2) As Double, EndPoint(0 To 2) As Double
23 Dim Theta As Double, StepSize As Double
24 Static Adjust As Double
25 If frmCircleOfBricks.optBrickParallel = True Then
26 StepSize = 15 * Pi / 180
27 Else ‘place brick orthogonal to radius
28 StepSize = 30 * Pi / 180
29 If Adjust = 0# Then
30 Adjust = 15 * Pi / 180
31 Else
32 Adjust = 0#
33 End If
34 End If
35 For Theta = 0 To 360 * Pi / 180 Step StepSize
36 StartPoint(0) = (Radius - Counter * Radius / ↵

txtNumberOfCircles) * Cos(Theta + Adjust) + Center(0)
37 StartPoint(1) = (Radius - Counter * Radius / ↵

txtNumberOfCircles) * Sin(Theta + Adjust) + Center(1)
38 EndPoint(0) = (Radius - (Counter + 1) * Radius / ↵

txtNumberOfCircles) * Cos(Theta + Adjust) + Center(0)
39 EndPoint(1) = (Radius - (Counter + 1) * Radius / ↵

txtNumberOfCircles) * Sin(Theta + Adjust) + Center(1)
40 StartPoint(2) = 0#: EndPoint(2) = 0#
41 With ThisDrawing.ModelSpace
42 .AddLine StartPoint, EndPoint
43 .Item(ModelSpace.Count - 1).Update
44 End With
45 Next
46 End Sub

ANALYSIS

• Line 1 starts the DrawCircularPavers() procedure from the frmCircleOf-
Bricks UserForm.

• Line 2 declares the BrickCircles as a dynamic array—you can tell from the
empty parentheses. This array will contain the references to the circle objects.

• Line 3 declares the Center and Radius variables that are assigned values
entered by the user in the AutoCAD window.

• Line 4 declares the Counter variable that is used as the loop counter in the
For loop.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS232

2871c07.qxd 3/19/01 10:50 AM Page 232

• Line 5 redimensions the BrickCircles dynamic array to make it large enough
to contain the number of circles requested by the user.

• Lines 7 through 10 get the central point and radius of the circle from the user.

• Line 12 starts the For loop that uses Counter to access each circle on the
BrickCircle array.

• Line 13 creates a Circle object. The Counter variable is used both as an index
to the BrickCircles array and also as an ordinary variable to calculate the
radius for the current circle. The circles are generated from largest to smallest,
and references to them are stored in the array.

• Lines 14 and 15 set the color of the new circle and draw it on the screen.

• Line 16 calls the DrawMortar procedure (Line 20) to draw the lines between
the bricks forming the current circle.

• Line 17 ends the For loop.

• Line 18 ends the DrawCircularPavers procedure.

• Line 20 starts the DrawMortar procedure.

• Line 22 declares the StartPoint and EndPoint arrays that are used to store
the coordinates of the current line-between-bricks being drawn.

• Line 23 declares Theta, which is the angle at which the line-between-bricks
will be drawn, and StepSize, which determines the number of bricks that
make up the circle.

• Line 24 declares the Adjust variable to rotate the bricks by half a brick every
second row. This variable is declared as Static so that it keeps its value
between circles.

• Line 25 starts the outer If statement by testing to see if the “Brick parallel to
radius” option button is selected.

• Line 26 sets the StepSize to 15 degrees multiplied by pi / 180, to ensure that
StepSize is assigned radians. This accommodates bricks that are placed so
that their length is parallel to the radius at that point.

• Line 27 starts the Else part of the If statement.

• Line 28 sets the StepSize variable to 30 degrees converted to radians. This
accommodates bricks that are placed at right angles to the radius at that point.

CIRCLE OF BRICKS APPLICATION 233

2871c07.qxd 3/19/01 10:50 AM Page 233

• Lines 29 through 33 contain the inner If statement block that toggles the
value of the Adjust variable between zero and half a brick length, to give the
staggered effect shown in Figure 7.5.

• Line 34 ends the outer If statement block.

• Line 35 starts the For loop that uses Theta as the angle in radians between suc-
cessive lines-between-bricks.

• Lines 36 through 40 assign values of coordinates to the start and endpoints of
the current brick line. They use the Sin and Cos functions to calculate the x-
and y-coordinates.

• Lines 41 through 44 contain the With statement block that creates a line and
displays it on the screen.

• Lines 45 and 46 end the For loop and DrawMortar procedure, respectively.

In these next two steps, you will see how to write a macro to start your Circle of Bricks
application, and how to code the Click event procedures for the two command buttons.

1. Choose Insert ➜ Module, and enter the following global constant declaration
into Module1 with the DrawCircleOfBricks macro:

Global Const Pi = 3.14159

Sub DrawCircleOfBricks()
frmCircleOfBricks.Show

End Sub

The DrawCircleOfBricks macro opens the Circle of Bricks UserForm and is
the only procedure from the project listed in the AutoCAD Macros dialog box.

2. Now all you have left to do is add the code to the event procedures for the two
command buttons. Enter the code shown in Listing 7.4 into the Circle of Bricks
UserForm’s Code window. There will be two skeleton Click event procedures
for the two command buttons already waiting.

LISTING 7.4: THE COMMAND BUTTON EVENT PROCEDURES

1 Private Sub cmdCancel_Click()
2 Unload Me
3 End Sub
4
5 Private Sub cmdCreatePavers_Click()

CHAPTER SEVEN • MACRO-IZING SOLID AREAS234

2871c07.qxd 3/19/01 10:50 AM Page 234

6 Unload Me
7 DrawCircularPavers
8 End Sub

ANALYSIS

• Line 1 opens the cmdCancel Click event procedure.

• Line 2 unloads the Circle of Bricks UserForm and return to the AutoCAD win-
dow without making any changes.

• Line 5 starts the event procedure that runs when the user clicks the Create
Pavers command button.

• Line 6 unloads the Circle of Bricks UserForm.

• Line 7 calls the DrawCircularPavers procedure to draw the lines between the
bricks in the current circle.

• Line 8 ends the event procedure.

Now run your Circle of Bricks application from the AutoCAD Macros dialog box.
Figure 7.5 shows the result of running the application with the default settings shown
in Figure 7.4. Figure 7.6 shows the result of running the application with “7” entered as
the number of circles of bricks, and with the “Brick parallel to radius” option selected.

Figure 7.5 Result of Circle of Bricks application
with the settings from Figure 7.4

CIRCLE OF BRICKS APPLICATION 235

2871c07.qxd 3/19/01 10:50 AM Page 235

Figure 7.6 Result of Circle of Bricks application
with 7 circles and the “Brick parallel to radius” option

Drawing Freeform Shapes
In this section you’ll see how to develop an application that allows the user to select
points defining a shape from the Model Space and fill it with a fill pattern. The user will
be allowed to choose the fill pattern, as well as the representation of the selected points
in the drawing.

EXERCISE 7.4: DRAWING FREEFORM SHAPES

1. Start a new project, and choose Insert ➜ UserForm to add a new UserForm.
Place two ComboBox controls

dragged from the Toolbox, with accompanying Labels. Make the ComboBoxes
roughly the same height as a text box control. Figure 7.7 gives a good arrange-
ment for these controls. The drop-down lists of the Combo Box controls will

CHAPTER SEVEN • MACRO-IZING SOLID AREAS236

2871c07.qxd 3/19/01 10:50 AM Page 236

display the available point middles and fill patterns for the user to select, to be
used in the Hatch object.

Figure 7.7 GUI for specifying how points
will be drawn, and the fill pattern

2. Add two CheckBox controls that will be used to designate whether a circle, a
square, or both surround the middle that is drawn to represent a point.

3. Add two command buttons, one for continuing the drawing and one for can-
celing the whole thing and returning to AutoCAD.

4. Change the properties of the UserForm and its controls to those listed in
Table 7.2.

Table 7.2 Properties for the GUI Controls for Drawing Filled Shapes

OLD NAME NEW NAME CAPTION

UserForm1 frmDrawFilledShape Drawing Filled Shapes

ComboBox1 cboPointMiddle —

ComboBox2 cboFillPattern —

CheckBox1 chkCircleAroundPoint Draw circle around point

CheckBox2 chkSquareAroundPoint Draw square around point

CommandButton1 cmdContinue Continue

CommandButton2 cmdCancel Cancel

Label1 — Select the middle for drawing points

Label2 — Select fill pattern

DRAWING FREEFORM SHAPES 237

2871c07.qxd 3/19/01 10:50 AM Page 237

5. Listing 7.5 adds the list of middles and fill patterns to the combo boxes in the
UserForm’s Initialize event procedure. It also sets their Text properties to the
default middle and fill values. Enter this code into the UserForm_Initialize
skeleton.

The CheckBox control has the capability to display text and so does not require an accompanying
Label control.

LISTING 7.5: INITIALIZE PROCEDURE

1 Private Sub UserForm_Initialize()
2 ‘add items to the middle combo box
3 With cboPointMiddle
4 .AddItem “dot”
5 .AddItem “empty”
6 .AddItem “plus”
7 .AddItem “cross”
8 .AddItem “line”
9 ‘set the default item
10 .Text = “empty”
11 End With
12 ‘add items to the fill combo box
13 With cboFillPattern
14 .AddItem “SOLID”
15 .AddItem “BRICK”
16 .AddItem “DOLMIT”
17 .AddItem “ZIGZAG”
18 .AddItem “LINE”
19 .AddItem “BOX”
20 .AddItem “DOTS”
21 .AddItem “EARTH”
22 .AddItem “HONEY”
23 ‘set the default item
24 .Text = “SOLID”
25 End With
26 End Sub

ANALYSIS

• Line 1 starts the Initialize event procedure that automatically runs when
the UserForm is first loaded.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS238

2871c07.qxd 3/19/01 10:50 AM Page 238

• Line 3 opens the With block so that items can be added to the cboPointMiddle
combo box without the AddItem method being fully qualified.

• Lines 4 through 8 use the AddItem method to add to the first combo box all
the items available for the point middle. These items will be included in the
drop-down list that appears when the user clicks on the down-arrow button to
the right of the combo box.

• Line 10 sets the Text property of the combo box to "empty", which becomes
the default and will appear in the combo box when the UserForm opens.

• Line 11 ends the With statement block.

• Line 13 opens the With statement block so that items can be added to the
drop-down list in the cboFillPattern combo box without the AddItem
method being fully qualified.

• Lines 14 through 22 add fill patterns to the cboFillPattern combo box.

• Line 24 sets the Text property of the Fill Pattern combo box to "SOLID",
which will appear in the combo box as the default.

• Line 25 ends the With statement block.

• Line 26 ends the Initialize event procedure.

Now you need a macro that first obtains the user’s requirements for drawing
points and filling shapes, then prompts the user to click on the required points in the
Model tab, and finally makes sure the shape is closed before filling it with the pattern
requested. The macro shown in Listing 7.6 does all these things. Enter this code into a
standard module (choose Insert ➜ Module).

LISTING 7.6: DRAWGENERICSHAPE MACRO

1 Sub DrawGenericShape()
2 frmDrawFilledShape.Show
3 GetShape ‘get points defining shape from user
4 CloseShape
5 DrawFilledShape
6 Unload frmDrawFilledShape
7 End Sub

ANALYSIS

• Line 1 starts the DrawGenericShape procedure, which is the main macro for
this application.

DRAWING FREEFORM SHAPES 239

2871c07.qxd 3/19/01 10:50 AM Page 239

• Line 2 starts the GUI by loading and displaying the UserForm, to allow the
user to designate the requirements for visually representing the points
clicked and the pattern for filling polygons. When the UserForm is loaded,
its UserForm_Initialize event procedure is executed (Listing 7.5). When
the user has finished selecting options for the points and the fill for the
shape, the UserForm is closed and execution returns to line 3 in this macro.

• Line 3 calls the GetShape procedure (Listing 7.7) that prompts the user to
enter the points specifying the required shape into the AutoCAD window.

• Line 4 calls the CloseShape procedure that creates a last point for the shape
and assigns the same coordinates as the first point, so that the shape is guaran-
teed to be closed when the DrawFilledShape procedure is called in the next
statement. The shape will be correctly filled even if it is convex, as shown here:

• Line 5 calls the DrawFilledShape procedure that fills the shape with the fill
pattern selected by the user.

• Line 6 unloads the frmDrawFilledShape UserForm.

• Line 7 ends the DrawGenericShape procedure.

Listing 7.7 shows the GetShape procedure that prompts the user to enter the
points defining the shape. Your next step is to enter this code into Module1.

LISTING 7.7: GETSHAPE PROCEDURE

1 Public Sub GetShape()
2 Dim OuterCircle(0) As AcadCircle
3 Dim NewPoint As AcadPoint ‘reference to current Point object
4 Dim Point3D As Variant ‘last point input
5 Dim Center(0 To 2) As Double, CircleRadius As Double
6 Dim Finished As Boolean

CHAPTER SEVEN • MACRO-IZING SOLID AREAS240

2871c07.qxd 3/19/01 10:50 AM Page 240

7 Finished = False
8 NumberOfElements = -1
9 ‘draw a red circle for user to click when finished
10 CircleRadius = 0.25
11 Set OuterCircle(0) = ThisDrawing.ModelSpace.AddCircle↵

(Center, CircleRadius)
12 OuterCircle(0).Color = acRed
13 OuterCircle(0).Update
14 ZoomAll
15 While Not Finished
16 ‘continue receiving user input until the red circle ↵

is clicked
17 Point3D = ThisDrawing.Utility.GetPoint(, “Click on ↵

next point or red circle to finish!”)
18 If Sqr(Point3D(0) ^ 2 + Point3D(1) ^ ↵

2 + Point3D(2) ^ 2) < CircleRadius Then
19 ‘red circle has been clicked
20 Finished = True
21 OuterCircle(0).Delete ‘removes red circle
22 ThisDrawing.Regen acActiveViewport
23 Else ‘update number of array elements and ↵

redimension the array
24 NumberOfElements = NumberOfElements + 3
25 ReDim Preserve PolyArray(0 To NumberOfElements)
26 ‘add the last three coordinates input by the ↵

user to the array
27 PolyArray(NumberOfElements - 2) = Point3D(0)
28 PolyArray(NumberOfElements - 1) = Point3D(1)
29 PolyArray(NumberOfElements) = Point3D(2)
30 Set NewPoint = ↵

ThisDrawing.ModelSpace.AddPoint(Point3D)
31 ‘draw line if required
32 If NumberOfElements > 2 Then RedrawPolyline
33 End If
34 Wend
35 End Sub

ANALYSIS

• Line 1 starts the GetShape procedure that stores the points entered by the user
in a dynamically expanding array that is extended as each point is selected, to

DRAWING FREEFORM SHAPES 241

2871c07.qxd 3/19/01 10:50 AM Page 241

ensure that it contains all the points clicked so far. A polyline based on this
array is redrawn each time it’s updated, so that the user always sees the points
they have already entered.

• Line 2 declares the OuterCircle variable that is capable of referencing a circle
object. The user will click inside this circle when they have finished entering
their shape points.

• Line 3 declares NewPoint as a variable capable of holding a reference to a
point object.

• Line 4 declares Point3D as a Variant, so that it can be assigned a three-
dimensional array by the GetPoint method of the Utility object. As previously
stated, the only way an array can be assigned as a whole rather than element
by element is by declaring it as a Variant.

• Line 5 declares the array holding the x-, y-, and z-coordinates of the circle’s
center, and the circle’s radius.

• Line 6 declares the Finished variable as Boolean. This variable is set to False
until the user clicks inside the red circle. The While loop block (Lines 15
through 34) continues to be executed until Finished becomes False.

• Line 7 sets Finished to False so that the While loop block of statements will be
run at least once.

• Line 8 sets the NumberOfElements variable to –1 so that it reflects the highest
index value of the PolyArray array—this value will become zero after the first
point has been entered. For example, at line 24 you’ll see that this variable is
incremented by 3 so that the first point’s coordinates will be stored at positions
0 through 2 in the array (lines 27 through 29), and the second point’s coordi-
nates will be stored at 3 through 5, and so on.

• Line 10 assigns 0.25 to the CircleRadius variable. This can be set to any value
you choose, but it should be made large enough that the user can easily click it.

• Line 11 calls the AddCircle method to add a circle to the ModelSpace collec-
tion, and assigns a reference to it to the OuterCircle variable.

• Line 12 sets the color of the circle to red.

• Line 13 calls the Update method of the circle object to ensure that it appears in
the Model Space.

• Line 14 calls the ZoomAll method to ensure that the entire drawing (including
the red circle) appears on the screen.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS242

2871c07.qxd 3/19/01 10:50 AM Page 242

• Line 15 starts the While loop block.

• Line 17 calls the GetPoint method to prompt the user to click a point in the
Model tab and assigns the coordinates of the point to the Point3D variable.

• Line 18 tests to see if the last point entered falls inside the circle, indicating that
the user has finished.

• Line 20 runs if the user clicked inside the circle; it sets the Finished variable to
True to stop the While loop looping.

• Line 21 deletes the red circle object from the ModelSpace collection.

• Line 22 calls the Regen method to update the active viewport, which makes the
circle disappear from the screen.

• Line 23 starts the Else part of the While statement block, which runs when
the user has clicked a point in the Model tab.

• Line 24 adds 3 to the NumberOfElements variable; this is because storing the x-,
y-, and z-coordinates of the point clicked requires that three more elements are
added to the array size.

• Line 25 redimensions the array to accommodate the new point. The Preserve
word is used here to instruct the interpreter not to throw away the existing
contents, but rather to extend the array by appending the three new elements.

• Lines 27 through 29 assign the coordinates of the point clicked to the
Point3D array.

• Line 30 creates a new Point object and assigns a reference to it to the New-
Point variable.

• Line 32 tests if the user is clicking their second point and, if so, calls the
RedrawPolyline procedure (Listing 7.8). This procedure deletes the last poly-
line from the screen and generates a new one containing the point just clicked
by the user.

• Lines 33, 34, and 35 end the If statement, While loop, and GetShape macro,
respectively.

Now, with the Drawing Filled Freeform Shapes application in place, you need to
add the global procedures that draw the filled shape. Redraw the polyline, defining the
freeform shape after an additional boundary point has been added, and close the
application.

DRAWING FREEFORM SHAPES 243

2871c07.qxd 3/19/01 10:50 AM Page 243

1. Enter the CloseShape, DrawFilledShape, and RedrawPolyline procedures
(Listing 7.8) into Module1.

2. Place the Dim statements in Lines 1 through 6 into the General Declarations
section of Module1’s Code window.

LISTING 7.8: ENTERING GLOBAL VARIABLES AND PROCEDURES INTO MODULE1
1 ‘PolygonObject will reference the Polyline object
2 Dim PolygonObject(0) As AcadPolyline
3 ‘PolyArray will contain all points clicked by user
4 Dim PolyArray() As Double
5 ‘NumberOfElements set to number of elements in the array
6 Dim NumberOfElements As Integer
7
8 Public Sub CloseShape()
9 ‘add the last point to the array and make it
10 ‘the same coordinates as the first one to ensure closure
11 NumberOfElements = NumberOfElements + 3
12 ReDim Preserve PolyArray(0 To NumberOfElements)
13 PolyArray(NumberOfElements - 2) = PolyArray(0)
14 PolyArray(NumberOfElements - 1) = PolyArray(1)
15 PolyArray(NumberOfElements) = PolyArray(2)
16 RedrawPolyline
17 End Sub
18
19 Public Sub DrawFilledShape()
20 ‘HatchObject will reference the Hatch object
21 Dim HatchObject As AcadHatch
22 ‘create Hatch object and assign reference to HatchObject
23 Set HatchObject = ThisDrawing.ModelSpace.AddHatch↵

(acHatchPatternTypePreDefined, ↵
frmDrawFilledShape.cboFillPattern.Text, True)

24 ‘add the outer loop boundary to the Hatch object
25 HatchObject.AppendOuterLoop (PolygonObject)
26 HatchObject.Color = 180
27 HatchObject.Evaluate
28 HatchObject.Update
29 End Sub
30
31 Public Sub RedrawPolyline()
32 ‘delete last Polyline, create nextand draw it

CHAPTER SEVEN • MACRO-IZING SOLID AREAS244

2871c07.qxd 3/19/01 10:50 AM Page 244

33 With ThisDrawing.ModelSpace
34 If NumberOfElements > 5 Then PolygonObject(0).Delete
35 Set PolygonObject(0) = .AddPolyline(PolyArray)
36 PolygonObject(0).Color = acBlue
37 PolygonObject(0).Update
38 End With
39 End Sub

ANALYSIS

• Lines 1 through 6 declare the variables that will be used in various places
throughout the code in this module.

• Lines 8 through 17 contain the CloseShape procedure that is called after the
user presses the Enter key. This procedure places one last point identical to the
first point into the PolyArray array, and calls the RedrawPolyLine procedure
to redraw the shape.

The first and last points of a shape to be filled must be equivalent to ensure that the polyline is closed;
otherwise the color will bleed through any gaps in the bounding polyline and cover the drawing area. You
cannot put the onus on the user, because the mouse isn’t accurate enough to select a specific screen pixel.

• Line 19 starts the DrawFilledShape procedure that uses a Hatch object to fill
the shape entered by the user.

• Line 21 declares the HatchObject variable as being capable of referencing a
Hatch object.

• Line 23 calls the AddHatch method to create a Hatch object and add it to the
ModelSpace collection. The AddHatch method is called with the AutoCAD
constant acHatchPatternTypePredefined so that the interpreter searches
the acad.pat file for the definition of the pattern. The second argument,
frmDrawFilledShape.cboFillPattern.Text, uses the Text property setting
from the Fill Pattern combo box containing the pattern’s name. Lastly, the
True value is passed to the Associativity parameter so that the pattern
changes with the boundary.

• Line 25 calls the AppendOuterLoop method with the single-element
PolygonObject array that is set up to reference a PolyLine object in the
assignment statement in line 35.

DRAWING FREEFORM SHAPES 245

2871c07.qxd 3/19/01 10:50 AM Page 245

• Lines 26 through 28 all use the reference to the Hatch object to change its
color, to calculate how it will appear inside the boundary, and to redraw it in
the Model Space. Line 26 sets the Color property to 180—up until now I’ve
always used one of AutoCAD’s color constants, but you can also use a number
in the range 0 through 256.

The Color property of an object can be assigned AutoCAD color constants or a number in the range
0 to 256.

• Line 31 starts the RedrawPolyline procedure, which deletes the old Polyline
object and creates a new one that includes the point just entered by the user. It
draws the new polyline to give the user feedback on how their shape is pro-
gressing.

• Line 34 tests to see how many coordinates have been added to the array so far,
because the Polyline object isn’t created until the user has entered the second
point. If NumberOfElements is greater than 5, then the Polyline object exists
and needs to be deleted using the Delete method as shown. This test is neces-
sary because any attempt to delete an object before it has been created will
cause your application to terminate abnormally.

• Line 35 creates a new Polyline object containing all the points entered so far.

• Lines 36 and 37 assign blue to the Color property and redraw the polyline in the
ModelSpace, so that the user can view all the points they have entered to date.

• Line 38 ends the With statement block.

• Line 39 ends the RedrawPolyline procedure.

Listing 7.9 shows the code that responds to the user’s click of the Continue button.
This button’s Click event procedure calculates a number that determines how a point
will appear when it’s passed with the PDMODE system variable that determines how
points are drawn. When this is done, the UserForm is closed and returns the user to the
AutoCAD window. Enter the code given in Listing 7.9 into the Cancel command but-
ton’s Click event procedure.

LISTING 7.9: THE CANCEL COMMAND BUTTON’S CLICK EVENT PROCEDURE

1 Private Sub cmdCancel_Click()
2 frmDrawFilledShape.Hide
3 End Sub
4

CHAPTER SEVEN • MACRO-IZING SOLID AREAS246

2871c07.qxd 3/19/01 10:50 AM Page 246

5 Private Sub cmdContinue_Click()
6 ‘calculate PointDisplay based on user selections
7 Dim PointDisplay As Integer
8 Select Case cboPointMiddle.Text
9 Case “dot”
10 PointDisplay = 0
11 Case “empty”
12 PointDisplay = 1
13 Case “plus”
14 PointDisplay = 2
15 Case “cross”
16 PointDisplay = 3
17 Case “line”
18 PointDisplay = 4
19 End Select
20 If chkCircleAroundPoint.Value = True ↵

Then PointDisplay = PointDisplay + 32
21 If chkSquareAroundPoint.Value = True ↵

Then PointDisplay = PointDisplay + 64
22 ‘use the system variable PDMODE to draw points to ↵

the user’s specification
23 ThisDrawing.SetVariable “PDMODE”, PointDisplay
24 Unload Me
25 End Sub

ANALYSIS

• Lines 1 through 3 contain the cmdCancel_Click event procedure that closes
the UserForm and returns the user to the AutoCAD window.

• Line 5 starts the cmdContinue_Click event procedure that calculates the set-
ting required by the system variable to draw the points in the format required
by the user, and to fill the shape with the pattern selected.

• Lines 7 through 23 calculate the PointDisplay variable and pass it as the
argument to the system variable PDMODE. This variable is given a value in the
range 0 to 4 according to the middle required. If a circle is required around the
point, then 32 is added; if a square is required, then 64 is added.

• Line 24 unloads the Draw Filled Shape UserForm.

• Line 25 ends the cmdCancel_Click event procedure.

DRAWING FREEFORM SHAPES 247

2871c07.qxd 3/19/01 10:50 AM Page 247

To run your application, open the Macros dialog box from the AutoCAD window
and select DrawGenericShape. Figure 7.8 shows the Model tab with the following set-
tings: Cross has been selected as the middle; the Draw Circle Around Point check box
has been selected; and the ZigZag fill pattern has been chosen from the Select Fill Pat-
tern combo box. Figure 7.9 shows the Model tab after the red circle was clicked, which
caused the CloseShape procedure to take the last point entered by the user and join it
up with the first one entered.

Figure 7.8 The Model tab after the user
has entered points defining a shape

Figure 7.9 Shape filled with ZIGZAG pattern

CHAPTER SEVEN • MACRO-IZING SOLID AREAS248

2871c07.qxd 3/19/01 10:50 AM Page 248

Calculating Areas of Shapes
AutoCAD has an Area property that holds the calculated area of any closed shape such
as an arc, circle, ellipse, or polyline. Let’s extend the Drawing Filled Shapes project to
incorporate a display of the shape’s area after the user has pressed Enter to draw it. The
results are displayed in a message box (Figure 7.10).

The CalculateAreaOfShape procedure shown in Listing 7.10 shows how simple this
is to do. This procedure is not stand-alone, in that it must be called from within the
DrawGenericShape macro, so that the PolygonObject variable refers to a Polyline object
and is available so that we can access its Area method. Call CalculateAreaOfShape from
the DrawGenericShape macro given in Listing 7.6, just after the call to the DrawFilled-
Shape macro.

Figure 7.10 Message box displaying the area calculated
for the shape just entered

LISTING 7.10: CALCULATEAREAOFSHAPE MACRO

1 Public Sub CalculateAreaOfShape()
2 MsgBox “The area of this shape is “ ↵

& Format(PolygonObject(0).Area, “###0.00”), , ↵
“Area Calculation”

3 End Sub

ANALYSIS

• Line 1 starts the CalculateAreaOfShape procedure that displays the value of
the Polyline object’s Area property in a message box.

CALCULATING AREAS OF SHAPES 249

2871c07.qxd 3/19/01 10:50 AM Page 249

• Line 2 uses the MsgBox function to display the area to the user. (This function is
discussed in the section “Communicating with Message Boxes” in Chapter 5.)
The message argument uses the Format function, which returns a variant con-
taining a string formatted as specified by a format string. In this statement, the
function is passed the Area property’s value and returns a number with two
decimal places after the point.

You’ll find out more about formatting text in Chapter 9.

• Line 3 ends the CalculateAreaOfShape procedure.

Filling with Inner and Outer Loops
In this project you’ll see how to fill areas that are nested inside other areas, and the various
results that can be achieved using the Island Detection styles. To see the styles available
from the AutoCAD window, choose Draw ➜ Hatch to open the Boundary Hatch dialog
box, and select the Advanced tab (see Figure 7.11).

Figure 7.11 Advanced tab of the Boundary Hatch dialog box

CHAPTER SEVEN • MACRO-IZING SOLID AREAS250

2871c07.qxd 3/19/01 10:50 AM Page 250

The Island Detection style defines how objects that are nested inside the outermost
hatch boundary are filled. There are three settings available:

Normal Hatching starts at the outermost boundary and moves inward. When
the next nested boundary is encountered, the hatching is toggled on or off. The
result is that inner objects are alternately shaded and unshaded. Figure 7.12 shows
a door drawn using the Normal Island Detection style.

Outer Hatching starts from the outermost boundary and moves inward, stopping
as soon as the first nested boundary is encountered.

Ignore Everything inside the outermost boundary is hatched; any nested bound-
aries are ignored.

Figure 7.12 Door drawn using the Normal Island Detection hatch style

If there are no nested objects, the Island Detection setting has no effect on the drawing.

Let’s develop a small GUI that allows the user to select one of the three Island
Detection styles. Each time they click on a new style, the drawing in the Model tab is
updated to show the effect of the selected style.

EXERCISE 7.5: ISLAND DETECTION STYLES APPLICATION

1. Start a new project. Add a Label, a ComboBox control, and two command but-
tons to the UserForm (see the dialog box shown in Figure 7.12).

2. Change the Name and Caption properties to those shown in Table 7.3.

FILLING WITH INNER AND OUTER LOOPS 251

2871c07.qxd 3/19/01 10:50 AM Page 251

Table 7.3 Name and Caption Properties for Island Detection Styles UserForm

OLD NAME NEW NAME CAPTION

UserForm1 frmIslandStyles Island Detection Styles

ComboBox1 cboIslandStyle —

Label1 —- Select Island Detection style

CommandButton1 cmdContinue Continue

CommandButton2 cmdCancel Cancel

3. Change the Accelerator property of the Continue command button to o, and
the Cancel button to C.

4. Enter the code from Listing 7.11 into the skeleton event procedures provided
in the UserForm’s Code window.

The Initialize event procedure is long and repetitive, and I apologize for this. The code is available to
copy/paste from the CD. Normally when a procedure needs lots of data, it reads it from a data file; you’ll
see how this is done when you get to Chapter 12.

5. Run your project from the VBA IDE, and watch the drawing in the Model tab
change as you make new selections from the combo box.

LISTING 7.11: EVENT PROCEDURES FOR THE ISLAND DETECTION STYLES

USERFORM

1 Dim HatchObject As AcadHatch
2
3 Private Sub cboIslandStyle_Change()
4 Select Case cboIslandStyle.Text
5 Case “Normal”
6 HatchObject.HatchStyle = acHatchStyleNormal
7 Case “Outer”
8 HatchObject.HatchStyle = acHatchStyleOuter
9 Case “Ignore”
10 HatchObject.HatchStyle = acHatchStyleIgnore
11 End Select
12 HatchObject.Evaluate
13 HatchObject.Update

CHAPTER SEVEN • MACRO-IZING SOLID AREAS252

2871c07.qxd 3/19/01 10:50 AM Page 252

14 End Sub
15
16 Private Sub cmdCancel_Click()
17 HatchObject.HatchStyle = acHatchStyleNormal
18 HatchObject.Evaluate
19 HatchObject.Update
20 Unload Me
21 End Sub
22
23 Private Sub cmdContinue_Click()
24 Unload Me
25 End Sub
26
27 Private Sub UserForm_Initialize()
28 ‘declare all AcadEntity reference variables ↵

for hatch loops
29 Dim RoofLoop(0) As AcadEntity
30 Dim WallLoop(0) As AcadEntity
31 Dim Window1Loop(0) As AcadEntity
32 Dim Window2Loop(0) As AcadEntity
33 Dim DoorLoop(0) As AcadEntity
34 Dim DoorWindow1Loop(0) As AcadEntity
35 Dim DoorWindow2Loop(0) As AcadEntity
36 Dim DoorHandleLoop(0) As AcadEntity
37 ‘declare arrays to hold the points defining the house
38 Dim Roof(0 To 14) As Double
39 Dim Wall(0 To 14) As Double
40 Dim Window1(0 To 14) As Double
41 Dim Window2(0 To 14) As Double
42 Dim Door(0 To 14) As Double
43 Dim DoorWindow1(0 To 14) As Double
44 Dim DoorWindow2(0 To 14) As Double
45 Dim CircleCenter(0 To 2) As Double
46 ‘define the roof
47 Roof(0) = 2#: Roof(1) = 8#: Roof(2) = 0#
48 Roof(3) = 15#: Roof(4) = 8#: Roof(5) = 0#
49 Roof(6) = 17#: Roof(7) = 6#: Roof(8) = 0#
50 Roof(9) = 0#: Roof(10) = 6#: Roof(11) = 0#
51 Roof(12) = 2#: Roof(13) = 8#: Roof(14) = 0#
52 Set HatchObject = ThisDrawing.ModelSpace.AddHatch ↵

(acHatchPatternTypePreDefined, “LINE”, True)

FILLING WITH INNER AND OUTER LOOPS 253

2871c07.qxd 3/19/01 10:51 AM Page 253

53 Set RoofLoop(0) = ↵
ThisDrawing.ModelSpace.AddPolyline(Roof)

54 HatchObject.AppendOuterLoop (RoofLoop)
55 HatchObject.Color = acRed
56 HatchObject.Evaluate
57 HatchObject.Update
58 ‘define the wall
59 Wall(0) = 1#: Wall(1) = 6#: Wall(2) = 0#
60 Wall(3) = 16#: Wall(4) = 6#: Wall(5) = 0#
61 Wall(6) = 16#: Wall(7) = 1#: Wall(8) = 0#
62 Wall(9) = 1#: Wall(10) = 1#: Wall(11) = 0#
63 Wall(12) = 1#: Wall(13) = 6#: Wall(14) = 0#
64 Set HatchObject = ThisDrawing.ModelSpace.AddHatch ↵

(acHatchPatternTypePreDefined, “BRICK”, True)
65 Set WallLoop(0) = ↵

ThisDrawing.ModelSpace.AddPolyline(Wall)
66 HatchObject.AppendOuterLoop (WallLoop)
67 HatchObject.Color = acYellow
68 HatchObject.Evaluate
69 HatchObject.Update
70 ‘define the left window
71 Window1(0) = 2#: Window1(1) = 6#: Window1(2) = 0#
72 Window1(3) = 6#: Window1(4) = 6#: Window1(5) = 0#
73 Window1(6) = 6#: Window1(7) = 3#: Window1(8) = 0#
74 Window1(9) = 2#: Window1(10) = 3#: Window1(11) = 0#
75 Window1(12) = 2#: Window1(13) = 6#: Window1(14) = 0#
76 Set HatchObject = ThisDrawing.ModelSpace.AddHatch ↵

(acHatchPatternTypePreDefined, “dots”, True)
77 Set Window1Loop(0) = ↵

ThisDrawing.ModelSpace.AddPolyline(Window1)
78 HatchObject.AppendOuterLoop (Window1Loop)
79 HatchObject.Color = acBlue
80 HatchObject.Evaluate
81 HatchObject.Update
82 ‘define the right window
83 Window2(0) = 11#: Window2(1) = 6#: Window2(2) = 0#
84 Window2(3) = 15#: Window2(4) = 6#: Window2(5) = 0#
85 Window2(6) = 15#: Window2(7) = 3#: Window2(8) = 0#
86 Window2(9) = 11#: Window2(10) = 3#: Window2(11) = 0#
87 Window2(12) = 11#: Window2(13) = 6#: Window2(14) = 0#
88 Set HatchObject = ThisDrawing.ModelSpace.AddHatch ↵

CHAPTER SEVEN • MACRO-IZING SOLID AREAS254

2871c07.qxd 3/19/01 10:51 AM Page 254

(acHatchPatternTypePreDefined, “dots”, True)
89 Set Window2Loop(0) = ↵

ThisDrawing.ModelSpace.AddPolyline(Window2)
90 HatchObject.AppendOuterLoop (Window2Loop)
91 HatchObject.Color = acBlue
92 HatchObject.Evaluate
93 HatchObject.Update
94 ‘define the door
95 Door(0) = 7#: Door(1) = 6#: Door(2) = 0#
96 Door(3) = 9.5: Door(4) = 6#: Door(5) = 0#
97 Door(6) = 9.5: Door(7) = 1#: Door(8) = 0#
98 Door(9) = 7#: Door(10) = 1#: Door(11) = 0#
99 Door(12) = 7#: Door(13) = 6#: Door(14) = 0#
100 Set HatchObject = ThisDrawing.ModelSpace.AddHatch ↵

(acHatchPatternTypePreDefined, “earth”, True)
101 Set DoorLoop(0) = ↵

ThisDrawing.ModelSpace.AddPolyline(Door)
102 HatchObject.AppendOuterLoop (DoorLoop)
103 HatchObject.Color = acGreen
104 HatchObject.Evaluate
105 HatchObject.Update
106 ‘define the window in the door
107 DoorWindow1(0) = 7.25: DoorWindow1(1) = 5.75: ↵

DoorWindow1(2) = 0#
108 DoorWindow1(3) = 9.25: DoorWindow1(4) = 5.75: ↵

DoorWindow1(5) = 0#
109 DoorWindow1(6) = 9.25: DoorWindow1(7) = 3#: ↵

DoorWindow1(8) = 0#
110 DoorWindow1(9) = 7.25: DoorWindow1(10) = 3#: ↵

DoorWindow1(11) = 0#
111 DoorWindow1(12) = 7.25: DoorWindow1(13) = 5.75: ↵

DoorWindow1(14) = 0#
112 Set DoorWindow1Loop(0) = ↵

ThisDrawing.ModelSpace.AddPolyline(DoorWindow1)
113 HatchObject.AppendInnerLoop (DoorWindow1Loop)
114 HatchObject.Color = acBlue
115 HatchObject.Evaluate
116 HatchObject.Update
117
118 DoorWindow2(0) = 8#: DoorWindow2(1) = 5#: ↵

DoorWindow2(2) = 0#

FILLING WITH INNER AND OUTER LOOPS 255

2871c07.qxd 3/19/01 10:51 AM Page 255

119 DoorWindow2(3) = 8.5: DoorWindow2(4) = 5#: ↵
DoorWindow2(5) = 0#

120 DoorWindow2(6) = 8.5: DoorWindow2(7) = 4#: ↵
DoorWindow2(8) = 0#

121 DoorWindow2(9) = 8#: DoorWindow2(10) = 4#: ↵
DoorWindow2(11) = 0#

122 DoorWindow2(12) = 8#: DoorWindow2(13) = 5#: ↵
DoorWindow2(14) = 0#

123 Set DoorWindow2Loop(0) = ↵
ThisDrawing.ModelSpace.AddPolyline(DoorWindow2)

124 HatchObject.AppendInnerLoop (DoorWindow2Loop)
125 HatchObject.Color = acBlue
126 HatchObject.Evaluate
127 HatchObject.Update
128 ‘define the door handle
129 CircleCenter(0) = 7.5: CircleCenter(1) = 2.5: ↵

CircleCenter(2) = 0#
130 Set DoorHandleLoop(0) = ThisDrawing.ModelSpace.AddCircle ↵

(CircleCenter, 0.125)
131 HatchObject.AppendInnerLoop (DoorHandleLoop)
132 HatchObject.Color = acRed
133 HatchObject.Evaluate
134 HatchObject.Update
135 ‘add items to the combo box
136 cboIslandStyle.AddItem “Normal”
137 cboIslandStyle.AddItem “Outer”
138 cboIslandStyle.AddItem “Ignore”
139 ‘set default combo box island style
140 cboIslandStyle.Text = “Normal”
141 End Sub

ANALYSIS

• Line 1 declares HatchObject as a variable capable of referencing a Hatch object.
This declaration is made in the General Declarations section of the UserForm’s
Code window so that it can be accessed by any procedure from this UserForm.

• Lines 3 through 14 contain the Change event procedure of the Island combo
box. These statements run in the event that the user selects a different style; the
HatchStyle property is set to one of the AutoCAD constants, depending on
the user’s latest choice. The Evaluate method is called to recompute where the

CHAPTER SEVEN • MACRO-IZING SOLID AREAS256

2871c07.qxd 3/19/01 10:51 AM Page 256

hatch pattern intersects with the boundary using the new style, before the
Update method redraws it on the Model Space.

Notice how cbo is used as the prefix for the combo box, as per Windows object-naming conventions.

• Lines 16 through 21 contain the Click event procedure for the Cancel com-
mand button. This reinitializes the HatchStyle to Normal before evaluating
the pattern-boundary intersections and redrawing the shape. The last state-
ment unloads the UserForm and returns the user to the AutoCAD window.

• Lines 23 through 25 unload the UserForm, leaving the HatchStyle set at the
last one selected by the user, and then return to the AutoCAD window.

• Lines 27 through 141 contain all the statements from the Initialize event
procedure that runs when the UserForm is first loaded.

• Lines 29 through 36 declare one-element arrays that are all capable of
referencing an AutoCAD object. An array is required as the argument by the
AppendOuterLoop method, rather than a single value variable.

• Lines 38 through 44 declare arrays that will contain the doors and windows
definitions.

• Lines 47 through 51 assign the coordinates defining the roof to the Roof array.

• Line 52 calls the AddHatch method to create a Hatch object and sets up the
HatchObject variable to refer to it.

• Line 53 calls the AddPolyLine method to create a PolyLine object that defines
the roof. The RoofTop array is set up as a reference to the PolyLine object.

• Line 54 calls the AppendOuterLoop method of the Hatch object to specify the
boundary of the outer loop. This method must be called before any inner
loops can be defined.

• Line 55 assigns the color red to the Hatch object.

• Line 56 calls the Evaluate method to evaluate the lines or fill color to be used
for the Hatch pattern.

• Line 57 updates the Hatch object.

• Lines 58 through 69 perform the same operations on the wall definition
as Lines 46 through 57 did on the roof.

FILLING WITH INNER AND OUTER LOOPS 257

2871c07.qxd 3/19/01 10:51 AM Page 257

• Lines 70 through 105 perform the same operations for the windows and door
as Lines 46 through 57 did for the roof.

• Line 113 calls the AppendInnerLoop method to add the DoorWindowLoop
array to the current HatchObject that already contains an outer loop.

The AppendOuterLoop method must be called as soon as the AddHatch method has been executed to
create a new Hatch object. The AppendInnerLoop method should not be called before the AppendOuter-
Loop has set up the outer boundary.

Working with Input Boxes
Input boxes are the special dialog boxes that pop up and ask the user to enter some
piece of information that the application needs to continue. This function shares some
similarities with the MsgBox function, but the dialog box displayed to the user in this
case has a TextBox control in which the user enters their input. Figure 7.13 shows the
list of parameters for the InputBox function.

The Prompt parameter is the only one that VBA requires be entered, and it
expects a string that gives the user instructions about what data should be entered
into the text box.

Listing 7.12 is the GetUserInput macro that calls the InputBox function with the
two arguments listed to display the Input Box shown in Figure 7.14.

LISTING 7.12: GETUSERINPUT MACRO

1 Sub GetUserInput()
2 Dim MyName As String
3 MyName = InputBox↵

(“Please enter your name”, “Login Details”)
4 End Sub

ANALYSIS

Line 3 calls the InputBox function, with the prompt and title parameters being
passed the string values shown. The InputBox function then puts everything into
modal mode while it waits for the user to enter their name or click one of the com-
mand buttons.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS258

2871c07.qxd 3/19/01 10:51 AM Page 258

Figure 7.13 Parameter list for the InputBox function

Figure 7.14 Input box receiving name data

Multiple-Line Prompts
If the instructions in the Prompt argument for an input box require more than one
line, you can insert carriage returns using the Visual Basic constant vbCr at the point
where you want to start the next line. For example, the statement

MyName = InputBox(“Please enter your name” & vbCr ↵
& “followed by your telephone number”, “Login Details”)

creates the prompt shown in Figure 7.15.

Figure 7.15 Input box with two-line prompt

WORKING WITH INPUT BOXES 259

2871c07.qxd 3/19/01 10:51 AM Page 259

Drawing a Range Top from a Macro
This next project combines several of the topics covered in this chapter. It uses the
Utility object to prompt the user to click the points defining the position and dimen-
sions of the range top, and then draws the range top. Then the InputBox function is
used to prompt the user to enter the number of burners required—this is the only
GUI employed by the project. It takes yet another approach to drawing circles—the
ones that represent the range-top’s burners—calculating their size and position in the
macro itself before drawing them on the range top.

EXERCISE 7.6: THE DRAW RANGE TOP APPLICATION

1. Start a new project and enter the code shown in Listing 7.13 into the ThisDraw-
ing Code window.

2. Run your project. A prompt appears in the command line, asking you to click
the position for the bottom-left corner of the range top.

3. Click at the point required for the corner. The command line now asks you to
specify the opposite corner.

4. Click the opposite corner. The input box appears, prompting for the number
of hot plates required and telling you what sort of input is expected.

5. Enter a number and click OK. The range top appears in the Model Space, with
the number of burners you specified.

Figure 7.16 shows a selection of range tops created using this macro.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS260

2871c07.qxd 3/19/01 10:51 AM Page 260

Figure 7.16 Variety of range tops produced by the DrawRangeTop macro

LISTING 7.13: DRAWRANGETOP MACRO

1 Sub DrawRangeTop()
2 ‘range top related declarations
3 Dim RangeObject As AcadPolyline
4 Dim Depth As Variant, Width As Variant
5 Dim Corner1 As Variant, Corner2 As Variant
6 Dim Range(0 To 14) As Double
7 Dim LineObject As AcadLine
8 ‘circle related declarations
9 Dim HotPlateObject As AcadCircle
10 Dim Center(0 To 2) As Double
11 Dim Radius As Double
12 ‘Burner related declarations
13 Dim NumberOfHotPlates As Integer
14 Dim PlatesInARow As Integer, PlatesInACol As Integer
15 Dim Count1 As Integer, Count2 As Integer
16 Dim StartPoint(0 To 2) As Double, ↵

EndPoint(0 To 2) As Double
17 ‘prompt user for dimensions
18 With ThisDrawing.Utility

DRAWING A RANGE TOP FROM A MACRO 261

2871c07.qxd 3/19/01 10:51 AM Page 261

19 Corner1 = .GetPoint(, ↵
“Click position for ↵
bottom-left corner of range top.”)

20 Corner2 = .GetPoint(, “Specify opposite corner.”)
21 End With
22 Range(0) = Corner1(0): Range(1) = Corner1(1): ↵

Range(2) = Corner1(2)
23 Range(3) = Corner1(0): ↵

Range(4) = Corner2(1) + Depth: Range(5) = Corner1(2)
24 Range(6) = Corner2(0) + Width: ↵

Range(7) = Corner2(1) + Depth: Range(8) = Corner2(2)
25 Range(9) = Corner2(0) + Width: ↵

Range(10) = Corner1(1): Range(11) = Corner1(2)
26 Range(12) = Corner1(0): Range(13) = Corner1(1): ↵

Range(14) = Corner1(2)
27 Set RangeObject = ↵

ThisDrawing.ModelSpace.AddPolyline(Range)
28 RangeObject.Update
29 Width = Range(9) - Range(0)
30 Depth = Range(4) - Range(1)
31 ‘prompt user for number of hot plates
32 NumberOfHotPlates = InputBox(“Please enter the ↵

number of hot plates required (1 or an even ↵
number)!”, “Range Top Drawing”)

33 ‘calculate layout of hot plates
34 If NumberOfHotPlates > 2 Then
35 PlatesInARow = NumberOfHotPlates / 2#
36 PlatesInACol = 2
37 Else
38 PlatesInARow = NumberOfHotPlates
39 PlatesInACol = 1
40 End If
41 ‘calculate position for each hot plate
42 For Count2 = 1 To PlatesInACol
43 Center(1) = ↵

Range(1) + (Depth / (2# * PlatesInACol)) ↵
+ (Count2 - 1) * (Depth / 2#)

44 For Count1 = 1 To PlatesInARow

CHAPTER SEVEN • MACRO-IZING SOLID AREAS262

2871c07.qxd 3/19/01 10:51 AM Page 262

45 Center(0) = ↵
Range(0) + (Width / (2# * PlatesInARow)) ↵
+ (Count1 - 1) * (Width / PlatesInARow)

46 If (Width / PlatesInARow) < ↵
(Depth / PlatesInACol) Then

47 Radius = Width / (2 * PlatesInARow + 2#)
48 Else
49 Radius = Depth / (2 * PlatesInACol + 0.5)
50 End If
51 Dim Adjustment As Double
52 Adjustment = Radius / 8#
53 ‘create and draw circle representing hot plate
54 With ThisDrawing.ModelSpace
55 Set HotPlateObject = ↵

.AddCircle(Center, Radius)
56 HotPlateObject.Update
57 ‘draw four lines on top of hot plate for gas
58 StartPoint(0) = Center(0): StartPoint(1) = ↵

Center(1) + Adjustment: StartPoint(2) = ↵
Center(2)

59 EndPoint(0) = Center(0): EndPoint(1) = ↵
Center(1) + Radius + Adjustment: ↵
EndPoint(2) = Center(2)

60 Set LineObject = ↵
.AddLine(StartPoint, EndPoint)

61 LineObject.Update
62 StartPoint(0) = ↵

Center(0) + Adjustment: StartPoint(1) = ↵
Center(1): StartPoint(2) = Center(2)

63 EndPoint(0) = ↵
Center(0) + Radius + Adjustment: ↵
EndPoint(1) = Center(1): EndPoint(2) = ↵
Center(2)

64 Set LineObject = ↵
.AddLine(StartPoint, EndPoint)

65 LineObject.Update
66 StartPoint(0) = Center(0): StartPoint(1) = ↵

Center(1) - Adjustment: StartPoint(2) = ↵
Center(2)

DRAWING A RANGE TOP FROM A MACRO 263

2871c07.qxd 3/19/01 10:51 AM Page 263

67 EndPoint(0) = Center(0): EndPoint(1) = ↵
Center(1) - Radius - Adjustment: ↵
EndPoint(2) = Center(2)

68 Set LineObject = ↵
.AddLine(StartPoint, EndPoint)

69 LineObject.Update
70 StartPoint(0) = ↵

Center(0) - Adjustment: StartPoint(1) = ↵
Center(1): StartPoint(2) = Center(2)

71 EndPoint(0) = ↵
Center(0) - Radius - Adjustment: ↵
EndPoint(1) = Center(1): EndPoint(2) = ↵
Center(2)

72 Set LineObject = ↵
.AddLine(StartPoint, EndPoint)

73 LineObject.Update
74 End With
75 Next
76 Next
77 End Sub

ANALYSIS

• Line 1 starts the DrawRangeTop macro, which interacts with the user to obtain
the information needed to draw the outline of the range top, and then calcu-
lates the size and position of each of the burners.

• Lines 19 and 20 prompt the user for the position of two diagonally opposite
corners for drawing the range top.

• Lines 22 through 26 assign the values of the x-, y-, and z-coordinates that make
up the four corners of the range top, plus a fifth corner that is a duplicate of
the first so that all four edges are drawn.

• Lines 29 and 30 calculate the width based on the x-coordinates from the Range
array, and the depth based on the y-coordinates.

• Line 32 calls the InputBox function to get input from the user. The first argu-
ment is the prompt; the second argument is the caption for the title bar of the
input box.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS264

2871c07.qxd 3/19/01 10:51 AM Page 264

• Lines 33 through 40 determine how many rows and columns will be used
when the hot plates are placed on the range top.

• Line 42 starts the outer For loop that executes once for each column of
hot plates.

• Line 43 calculates the y-coordinate for the center.

• Line 44 starts the inner For loop that is repeated for each row of hot plates.

• Line 45 calculates the x-coordinate for the center.

• Lines 46 through 50 calculate the largest radius for the hot plates, based on the
range top’s dimensions and the number of burners required.

• Line 51 declares the Adjustment variable that determines how far the four
radial lines will be translated from the hot plates’ centers.

• Line 52 assigns a value to the Adjustment variable. This makes it easy to
update the adjustment value, since it only needs to be done in this statement.

• Line 55 draws the circle representing the hot plate.

• Lines 57 through 73 create four Line objects and add them to the drawing.

• Line 74 ends the With statement block.

• Lines 75 and 76 end the two For loops.

• Line 77 ends the DrawRangeTop macro.

Summary
After reading this chapter, you’ll know how to do the following tasks and understand
the related concepts in VBA code:

• Draw circles.

• Access points and distances specified in the AutoCAD window from a macro.

• Fill a circle with color.

• Draw a circle of bricks from an application.

• Set the boundaries for hatching outer loops and inner loops.

SUMMARY 265

2871c07.qxd 3/19/01 10:51 AM Page 265

• Fill nested shapes using the Island Detection style.

• Use the Associativity argument of the AddHatch method to determine
whether or not the hatch pattern gets updated with the boundary.

• Draw any shape, fill it with a hatch pattern, and find out its area.

• Add Hatch objects to the ModelSpace collection.

• Use the Variant type as a means of passing a three-element array in one assign-
ment statement.

• Add items to a combo box and determine the one selected by the user at
run time.

• Use the Input Box function to receive input from the user.

• Place an array of objects into a rectangular area in the Model Space, using a
macro to calculate the size and positions.

CHAPTER SEVEN • MACRO-IZING SOLID AREAS266

2871c07.qxd 3/19/01 10:51 AM Page 266

	2871copyright.pdf
	Mastering AutoCAD© VBA
	Marion Cottingham
	Chapter 7: Macro-izing Solid Areas

