Docs » Tinker Kit » 1. Introduction

1. Introduction

1.1. Tinker Kit Introduction

ElecFreaks Micro:bit Tinker Kit is a set of Micro:bit accessory that enables you to connect all
kinds of modules easily without a group of messy breadboard wires.

1.2. Components

Crystal Battery Box - 2 x AAAx 1
Elecfreaks Micro:bit Breakout Board x 1
Micro-B USB Cable x 1

OLED Display x 1

Mini Servo(1.6kg) x 1

Octopus PIR sensor Brick x 1

Octopus Soil Moisture Sensor Brick x 1
Octopus ADKeypad x 1

Octopus Crash Sensor Brick x 1

Octopus Passive buzzer Brick OBPBO0O1 x 1
Octopus 5mm LED Brick OBLED - Red x 1
Octopus 5mm LED Brick - Green x 1
Octopus 5mm LED Brick OBLED - Blue x 1
Octopus Analog Rotation Brick OBARot x 1

Octopus Crash Sensor Brick x 1

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Docs » Tinker Kit » 2. Octopus:bit Introduction

2. Octopus:bit Introduction

2.1. Introduction

ELECFREAKS Octopus:bit is a kind of breakout boards for micro:bit. It can lead out GPIO
port, serial port, IIC port, and SPI port on the micro:bit board. The biggest feature of
Octopus:bit is that it can switch electric level for some GPIO ports, which makes micro:bit
available to be adapted to 5V sensors.

PO~P7, P10
Standard GVS
Voltage 3.3V

Serial Send/Receive
TX: P8, RX: P12
Voltage: 3.3V/5V

*

IC
Voltage: 3.3V/5V

2.2. Shipping List

1 x ELECFREAKS Octopus:bit

2.3. Hardware

Features

O

W5 e 5

it i 'ie-.!il"se,!.u Ill.\ll

i

SPI
Voltage: 3.3V/5V

P8, P9, P11~P16

Standard GVS

Voltage Choice:
3.3V/5V

Serial Send
TX: P8
Voltage: 3.3V/5V

&

3.3V/5V Voltage
Switch
(for P8, P9, P11~P16)

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e Input voltage: 3.3V (powered by the edge connector of micro:bit)

e Extend all of GPIO ports(PO~P16, P19~P20).

e Beneath each I/O port, there are pins for VCC and GND. These pins are differentiated by
different colors, which enable you to connect your extension module easily. The spread of
pins is fully compatible with Octopus series’ products.

e With a voltage boosting module, you can shift the working voltage of P8, P9, P11~P16
between 3.3V and 5V through the voltage switch.

e Lead out serial port, 12C port and SPI port, among which 12C can connect 3 channels of
I2C devices and SPI can connect 2 channels of SPI devices.

e Available for direct serial port communication between two breakout boards.

Application

It is suitable for all conditions that require micro:bit GPIO such as programming education,
smart device creation, and so on.

Pins & Connectors

ELECFREAKS OCTOPUS:BIT V1.6

R

L -,..,

JLILRLE LI EILIEEY ||

.III“.I“‘IIIIII
i

-

u L=
1|

=
@~ ~ PWM&ADC

PE I - 1

L T R ¥ O T R T R TR TR ¥ |

 LEDCol7 | P9 —e
BUTTONB | Pl |—e

2.4. More Details

Standard GVS Port

Among the standard GVS ports, the working voltage of the yellow part (PO~P7, P10) is
3.3V, while the working voltage of the blue part (P8, P9, P11~P16) can be shifted between
3.3V and 5V through a voltage switch. Beneath each 1/O port, there are pins for VCC and
GND. These pins are differentiated by different colors, which enable you to connect your
extension module easily. The spread of pins is fully compatible with Octopus series’ products.

Voltage Switch

Sliding this switch, we can change the voltage of the blue IO ports (P8, P9, P11~P16)
between 3.3V and 5V.

You can see its working range in the below:

Serial Port

The working voltage of serial port is available to be shifted between 3.3V and 5V through the
voltage switch. Connect TX to P8, RX to P12. The left pins are bidirectional serial port,
which can run both input and output. The right female header is a one-way output serial
port.

Note : To use this port, we have to initialize it according to the program in the below:

on start

~ -
r —

“= serial
redirect to

X

RX
at baud rate

2.5. Dimension

60mm

@3.2mm

\Llu- @ o

= |
E_ E-I-I!-Eé EE.EI!.E....-.-E:E II|:
(TN T ho —--n--‘----n--l

32. 6mm

53. 2mm

2.6. Software

Example 1 Music Broadcast

Hardware Connection

Connect passive buzzer module to PO.

Code Example

22 forever

start melody birthday -

repeating Q<=3

You can download the whole program from the link here:
https:/makecode.microbit.org/_fAMC3WERHdR2

Download the whole program into your micro:bit, the buzzer will play Happy Birthday again
and again in round.

2.7. Relative Components

BBC micro:bit

https://makecode.microbit.org/_fAmC3WERHdR2

EE R

FEE EF TEL fEE JEF
FEE PEF IEI MEE@ YEY
mE i@l Al il OEE

529

ElecFreaks Micro:bit Tinker Kit

Docs » Tinker Kit » 3. case 01 Music Machine

3. case 01 Music Machine

mu,qn}H_NH"]"'.”'“-

\:- 93

3.1. Goals

e Get to know the ADKeypad.
e Make something with ADKeypad.
e Make something with Buzzer.

3.2. Materials

e 1 x BBC Micro:bit Board

e 1 x Micro USB cable

e 1 x ElecFreaks Micro:bit Breakout Board
e 1 x Octopus Passive buzzer Brick

e 1 x Octopus ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Tips: If you want all components above, you may need ElecFreaks Micro:bit Tinker Kit

3.3. How to Make

Step 1

After connecting one end of the USB cable to your computer, connect the other end to the
micro:bit as shown in the picture below.Then connect the side of the micro:bit where the pins
are located to the breakout board.

Step 2

Plug in the buzzer Brick to Pin 0. Plug in the ADKeypad to Pin 2. Make sure the colour of the
wire of the buzzer and the ADKeypad follows the colour of the pins on the breakout board.

Step 3

Click on Advanced in the Code Drawer to see more code sections.

& Math

¢/> Tinkercademy

A Advanced

B 2 & v X +Z Serial

£ Control

© Add Package

To code for our extra kit components (the ADKeypad and the buzzer), we have to add a
package of code.Look at the bottom of the Code Drawer for “Add Package” and click it. This
will open up a dialogue box. Search for “tinker kit” and click on it to download this package.

Add Package... ?

tinkercademy-tinker-kit

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file

menu.

Step 4

Next, let’s create a conditional statement as shown in the picture. This ‘if-then’ block of code
is under the code section “Logic” of the code drawer.The code shown below means that
when button A is pressed on the ADKeypad while the ADKeypad is plugged in at pin P2 of
the breakout board, the buzzer will play a sound of 175 hertz.

. —————
for [© beat
| e

Since there are 5 buttons, we need to code 5 similar conditional statements. Each button
controls a sound of a particular pitch. So press each buttion, we will get sounds of different
pitches.

Ei forever

22 show icon

|
if :J ¢/» key B3B8 i= pressed on ADKeyboard at pin [F3ED

(= r

then | & play tone 175 | R beat
L .

if | ¢» key EJED is pressed on ADKeyboard at pin [FIED

f-_ e —

then | = play tone B - [¢ FHED beat

2 . [

¢ if | ¢ key (@B is pressed on ADKeyboard at pin [ZIEN

o . r
then | & play tone BB | [£ FER beat

If you don’t want to type these code by yourself, you can download it directly from the link
below:

https:/makecode.microbit.org/_3VaHYtgxqRb9

Or, you can download from the page below:

» Simulator k Blocks JavaScript v 2 Edit

on start forever
[\—

show icon if key [Z] is pressed on ADKeyl

play tone for

if <key . is pressed on ADKeyl

N~ — . —I

https://makecode.microbit.org/_3VaHYtgxqRb9

‘ @ tone (Low G) tor (1 beat)J

Microsoft MakeCode Terms of Use Privacy & Download

Success! Now you have your own Micro:bit Music Machine.

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 4. case 02 Smart Light

4. case 02 Smart Light

fla
';’:f.'ill’.'lf!f"fllf".'lﬂ'ﬁ'l'f".'
S s \
=T \y
|
s0R .
<

In this project, we are going to create a smart light with ElecFreaks Micro:bit Tinker Kit. It will
use Octopus PIR Sensor and LED light. When there is someone in the room and detected,
the LED will light up.

4.1. Goals

e Make something with Octopus PIR sensor.
e Make something which is easily to be used in real life.

4.2. Materials:

e 1 x BBC micro:bit

e 1 x Micro USB cable

e 1 x Breakout board

e 1 X Octopus PIR sensor Brick

e 1 x Octopus 5mm LED Brick OBLED - Red

4.3. How to Make

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Step 1: Components

Insert the micro:bit into the breakout board and plug Octopus PIR sensor into Pin O.

L] m'-

b | i e B
I il

Plug LED to Pin 1. Make sure the wire colors matches pin colors.

‘;

R
MMM KR,

o
L}

Step 2: Pre-coding

We will add a package of code to enable us to use our kit components. Click on
“Advanced” in the Code Drawer to see more code section and look at the bottom of the
Code Drawer for “Add Package”.

B Math

¢/> Tinkercademy

A Advanced

i= Arrays
T Text
o Game
a] Images
Pins
> Serial

= Control

© Add Package

This will open a dialog box. Search for “tinker kit”, and then click it to download this package.

Add Package... ?

) | 4
ey ‘

S

tinkercademy-tinker-kit

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues. You have to either follow the prompts or create a new project in the

projects file menu.

Step 3: Coding

<> toggle LED at pin

key [is pressed on ADKeyboard at pin [ZIED

£2z Basic

@® Input

& Music motion detector at pin [detects motion

© Led
> Setup crash sensor at pinm

.l Radio

crash sensor pressed

O OLED

C Loops value of moisture sensor at pin I3
3 Logic

Variables

Click on Tinkercademy inside the Code Drawer to find blocks for the components in your kit.

sz Basic

® Input
@& Music g forever
© Led (@] if (<> motion detector at pin [ZIEM detects motion
e
then &) toggle LED at pin (ZEECTED
.l Radio
else Eb toggle LED at pin (D
L1 OLED
C Loops
3G Logic
= Variables
& Math

¢/> Tinkercademy

I v Advanced

For this project, no initialization is required, and there isn't much code anyway. If you don'’t
want to type these code, you can download it directly from the link below:

https:/makecode.microbit.org/_aFUP7wcy94sv

Or, you can download from the page below:

» Simulator ik Blocks JavaScript =« ' Edit

https://makecode.microbit.org/_aFUP7wcy94sv

forever

[\
if motion detector at pin | PO detects motion> then

E)E/;le LED at pin|P1 On

else

E)E;le LED at pin|P1 Off

N\

Microsoft MakeCode Terms of Use Privacy & Download
If any motion is detected by the PIR sensor, the light is triggered. Or else, the light is turned
off. Quite simple enough.

Step 4: Success

Voila! You have created a simple smart light! Let’s light it up !

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 5. case 03 Electro-Theremin

5. case 03 Electro-Theremin

ELECFREAKS '[TH

DEVOTE TO OPEN HARDWARE

DIGITAL
TINKER KIT

H FCTRO

Theremin

MICRO : BIT

5.1. Goals

e Learn to use an analog sensor with the micro:bit.
e Make an electro-theremin!

5.2. Materials

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Buzzer

e 2 X F-F Jumper Wires
e 1 x Potentiometer

5.3. Procedure

Step 1

Plug in your Buzzer to PinO. Make sure the positive lead is connected to the yellow signal pin
and the negative lead is connected to the black ground pin on the breakout board.
Plug in the potentiometer to Pinl. You can plug according to the color. Make sure that the

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

wire colors and the pin colors on breakout board are well matched!

32

Step 2

In Makecode, we'll track the value of the potentiometer using a variable. Variables are like
buckets that can hold changing values.

Make a new variable called reading (or anything you like, really) in the Variable drawer.
We want to constantly set our reading variable to the analog value of the potentiometer
instead of the digital.

Reading the analog value allows us to access a whole range of signals from the
potentiometer, instead of just a digital 1 or O. Find this block in the Pins drawer.

22 forever

@ analog read pin [ZUED

Step 3

Check your minimum and maximum values for your potentiometer by showing the number of
the reading variable.

Turning the knob anti-clockwise all the way gives you the minimum, and clockwise all the
way gives you maximum.

Notice how the values jump? That's because the micro:bit takes some time to scroll a large
number across the screen, and by the time you read a new value, the potentiometer would
be way ahead!

£ forever

r _ .
set (R CEU g to [@ analog read pin [ZUED

EE show number [[FTCHT S

Step 4

Now we're going to use those values you just read from your potentiometer to map out your
notes!

Our music blocks may not have a range as wide as your potentiometer. In this instance, we
want to make sure the highest potentiometer value still corresponds to the highest note we
can play.

Check out the value of the lowest and highest notes in the micro:bit piano keys.

Using the map block from the Pins drawer to key in all the values.

= forever

to @ analog read pin [IED

Step 5

You may have noticed we made another variable called note in the previous step. Make sure
you set the note variable to the mapped values. Ring the tone using the note variable. Save
these code into your micro:bit and you are ready to make some noise!

) i T I L

Wik o m R
AW kR
INiRE 1.

If you don’t want to type these code by yourself, you can directly download the whole

program from the link below:

https:/makecode.microbit.org/_5jUeetL6é60Kqi

Or, you can download from the page below:

» Simulator k Blocks JavaScript v 2 Edit

forever

(

set | reading

1

to (analog read pin)

show number l

note

to (map from low @ high (1023) to low @ h

(A ¢

ring tone (Hz) (High B |

C

|

https://makecode.microbit.org/_5jUeetL6oKqi

Microsoft MakeCode Terms of Use Privacy & Download

Cool stuff!

Now you've learned how to play around with the potentiometer, you can try to use it to
control LEDs, servos, and other components! And if you get your hands on another analog
sensor, you'll know just how to use it!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 6. case 04 Simple Alarm Box

6. case 04 Simple Alarm Box

6.1. Step 0: Pre-build Overview

In this project, we are going to create a simple alarm device which will alert the owner if
someone has stolen his or her property. The red LED will blink when the crash sensor detects
that the object has been taken away. Otherwise, the green LED will light up continuously.

The OLED will display the status of the device.

6.2. Maternals:

e 1 x BBC micro:bit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 1 x Micro USB cable

e 1 x Breakout board

e 1 x Octopus LED

e 1 x Crash Sensor

e 1xOLED

e 1xLED

e 2 x Female-Female jumper wires

6.3. Goals:

e Get to know the Octopus LED, normal LED, Crash sensor and OLED.
e Make something with different types of LED
e Make something with Crash sensor and OLED

6.4. How to Make

Step 1 — Components

Connect LED module to pin 1.

Connect the USB cable to the micro:bit and then to the breakout board as shown in the
picture above. Making sure that the colour of the wire follows the colour of the pins on the
break out board, plug in the crash sensor to Pin O and the Octopus LED to Pin 8. Lastly, plug
in the OLED as shown in the picture above. You should be able to plug it into any of the three
rows.

Step 2 — Pre-coding

We'll need to add a package of code to be able to use our kit components. Click on Advanced
in the Code drawer to see more code sections and look at the bottom of the Code Drawer for

Add Package.

& Math

¢/> Tinkercademy

A Advanced

i= Arrays
T Text
c® Game
Gal Images
Pins

B Z & ¥ X + Serial

£ Control

© Add Package

This will open up a dialog box. Search for “tinker kit” and then click it to download this
package.

Add Package... ? .

Tinker kit] o]

Ny

-

tinkercademny-tinker-kit

MakeCode package for modules in
the Elecfreaks-Tinkercaderny Tinker
Kt (beta)

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3 - Coding

:

) Basic
® Input
¢ Music

© Led

on start

Er: initialize OLED with height m width off

.l Radio
J OLED

=
</ Setup crash sensor at pin

C Loops
3 Logic
= Variables
B Math

</> Tinkercademy

After that, use blocks under the Tinkercademy section to initialize the OLED and Crash
Sensor as shown in the picture

Q Getting Started

i22 Basic
® Input
@ Music
© Led

- @® digital write pin GEHED to i
.l Radio . _ —N

@ digital write pin (Z3ED to

This part of the code allows the red LED to blink continuously. You can adjust the speed of
blinking by changing the pause period.

Q Getting Started

on
iz Basic E: initialize OLED with height m width
@® Input : crash sensor at pi
© Music
[

© Led
.l Radio

Since there are only two conditions, we need only one ‘else-if’ statement. When the Crash
Sensor is pressed, the green Octopus LED will light up. Or else, if no force is applied to the
Crash Sensor, the red LED will blink continuously.

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below:

https:/makecode.microbit.org/_LvC6eOUfWH7c

Or, you can download from the page below:

» Simulator k Blocks JavaScript v 2" Edit

2 tinkercademy.crashSensorsetup(bigitalPin.P@)

3 basic.forever(() => {

4 1f (tinkercademy.crashSensor()) {

5 OLED.showString("Your treasure 1is safe")

6 pins.digitalWritePin(DigitalPin.P1, 0)

14 pins.digitalWritePin(DigitalPin.P8, 1)

8 } else {

9 pins.digitalWritePin(DigitalPin.P8, 0)
10 pins.digitalWritePin(DigitalPin.P1, 1)
11 basic.pause(100)

12 pins.digitalWritePin(DigitalPin.P1, 0)
13 basic.pause(100)

Proflfms 1 3 A
15 B Microsoft MakeCode Terms of Use Privacy & Download

Step 4 — Succeed!

Let's download code into it and run it. Let’s find a book or something else and place it on the
top of device, then see what will happen. We can see the green light illuminates as showed in
the picture below. When we take away the book or something else you placed, you can see
the red light starts to flash while the green light turned off.

https://makecode.microbit.org/_LvC6e0UfWH7c
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 7. case 05 Plant Monitoring Device

7. case 05 Plant Monitoring Device

Do you know how to detect plant humidity?

In this article,we are going to talk about how to use micro:bit with buzzer, OLED and
moisture sensor to build a case of plant detection device.

7.1. Goals:

e Get to know the buzzer, OLED and moisture sensor.
e Make something with a moisture sensor.

7.2. Material Needed:

e 1 x BBC Micro:bit

e 1 x Micro USB Cable

e 1 x Breakout Board

e 1 x Mini Buzzer

e 1xOLED

e 1 x Moisture Sensor

e 2 x Female-Female Jumper Wires

Note: You can plug components in any sequence.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

In this project, we are going to create a plant monitoring which the buzzer will sound when
there is not enough water.

A message will always be displaying on the OLED, showing the moisture level.

Firstly, plug in the OLED. You are able to plug it into any of the three rows.

Connect buzzer to PO. Make sure the color of wire follows the pin color on breakout board.

'!'I'l'l‘l'!'l'l'l'l'l-’l'l'_l.'l.‘l‘lllil'l

Plug in the moisture sensor to P1.

LI L B B
| = =
vt v

fwﬂmmmmmmmmmmml

) - [é, :

Click on Advanced in the Code Drawer to see more code sections. We'll add a package of
code to be able to use our kit components. Look at the bottom of the Code Drawer for “Add
Package” and click it.

» Advanced 1

T Texl

o Game
= Images
@ Pins
== Serial
E2 Control

& Add Package 2

At this time, a dialogue box appears. Search “tinker kit” in the box and then click on the
“tinkercademy-tinker-kit” for downloading this package.

Add Package... ? .

Tinker kit| Q

e

-

tinkercadermny-tinker-kit

MakeCode package for modules in
the Elecfreaks-Tinkercaderny Tinker
Kt (Deta)

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

«> toggle LED at pin LOIENIIEED
22 Basic

® Input i key LJE) is pressed on ADKeyboard at pin [L:JE)

@ Music » motion detector at pin [JE) detects motion

© Led
—r <> Setup crash sensor at pin 53
-lIII aalo

C Loops «» crash sensor pressed

32 Logic ;» value of moisture sensor at pin I35
= Variables

B Math

¢</> Tinkercademy

1 OLED

show number B[}

show string -

Initialize OLED height M} width N[}

iz Basic
® Input
@ Music
© Led Initialize OLED text output height ML} width W)
.l Radio

C Loops

32 Logic

= Variables

B Math

¢/> Tinkercademy

After that, use blocks under the Tinkercademy section to initialize the OLED.

on start

E;] initialize OLED with height (NS width OJEEE)

Since there are only two conditions, we need only one “else-if” statement. Micro:bit reads

values from moisture sensor continuously. When the moisture sensor value is less than 50,
this indicates that there is not enough water in the pot. As a result, the buzzer will sound and
a message “Water your plant” will be displayed on OLED. Else if the moisture sensor value is
larger than 50, the buzzer will be in silence and a message “Your plant is in good condition”
will be displayed on OLED.

on start

E;l initialize OLED

=== forever

(. ¢> value of moisture sensor at pin
show string Moisture level is:
show number [¢» value of moisture sensor at pinlm

show string Water your plant!

play tone Low B BRielg 1 v

show string Your plant is in good condition

If you don’t want to type these code by yourself, you can download the whole program in the
link below: https:/makecode.microbit.org/_DV547gK8j9ms

Or you can download from this page:

» Simulator k Blocks JavaScript 2 Edit

1 OLED.1in1t(o4, 128) -
2 basic.forever(() => {

3 1f (tinkercademy.MoistureSensor(AnalogPin.P1)
4 OLED.showString("Moisture level 1is:")

5 OLED.showNumber(tinkercademy.MoistureSenso
6 OLED.showString("Water your plant!")

7 music.playTone(247, music.beat(BeatFractio
8 } else {

9 OLED.showString("Your plant is in good con

11 B

Problems 4 A

Microsoft MakeCode Terms of Use Privacy & Download

Finally! You have created a device to monitor your plant! Now, let’s try it!

https://makecode.microbit.org/_DV547gK8j9ms
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Download these code into micro:bit. Find a green plant and plug moisture sensor panel into
the soil and watch. When there is not enough water, the buzzer will alarm to tell you “it’s
time to water your plant!”. And when the plant has enough water, then the OLED panel will
show you water is enough and no need to water the plant. Isn’t it very interesting?

Docs » Tinker Kit » 8. case 06 Intruder Detection

8. case 06 Intruder Detection

Swiper no swiping! Stop burglars with this simple intruder detection system.

8.1. Step 0 — Pre-build Overview

In this project, we are going to create an intruder detection system which will sound when
someone opens the door. The status of the house will be displayed on the OLED.

8.2. Materials:

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Breakout board
e 1 x Crash Sensor

e 1xOLED

e 1 x Buzzer

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 2 x Female-Female jumper wires

8.3. Goals:

e Get to know the Crash Sensor, OLED and Buzzer
e Make something with a OLED
e Make something with a Crash Sensor

8.4. How to Make

Step 1 — Components

Insert the micro:bit into the Breakout Board and plug in the micro USB cable.

Then connect the buzzer to Pin O using the jumper cables. Plug in the OLED as shown in the
picture below. You should be able to plug it into any of the three rows.

LRI

F r

- @ =
 sussmss 65;;

LR LY LI LY aE LG Ll 1Na

Plug in the crash sensor to Pin 1. Make sure the colour of the wire follows the coloured pins
on the breakout board.

Step 2 — Pre-coding

& Math

¢/> Tinkercademy

A Advanced

i= Arrays
T Text
o Game
Eal Images
Pins

B T v v X = Serial

= Control

© Add Package

We will add a package of code to enable us to use our kit components. Click on Advanced in
the Code Drawer to see more code section and look at the bottom of the Code Drawer
for Add Package.

A Advanced
fey Functions
= Arrays

L Text

@ Game
al Images
@ Pins

*< Serial

= Control

© Add Package I

This will open up a dialog box. Search for “tinker kit” and then click it for downloading this
package.

Add Package... ? .

Tinker kit] o]

Ny

-

tinkercaderny-tinker-kit

MakeCode package for modules in
the Elecfreaks-Tinkercadermy Tinkes
Kit (beta)

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3 — Coding

« topgle LED at pin CEICEIED

o key OB is pressed cn ADEeytoard at pin CCHED

i1 Basic
@ Input
¢ Music ¢ motion detector at pin [HEN detects motion
& Led

i Setwp crash sensor at pin I
il Radio
) OLED

 Loops @ valee of molsture sensor ot pin ZIED

o crazh gensor pressed

22 Logic
= Variables
B Math

«f» Tinkercademy I

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

:
i1z Basic

® Input

¢ Music

O Led

on start

.l Radio
O OLED

E:I initialize OLED with height

¢/> Tinkercademy

. | SOPSSEPICEE |

You should always initialize the OLED at the beginning. 64 and 128 represent the height and
width of the OLED respectively.

22 Basic
® Input
¢ Music

O Led i8H forever

o if [¢f» crash sensor pressed

[OLED

] show string Intruder detected!

O Loops
% Logic
= Variables
B Math

show string The house is safe I

¢f> Tinkercademy

Since there are only two conditions, we need only one “else-if"statement.

When crash sensor is triggered, the buzzer will sound and the OLED will display the message
“Intruder Detected”. Or else, if there is no force is applied to the crash sensor, the buzzer will
not sound and the OLED wiill display the message “The house is safe”.

If you don’t want to type these code by yourself, you can download the whole program
directly from the link below. https:/makecode.microbit.org/_AOzFxgMPMXbo

Or you can download from the page below.

Bl Simulator k Blocks JavaScript v 4" Edit

B Z % H ©

https://makecode.microbit.org/_A0zFxqMPMXbo
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Step 4 — Success!

Voila! You have created a intruder detector!

Docs » Tinker Kit » 9. case 07 Fish Feeder

0. case 07 Fish Feeder

Tired of feeding your fish by hand? Here’s the micro:bit project for you!
In this course, we will use a ADKeypad to control the motion of a servo to feed fish.

9.1. Step 0 — Pre-build Overview

In this project, we are going to create a fish feeding machine. The movement of the servo will
be controlled by the two red buttons on the ADKeypad and the OLED will display a message
showing the status of the servo.

9.2. Materials:

1 x BBC micro:bit

1 x Micro USB cable
1 x Breakout board
1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 1xOLED
e 1 x Servo
e Wires

9.3. Goals:

e Get to know the ADKeypad, OLED and servo
e Make something with a servo
e Make something with a OLED

9.4. How to Make

Step 1 — Components

Insert the micro:bit into the Breakout Board and plug in the micro USB cable, then plug in the
OLED as shown in the picture above. You should be able to plug it into any of the three rows

Connect the ADKeypad to Pin 0 and the servo to Pin 1. Make sure the colour of the wire
matches the colour of the pins on the Breakout Board.

Step 2 - Pre-coding

We will add a package of code to enable us to use our kit components. Click on Advanced in
the Code Drawer to see more code section and look at the bottom of the Code Drawer for
Add Package.

& Math

¢/> Tinkercademy

A Advanced

i= Arrays
T Text
o Game
Ea] Images
Pins

B Z & 4 X « Serial

£ Control

© Add Package

This will open up a dialog box. Search for “tinker kit” and then click it to downloading this

package.

Add Package... ?

e,
o

Feos %

%

]
tinkercademy-tinker-kit

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file

menu.

Step 3 — Coding

« topgle LED at pin CEICEIED

o key OB is pressed cn ADEeytoard at pin CCHED

i1 Basic
@ Input
¢ Music ¢ motion detector at pin [HEN detects motion
& Led

i Setwp crash sensor at pin I
il Radio
) OLED

 Loops @ valee of molsture sensor ot pin ZIED

o crazh gensor pressed

22 Logic
= Variables
B Math

«f» Tinkercademy I

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

:
i1z Basic

® Input

¢ Music

O Led

on start

.l Radio
O OLED

E:I initialize OLED with height

¢/> Tinkercademy

. | SOPSSEPICEE |

You should always initialize the OLED at the beginning. 64 and 128 represent the height and
width of the OLED respectively.

:2: Basic

® Input

¢ Music i forever

—

o) if

O Led

then [

_,.;l Radio
[OLED
iy LDDPS

&
else if [

% Logic then [o

= Variables =

= Math Feeding the fish I

¢/> Tinkercademy

..A...l l

Since there are only two conditions, we need only one ‘else-if’ statement. If the button A of
the ADKeypad is pressed, the servo will turn to angle 70 and the OLED wiill display “Loading
food”. Or else,if button B of the ADKeypad is pressed, the servo will turn to angle 20 and the
OLED will display “Feeding the fish”. You can adjust the servo angle to suit your requirement.

If you don’t want to type these code by yourself, you can download the whole program from
the link below.

https:/makecode.microbit.org/_3HJDazbma3H4

Or you can download from the page below.

p Simulator k Blocks JavaScript v 4 Edit

https://makecode.microbit.org/_3HJDazbma3H4

> S x H W

Step 4 — Success!

Voila! You have created a fish feeding machine!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 10. case 08 Motion Detector

10. case 08 Motion Detector

Don't like people sneaking up on you? Here’s just the right micro:bit project for you! In this
course, we learn how to make use of the motion sensor, the moisture sensor as well as how
they can be coded for.

10.1. Goals:

e Get to know the PIR Sensor Brick and moisture sensor.
e Make something with a PIR Sensor Brick.
e Make something with a Moisture Sensor.

10.2. Materials:

e 1 x BBC micro:bit

e 1 x Micro USB cable

e 1 x Breakout board

e 1 X Mini buzzer

e 1 X Octopus PIR sensor Brick

e 1 X Moisture sensor

e 2 X Female-Female jumper wires

10.3. How to Make

Step 1:

After connecting one end of the USB cable to your computer, connect the other end to the
micro:bit as shown in the picture.Connect the side of the micro:bit where the pins are located
to the breakout board.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Step 2:

Plug in the buzzer to Pin O (the pins beside the number ‘O’ on the breakout board) . Plug in
the moisture sensor to Pin 3. Plug in the motion sensor to Pin 1.Make sure the colour of the
wire of the buzzer and the ADKeyboard follows the colour of the pins on the breakout board.

Step 3:

Click on “Advanced” in the code drawer to see more code sections.
To code for our extra kit components (the ADKeyboard and the buzzer), we will need to add a

package of code.

& Math

¢/> Tinkercademy

A Advanced

B 2o & v X « Serial

= Control

© Add Package

Look at the bottom of the code drawer for “Add Package” and click it to open up a dialogue
box. Search for “tinker kit” and then click on it to download this package.

Add Package... ?

tinkercademy-tinker-kit

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file

menu.

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

<» toggle LED at pin [IENII8E0
Basic

Input i key [JE) is pressed on ADKeyboard at pin [[LJE)

Music i» motion detector at pin [{:JE) detects motion

Led
—r ¢» Setup crash sensor at pin [35
..||| aaio

¢ Loops <> crash sensor pressed

32 Logic ;> value of moisture sensor at pin L5
= Variables

E Math

¢/> Tinkercademy

For this project, we are going to use the blocks read value from moisture sensor and motion
Sensor.

Step 4

In this step, we will code the Micro:bit with Block Editor. We begin by coding a starting
screen, by placing the “Show Icon” block under the “On Start” block as shown in the picture
on the right.

This causes the icon to appear on the screen whenever the micro:bit is powered on.

s22 show icon

Step 5

Next, let’s create some music using the moisture sensor values.

Select the “Play Tone” block under the “Music” code section and place the value of Moisture
Sensor code block in it The pitch can be adjusted by multiplying the sensor values by
different numbers, as shown in the image on the left.

-

<

Step 6

L]

-

= (= = = =
4

Finally, make the buzzer sound when the motion sensor detects movements. The micro:bit
will only show an icon on the screen if there is no movement.

This can be done by using a conditional (if-then-else) statement and inserting the relevant
blocks in the appropriate spots, as shown in the picture on the right.

2 show icon

= forever

(&) if ¢/> motion detector at pin [FEJ detects motion

show icon .'
show icon n'
icon H'
e |/ vloe o enietre cesor 1 vin G cxa o |
e |9 vlue o asietre cosor ot pin G0 exaofE |
e | R T oo ol

-

- “ - “

“

- - - -

-

If you don’t want to type these code by yourself, you can download the whole code directly
from the link below.

https:/makecode.microbit.org/_8xYPibiLdeYR

Or you can download from the page below.

B Simulator k Blocks JavaScript v 4 Edit

https://makecode.microbit.org/_8xYPibiLdeYR

B Z @ H ©

Now save these code into your micro:bit and have a try!
Succeed! You now have your very own Micro:bit motion detector!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 11. case 09 Lie Detector

11. case 09 Lie Detector

With this machine, the truth will never escape you! As long as you can make your subject

hold a moisture sensor for a while.

11.1. Step 0 — Pre Build Overview

In this project, we will create a simple lie detector machine, which works by measuring the
electrical conductivity of our skin. Upon feeling nervous, our skin’s electrical conductivity will
increase, and the moisture sensor can pick up on that. This allows us to determine if a person
is telling the truth or not.

11.2. Material Needed

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Breakout board
e 1 x Octopus OLED
¢ 1 x Moisture Sensor

Tips: If you want all components above, you may need ElecFreaks Micro:bit Tinker Kit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

11.3. Goals

e Get to know the Octopus LED and Soil Moisture Sensor
e Learn basic statistics
e Make something using the moisture sensor

Step 1 Components

First of all, plug in the soil moisture sensor. Match the colors and note down what pin you
plug for it will influence later procedures.

Next, plug in the Octopus LED. Any of the three slots should do.

‘3 __ It'.nrmanﬂ.“._u - //:

O D O) R

Step 2 Pre-Coding

WEe'll need to add a package of code to be able to use our kit components. Click on
“Advanced” in the Code drawer to see more code sections and look at the bottom of the
Code Drawer for “Add Package”.

B Math

¢/> Tinkercademy

A Advanced

:= Arrays
T Text
am Game
[«a] Images
Pins
& Serial

= Control

© Add Package

This will open a dialog box. In “Add Package” text field search tinker kit.

Add Package... ?

tinkercademy-tinker-kit

tinkercademy-microbot

MekeCode package for modu'es in
lhes Flecirezks-Tinkarcadsmy Tinker

Tinkercademy Wakelode peckage
Tear conlrallindg The Tinkerezdamy
fulizren: e weith thie BREC muzrocki
[l

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file

menu.

Step 3 Coding

First of all, initialize the OLED using blocks in the OLED section as shown in the picture.

22 Basic
® Input
@ Music
© Led

| on start

O initialize OLED with height WY width off¥I]
i LURC AN Please place your fingers on the sensor.EEil

.l Radio
QLED

,.,= pause (ms) PEElll

-

C Loops
X Logic
=

Variables

B Math

</> Tinkercademy

I v Advanced

This part of the code allows the soil moisture sensor to measure and record down the
electrical conductivity between the two fingers every few seconds for about 45 seconds.
Then, it calculates the average. This is the “calm” value when the user has not told any lies.

set {§¥53) to | (o create empty array

repeat VE[)] times

do .- ._‘Em add value | @ analog read pin [Z¥3 to end
| change QXA by (' © analog read pin 93
1 pause (ms) 1500
i |

This part of the code calculates the standard deviation of the readings obtained in that 45
seconds. The standard deviation indicates how different the readings were. A larger standard
deviation means more variance in the readings. The “Math.sqrt” block square roots the given
value and was added in Javascript.

for element [TAITERD of | :IIIEDI
% [change EZ"ITEB by 1/

After the initial readings have been made and recorded, the moisture sensor now measures
the average electrical conductivity over 2.5 seconds. If it is higher than the average added to
the standard deviation, we can conclude that the user has an abnormally high electrical
conductivity and is thus lying. Then, the LED screen would show an “X"shape.

{{ read to)

repeut L*‘ times

 do | changemw n analog read pinﬁn?

:i pause Ems}]

To relieve your tired fingers, you can download the code below.
https:/makecode.microbit.org/_fadAyyh27Eo3

Or you can download from the page below.

B Simulator & Blocks JavaScript v 7' Edit

https://makecode.microbit.org/_fadAyyh27Eo3

Step 4 Using It

First of all, you will have to attach each prong of the soil moisture sensor to one of your
fingers. Personally, | found that using rubber bands was a simple and effective way to do so.
You can experiment with different methods, such as using crocodile clips or tape.

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Now, turn on the device. The device will record the electrical conductivity of your skin under
calm circumstances. Then, it will give the average value and its standard deviation.

-:r. g
s
> .

L+ EF

s 1 O GO R %

3 j’/ - L 3 . . . v d
P o _ml ml mH m! :r.rl mmg 7
’ _p,/ ; i o % D, ™~ é 1 ® Mo oa o o -' /
P ,,*’

1;'_{-". : . -
g - e 1_" :
bt

" |
S Please place your fin
! m on Sensor .

iy
/ ; —--rﬁ" 2
7~ //{//":'{ flil ., A‘i/' :

After the initial readings have been made, ask again! If the person has lied, he will become
nervous and the device can pick up on that, resulting in a cross being displayed.

10

lace your fin
P]'“s&mpthe sensor.

age is:

Step 5 Success!

Voila! Now you can test lies with this machine easily.

Docs » Tinker Kit » 12. case 10 PADDLEBALLSUPERSMASHEM

12. case 10 PADDLEBALLSUPERSMASHEM

Learn to program a simple yet fun game on a 5 by 5 display, using JavaScript!
PADDLEBALLSUPERSMASHEM may bear unintentional similarities to other, more graphical,
games.

12.1. Step 0 — Pre Build Overview

In this project, we will create a simple game, in which you bounce a ball against a wall. If you
miss, you die. Too bad. For those of you who appreciate a challenge, the game increases in
difficulty with each level!

12.2. Goals

e Get to know more about the microbit microcomputer
e Learn how to program a simple game
e Consider all cases

12.3. Material

e 1 x BBC micro:bit
e 1 x Micro USB cable

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

%5 40088

% = 1401
J% 208804

1651

12.4. How to Make

Step 1: Components

First of all, plug the microbit microcomputer into your own computer. No other components
are required.

Step 2: Pre-coding

We will add a package of code to enable us to use our kit components. Click on “Advanced”
in the Code Drawer to see more code section and look at the bottom of the Code Drawer for

“Add Package”.

= Math

¢/> Tinkercademy

A Advanced

= Arrays
T Text
o Game
a] Images
Pins
« Serial

= Control

© Add Package

This will open up a dialog box. Search for “tinker kit” and then click on it to download this
package.

Add Package... ? x

finker

tinkercademy-microbot tinkercademy-tinker-kit

MekeCode package for moduies in
Lhes Flecirezks-Tinkarcadsmy Tinker

Tinkercademy Wakelode peckage
Tear canlrallingg The Tinkeresdemy
fulizren: el with thie BEC maerocbic
[hwata)

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, you should either follow the prompts or create a new project in the
Projects file menu.

Step 3: Coding

102 let x: number
163 x =10

104 let y: number
105 y = 0

106 let xb: number
1867 xb =0

108 let yb: number
109 yb = 0

110 let xdir: number
111 xdir = 0

112 let ydir: number
113 ydir = @

114 let scor: number
115 scor = @

116 let gam: boolezn
117 gam = true

118 let time: number
119 time = 1068

First of all, define your variables! We are going to need many variables to store the location,
speed and direction of the ball, the length and position of the paddle, and last but not least,
your score!

1 function board() {

2 for (let 1 = xb; i < (xb + vb); i++) {
3 led.plot(i, 4)
4 ¥

5 3

6 function left() {

7 Xb += 9 - 1

8 basic.clearscreen()
9 board()

19 ball()

11}

12 function right() {

13 Xb += 1

14 basic.clearscreen()
15 board()

16 ball()

17

Next, we will program the functions that control the paddle. xb represents the position of the
first pixel of the paddle from the left, and yb represents the length of the paddle. The left and
right functions control xb and shift the paddle, and the board function prints the paddle on
the screen.

60
61
62
63
64
65
66
67
68
69
70
71
72
73
71
75
76
77
78
79
80
81
82
83
84
85
86
87
88

function moveball() {

X += xdir

y += ydir

basic.clearScreen()

ball()

board()

if (y==08% (x ==0 || x == 4)) {
corners()

} else if (x == 0 && vy > 0 & y < 3) {
leftside()

} else if (x == 4 && y > 0 & y < 3) {
rightside()

1 else if (y == 0) {
topside()

} else if (y — 3) {
checkhit()

} else if (y == 4) {
gam = false
basic.clearScreen()
basic.pause(1000)
basic.showNumber(scor)
basic.pause(1000)
basic.clearScreen()
if (scor < 12) {

basic.showIcon(IconNames.Sad)
} else {
basic.showIcon(IconNames.Happy)

}

h

Next, we include the function that controls when the ball moves. At the beginning, the ball

moves every second but as you advance, the ball moves at shorter and shorter intervals! How

exciting!

18 function ball{() {

19 led.plot(x, y)

20}

21 function topside() {

22 ydir = 1

23 if (x == 0) {

24 xdir = Math.random(2)
25 } oelse if (x == 4) {

2€ xdir = Math.random(2) - 1
27 } else {

28 xdir = Math.random(3) - 1
29)

3¢}

31 function leftside() {

32 xdir = 1

33)

34 function rightside() {

35 xdir = -1

36)

37 function corners() {

38 xdir = @ - xdir

35 ydir = @ - ydir

49)

We now program the functions that control how the ball interacts with its surroundings.
When the ball hits the side, its horizontal movement is reversed but its vertical movement
remains the same. When the ball hits the ceiling, it can rebound in any direction, to make the
game more fun.

a1
42
43
a4
45
A6
47
48
49
=1 5]
51
52
53
54
55
56
57
58
59

function checkhit() {
if (xb - 1 < x & xb + yb > k) {

scor += 1
ydir = -1
if (x == 0) {

xdir = Math.random(2)
} else it (x == 4) {

xdir = Math.random(2) - 1
} else {

xdir = Math.random(3) - 1

h

if (scor > 1 && scor < 4) {
yb += 0 - 1

h

if (scor > 5 && scor < 12) {
time += @ - 150

Most importantly, we need to see if the ball hits the paddle. If it misses, you lose, displaying

your score! If it doesnt miss, the ball will also rebound in a random direction, and the

difficulty of the game will increase.

90
o1
92
93
94
95

26
97
28
99
166
1ol

input.onButtonPressed(Button.B, () => {

right()

1)

input.onButtonPressed(Buttan.A, () => {
left()

)

basic.,forever(() => {
while (gam == true) {
pasic.pause(time)
moveball()

iy

Lastly, we have a for loop which acts as a clock so that the ball keeps moving. Also, we have

the onButtonPressed() functions that move the paddle.

Save your tired fingers and download the code from the link below.

https:/makecode.microbit.org/63331-03858-42547-81536

Or you can download from this page.

https://makecode.microbit.org/63331-03858-42547-81536

B Simulator & Blocks JavaScript v (7' Edit

@ ©

Step 4: Using It

A% s 400

. "-&-7 14u¥52

o 205
185

Just connect the microcontroller to your computer, and run the program! Easy!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

413y 400882
= 1401

S+ 208801
1651

L uQuanIIE..-

If you score more than 12 points, you will be rewarded with a smiley face! Otherwise, the
program may not be very pleased...

Step 5: Success!

Voila! You have now programmed PADDLEBALLSUPERSMASHEM on a 5 by 5 display. You
should be proud of yourself.

Docs » Tinker Kit » 13. case 11 Avoid Asteroids

13. case 11 Avoid Asteroids

Make your own little arcade game on the Micro:bit, and admire its 5 by 5 pixelate glory!

This tutorial was contributed by Josh Ho from Raffles Institution.

13.1. Step 0 — Pre-build Overview

In this project, we are going to create a Raiden-esque game using Micro:bit and an
ADKeyboard only . The aim of this game is to dodge the incoming projectiles, which increase
in speed as the game goes on, for as long time as possible. The Micro:bit LED will be our
screen and the ADKeyboard will be the controller.

13.2. Materials:

e 1 x BBC Micro:bit

e 1 x Micro USB cable
e 1 x Breakout board
e 1 x ADKeyboard

Tips: If you want all components above, you may need ElecFreaks Micro:bit Tinker Kit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

13.3. Goals:

e Make a simple game with Micro:bit.
e Learn advanced programming logic.
e Experiment with sprites.

Step1: Components

The ADKeyboard is the only external component in this project. Just insert the Micro:bit into
the breakout board before connecting the ADKeyboard. Make sure that the colors of the

wires match the colors of the pins. Quite simple!

-

, TR eE e

Foaoq
B NAT A B e

vee DOWENNG

S : E N

P - = ——— ——

Step 2: Pre-coding

We will add a package of code to enable us to use our kit components. Click on “Advanced”
in the Code Drawer to see more code section and look at the bottom of the Code Drawer for
“Add Package”.

B Math

¢/> Tinkercademy

A Advanced

:= Arrays
T Text
am Game
] Images
Pins
« Serial

== Control

© Add Package

This will open up a dialog box. Search for “tinker kit” and then click on it to download this

package.

Add Package... ? X

tinkercademy-tinker-kit

tinkercademy-microbot

MekeCode package for modues in
lhe Plecirezks-Tinkarmadenny Tinker

Tinkercademy Wakelode peckage
Toar candralling The Tinkereadamy
flizroc e with tha BRC merocki
[leta)

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, you should either follow the prompts or create a new project in the
Projects file menu.

Step 3: Coding

Variables allow us to store data in the program. We will use it to store our scores in the game.

; Getting Started
&t Basic

® Input
@ Music
© Led

il Radio
J OLED

on start

C Loops
2 Logic
= Variables
g Math

¢/> Tinkercademy

I w Advanced

We will use a button on the Micro:bit (button B) to show the high score when the game is not
in progress. The code block “On button B pressed” fulfills this condition, and within that
block, the variable “highscore” will be displayed.

; Getting Started
s Basic

® Input
¢ Music
© Led

il Radio © on button EMED pressed
atl

222 show number

] OLED
C Loops
3 Logic
= Variables

B Math

g pause (ms) GMELLE

</> Tinkercademy

I v Advanced

We will use button A to start the game, which will trigger the countdown. Before anything
happened, we must initialize the sprites in the game. Sprites are basically entities represented
by a single LED on the Micro:bit screen. They can move around and change direction using
the code blocks provided in MakeCode. We will also initialize the variables “alive”, a boolean
which accounts for whether the player is still alive, and “speed”, which determines how fast
the projectiles move. Counter-intuitively, the lower the number, the faster the projectiles

move.

2a= BaS|C on button (XD pressed
= 2 show number ﬂ
O |HDUt i pause (ms)
O MUS;C show number ﬂ

L d pause (ms)

e
D show number
_.'|I Rad|0 pause (ms)
D OLED 5 show string
c LOOpS SEL to | create sprite
b:l ch,_—-__',',fd to A e e sprite : i

3 Logic

set [EIEVERS to create sprite :

create sprite a

E Math set | 3 - create sprite at

create sprite at

</> Tinkercademy

I v Advanced

Next, we will add a while loop. A while loop will repeatedly run itself as long as the
conditions specified are met. In this case, only if the player is still alive, the game will
continue to run.

O om create sprite at x: y: n mﬂgm

i22 Basic
® Input
¢ Music
© Led

¢/> Tinkercademy

I v Advanced

Note: Be careful here! Because the while loops do have the potential to crash your Micro:bit.

Inside the loop, we will add a group of code which governs the control of the game - the
ADKeyboard. When the red A button is pressed, the sprite will move left. When the red B
button is pressed, the sprite will move right. When the blue D button is pressed, the game
will immediately stop.

iz Basic
® Input
@ Music
© Led

.l Radio
] OLED
C Loops
¢ Logic

= Variables

¢/> Tinkercademy

I v Advanced
After that, we will code for the enemy projectile’s movement. First we will choose a random

number using the pick random block from the Math module. This number will determine
which projectile will start moving up by 1. However, this only applies if the projectiles are on

the bottom row, as we will have more code which determines the behaviour of the projectiles
when they are off of the bottom row.

f22 Basic
® Input
@ Music
© Led

.l Radio
(J OLED

¢/> Tinkercademy

I v Advanced

This bit codes for the behaviour of the projectiles when they are in motion already. They
move up by 1 if they are in the middle three rows, and they return to the bottom row if they
are already at the top row.

i22 Basic
® Input
@ Music
© Led

.l Radio
] OLED

</> Tinkercademy

I w Advanced

We also have to check if the sprites are touching the player so that we can know when the
player is hit. If the player is hit, the variable “alive” is changed to “False”, The while loop will
stop looping, and the game will stop too.

Getting Started

£22 Basic
® Input
@ Music
© Led

il Radio | T ;

(J OLED T4 | o | T o (| TR

</> Tinkercademy
I v Advanced
Finally, we will increase the score by 1 for every loop. For every 15 points gained, the variable

“speed” will be decreased by 40, causing the projectiles to speed up. The pause controls said
speed of the projectiles.

g2z Basic
® Input
¢ Music
© Led

il Radio
J OLED

¢/> Tinkercademy

I v Advanced

After the game is over, we must delete the sprites so that they do not clog up the LED
screen.

Getting Started

g2t Basic
® Input
@ Music
© Led

.l Radio =

e delete [,

[0 OLED = s

delete [[

¢/> Tinkercademy

I v Advanced

The game will display “Game Over” on the LED screen, followed by the score attained. If the
score is higher than the current highscore, then the highscore will be replaced.

Getting Started

i3 Basic
® Input
@ Music
© Led

¢/> Tinkercademy

I v Advanced

If you don’t want to type these code by yourself, you can download the whole program from
the link below:

https:/makecode.microbit.org/_i92YKmDhr9Tf

Or you can download from the page below:

https://makecode.microbit.org/_i92YKmDhr9Tf

B Simulator k Blocks JavaScript v 4 Edit

Step 4 — Success!

Voila! You have created your own mini video game console with your Micro:bit. Now go out
there and show your friends who's the real boss!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 14. case 12 Remote Control Everything

14. case 12 Remote Control Everything

Do you already have a micro:bit project you'd like to control from afar? Partner up with a
friend, or grab a spare micro:bit, to make a remote controlled project with 2 micro:bits. (Don’t
grab a friend’s micro:bit. Be nice.)

14.1. Goals

e Enable remote-controlling for the micro:bit car from this tutorial.
e Use a spare micro:bit to make a remote control for an existing project!
e Remote control everything!

14.2. Materials

e 1 x BBC micro:bit

e 1 x Micro USB cable

e 1 x Battery box

e 2 x AA batteries

e 1 x micro:bit car OR

e 1 x a project you'd like to remote control

14.3. How to Make

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Step 1

Set your radio group in makecode. This ensures your transmitter and receiver are in the same
channel. Think about the usage of each button on your remote controller. Radio send a
different number with each button press event block by using the blocks shown. You can find
these blocks under the Radio drawer. Download this into the micro:bit you'll use as your
remote controller. Now each button on your micro:bit remote controller will send a different
command!

all radio set group

® on button YD pressed
Eﬂ radic send number

® on button [EJES pressed

Jall radio send number ﬂ

Step 2

In your micro:bit car project (or the particular project you're trying to remote control), add the
same radio group block to your On Start block.

This ensures the project you're trying to remote control will listen to the right commands!

on start

radio set group

B2 show icon D

servo write pin to ﬂ
@® servo write pin IR to ﬂ

e

Step 3

Remember the numbers sent from our remote controller every time we pressed a button?
We're going to use that to trigger an action. Find the radio received block as shown in the
Radio drawer. Use an if-then block to check if the number you received is the number you
sent when pressing button A. Take the code that turns your micro:bit car left, and place it
within this if-then block. We have also added an led indication pointing left just to show what
was supposed to happen. Turn off the left servo afterward by digitally writing the pin to O.

L I L TR ol TR AVl receivedNumber »

ot

@ digital write pin [EJE] to ﬂ

Step 4

Do the same to the code that turns your micro:bit car to the right! Make sure you turn the
right wheel off afterward. You can always choose to leave the wheels on without stop after
receiving each command. But you'll face with a situation that the car keeps spinning in
circles. Download this program into your micro:bit car.

@ digital write pin [[ZJES to ﬂ
® servo write pin IR to

@ digital write pin [[FHES to ﬂ

If you don’t want to type these code by yourself, you can download the whole program from
the link below.

Remote Control: https:/makecode.microbit.org/_gH73AW4Dy1rP Receiver:
https:/makecode.microbit.org/_4am87cCWb0e9

Or you can download from the page below.

Remote Control:

p Simulator & Blocks JavaScript v 7' Edit

on start

[—r';{o set group (12

on button | A pressed
N\ J

radio send number (1)

on button | B pressed
[\—

radio send number @

N\—/

https://makecode.microbit.org/_gH73AW4Dy1rP
https://makecode.microbit.org/_4am87cCWb0e9

Microsoft MakeCode Terms of Use Privacy & Download

Receiver:
B Simulator k Blocks JavaScript v 4 Edit
HE T @ N D)
Awesome!

Now that all your code is snugly tucked into your micro:bits, attach your battery packs and
get going! Play around and see what other commands you can send with the A+B button, or
try different kinds of inputs instead of buttons. Then remote control all your other micro:bit
projects. Woo-hoo! World domination without leaving your seat!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 15. case 13 micro:bit Car

15. case 13 micro:bit Car

oke A Micro:bit Car

yh November29,2017 |{No Comme

Make your very own self-driving micro:bit car! (Disclaimer: It’s only “self-driving” inasmuch as
a ball rolling down a hill is “self-rolling”.)

15.1. Goals

« In this project, we're going to use the Micro:bit, Breakout Board, and Servos to make a
self-driving car!

e Get to know the Servo and how to use it with the Micro:bit, Breakout Board and
MakeCode.

e Marvel at how ridiculous this thing is!

Note: This activity uses extra parts not found in the Tinker Kit. (Stay tuned to our Online
Store for our Car Kit !)

15.2. Materials

e 1 x BBC micro:bit

e 1 x Micro USB Cable
o 1 x Battery Box

o 2 x AA Batteries

e 1 x Breakout Board

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

2 x Servo

1 x Acrylic Car Body
2 x Wheels

1 x Felt Pad

Sticky Tape

15.3. How to Make

Step 1

Connect your car parts as shown in the following pictures. If you're using our car kit, follow

the labels on the car body to insert the components correctly with the sticky tape.

Connect the servo connectors to Pin O and Pin 1 on the Breakout Board.

Note that the colours of common servo cables don’t match the yellow, red, and black colour
scheme of the breakout board exactly. Match the orange servo cable to the yellow pin, and

the brown servo cable to the black pin.

& - '“ i E' J .'. P \I‘ L] .'-r-d-'-'...
R e

servo write pin (782 to m
servo write pin to

Step 2

Add the blocks shown to your On Start block. What this does? Reset the servos to fixed
positions whenever we start! The Servo block (coloured red) in MakeCode takes values from
0 to 180. You can find it under Advanced, then Pins. For the continuous servos we're using, a
value of 90 is right in the middle. In other words, we're telling the servo to “stay still”. We
display an image to make a visual indication that we've downloaded our code into the
Micro:bit.

Step 3

Let’'s make the wheels move! Add the code shown on the right to your Forever block.

The Digital Write Pin to O block is also found under Advanced, Pins. What'’s happening here?
We're turning one servo clockwise (180), while turning off the other servo. Then, after a short
pause, we're turning off the former servo, and turning the latter servo anti-clockwise (0).
Remember, 90 is straight ahead! Why do we need to turn off one servo at a time? That's
because of battery power requirements—your micro:bit has trouble in powering both servos
at once. If you're interested, you can explore by using a DC motor with an external power
source. Or you can email us to find out more! Make sure to check that your motors are facing
the right directions—you can change the travel directions of the motors by swapping the O
and 180 values.

s22 forever
digital write pin (KD to
servo write pin to

pause (ms)

digital write pin to n
servo write pin (/B to n

pause (ms)

If you don’t want to type these code by yourself, you can directly download from the link
below.

https:/makecode.microbit.org/_Ef87EJAepcve

Or you can download from the page below.

Bl Simulator & Blocks JavaScript v (7' Edit

https://makecode.microbit.org/_Ef87EJAepcve
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Succeed!

When you're ready to run your car, attach your battery pack to your micro:bit, and your car
runs ! Besides, you can personalise your car with some craft material to improve its
aerodynamic properties! For further extension, you can also hook up an ADKeyboard to
control the motors manually, instead of having the car move autonomously.

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

|

-

Docs » Tinker Kit » 16. case 14 Flipping Pancakes

16. case 14 Flipping Pancakes

FLIPPY PANCAKES
MICRO:BIT GAME

A

@ P Sm

0DO0O0GO0oaD [T =

s 0 0007 HIF ;I o &

Opo D I l l |:| ﬁﬂﬁ//: o lllll bl

Al IR | B Eig Sy An
[W .

! C—
)

CrPmPmemS | e

CrPi S

Do you have what it takes to flip the perfect pancake?

16.1. Goals

We're going to create a flippy pancake game where you must flip the pancake at the perfect
time. Too fast, your pancake will be mushy; too slow, it will be burnt! You'll learn how to...

Use a Buzzer and ADKeypad with the micro:bit.
Use if-else statements to evaluate conditions.

Create your own function on MakeCode.

Customise your game!

16.2. Materials

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Buzzer

e 2 x F-F Jumper Wires
e 1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

16.3. How to Make

Step 1

Plug in your Buzzer to PinO. Make sure the positive lead is connected to the yellow signal pin
and the negative lead is connected to the black ground pin on the breakout board.

Plug in the ADKeypad to Pinl. Match the colours of the wires to the ones on the breakout
board!

Step 2

In Makecode, we'll track the length of time using two variables. Variables are like buckets that
can hold changing values.

Every time we turn on micro:bit, a hidden timer keeps track of how long it has been on. We're
going to use this hidden timer to calculate the start time, end time, and total length of the
game.

Create a new variable called startTime (or anything you like, really) in the Variable drawer.

When we start the game, we want to set our variable startTime to the running time of the
micro:bit.

We also want to display a flat pancake on the screen with the LEDs.

set to |

—+

® running time (ms)

Step 3

We want to set up the game so that when you press the A button on the ADKeypad, a
pancake-flipping animation will be played on the micro:bit.

To do this, we need to create a function. A function is a piece of code that performs a specific
task every single time it's called. In this case, our task is to display the pancake-flipping

animation.

To create your own function, click on the Functions category and choose the ‘Make a
Function’ button. | named my function ‘flipPancake’.

When you do this, a new block will be added to your screen called ‘function flipPancake. This
is where we define our function, i.e. what will happen whenever we run the function block!

In this case, we're going to add multiple LED blocks inside our flipPancake function so it
appears as if our pancake is being tossed into the air and is wobbling as it falls back down.

Once you have your function defined, you can run it anytime by using the new ‘call function
flipPancake’ block inside the Functions category.

Feel free to customise your own pancake-flipping animation. This is just one example!

Function

5

show leds
show leds
show leds
show leds

g
z

show leds
show leds

&1

&

B show leds
||
||
[|

- H

1

=1

=i
ﬂ.i. show leds

Step 4

Now we’re going to sense button press on the ADKeypad. To do so, we need to import a
special package into MakeCode.

Expand the ‘Advanced’ section, scroll to the bottom and click on ‘Add Packages..
In the search box, type in ‘tinker kit Then click on the box labelled ‘tinker kit’.

Now you'll see something new in MakeCode - a bright green Tinkercademy category has
been added!

Inside this category, you'll find blocks to sense button press on the ADKeypad. This package

importation only happens in current project. So if you start a new project, you'll need to re-
import it.

Add Package... ? .

| Tinker kit] (o]

tinkercademy-tinker-kit
MakeCode package for modules in
the Elecfreaks-Tinkercadermy Tinker
il (Deta)

Step 5

Now that we can sense button press, let’s create the main code for the game! We need to
calculate the time whenever a player presses button A and figure out if the pancake is mushy,
perfectly cooked, or burnt.

We start off with a forever loop. Inside the forever loop, we put an if-else statement to test if
button A is pressed. If-else statement judges if a condition is true. If it is true, then implement
the program:; if it is false, then skip it. Because this if-else statement is inside a forever loop, it
will forever test to see if button A is pressed.

To do this, we're going to check the current running time of the micro:bit and subtract the
value of our startTime variable. This gives us the total time the current game has been
running. We store this in another variable called totalTime (you can create this in the
Variables category).

After calculating the totalTime, we call our flipPancake function! This will animate the
pancake!

Next, we need to to test the totalTime to judge if the pancake is mushy, perfect, or burnt. We
use if-else statement again for this. But in this case, we're going to link the if-else statements
together to test multiple conditions back-to-back. When if-else statements are linked
together, only one can be run. As soon as the micro:bit finds one that is true, it skips testing
all others that are linked. We can add linked if-else statements by clicking on the gear icon on
the if-else block and dragging in more if-else blocks.

In this case, we start by testing if totalTime is less than 7000 (keep in mind this is
milliseconds! So 7000 milliseconds = 7 seconds). If totalTime is less than 7000, we determine
that the pancake is mushy and display a frowny face and a MUSHY message. If this first
condition is true, the micro:bit will skip testing all the following conditions!

If totalTime is not less than 7000, we test if totalTime is less than 8000 milliseconds. We
know at this point that totalTime is greater than 7000. So if it is also less than 8000, we
determine that the pancake is perfect and display a happy face and a PERFECT message.

Finally, if neither of the previous two conditions are true, then we know that totalTime must
be greater than 8000. So we determine that the pancake is overcooked and display an angry
face and a BURNT message.

2= forever

() -
(] if [<» key [[J§B is pressed on ADKeyboard at pin ([(ZUES
P o I‘I [™ 3] ! |
U LY totaltime « RLJS II ® running time (ms) | (RS EEIEasll I

PR o] flipPancake -

R totaitine - 7000

then (

repeating

start melody wawawawaa -

show icon D

show string MUSHY!

: totaltime - 2080

start melody - E STl once in background -

show icon D

chow string PERFECT!

start melody baddy - aEREEISEE once in background »

chow ican D

show string BURNT!

else if ﬂ

else

else if &

true -

else if

Lhen

Step 6

Now that we have the game running. Let’s make it so that players can play more than once
without resetting the micro:bit.

To do this, we'll reset the game when button B is pressed on the ADKeypad. Once again, we
use a forever loop and place an if-else statement inside to test if button B is pressed (don't
forget to specify the correct Pin number again!).

What else do we need to do when we restart the game? In this case, all we need to do is to
display a new pancake, and reset the starting time.

sz forever

¢/> key [EBB® is pressed on ADKeyboard at pin

== show leds

s:'é't - ® running time (ms)

Step 7

Now our game is working (hopefully)! Let’s add some more fun to the game! We have a
buzzer attached to the micro:bit but haven't used it yet! Note: Add this onto your existing
code. It's not a brand new section!

Micro:bit has lots of pre-programmed music melodies available for us to use. Let’'s add music
to our game! Here we add a different melody to each outcome of the game. For mushy or
burnt pancakes, we add sad melodies. But for perfect pancakes, we play the nyan-cat
melody!

We need to set these melodies to play ‘once in the background’, otherwise it could pause the
entire game until the melody is finished playing.

£z forever

al if (| <» key [JE® is pressed on ADKeyboard at pin

set QULNSUEAI to | (1 ® running time (ms) |(EHED(
call function

& if (oo

start melody wawawawaa -

show icon D

W totaltime -

start melody repeating

show icon D

show string PERFECT! I

WE RS R once in background -

start melody baddy + BYILEisi-d once in background -

show icon D

Step 8

Finally, let’s add some starting music and a starting message when we first start up the
micro:bit. Note: Add this onto your existing code. It's not a brand new section!

We can use the buzzer once again to play a melody (once again we want it to play ‘once in
background’). We can also display the name of the game as well!

® running time (ms)

If you don’t want to type these code by yourself, you can download directly from the link

below.
https:/makecode.microbit.org/_aepYrcgwLFEy

Or you can download from the page below.

Bl Simulator ik Blocks JavaScript v 7' Edit

B Z x HB 9

@ ©O
Cool Stuff!

https://makecode.microbit.org/_aepYrcgwLFEy
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Now you've learned how to use the ADKeypad, you can use it to control LEDs, servos, and
other components! You have also learned about if-else statements and creating your own
functions, which can be useful in many micro:bit projects! Try customising your pancake

game as well!

Docs » Tinker Kit » 17. case 15 Maze Runner

17. case 15 Maze Runner

AM

VMiCRO:BIT

Can you make it through all levels?

17.1. Goals

We're going to create a maze game where you must navigate a series of mazes without
running into the walls. You'll learn how to:

Use buzzer, ADKeypad and micro:bit board
Use if statements to evaluate conditions

Use variables to track game states such as player location

Customize your game and add your own levels!

17.2. Materials

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Buzzer

e 2 x F-F Jumper Wires
e 1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

17.3. How to Make

Step 1

Plug in Buzzer to Pin0O. Connect the positive lead to the yellow signal pin and the negative
lead to the black ground pin on the breakout board.

Plug in the ADKeypad to Pin1. Match wire colors to pin colors on the breakout board!

Step 2

How to create a maze game on the micro:bit? We are going to display player’s position, LED
walls and the maze paths with LEDs on the micro:bit board.

How to keep track of the player’s location on the screen? The 5*5 LED dot matrix on
micro:bit can be regarded as a coordinate system. The x coordinate axle starts from O on the
left to 4 on the right. The y coordinate axle starts from O on the top to 4 on the bottom. This
means that the upper left LED is x=0, y=0. Likewise, the bottom right LED is x=4, y=4.

To do this, we need to create a few variables. Variables are like buckets that store pieces of
information for us. Whenever we want the stored information, we can just look at the
variable. We need two variables to keep track of the player’s location. Why two variables?
One will keep track of the player’s x position and the other will keep track of the player’s y
position. We also need a variable to keep track of the maze level (yes, we can have multiple
levels!) and also another variable to keep track of whether the game is active (opposite to
game over).

So let’s set these up. Inside ‘on start’ event, we (optionally) play a melody and display the
name of the game on the micro:bit (MAZE RUNNER!). We also set up the 4 variables
mentioned above, using the names: level, playerx, playery, and gameOn.

What do we set these variables to? We start at level 1 (of course), and we set gameOn to
True because when we power on the micro:bit, we want to start the game right away. We
can choose any starting point for our player location, but we'll need to remember this
location later on when we set up our maze level (we don’t want the player to start inside a
wall!). In this example, | choose to start the player at x=0 and y=3.

on start

-

© start melody TSWNETY once in background - |

show string MAZE RUNNER

set to
set (EITREED to |

set to

-

set nlayer

Step 3

Now that we've set up our starting variables, let’s get our player to display on the micro:bit
screen!

We want the player LED to blink on and off so that it is easy to be identified. To do this, we'll
use the ‘plot x y’ block alternating with the ‘pause’ block inside a forever loop. Remember, we
want the player to forever blink on and off! However, this won't work immediately. In step 6
when we add in the maze walls, the micro:bit will overwrite the player every time it draws
the maze walls. By adding a pause block here, we make it so that the player won't
immediately be re-plotted, creating a blinking effect.

We use the playerx and playery variables that we created above. Why? If we typed in
numbers here, we wouldn'’t be able to easily make our player move! Using variables allows us
to change the values of playerx and playery so that the forever loop will plot the new
location of the player.

Remember the pause block is in milliseconds (so 300 ms = .3 seconds)! You can customize the
speed at which it flashes by modifying the length of the pause.

Step 4

We've displayed the player on the micro:bit, but we can’t move it yet! Let’s add in player
movement. We're going to sense button press on the ADKeypad. But to do so, we need to
import a special package into MakeCode.

Expand the ‘Advanced’ section and scroll to the bottom and click on ‘Add Packages..

In the search box, type in “tinker kit”. Click on the box labelled “tinkercademy-tinker-kit”.

Now you'll see something new in MakeCode - a bright green Tinkercademy category has
been added!

Inside this category you'll find blocks to sense button press on the ADKeypad. Note that
importing this package only happens in the current project. So if you start a new project and
want to use the category, you'll need to re-import it.

Add Package... ? .

Tinker kit] a,

_,-“F"-’-

tinkercademy-tinker-kit
Makelode packa G TOF i ules in

the Elecfreaks-Tinkercadermy Tinker
Hit (beta)

Step 5

Now that we have added Tinkercademy category, we can use the ADKeypad to move up,
down, left, and right. In this example, we'll set button A to move up, button C to move down,
button D to move left, and button E to move right.

To do this, we use if statments. If statements test if a condition is true. If it is true, then they
run any blocks inside the if block. When we place an if statement inside a forever loop, we
forever test if the condition is true.

To move the player, we simply change the player x or player y variables. Remember,
decreasing or increasing playerx will cause the player to move left or right respectively. While
decreasing or increasing playery will cause the player to move up or down respectively. We're
constantly plotting the location of the player using these variables. So when we change them,
it automatically changes the player’s location!

We need to add a short 300ms pause after each button pressed, otherwise the player would
move many spaces every time you pressed a button because the program runs so fast.

== forever

@ if ([<> key [JED is pressed on ADKeyboard at pin CFHED

© unplot x (N playery -

o Ell=(-B playery = N

pause (ms)

|§| if (| <» key [@f) is pressed on ADKeyboard at pin [ZHED

© unplot x (AN playery -

(. ¢ key [JEJ is pressed on ADKeyboard at pin

© unplot x (VAN playery -

change by

pause (ms)
|§| if ([<> key [is pressed on ADKeyboard at pin [ZEED

© unplot x [AN playery -

change by SN

o

#if pause (ms)

Step 6

Now that we can move the player, let’s start creating our maze levels! Every time we start a
level, we need to do a few things.

First we need to display the maze walls on the micro:bit screen; Second, we need to forever
check if the player runs into a wall (if they do, it's gameover!). And third, we need to forever
check if the player makes it to the end of the maze level (if they do, let them know they
succeeded and move on to the next level!).

For each level, we're going to use a forever loop. Inside the loop, we use an ‘if’ statement to
check if the level variable equals 1. This means this code will only ever run if the level
variable equals 1.

Inside the if statement, we first display the maze walls. We light up LEDs to serve as maze
walls, and leave them turned off to represent the maze path. This can be done using the
‘show leds’ block. One thing to be careful about though: remember above we set the starting
position of the player? Make sure starting position of your player is not inside a maze wall! In
this example, the starting position of the player is x=0, y=3.

Next, we need to check if the player ever runs into a wall. How to do this? Once again we'll
use if statments to check if our playerx and playery variables are ever in the same place as a
wall. We do this using the coordinate system of the 5x5 LED grid. In this example, there are
two sections of walls.

The first wall exists where both playerx and playeryis less than or equal to 2. We create an if

statement with these conditions, inside which we set gameOn to ‘false’ (since if it's ever ‘true’,
it means the player ran into a wall and should get a Game Over).

The second wall exists where playerx or playery equals 4. We create another if statement
with these conditions, and inside we set gameOn to ‘false’ (because once again if it's ever
true, it means the player ran into a wall and game over).

Finally, the last test we need to add is to see if the player makes it successfully through the
maze! In this example level, the end of the maze is at x=3, y=0. We create another if statment
to check if x=3 and y=0, and inside we do a few things:

First, we play a success melody in the background; Second, we set the starting position of
the player for the next level (in this example, we use the same starting position, but it can be
different!). Third, we show a smile face to tell the player they succceeded! And fourth, we
change the level variable by 1 (this will cause the next level to display).

£ forever

® i o | e ol

552 show leds

sl N
D@0
0@ 0
80
SO C

”: || oo | ao i (TR (| comm | ao il

then Lctlmtn l

| oo | anvll] | SR | aemn | aodjil
—
then &;T gameOn + RGCME false -

@) if (
— ‘playerx - m. [playery v | mn

(=l mil=8l once in background -

@) if

then | & start melody ba ding *

set to NG
set to ONE]

22 show icon D

change by

Step 7

Setting up a level costs us a lot of work! Now that we have a single level, let's make
something happen when a player gets a game over. This will happen whenever they run into
a wall, and it’s tracked by the ‘gameOn’ variable.

Inside a forever loop, we use an if statment to check the value of the ‘gameOn’ variable. If it
equals ‘false’, then we want our game over code to run!

In this example, we play a sad melody in the background, reset the ‘level’, unplot the player
LED, show an angry face, and finally display a string telling the player they can press B to
restart the game.

show icon
show string Press B to restart

Step 8

Speaking of pressing B to restart the game, we haven't yet created the code to do that!

Inside a forever loop, we test if button B on the ADKeypad is pressed. If it is, we want to set
‘level’ to 1, reset the player’s starting location by setting the ‘playerx’ and ‘playery’ variables
to 0 and 3 respectively, and set the ‘gameOn’ variable back to ‘true’.

== forever

</> key BB is pressed on ADKeyboard at pin
set to
set to
set to

set to |

Step 9

Now our game should work as intended! The only thing missed is more levels!

It's quite easy to add more levels by duplicating our level 1 code from above. The only thing
that will change is the maze walls and the coordinates for our if statments (for testing if the
player moves into a wall or completes the level).

Tips: sometimes it can be complicated to create if statements to test for every wall. In these
cases, try to break down your walls into separate rectangles and create an if statement for
each rectangle.

One thing to watch out: after the player has completed a level, you have to reset its playerx
and playery variables, making sure the position matches your next level. Otherwise it would
start inside a wall!

= forever

OB =T (- [2 |

e
then | = show leds

0 o

L& L=

@ if (¢
e i el - | or - I ery « muﬂ

then G'et CITED to |

@) if [
‘ il (=R s | andJil

then Eetlmmﬁ (

|

@) if (. T,
- J{ oo el €59 - oo | ea il

. |
then bet _gameOn _+ R

& 1F (¢
- (oo | e vl (R comn | an i)

then Getlmmno (

B if (¢
*) |5 ' oo | andEl

start melody ba ding -~ BasdLE=l) once in background -

22 show iconm
=3

i== forever

P-_J—
e | ca Yy
= |

then | set FEIEINE to |

|-¢J| if [r 5 -
= |1/ oo | cn ER r ceomm

-~

then (set CEITTND to (| XTI

@) if [¢
=5 00 (s | endll (€59 arems | el
then (et (CEIEUIND to |

7 | oo e || eomn e

then &etto |

|'3_'I if [rjmﬂ m-r' ~l

¢» start melody ba ding v MgHUL =l 4 once in background v

set to M
set to OME

i show icon m

change by WEN

Step 10

Once you have done this, you can optionally create a victory section. In this example, once
the player have successfully completed the first 3 levels and level equals 4, we unplot the
player by playing a victory melody in the background, and showing a victory message!

sz forever

@ i (o vl

unplot x :| y :
start melody repeating (a0
show string

If you don’t want to type these code by yourself, you can download directly from the link
below:

https:/makecode.microbit.org/_fCqa4399XUpv

Or you can download from the page below:

Bl Simulator k Blocks JavaScript v 7' Edit

B Z x H ©

17.4. Cool stuff!

Now that you've learned how to use the ADKeypad, you can try to control LEDs, servos, and
other components! You've also learned about if statements which are useful in many
micro:bit projects! Try to customize your maze runner game by adding more levels!

https://makecode.microbit.org/_fCqa4399XUpv
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 18. case 16 QUICK MATHS

18. case 16 QUICK MATHS

L

K ’

Y

b £00) _ £ 200~ F(x)-g'(x
Micro:bit) pEe e
ngf}{+] =+ =sec? o f()(_-|- A){) — f(}{)

With]
Function of the game ocza=1™" © “_T_ (X)_‘:.JIE_H)}) Ax

glfx}

Vo

E'

o o

-‘j \2: i —_— I.. - . . i
Y N { - o 20 ’-.I :- ‘.r : : " . i
lEIIIIHlIIIIIIIIIEIIIIQI N Tt Sk S
e o+ - :
— — e— : cOS0t+cosP = 2¢0s Bcos LI

QUICK MATHS is a game where its all about testing your mental calculation. Too slow, you
lose; too fast, you may make mistakes.

18.1. Step 0 — Pre Build Overview

e Use a Buzzer and OLED with the micro:bit.
e Use if-else statements to evaluate conditions.
e Create your own function on MakeCode.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

18.2. Materials required

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Buzzer

e 1 x Octopus:bit

e 1xOLED

18.3. How to Make

Step 1 - Components

JL RS R LR Lt Ul

'J'l‘l'l'l'l'l'l'l"'l‘l‘l‘l'l‘\‘m‘\‘l
nnhnnnnn

| \ | ¢ hrl 5 g o ' ' l‘tc

Y

R, T e W, T

Connect the buzzer to PO.

Plug in the OLED as shown in the picture above. You can plug it into any of the three rows.
Step 2 — Pre-coding

I B Math Add Package... ? x

</> Tinkercademy

e
T Text
io nf

oled-ssd1306
o Game Tinki ok

al Images

@ Pins

«&+ Serial This will open up a dialog box. Search for OLED. Click on the search icon or press enter,

— then select the oled-ssd1306.
£ Control

© Add Package

WEe'll need to add a package of code to be able to use our kit components. Click on Advanced
in the Code drawer to see more code sections and look at the bottom of the Code Drawer for
Add Package.

This will open up a dialog box. Search for OLED. Click on the search icon or press enter, then
select the oled-ssd1306.

Step 3 — Coding Initial Screen

on start

¢ start melody repeating LD

set PR M false v

O initialize OLED with height oiiZY width

QUICK

show string

MATHS

show string

show string A:True B:False

show string Press any key to

show string start

From the music section start the power up melody, this is the game’s introduction music.
After that, create a variable named started and set it to false, as the game has not started.
Finally, use the blocks under the Tinkercademy section to initialise the OLED and display the
messages as shown in the picture above.

Step 4: Coding Randomiser Function

function
set [IEE#ED to (| pick random true or false

set (¥8KD to (pick random @ to n .
set (D to (¢ pick random @ to ﬂ Ex .1

set E57D t0 (| pick random @ to

ORI T o
RSN answer v

then Eetmm ([(e | cx ' v
e [(oo oo (] @
(o

else if (| (‘gxvrrae [Emmp

CO———— .
(&) if (CHETTED

then Eetmto N1 v r

1 .
else Eetmt‘” !] o e

set £33 to |
set to (CIED
set (I3 to (€D

@ if (T

then Eetmtﬂ () | (5D | €30 6D
e (s | (em] oo] |l

RN answer v

then Eetmto ([(| cxa e |
o)|

set £33 to |
set to (| CID
set CIED to (XD

call function CiEACED

In this step, we will randomise the questions that will be displayed. Firstly, create a variable
named answer. In this, we will store whether the answer should be true or false. We
determine this by using the randomiser block under Math.

Next, we create 3 more variables - i1, i2 and a. i1 +i2 = a this is an example of what these
variables would be used for. We then assign a random value from 1 to 9 to i1 and i2. The
value of a would be set later.

After this, we create a variable name type, which will be used to store what type of question
this is. (0: Addition, 1: Subtraction, 2: Multiplication, 3: Division) type would then be given a
random number from O to 3 using the block under math.

From here, there is an if-else statement that checks what type of question it is in order to
generate an answer.

For Addition (0), if the answer for this is supposed to be true, we set a to the sum of i1 and
i2. However, if this is supposed to be false, we add 1 to correct answer. For Subtraction (1), if
the answer for this is supposed to be true, we set a to the sum of i1 and i2, afterwards we
swap the values of a and i1. However, if this is supposed be false, we add 1 to il. For
Multiplication (2), if the answer for this is supposed to be true, we set a to the product of il
and i2.

However, if this is supposed to be false, we add 1 to correct answer. For Division (3), if the

answer for this is supposed to be true, we set a to the product of i1 and i2, afterwards we
swap the values of a and il. However, if this is supposed be false, we add 1 to il.

Step 5: Coding Display Function

aat d display

:l initialize OLED with height width -
1 oron | aa v

@etta{ « g9

R tvpe ~J(- -1 1 |

(set XD to (| €@

R tvpe - J[- -1 2 |

(set GYTIED to (| €3 »

Bl tpe (- - 3 |

@etﬁmntu ("«

In this step, we will create a function that displays the question on the screen. First, initialise
the OLED as shown in the picture. Next, we want to determine what sign to use, so we
create a variable named sign. Afterwards set the value of sign by using an if-else statement
that checks what type of question it is. (O: +, 1: -, 2: x, 3: /) Now we have what we need to
display the equation. Under the OLED section, select the show string block and add the
variables i1, sign, i2. Now that the display function is done, call the function at the end of the
randomise function, as you would want the question to be displayed after the values have
been randomised.

Step 6: Coding the Start Action

function
set to (|

_—

o set score n

ARl anl] randomise v

Now that we can randomise the questions, it is time we start the game. Firstly, create a start
function. In this function, set the start value to be true and call the randomise function.
Afterwards, from the game section in advanced, add the set score block and set the value to
0. Now that the function is complete, add the 2 button pressed blocks under the input
section for both buttons A and B. In both blocks, create an if-else statement to check if the
game has started. If it hasn't, call function start.

Step 7: Coding Check Function

0w als] cOrrect

o change score by
call function

¢ start melody repeating =352

e a bl display |

O initialize OLED with height width
@ if (o] caill

then Eet to (L ¢« E9 2

else if [f@ﬂ

then Gettu T -E

else if | (’ﬁ m

then Gettﬂ (, ¢ E3»

else if [, [‘"ﬁ m

then Gettn (" <« md»

[show string (

:I show string [

Continuing from step 6, now we will be working on the part if the game has started. Firstly,
create 2 functions - correct and wrong. In the correct function, select the change score block
from under the game section and change the score by 1. Next call the randomise function to
get the next question and lastly start melody ba ding that repeats once for additional sound
effects. Moving on to the wrong function, start melody wawawawaa repeating once and
show icon X to indicate that the player has chosen the wrong answer. Afterwards, initialise
OLED as shown in image. Lastly, we want to check the high score. Start off by creating a high
score variable. Next create an if-else statement as shown above, in this logic gate we are
checking if the score is higher than the player’s high score. If it is, then the high score value
will be set to the current score. Don't forget to set the start variable to be false when the
game has ended. Now that we have completed the correct and wrong functions, we need to
call them as shown in the image.

® on button (3K pressed © on button (K pressed

g2 clear screen
@ if (, not (
then Gall function

then Gall function (L1535
else G:all function (L3

then &all function TSI

else | call function (IR IEd

Bonus step 8: Coding Timer

Now you have a functioning game. But to make things more exciting, we should add a timer.
Before we dive into that, there are a few things we have to do first.

Firstly, create an end function. Set up in the function accordingly. This may seem familiar as
this is the last part of the wrong function. You can replace that portion by calling this
function. This function would be called again to prevent reprogramming.

function &)

&) if (g l" o score |
S highscore v ROl score

0 show string [

else | 5 show string (

|;1- show string (

set to (|

Next, create a slow function. This would be called if the player does not answer in time.
Create the blocks as shown in the image.

function B

show icon Ei

initialize OLED with height WJZJ| width
show string -
show string
show string
show string -

call function CTED

Following that, we have to create a new variable called time. Time stores when the player
started a specific question. Afterwards, set its value to the running time (ms) block which can
be found under the more tab of the input section.

function

4 started v RN
set (3T XD to (| ® running time (ms)

—

o Set score n

call function

g2 forever

@ if d - I
CERY ("o running tine (ns) | N0 G0 =2

then G:all function BETIED

Micro:bit does not have a built-in timer, thus we have to design one by using what they offer.
Now we know the starting time is when the player started the question, and running time is
how long the program has been running. From this, if we subtract them we get how long the

player has spent on that question. For this game, we only allow the player to have 2.5s
(2500ms) for each question. Hence, they will lose if they are too slow.

1 ila=a s s} correct

change score by
set (3T to (| ® running time (ms)

IR a1l randomise v

o start melody repeating N0

Lastly, in the correct function add a block that sets the value of time to current running time.
This is to refresh the starting time for a new question.

That's it! You've officially completed this tutorial.

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below.

https:/makecode.microbit.org/_ThdfipEwFbWs

Or you can download from the page below.

https://makecode.microbit.org/_ThdfipEwFbWs

Docs » Tinker Kit » 19. case 17 Pitch Perfect

19. case 17 Pitch Perfect

N MICRO:BIT |
ADKEYPAD

1

Cnkdmkimn . ki it]
: B

Do you think your ears are pitch perfect, then try my game. Or even better, create one!

19.1. Goals

e Learn how to use a ADKeypad, the OLED screen and the buzzer.
e Make something with a ADKeypad, OLED screen and the buzzer.
e Learn the if-else statement functionality.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

19.2. Materials Needed

e 1 x BBC micro:bit

e 1 x Micro USB cable
e 1 x Buzzer

e 2 x F-F Jumper Wires
e 1xOLED

e 1 x ADKeypad

e 1 x Breakout Board

19.3. How to Make

Step 1:

Firstly, plug in your buzzer to Pin 0, making sure the positive side (usually the longer end) is
connected to the yellow signal pin and the negative end is connected to the black ground pin
on the breakout board.

Plug in the ADKeypad to Pin 1, making sure that the colour of the wire and breakout board
matches. Then, attach the OLED screen at the bottom left socket of the breakout board.

Step 2:

Add Package... ? X

Bearch or enter project URL... Q

devices bluetooth

Camera, remote control and other Bluetooth services
Bluetooth services

neopixel

AdaFruit NeoPixel driver

We will need to add a package to the code editor to use the kit components. Click on the
advanced in the micro bit text editor and you will see a section that says Add Package.

This will open up a dialog box. Search for OLED. Click on the search icon or press enter, then
select the oled-ssd1306.

Add Package... ? X

https://pxt.microbit.org/50544-64675-33322-24641| Q

SSD1306_OLED

Tinkercademy package for SSD1306
OLED controller

Note: If you get a warning telling you some packages will be removed because of
incompatibility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3:

128

First, you have to initialise the OLED screen to a height of 64 and width of 128 so to run the
screen in the proper sizing.

Next, you have to set a variable starting score to O for the initial play. This means you have a
score of O at the start of your game. Then you need the OLED display show a text of “Pitch
Perfect”.

You need to write a simple instruction on how to start. Thus, a simple sentence “Press A to
start ” will do.

Step 4:

= forever

| <> key LMEJ is pressed on ADKeyboard at pin (2953
[initialize OLED with height ﬂ width

0 show string You have guess which pitch it is by pressing the. I

Since at step 3 we wrote that you need to press A to start, we need to write a condition for
it. A condition basically means a requirement for a program to start loading its instructions.
Thus, an if-else statement of the A button being pressed would suffice. Moreover, this will be
nested on a forever bracket.

Next, you have to write another set of instructions on how to play the game. What | wrote
was : “You have guess which pitch it is by pressing the correct key”. Then you have to have a
timeout around 5000ms (5 seconds) to let the user read the instructions.

Step 5:

You are gonna introduce the user to listen to the pitch of the sound being played. What | did
was to play the pitch (for example: C) for 4 beat (4 seconds), flash the led on the MicroBit of
the pitch C and OLED display on the screen itself.

After that, | will put in a timeout so the user can process the pitch to the correct alphabet and
the ADKeyboard. Additionally, you can put in the OLED screen on what buttons are to be
pressed for a certain pitch. Example, when Pitch C is being played, | wrote “Left blue button”
to indicate that is the button.

If you are wondering, why the intialise OLED display and show string block is repeated, it is
because it would simulate a refresh in web browser. If you do not initalise the display, the
text would just be brought down instead of new text being created.

O initialize OLED with height offZJ] width

S sho string VEELIENEXN

The left blue button.

=
-
.
a
.
.
.._
o

Step 6:

Once the user have gone through the mini-briefing of how the pitch sounds, you can get
them ready. You can have a countdown for them to get ready on the game itself.

Now, you can build your pitch tests. So, to do that, you need to play a pitch and you can

customise by displaying by any image on the MicroBit and a message “Key #1” at the same
time.

Then, if the user pressed the correct button on the ADKeypad, they would get a point. If not,
no points. Thus you set the variable score to change by 1 if the get it correct and otherwise, a

-1. Thus, an if-else statement on whether the user pressed the correct button will do.

To let the user know if they got the correct answer, you can display of an image tick for a
correct answer and a cross for a wrong answer.

Repeat this step so you can have many tests to play with!

| initialize OLED with height 3| width

show number ﬂ

LU MGON - 1000

- show number ﬂ

UGN 1000

1000

@ initialize OLED with height oJfZ§] width
= srom sring
o play tone Middle C Biels

Ig" if (<« key [#83 is pressed on ADKeyboard at pin (83
then | change EZIIED by

sz show icon Ei

change [ETEI by

= show icon EI

Step 7:

Once you are contempted with your tests, you can end the game by showing the latest
scores. You can display in the OLED screen “Your score is:” with the variable score shown.
Put a smiley for fun sake. And you are done! Enjoy the game.

start melody repeating

show 1icon EI

show number (Jl score v |

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below.

https:/makecode.microbit.org/_A26fCxRz1P1g

Or you can download from the page below.

B Simulator & Blocks JavaScript v (7' Edit

B Z @ H ©

https://makecode.microbit.org/_A26fCxRz1P1g
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 20. case 18 Finger Dexterity

20. case 18 Finger Dexterity

Ted Dew Fadl Veour Rejpeare Gan BeE

Are your psychomotor skills as bad as mine?

20.1. Goals

We are going to create a game where the player must click on a key (on the ADKeypad) that
corresponds to the column on which a random LED lights up (A for the first column and E for
the last). The pace at which the LED lights up gets quicker and quicker as the game goes on.
You'll learn how to:

e use an ADKeypad with the micro:bit.
e use functions recursively.

e use while loops.

e improve your finger dexterity!

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

20.2. Materials and Pre-requisites

1 x BBC micro:bit
1 x Micro USB cable
1 x F-F Jumper Wires

1 x ADKeypad Or ElecFreaks Micro:bit Tinker Kit (contains all components in the above.)

You also need some experience about if-else statements, variables etc.

20.3. How to Make

Step 1

0 400852
TE R 1B
T 180357

WAMRURAL

Plug in your ADkeypad to PinO, making sure the positive lead is connected to the yellow
signal pin and the negative lead is connected to the black ground pin on the breakout board.

Step 2

i lad] plotlight]
.5d bool + RO true
set (IS to (| nick random ton

9] randomLightYindex “Rel pick random @ ton

LN LR randorl 1 ghtXIndex_v] B AM randomLightYIndex -

pause (ms) (| GEITI0
then Eetto (! Wcine J[: [10 =1 9 |

while (| (79
do [(5] if (, <» key 3D is pressed on ADKeyboard at pirdZ‘IEd

i ORI randonl i ghtxindex (- -1 © |
© unplot x J VA randomL1ightYIndex

AR ek plotLight v
set (TED to (EAETIED

else Gal'l. functionfiID)

[, «» key:BED is pressed on ADKeyboard at pid‘JEd
SR randonl 1ghtXindex (= [1
© unplot x J VAN randomLightYIndex

AR oot plotLight v
set (TRED to (, (ATID

else Gall functionfiIE)

[, < key {9} is pressed on ADKeyboard at pid‘JEd
ORI randonL ightXindex (= ~[2 |
© unplot x | VAN randomLightYIndex

call functionGICHECTID
Y bool kRN false v

else Gal'l. functionfiEE)

[, <» key [is pressed on ADKeyboard at pird’BEJ

call functionGICHECIID
Y bool kRN false v

else Gal'l. functionfi=ID)

[, <> key[3E] is pressed on ADKeyboard at pid’BEJ
ORI randonl TghtXindex (= *[4
«© unplot x J y I' randomLightYIndex

call functionGICHEGIED
Y bool +ELAM false v)

call functionfGEEEED

In order for the ease of randomisation of the LED that lights up, we will use a function
recursively. A function used recursively will call itself (!) so as to acheive the end goal. |
created the function plotLight for this reason. If you have not covered functions, go here.

Then i set two variables randomLightXIndex and randomLightYIndex to integers between O
and 4. This will correspond to the specific LED that lights up. Doing this will ensure
randomness (let us not get into the discussion as to where true randomness can really be
generated) of the LED that lights up so the game will be different and unpredictable every
time.

| also set the variable bool to true. While this may not be obvious now, it will come in handy
later (in reality this was a later addition that | decided to add after the rest of the function
was fleshed out. The reason for this will come to light later). This is a common technique in
coding (especially with while loops).

In order to increase the difficulty, it was my judgement that a time variable could be useful.
We use this later to decrease the pause time betwen one LED lighting up and the next. We
have set a lower limit for the pause time at half a second so as to not make the game
impossible. When we call the function recursively, the if-statement modifying the pause time
is what will decrease the pause time everytime the function is called.

| have created a bunch of if-else statements inside a loop. These statements periodically
check if a button on the keyboard was pressed and if the button corresponds to the x-
coordinate of the LED that lights up. We have to do this because the pressing of the keypad
does not emit an event that our event listeners in micro:bit’s core modules can respond to
(like how it does for shaking or button presses). Thus, we had to create our own event
listener. This event listener only runs as long as bool (which we created earlier) is true.

Step 3

<> key JEJ is pressed on ADKeyboard at pin{{JE3
& if (g : e

LN L A andonL TghtXindex +] WA randoml ightYIndex -

call function (ITEETIIED
¥ <¥ bool -+ RolHM false v,

else Gall function D

Inside the if-else statement, we check to see which key was pressed and if it corresponds to
the column of the LED (x-coordinate). If it was, we CALL THE FUNCTION AGAIN. This is
how recursive programming works. By calling the function again, we basically start over with
a new LED. Note that when we call the function again we decrease the value of the time
variable and thus the pause duration will be shorter.

Note that | unplotted the point first LED. This is to ensure that we don’t have more than one
LED in each round so as to not confuse the player. If you wanted to make the game more

difficult, you could show multiple LEDs and play for only the most recent LED that lights up.
Treat that as an extension! Interestingly, | have set bool to false. Why?

Step 4

call function IFEEL

else Gau function §EETED

The bool is set to false so as to terminate the above while loop. This is not strictly necessary
and | initially disregarded this. However, it is important to note that terminating the while
loop greatly improves the efficiency of your program and efficiency of our programs is
something generally worth considering.

| have also created and called a function to handle the case where the player types the wrong
key. This will be covered later.

Step 5

i'uladtyl plotlight
set to |
set [FNCIIIRFRISGEED to (| pick random @ to n

set (TITIKTINAAGEEMD to (| pick random @ to n

LR -andorL 1ghtXIndex +JRAM randomLightYIndex v
pause (ms) (',|
@ if (G
then il time v RJE
Ee e X gl
while (| (I3

do | (&) if (, <« key [JE3 is pressed on ADKeyboard at pin({JE3
then

© unplot x J| AW randomlLightYIndex v
call il laaley] plotlLight v]
< bool - R MM false v

else Gall function 32

That was quite a lot for one function! It can be quite a bit for a newbie at programming so let
me go through that one more time.

We use random integers between 0 and 4 for the determination of the LED that lights up.
(Note that we use an index that starts with O - this means that the top left corner is (0,0))

In anticipation of the function being called in some point in the future, we decrease the
pause time so that when that happens the game is more difficult.

We run our own homemade event listener (the name betrays its function - it simply waits for
an event to happen and acts with our preset code when it does). We use a while loop to
listen for an event. If it does not find an event in one loop the if-else statements inside will
not be activated and thus, it will go on to the next iteration. When the event does happen (in
this case the pressing of the key), the if-else statement is activated from its slumber and thus,
in this rather ingenious way, we have created an event listener. (Extension: Browsers listen
for events like clicks or keypad presses in the same way).

Step 6

TGN bool ~
do | (&) if (, <» key [(MED is pressed on ADKeyboard at pin{ZJE3

Ll BRI rondonL TghtXindex J(- -1 o
(elT 1.4 SN randomLightXIndex vIBAN randomLightYIndex v|

AR aatd plotLight v
set (TR to |

else Gall function i3

& keyl}n is pressed on ADKeyboard at pinl{{JE3

:ml

else Eall function {E)

(, <» key (WED is pressed on ADKeyboard at pinl {3
SR andont ghtxindex (= - 2
(ol 10 a8 & randomLightXIndex v JRY M randomLightY1Index v|

call function PIFEETIIED
4 bool v R MM false v

Inside each if-else statement, we have decided to end the game if the wrong keypad was
pressed and tell the player what we think of him/her.

If the right key was pressed, we immediately go on to the next LED light whilst ending the
previous while loop or effeciency purposes (just to be clear, your code will still work but it’s
best not to foster such bad habits). Whilst going on to the next LED light, we make use of a
concept called recursion. To fully understand the inner workings of recursions we must be
familiar with concepts like execution contexts, which is beyond the scope of this tutorial.

Step 7

il il=a] plotlight]
a4 bool + RGN true v
set (TR to (| pick random 0 toWEl)

set (ETEIRFIRATEIND to (| pick random 0 ton

tplotx jLrandomlightXIndex -JSAR

pause (ms) JI

@ if ((Gmm

then (‘set G to ((7 r——nm 0 ve | e E)]

L |]

@ if (« key[¥EDis pressed on ADKeyboard at pifZ’JED
then

call functionGICHEGIEED
T bool RN false +)

else Gal'l. functionfi=ID)

[, < key(:JEd is pressed on ADKeyboard at pid‘JEJ
ORI randon ightXindex (= ~[1
© unplot x | VAN randomLightYIndex

call functionGICHECTID
Y bool kRN false v

else Gal'l. functionfi=ID)

[, «» key(#E] is pressed on ADKeyboard at pid{‘JE}
SR randonl ightXindex (= [2
© unplot x J VAN randomLightYIndex

call functionGICHECTID
Y bool RN false v

else Gal'l. functionfiEE)

[, ¢« key [} is pressed on ADKeyboard at pid’BEJ

pause (ms)

AR aab plotLight v
Y bool +EZRM false v)

else Gall functionfiGEE)

[, «» key{3ED is pressed on ADKeyboard at pid‘JEd

© unplot x J VAN randomLightYIndex
call functionPIFHETIED
Y bool +RLAM false -,

else Gal'l. functioni=ID)

That was a lot of work!!
But in the end, we have created a wonderful function that can be called recursively. It is

remarkable that such a game can be simplified so much so that its crux is in one block of
code!

Step 8

function §GES

show leds
8 808
@
8 0O ®
S W
8 800

pause (ms)

)
.
-
-

Now we just want to tie up some loose strings. The lose function is one that we will call
when the player presses the wrong key. It is mostly self-explanatory and if you could get past
the previous parts, it should be obvious what the code does.

Step 9

on start

set to

Eﬁll il leaalesd plotLight v

Now to start the first LED.
We call the function when the file loads. Due to the recursiveness of the function, the game
will take care of itself thereafter with minimal effort from us. How is that for effeciency!

If you don’t want to type these code by yourself, you can download the whole program from
the link below.

https:/makecode.microbit.org/_eeyAFJMcg8z5

Or you can download from the page below.

Bl Simulator & Blocks JavaScript v 7' Edit

Wonderful!

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

You have completed this tutorial! If you wish to challenge yourself further, go ahead and add
a counter that counts the number of points a player gets before he/she loses. Clue: Create a
variable called counter and increment it as you see fit. Remember to display it as well!

Congratulations!
This tutorial was possibly a level higher than the rest and if you got here you are definitely

rocking it. If you didn’t, take solace in the fact that it took me weeks to get my head around
concepts like recursions too. Good luck!

Docs » Tinker Kit » 21. case 19 Electric Spirit Level

21. case 19 Electric Spirit Level

P
Gte'le an Eleehie lpifil ve'

"7 9 n_

Use this spirit level to quickly and easily display the tilt of any object attached! Created by
Kaitlyn from Raffles Institution.

21.1. Goals

e Learn to read tilt with micro:bit’s built-in accelerometer.
e Learn to work with micro:bit’s 5x5 LED Display!

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Comicrobit B P

Led
Hadic
Loops

X Logie
W Varatles

w Motk

I W Afvanced

E m o . -m

21.2. Materials

1 x BBC micro:bit

1 x Micro USB cable

2 x AA Batteries

1 x Double AA Battery Pack

21.3. Pre Coding: Connect your Micro:Bit

e Connect the BBC micro:bit to your computer using a micro USB cable.
e Access the javascript editor for the micro:bit at makecode.microbit.org.

Step 0: Code Flow

Before we begin writing the code, we need to decide what we want to achieve with the
program and in what order should each component run.

For the electric spirit level, the steps that we will take in the code for each loop are:

Read tilt readings from accelerometer. Convert tilt readings to tilt levels to be displayed on
LED matrix. Check for change in tilt level readings from previous loop. Create array of LED
coordinates for different tilt cases and directions. Plot LED coordinates onto micro:bit LED

matrix.

A few additional functions we need to include are:

Calibration for initial tilt position. Returning to default tilt calibration.

r N\
Begin R —
Y
< Button A pressed?
Update zeroPitch # N
and zeroRoll values Y
<+ Button B pressed?

v N

»| Gettilt readings

v

Check direction
of tilt

-

Get tilt levels for
given directions

v

Change in state?

vY

Update prevState
to new state

v

Set stateChange
to0

v

Check tilt case and
plot result

21.4. How to Make

Step 1: Defining Variables

We start by defining variables needed as shown. A breakdown of a few variables are:

tiltList: Array that stores extent of tilt from values 0-4 in the order [Left, Right, Forward,
Backward] tiltBoundary: Boundary of the first tilt level between O (no tilt) and 1 (slight tilt)
prevState: Array that stores the tilt values of the micro:bit from a previous loop in the same

format as tiltList, used to check for a change in tilt between iterations ledPlotList: Plot led
coordinate arrays in the form (x, y). To define an array , we use the type number[][] to indicate
a nested array of variables of type: number.

1 //tilt variables

2 let tiltList = [0, 0, @, 0]
3 let tiltBoundary = 1

4 let tiltSensitivity =5

5

6 //tilt calibration

7 let zeroPitch = 0

8 let zeroRoll = @

9 let calibratedPitch = @

10 let calibratedRoll = @

11

12 //state variables

13 let prevState = [0, 0, 0, 0]
14 1let stateChange = 0

15

16 //led variables

17 1let ledPlotList: number[][]
18

Step 2: Convert tilt values to levels

As the 5x5 LED matrix can only display so much information, the actual tilt values will not be
useful for display.

Instead, a function tiltExtent() takes the parameter num, which refers to the tilt value from
the accelerometer, and converts these tilt values (num) to tilt levels from O to 4.

O indicates no tilt in the given direction and 4 indicates very large tilt, while -1 is returned
when there is an error.

Here, tiltBoundary and tiltSensitivity are used as the boundary values between tilt levels.

29 function tiltExtent(num: number) {

30 if (num <= tiltBoundary) {

31 return @

32 } else if (num > tiltBoundary && num <= tiltBoundary + tiltSensitivity - 1) {

33 return 1

34 } else if (num > tiltBoundary + tiltSensitivity - 1 && num <= tiltBoundary + (tiltSensitivity * 2) - 1) {
35 return 2

36 } else if (num > tiltBoundary + (tiltSensitiwvity * 2) - 1 && num <= tiltBoundary + (tiltSensitivity * 3) - 1) {
37 return 3

38 } else if (num > tiltBoundary + (tiltSensitivity * 3) - 1) {

39 return 4

40 } else {

41 return @ - 1

42 }

43 }

44

Step 3: Compile tilt levels

The two functions checkRoll() and checkPitch() write the tilt levels obtained from tiltExtent()
into tiltList for the roll (left-right) and the pitch (forward-backward) axes respectively.

Before using the tilt values, we calibrate them using a zeroed value for both pitch (zeroPitch)
and roll (zeroRoll) obtained from a calibration function written later.

As the accelerometer readings are negative for both left and forward tilt, we need to use the
Math.abs() function to obtain the modulus of the negative value to be given to the tiltExtent()
function as a parameter for these two directions.

45 function checkRoll() {

46 calibratedRoll = input.rototion{Rotation.Roll) - zerofoll
47 if (colibratedRoll < @) { F/tilt to left

48 tiltlist[®] = tiltExtent(Math.abs(calibratedRoll))

49 tiltlist[1] = @

5 } else if {calibratedRoll > @) { J/EiLE to right

51 tiltlist[@] = @

52 tiltlist[1] = tiltExtent(Math.abs(calibratedRoll))

53 } else if (calibratedRoll == @) { f/mo left-right tilt
54 tiltlist[@] = @

55 tiltList[1] = @

56 } else { ffif there is error
57 tiltlList[@] =@ - 1

58 tiltlist[1l] =92 - 1

59 1

60 }

61

62 function checkPitch() {

63 calibratedPitch = input.rotation{Rotation.Pitch) - zeroPitch
%] if (calibraotedPitch < @) { f/tilt forward

65 tiltlist[2] = tiltExtent(Math.abs(calibratedPitch))

66 tiltList[3] = @

67 } else if (calibratedPitch > @) { fitilt backward

68 tiltlist[2] = @

&9 tiltlist[3] = tiltExtent(Math.abs(calibratedPitch))

L } else if (calibratedPitch == @) { ffmo forward-backward tilt
71 tiltList[2] = @

72 tiltlist[3] = @

73 } else { ff1if there is error
74 tiltlist[2] =@ - 1

75 tiltlist[3] = @ - 1

76 1

77}

78

Step 4: Write LEDPlotList Functions

Having obtained the tilt levels in tiltList we can now write the led plotting functions for the
different cases that can arise, namely

plotSingle(): Tilt only in a single direction, taking extent of tilt in given direction as parameter.
plotDiagonal(): Tilt in two directions of the same magnitude, taking extent of tilt in either
direction as parameter. plotUnequal(): Tilt in two directions of different magnitudes, taking
extent of tilt in each direction as parameter. Uses plotDiagonal() first and adds on to
ledPlotList array afterwards.

These plotting functions write an array of led coordinates to ledPlotList to be plotted later
on.

function plotSingleCnum: number) {
for (let x = @; x < num; x++) {
for (let y = 0; y < 5; y++) {
ledPlotList.push([x, y1)

function plotDiagonal(num: number) {
for (let x = @; x < num + 1; x++) {
for (let y =0; y <num + 1 - x; y++) {
ledPlotList.push([x, y1)

186 function plotUnequal(maxX: number, maxY: number, num: number) {
if (maxX > maxY) {
for (let i = maxX; 1 > num; i--) {
for (let x = i; x> @; x--) {
for (let y = @; y < num; y+) {
if (i -x=y{
ledPlotList.push([x, v¥1)
}
}
}

}
} else if (maxX < maxY) {
for (let i = moxY; i > num; i--) {
for (let y = i; y> 8; y--) {
for (let x = @; x < num; x++) {
if(l-y=x){
ledPlotList.push([x, y1)

}

Step 5: Plot LED Matrix for Each Case

Using the plotting functions from the three cases in step 4, we can now plot the actual LED
matrix for the different possible combinations of tilt levels. As the three functions in step 4
do not discriminate with direction, we need to adjust the coordinate values passed to the
LED matrix to plot the LEDs in the right directions.

0 0
1 1
2 2
3 3
4 a
Forward - left Forward - right
0 1 2 3 a a 3 2 1 0
4 a
3 3
2 2
1 1
0 0
Backward - left Backward - right

PlotResult() contains multiple if conditions that check the kind of tilt and plot the LED matrix
accordingly using led.plot(x, y). The possible combinations of tilt are:

Single direction: Left Only or Right Only.

130 function plotResult() {

131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149

// left
if (tiltList[@] != 0 &% tiltList[1] == @ &R tiltlList[2] == 0 && tiltList[3] == 0) {
let plotVal = tiltList[@]
plotSingle(plotVal)
for (let j = @; j <= ledPlotList.length - 1; j+) {
led.plot(ledPlotList[j1[@], ledPlotList[jI[1]1)
}
}

//right
else if (tiltList[@] == 0 && tiltList[1] != @ && tiltlList[2] == @ && tiltList[3] == @) {
let plotVal = tiltList[1]
plotSingle(plotVal)
for (let j = @; j <= ledPlotList.length - 1; j++) {
led.plot(4 - ledPlotList[j][@], ledPlotList[j]1[1])
}

Single direction: Forward Only or Backward Only.

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

//forward
else if (tiltList[@] == @ &% tiltList[1] == @ && tiltList[2] != @ && tiltList[3] == @) {
let plotVal = tiltlList[2]
plotSingle(plotVal)
for (let j = @; j <= ledPlotList.length - 1; j++) {
led.plot(ledPlotList[j][1], ledPlotList[j][@])
}
}

//backward
else if (tiltList[0] == @ && tiltList[1] == 0 && tiltList[2] == 0 && tiltList[3] != @) {
let plotVal = tiltList[3]
plotSingle(plotVal)
for (let j = @; j <= ledPlotList.length - 1; j++) {
led.plot(ledPlotList[j]1[1], 4 - ledPlotList[j]1[@])
}

Two directions: Forward-left or Backward-left.

169 //forward left

170 else if (tiltlList[@] != 0@ &% tiltList[1] == 0 && tiltList[2] != @ & tiltList[3] == @) {
171 let maxX = tiltlList[2]

172 let maxY = tiltlist[@]

173 let diagNum = Math.min(maxX, maxY)

174 plotDiagonal (diagNum)

175 if (maxX != maxY) {

176 plotUnequal(maxX, maxY, diagNum)

177 }

178 for (let k = @; k <= ledPlotList.length - 1; k++) {
179 led.plot(ledPlotList[k][@], ledPlotList[k][1])

180 i

181 1}

182

183 //backward left

184 else if (tiltlList[@] != 0@ &% tiltList[1] == @ && tiltList[2] == @ && tiltList[3] != @) {
185 let maxX = tiltlist[3]

186 let maxY = tiltlist[0]

187 let diagNum = Math.min(maxX, maxY)

188 plotDiagonal (diagNum)

189 if (maxX != max¥Y) {

190 plotUnequal(maxX, maxY, diagNum)

191 }

192 for (let k = @; k <= ledPlotList.length - 1; k++) {
193 led.plot(ledPlotList[k][@], 4 - ledPlotList[k][1])
194 i;

195 }

196

Two directions: Forward-right or Backward-right.

197 //forward right

198 else if (tiltList[@] == @ && tiltList[1] != @ && tiltList[2] != @ && tiltlList[3] == @) {
199 let maxX = tiltlList[2]

200 let maxY = tiltlList[1]

201 let diagNum = Math.min(maxX, maxY)

202 plotDiagonal (diagNum)

203 if (maxX != maxY) {

204 plotUnequal(maxX, maxY, diagNum)

205 }

206 for (let k = @; k <= ledPlotlList.length - 1; k++) {

207 led.plot(4 - ledPlotList[k][@], ledPlotList[k][1])

208 1

209 ¥

210

211 //backward right

212 else if (tiltList[0] == © && tiltList[1] != @ && tiltList[2] == 0 && tiltList[3] != 0) {
213 let maxX = tiltlist[3]

214 let maxY = tiltlist[1]

215 let diagNum = Math.min(maxX, maxY)

216 plotDiagonal (diagNum)

217 if (maxX != maxY) {

218 plotUnequal (maxX, maxY, diagNum)

219 }

220 for (let k = @; k <= ledPlotlList.length - 1; k++) {

221 led.plot(4 - ledPlotList[k][@], 4 - ledPlotList[k][1])
222 }

223 }

224 }

225

Note: For tilt in two directions, each combination can have the same or different magnitude
(checked by comparing maxX and maxY), and hence plotted using plotDiagonal() or
plotUnequal() respectively.

Step 6: Write Calibration Functions

Having completed the bulk of the code, we now add in the calibTilt() and the resetTilt()
functions.

calibTilt() allows users to tare the tilt to zero at the micro:bit’s current position resetTilt()
resets the calibration of the board to its original state.

19 function calibrateTilt() {

20 zeroPitch = input.rotation(Rotation.Pitch)
21 zeroRoll = input.rotation(Rotation.Roll)
22 }

23

24 function resetTilt() {

25 zeroPitch = @

26 zeroRoll = @

or ¥

28

Step 7: Write State Function

We add a simple function checkState() to check whether the tilt levels have changed from a
previous iteration.

If there is no change in tilt levels from a previous iteration i.e. stateChange == 0, we can

directly move on to the next iteration and skip the plotting of the LED matrix, reducing
computation needed.

79 function checkState() {

80 for (let n =0; n < 4; nes) {

81 if (prevState[n] == tiltlList[n]) {
82 stateChange = @

83 } else {

84 stateChange = 1

85 break

86 }

87 }

88 1}

89

Step 8: Putting It All Together Part 1!

Now we can finally place all the necessary functions into the micro:bit’s infinite loop to run it
repeatedly.

Firstly, we set button A and B on the micro:bit to the calibTilt() and resetTilt() functions
respectively using input.onButtonPressed(), and plot a tick on the LED matrix when
calibration is completed.

225 basic.forever(() =» {

226 input.onButtonPressed(Button.A, () = {

227 basic.clearScreen()

228 calibrateTilt()

229 ledPlotlist = [[@, 3], [1, 4], [2, 31, [3, 2], [4, 11]
238 for (let k = B; k <= ledPlotList.length - 1; k++) {
231 led.plot(ledPlotlist[k][@], ledPlotList[k][11)
232 1

233 control .waitMicros(100008a)

234 b

235

236 input.onButtonPressed(Button.B, () => {

237 basic.clearScreen()

238 resetTilt()

239 ledPlotList = [[@, 3], [1, 41, [2, 31, [3, 2], [4, 11]
248 for (let k = @; k <= ledPlotlList.length - 1; k++) {
241 led.plot(ledPlotlist[k][@], ledPlotList[k][1])
242 1

243 control .waitMicros(100000@)

48 D

245

Step 9: Putting it All Together Part 2!

Next run the necessary functions according to our code flow in Step O and check for a state
change (meaning that there has a change in the tilt of micro:bit since the last iteration).

If there is a change in tilt levels i.e. stateChange == 1, the code will update prevState to the
new tilt levels and set stateChange back to O for the next iteration, and plot the updated tilt
levels on the LED matrix using PlotResult().

246 checkRoll()

247 checkPitch()

248 checkState()

249

250 if (stateChange == 1) {

251 for (let m = @; m < tiltList.length; m++) {
252 prevState[m] = tiltlList[m]
253 }

254 stateChange = @

255 basic.clearScreen()

256 plotResult()

257 }

258 control .waitMicros(1000@)

259 B

260

If you don’t want to type these code by yourself, you can directly download from the link

below.
https:/makecode.microbit.org/56811-31458-64502-76623

Or you can download from the page below.

Bl Simulator ik Blocks JavaScript v 7' Edit

Step 10: Assembly

Flash the completed code to your micro:bit.
Attach your micro:bit and the battery pack securely to any object and it is ready for use!

https://makecode.microbit.org/56811-31458-64502-76623
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

J

Awesome!

Have fun with your electric spirit level! And while you're at it, why not try to extend the
capabilities of the tilt sensor or even turn it into a game?

Docs » Tinker Kit » 22. case 20 Space Shooter

22. case 20 Space Shooter

Are you tired of complicated flashy modern games? Prefer to play your gamesona 5 x5
resolution rather than a 4K resolution? Have some arcade fun on your micro:bit with Space
Shooter! This tutorial is in JavaScript. Typing! Many typing!

22.1. Step 0: Pre Build Overview

In this project, we will create a simple space shooter game where you have to try to shoot
and avoid falling projectiles.

22.2. Maternials:

1 x BBC micro:bit

1 x Micro USB cable
1 x Breakout board
1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

22.3. Goals

e Learn to use the ADKeyboard.
e Learn basic game programming.
e Learn more about programming with Javascript.

22.4. How to Make

Step 1 - Components

First of all, plug in the ADKeypad. Ensure the colours match and take note of what pin you
plug them into as it will be relevant later.

Step 2 — Coding

&k Blocks {} JavaScript

In this project, we will use Javascript to code, so first of all, switch to Javascript mode on the
top of the page.

let
let
let
let
let
let
let
let
let
let
let

temp2 = ©

temp = ©

playerscore = ©

noalien = ©

hi = ©

gamestart = ©
destroyedpos: number[] = []
aliens: number[][] = []
shots: number[][] = []
pos = 2

toprow = [0, 0, 0, 0, 0]

At the beginning of our code, we will need to initialise the variables we will use: playerscore

for the current player’s score, noalien as a storage of whether or not there are aliens currently

on the screen, hi for the current highscore, gamestart to keep track of what state the game is

currently in, destroyedpos as an array to store where the player collided with an alien, shots

to store the position of the shots that the player has shot, aliens to store the positions of the

aliens, pos to keep track of the player’s current position, toprow to store if there is an alien

currently in each position of the top row, as well as a few temporary variables. We will need
to use all these variables later.

function unrendership() {

}

led.unplot(pos, 4)

led.unplot(pos, 3)

if (pos > 0) {
led.unplot(pos - 1, 4)

}

if (pos < 4) {
led.unplot(pos + 1, 4)

This function, unrendership, turns off the LEDs that represents our spaceship. We will use

this to move the spaceship around.

function rendership() {

led.plot(pos, 4)

led.plot(pos, 3)

if (pos > @) {
led.plot(pos - 1, 4)

}

if (pos < 4) {
led.plot(pos + 1, 4)

}

This function, rendership, turns on the LEDs that represents our spaceship. After using
unrendership, we can update the player’s position then use rendership to change the
spaceship’s position.

function unrendershots() {
for (let i = ©; i <= shots.length - 1; i++) {
if (shots[i][1] > -1) {
led.unplot(shots[i][@], shots[i][1])

}

This function, unrendershots, turns off the LEDs that represents the player’s fired shots.
Similarly, we will use this function to update the positions of the shots.

function rendershots() {
for (let j = ©; j <= shots.length - 1; j++) {
if (shots[j]1[1] > -1) {
led.plot(shots[j][@], shots[j][1])

This function, rendershots, turns on the LEDs that represents the player’s fired shots. Similar
to unrendership and rendership, after using unrendershots, we can update the shots’
positions then use rendershots to change all fired shots’ position.

function checkcollision() {
for (let k = 8; k <= aliens.length - 1; k++) {
if ((aliens[k][@] == pos && (aliens[k][1] == 4 || aliens[k][1] == 2))
(aliens[k][1] == 4 && (aliens[k][@] == pos - 1 || aliens[k][@] ==
destroyedpos = aliens[k]
gamestart = 2

|
pos + 1))} {

¥
for (let 1 = @; 1 <= shots.length - 1; 1++) {
if (aliens[k][@] == shots[1l][@] && aliens[k][1] == shots[1][1])} {
led.unplot(aliens[k][&], aliens[k][1])
if (aliens[k][1] == &) {
toprow[aliens[k][8]] = @
}
shots[1][1] = -1
aliens[k][1] = 5
playerscore += 1

This function, checkcollision, checks for two types of collisions: between the player and an
alien, and between an alien and a shot fired by the player. Firstly, for the collision between
the player and an alien, due to the shape of our ship, we have to check if there is an alien on
the lowest or second lowest row and in the same column of the centre of the spaceship, as
well as if there is an alien on the lowest row and to the left or right of the centre of the
spaceship. Note that in Javascript, && represents “and” and || represents “or”. If there is
indeed an alien in one of these positions, we will set destroyedpos to the position where this
alien collided with the spaceship and change the value of gamestart to 2 to signify that the
game is over. Next, for collision between the player and a shot fired by the player, since each
of these only occupy one LED, we just have to check if their positions are exactly the same.
However, since there can be multiple shots and/or aliens, we have to loop through every shot
for every alien and check if they are in the same position. If they are, we turn off the LED for
that position. If the alien was in the toprow, we set the value of toprow for that column to O
to signify that there is no longer an alien in the top row of that column. Then, we set the
height of the shot to -1 and the height of the alien to 5, moving both of them out of the
screen, where we will remove them later. Lastly, we increase the player’s score by 1 for
shooting an alien.

basic.forever(() =» {
1t {(gamestart == @) {
basic.shownumber{hi)
b
1f (gamestart == 2) {

aliens = []

shots = []

for {let 1 = 8} 1 < 3} 1++) {
led.unplot{destroyedpos[@], destroyedpos[1])
basic.pause{S8a)
led.plot{destroyedpos[@2], destroyedpos[l1])
basic.pause(58e)

T

if (hi <« playerscore)} {
basic.showIcon{Icondames.Happy)
basic.pause(1868)
basic.showstring(“"NEW HISCORE™)
basic.showlumber{playerscore}
hi = playverscore
basic.pause(2e8ea8)
gamesiart = @

T else {
basic.showIcon{IconMNames.Sad)
basic.pause(zeed)
basic.showkumber{playerscore)
basic.pause(2eed)
gamestart = &

™

Now that we have written all the required functions, we can finally start linking them
together! You may already be familiar with the forever function from coding in blocks mode.
In Javascript, we use this by typing basic.forever(() => {Code to run forever here}. Firstly, if the
value of gamestart is O, we show the current highscore on the display. Next, if the value of
gamestart is 2, that means that the player’s game has just ended. We make the position
where the player collided with an alien blink 3 times to let the player know where the
collision happened, then display a happy face if the player set a new highscore, and a sad face
if not. After that, we display the player’s score, and set the value of gamestart back to O.

if (tinkercademy.ADKeyboard(ADKeys.A, AnalogPin.P1) &R gamestart == @) {
gamestart = 1
pos = 2
playerscore = @
basic.clearScreen()
rendership()

To start the game, we detect if the player pressed the “A” button on the ADKeypad and the
value of gamestart is O. If so, we set the value of gamestart to 1 to signify that the game has
started, reset the player’s position to the centre, set the player’s score to O, turn off all the
LEDs on the screen then render the ship using the function we made earlier.

1f (gamestart == 1) {
unrendershots ()
noalien = @
if (Math.random{ls) = &) {
temp = Math.random{5)
if (toprouw[temp] == @) {
aliens.push{[temp, -1, 4]}

t

for {(let n = 8; n <= aliens.length - 1; n++) {

aliens[n][2]++

1f (aliens[n][1] < 5} {
noalien = 1

}

it {aliens[n][2] > # &% aliens[n][1] < =) {
led.unplot{aliens[n][&], aliens[n][1])
aliens[n][1]++
if {aliens[n][1] == 1) {

toprow[aliens[n][e]] = @

}.
aliens[n][2] = @
led.plot{aliens[n][@], aliens[m][1])

]_

if (aliens[n][1] == @} {
toprow[aliens[n][e]] = 1

Finally, if the value of gamestart is 1, the player is currently playing the game! At the start of
each loop, we turn off the LEDs of each shot the player fires, since they need to move
upwards by 1 position. We use the Math.random() function to randomly determine if we
should spawn an alien this frame. You can lower the number to make game harder, or
increase the number to make it easier. Here, the value we use is 15, which means that there
is a 1/15 chance that an alien will spawn every loop. However, we need to check that the top
row of the column we want to spawn in is not occupied, or there will be overlapping aliens!
Next, we loop through the aliens and move them downwards by 1 position every 5 times the
forever loop runs. If an alien enters the top row, we set the value of toprow of that column to
1, and if an alien leaves the top row, we set it to O.

for (let o = aliens.length - 1; o »= @; o0--) {
it (aliens[o][1] »= 5) {
aliens.removeAt(o)

L
if (noalien == 8) {
temp2 = Math.random(5)
if (toprow[temp2] == @) {
aliens.push([temp2, -1, 4])

Then, we check if each alien is outside the screen, and, if it is, we remove it from our aliens
array. Lastly, if there are no aliens on screen, we spawn an alien in the same was we would if
it spawned from the 1/15 chance.

checkcollision()

for (let p = ©; p <= shots.length - 1; p++) {
shots[p][1]--

}

if (tinkercademy.ADKeyboard(ADKeys.D, AnalogPin.P1)) {
shots.push([pos, 2])

}

checkcollision()

tor (let g = shots.length - 1; q » 8; g--) {
it (shots[q][1] < @) {

shots.removeAt(q)

After updating the aliens’ positions, we check for collisions, then update the shots’ positions.
Then, we spawn a shot if the player pressed the D button on the ADKeyboard. After that, we
remove any shots which are outside the screen.

if (gamestart == 1) {
if (tinkercademy.ADKeyboard(ADKeys.C, AnalogPin.P1)) {
if (pos > 8) {
unrendership()
pos += -1
rendership()

{ -]

i
if (tinkercademy.ADKeyboard(ADKeys.E, AnalegPin.P1)) {
if (pos < 4) {
unrendership()
pos += 1
rendership()
}
)j
¥
rendershots()

basic.pause(8@)
})

Finally, we check if the player has pressed the C or E keys on the ADKeyboard, and update
the ship’s position accordingly. After that, we render the shots that the player has fired, then
set a pause of 0.08 seconds per loop so that the game advances at a playable speed.

For the whole program, you can download directly from the link below:

https:/makecode.microbit.org/_euRV3uHYJAfx

Or download from the page below.

Bl Simulator k Blocks JavaScript v 7' Edit

https://makecode.microbit.org/_euRV3uHYJAfx

. F1rni rrrrrr—rrrrrrrrrrer

B Z % H ©

Step 3: Using It

Playing the game is very simple. Just use the A button on the ADKeyboard to start the game,
use the C and E buttons to move and the D key to shoot the aliens!

Step 4 — Success!

Voila! Time to have some old fashioned arcade fun with your new space shooter. What

highscore can you reach?

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 23. case 21 Flappy Bird

23. case 21 Flappy Bird

-
FLI¥BIRD GAME
1

‘ g

il

Take flight and achieve your pipe dreams with your own version of the notoriously

challenging Flappy Bird game, using nothing but a micro:bit (no extras needed) and some
Python code.

Made by Cheryl from Raffles Institution. Warning: heavy dosage of bird puns included.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

23.1. Goals

We're going to create a full-fledged interactive game on your 5x5 LED screen, playable for
ages 9 days to 90 years old. In the process, you'll learn how to: First step is to import the
micro:bit library into Python. Then, let a ‘READY’ message scroll across the screen and initiate
countdown that shows when the game starts.

e Line 1: This imports the micro:bit program.

e Line 4: This initiates the ‘READY’ message that scrolls across the screen. Double
qguotation marks indicate a string (in this case ‘READY’).

e Lines 5-10: This flashes each number on the screen for 1 second (or 1000 milliseconds,
the measurement involved) by using the sleep() function.

e Line 11: clears the screen for us to draw the bird and walls later on.

Note:
It's always good to add comments to explain your own code for others or yourself to

understand when coming back to it. You add a comment with ‘#. Also space out your code
when necessary to indicate different segments that do different things.

23.2. Materials

e 1 x BBC micro:bit
e 1 x Micro USB Cable (Seriously, that’s all you need.)

23.3. Why Python?

e Reads like English - Python is one of the easiest languages to read, which makes it such a
fantastic beginner’s language.

e Versatile - Python is industry standard for good reason. It can be used to do so much.
This is why Google and YouTube utilise the language for part of its back-end software.

e Active community - Python is one of the most popular languages for beginners. There are
tons of resources and many more than willing to help look over your code, which will
prove invaluable to helping you get over stumbling blocks in your coding journey.

Actual coding looks cooler than block-based drag-drop coding. | know it’s intimidating, but
look at these colours! (Demo of Flappy Bird on Sublime Text) How Do | Start Coding in
Python?

If you're a fledgling to programming, you probably don’t have Python lying around. Don't
worry! Just go to the official micro:bit Python editor or download the offline Python editor
mu to write code and send it to your micro:bit. You can also your own text editor (three
cheers to Sublime 3 and Atom) but you have to flash it to the micro:bit. This might turn out to
be quite troublesome. Alternatively, you can use a micro:bit simulator, which is really useful
to test code out without downloading the .hex file each time, and makes it easier to fix
errors.

Once set up, connect your micro:bit to your computer using the micro-USB cable. It should
connect to the port at the top of the backside of the micro:bit. Once ready to be flashed, the
micro:bit should light up bright yellow. Ignore this step if you’re on the simulator. Otherwise,
stop reading and set it up if you haven’t already. Don’t worry, I'll wait.

Welcome back. Without feather ado, let’s get started! A Bird’s Eye View of What We're
Doing.

The key to tackling every programming problem is to break it into bite-sized achievable bits.
Let’s look at what we'll need. Refer to the video to see a demo of the game. As we go through
the process, let’s ask what elements are within the game. A ‘READY’ message and countdown
shows when the screen starts.

Create a coordinate to indicate the bird. Move the bird around by pressing button A. Keep
track of the number of pipes the bird passes. Create walls for the bird to fly past When the
bird collides with a wall, the game is over. You might already know how to do some of these.

http://www.python.microbit.org/
https://codewith.mu/
https://create.withcode.uk/

Try covering these steps on your own first. If necessary, break the steps down further into
smaller steps. There are also game checks which should be the progress you've made by that
step. Use these to make sure you're on track.

23.4. How to Make

Step 1 — Hello, World!

from microbit import *

display.scroll("READY")
display.show("3")
sleep(1000)
display.show('2")
sleep(1000)
display.show("1")
sleep(1000)
display.clear()

1
2
3
4
5
6
7
8
9
0
1

ol

First step is to import the micro:bit library into Python. Then, let a ‘READY’ message scroll
across the screen and initiate countdown that shows when the game starts. Line 1: This
imports the micro:bit program Line 4: This initiates the ‘READY’ message that scrolls across
the screen. Double quotation marks indicate a string (in this case ‘READY’) Lines 5-10: This
flashes each number on the screen for 1 second (or 1000 milliseconds, the measurement

involved) by using the sleep() function. Line 11: clears the screen for us to draw the bird and
walls later on. Note: It’s always good to add comments to explain your own code for others
or yourself to understand when coming back to it. You add a comment with ‘#. Also space
out your code when necessary to indicate different segments that do different things. What
you're doing is applying functions to the object display such that the LCD screen lights up. In
Python, you also have the flexibility of slowing down the scrolling rate of text in line 4.
display.scroll(“READY”, delay = 200) scrolls the text twice as fast and display.scroll(“READY”,
delay = 800) scrolls the text at half the speed. The standard delay setting is 400. Increasing
the value decreases scroll speed and decreasing the value increases scroll speed.
Congratulations! You finished the pre-game message! Next, we have to actually set up the
game for the user to play.

Step 2 - Fly, Birdie!
y —

while

led_y = int(y / 20)
display.set_pixel(1, led_y,
sleep(20)

Next, we have to create the image of the bird. For those who never analysed the game,
Flappy Bird only allows the bird to move upwards and downwards, and pushes it at a
constant speed towards the walls. Of course, our screen only has 5 rows of LED so it’s quite
limited. To make the bird-flapping more realistic, we'll be splitting these 5 segments into 100
different positions. This gives us more flexibility when adding speed of descent later on. In
this case, the top of the screen is position y=0 and the button is position y=99 so there are
100 positions. The start position is y=50. Line 13: This sets the start position of the bird right
in the middle, as y=0 is the top and y=99 is at the bottom. Line 17: This determines the actual
position of the bird on screen, since there are 100 positions and 5 LED rows. Hence, you
divide the value stored in variable y by 20 so you scale the bird down onto the screen Line
18: This displays the bird on the screen using the display.set_pixel function, which has 3
parameters: X, y and brightness. The x-coordinate is 1 so it will appear in the second column.
The y-coordinate is presently 2 because we divided 50 by 20 and rounded it down. That’s the
third row. (Note: Indexes begin at O usually for computer programming, so you have rows 0-4
from above to below and columns 0-4 for left to right.) Brightness can be any integer from O
to 9, with 9 being the brightest. In this case, 7 will suffice to avoid eye-strain. We add a while
loop to tell the micro:bit to keep repeating the block of code that is indented. (Python uses
indentations to separate code.) The sleep code tells the micro:bit to run this loop every 20ms
so it makes your game far more manageable and makes sure your CPU doesn’t work too hard
and crash the browser, which would otherwise happen. Game check: At this point, a welcome
message should appear, then disappear for a bird to appear.

Step 3 — Leaving The Nest

y:
speed =

while :
display.clear()

speed +=
if speed > 2:
speed =

y += speed
if y > 99:
y:
ify<9:
y:

led_y = int(y / 20)
display.set_pixel(1, led_y, 7)
sleep(20)

The previous step only created the bird image, but it still can’t move! This is what we will do
in the next step, by simulating realistic gravity. Firstly, let's add a new variable 'speed’ right
below the y-coordinate. Shift the display.clear() into the while loop such that it no longer just
clears the welcome message, but also clears the old position of the bird, as it runs before the
new position is set each time Lines 25-29: This sets a new y-coordinate of the bird within the
borders (max y=99, min y=0), based on the ‘gravity’ acting at that point. Why place it all in
the while loop? WEell, you want this block to continually update the position of the bird every
few milliseconds (20 to be exact) so this block will keep repeating itself Terminal velocity: to
make the motion of the bird more realistic, speed reaches a constant rate of 2, but only after
two iterations of the code whereby speed = O becomes speed =2. The if function ensures
that speed does not increase beyond 2. You can play around with this to vary the speed of
bird descent.

Step 4 - Defying Gravity

y:
speed =
score =

while :
display.clear()

if button_a.was_pressed():
speed = —

if button_b.was_pressed():
display.scroll(+ str(score))

Now, we have to get the bird to hop by pressing button A. In this step, we also include a new
‘score’ variable to track the number of walls that the bird flies past. This can be accessed at
any point using button B. To react to key-pressing of A, run ‘button_a.was_pressed()’ under an
if-loop like in line 21. If, during that iteration, the A button was pressed at any time, we bring
the bird up, reset the falling rate, then let it accelerate back down to the ground, giving the
falling and flapping motion. Change the value of speed on flapping, which is currently -8, to
see the visual changes to rate of bird’s descent. Add variable ‘score = 0’ to set new variable
score to O, underneath the speed and y variables. As a coding habit, try to set all your
variables in one place, above the code that uses it so it's easier to follow, and actually can be
inputted for use. Show score when button B is pressed by creating an if loop similar to button
A. display.show(score) shows the score at any point in time. We’'ll learn to vary and count the
score after each wall-passing later. Game check: Welcome message appears, disappears, then
bird appears that falls down. Press A for it to flap upwards and B to check the score, which
should remain at O right now.

Step 5 — Pipe Blaster

def make_pipe():
i = Image(
gap = random.randint(9,3)
i.set_pixel(4, gap, 0)
i.set_pixel(4, gap+l, 0)
return i

i = make_pipe()

while

display.show(i)

We're going to create our first pipe using a make_pipe function! Then we’ll assign it to
variable i, and show pipe within the while loop. | know it's complicated, but it'll also be the
start of owl/our game finally looking complete! Functions are blocks of code that are run

conveniently under the function name. By calling a function, we can run the entire block of
code within it. This makes it easier to understand what we're doing at each step. In this case,
we'll name our function make_pipe() which runs code to make a new pipe each time. Let’s
break down what each step of the make_pipe() function does At line 19, we define the
function using def make_pipe(): - the indented blocks beneath make up the function At line
20, a custom image is drawn, with the ‘0’ indicating O brightness for each coordinate, starting
from row 1, column 1 then row 1, column 2 and so on. This basically lights up the LED of the
entire last column with the brightness of 4. (You can tweak this as you like. | personally like
for the bird to be clearly brighter than the wall so you can identify its position.) At line 21, we
use the random library to call a random number between and inclusive of O and 3. This
means 0, 1, 2 and 3. We don't use 4 because we blast two holes, one which is gap+1. If 4 was
selected, we would blast a hole in column 4, row 5. But there’s no row 5 so an error is
returned. We have to return this image so that it can be called as the value of i later on. The
hole is blasted by setting the LED brightness for the gap position and the LED above it to be
zero. Pretty cool, eh? That’s your first function. Good job! Note: always define the functions
above the actual code, beneath the variables. This is just a convention, but it makes your
program readable! Let’s assign variable i to the function, as per line 27. Now, in the while
loop, if we add a display.show(i), the display now shows the pipe (and hole) i. Persevere!
We're nearly there. Now, we just have to get the wall moving, count scores and react to bird-
wall collisions. Game check: Same as step 4, and now there’s an unmoving wall with holes!
Check earlier steps if something has gone afowl.

Step 6 — Frame Rate

DELAY =
FRAMES_PER_WALL_SHIFT =
FRAMES_PER_NEW_WALL =
FRAMES_PER_SCORE =

def make_pipe():
i = Image(
gap = random.randint(@,3)
i.set_pixel(4, gap, 9)
i.set_pixel(4, gap+l, @)
return i

i = make_pipe()

while
frame +=

This step is where we set up the game constants. Here, the frame variable starts at O, then
increases by 1 every 20ms so it takes 400ms or 0.4s for the frames variable to increase by
20. Remember this, it'll be easier for the incoming math. These constants aren’t used until
Step 7, but let’s set them up first. Line 15 just indicates the time taken (in ms) for frame to
increase by 1, which is added as part of the while loop in line 37 (frame += 1). You can change
the sleep(20) at the bottom of the code to sleep(DELAY) so it corresponds. Line 16 sets the

time taken for the wall to shift by 1 column. This is currently 0.4s or 20 frames. Line 17 sets
the time between the occurrence of another wall. This is currently 2.0s or 100 frames. Line
18 sets the time between the score increasing. This should always be equivalent to the
FRAMES_PER_NEW_WALL value so that each wall you pass is equivalent to one additional
score. To make the game harder, you would adjust these game constants, perhaps reducing
the distance between each new wall for more walls (but change FRAMES_PER_SCORE to
correspond to it). The game is currently set for one wall on the screen at any time, but you
can definitely make it more chaotic by playing around with the values. Note: The game
constants are in uppercase, differentiating them from the other variables used. These are just
standard rules for Python programming. It'll still work without following it, but your code
should follow conventions to be readable.

Step 7 — Pipe Dreams

led_y = int(y / 20)
display.set_pixel(1, led_y, 9)

if frame % FRAMES_PER_WALL_SHIFT ==
i = i.shift_left(1)

if frame % FRAMES_PER_NEW _WALL == 0:
i = make_pipe()

if frame % FRAMES_PER_SCORE == 0:
score +=

sleep(DELAY)

Here, we will compare the frame value with game constants to move the wall left, create a
new wall and increase the score. This is all within the while loop so it's checked every 20ms.
Ready? Let’s go. At this step, we'll use the modulo sign (%). This provides the remainder when
a number is divided by another number. So 4 % 2 returns O but 4 % 3 returns 3. Here, we'll
use it to check that the frame variable is equal to any of the game constants. Moving wall
left: Look at lines 65-67. This means the wall shifts when the frame is equal to 20, 40, 60...
since they're divisible by FRAMES_PER_WALL_SHIFT value of 20. You can vary this to make
the walls move faster and increase the difficulty. Currently, the walls move every 0.4s.
Creating new wall: Look at lines 69-71. Every 100 frames, or 2 seconds, a new pipe is made
by calling the make_pipe() function for i. This is the constant used to create and move the
wall. Increasing the score: look at lines 73-75. This means that a point is added when the bird
travels for 2 seconds, or 1 wall. This value corresponds with the distance between walls so
each wall passed is one point. Game check: The game should be almost fully playable, with
the welcome message, then the bird moving by pressing button A. You can see score with

https://www.python.org/dev/peps/pep-0008/

button B. There's gravity acting on the bird so it falls down over time. Then the walls created
randomly move right past it. Wow, you're nearly done! Now, we just have to react to pipe
collisions, ending the game and revealing the score when the bird collides with any pipe.

Step 8 — Collision Course

led_y = int(y / 20)
display.set_pixel(1, led_y,

if i.get_pixel(1l, led_y) !=
display.show(Image.SAD)

sleep(500)
display.scroll(+ str(score))
break

if frame % FRAMES_PER_WALL_SHIFT ==
i = i.shift_left(1)

Phew, you made it to the last step! Ready to wing it? Now, we just need to add a collision
reaction. This uses a get_pixel function that returns the LED brightness value at that position.
‘1= the NOT function is also used. Let’s explain how it’s used below. Add this collision
checking code to the while loop, between the bird-drawing and wall-shifting. This means it
checks for collision before new walls are created so there’s no extra scores by error. As
shown in line 66, we use an if loop. ‘i.get_pixel(1, led_y) != O checks if there is a pipe in the
position of column 1 (where the bird is), specifically at led_y, the displayed position of the
bird. If there is a pipe pixel in the same position as the bird’s coordinates, the i.get_pixel(1,
led_y) returns 4, the brightness of the wall. This is NOT 0 so the function beneath, the
collision checker, runs Line 67-68 display the in-built sad face image for 0.5s. You can change
how long this lingers, and to whatever other image you like. Python has a lot of images you
can input. You can find the entire list here. Line 69 displays the score as a string, behind
“Score”. Line 70 ends the while loop so the game ends. This means that it's ‘game over’.

Start Game!

And... that’s it! You're done. Your game should be able to run and end, revealing the score at
the end. It's now a full-fledged frustratingly simple yet challenging game. Pat yourself on the
back! That was a lot of hefty coding and new concepts. Look through your code, and try and
figure out what each line. Add comments to explain it to yourself if necessary. This is a good
practice for you to easily read your own code when coming back to it months later.

Good job! Have fun frustrating your friends with this novel interface for the annoying game.
Now, you're free as a bird to look for other projects, with a better understanding of the
Python code. Extension: Add a game loop, such that you can play again without resetting the

http://microbit-micropython.readthedocs.io/en/latest/tutorials/images.html

device. | suggest changing the while loop’s requirements from True to a certain variable, a
play_again function which can be changed with the press of a button. Look at other Python
game loops for inspiration, like a scissors, paper, stone game.

Docs » Tinker Kit » 24. case 22 Wire Transmission

24. case 22 Wire Transmission

microbit
.

-Transmit

Receive

h Y o
S

-Transmit

Communicate between two micro:bits using Morse code, fishing line, a servo and a sensor!
Why use micro:bit’s radio when this is so much cooler?

24 1. Goals

e Use Python to programme the micro:bit
e Use dictionaries to encode and decode Morse code
e Move the servo, and detect using the crash sensor

24.2. Materials

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 2 x BBC Micro:bit

e 2 x Breakout board

e 2 x Micro-USB cable

e 1 xServo

e 1 x Crash Sensor

e A thin string (e.g. fishing line)
e Optional: Cardboard sheet

You can't see the string in this gif, but it’s there between the servo and crash sensor!

24.3. Why Python?

e Reads like English - Python is one of the easiest languages to read, which makes it such a
fantastic beginner’s language.

e Versatile - Python is industry standard for good reason. It can be used to do so much.
This is why Google and YouTube utilise the language for part of its back-end software.

e Active community - Python is one of the most popular languages for beginners. There are
tons of resources and many more than willing to help look over your code, which will
prove invaluable to helping you get over stumbling blocks in your coding journey.

24.4. How Do I Start Coding in Python?

You can write your code in Python on the official micro:bit Python editor. To run a program,
click the download button, and drag the .hex file into the MICROBIT drive connected to your
computer.

24.5. Overview

WEe'll be using two micro:bits, one to transmit Morse code and one to receive Morse code.
The transmission of data will be done over a length of string. As the servo tugs on the string
(based on the encoded input), the crash sensor detects the tugging and decodes it from
morse code into letters. Of course, you could transmit data over the radio component of the
micro:bit, but where’s the fun in that?

24.6. Physical Assembly

Attach the servo to the cardboard sheet, and tie the string around the end of the rotor
attached to the servo. Tie the other end of the string around the metal flap of the crash
sensor. Attach the crash sensor at a distance such that when the servo turns, the string is
pulled and the sensor is activated. If you don’t have a cardboard sheet, you could tape
everything to a table. For the transmitting micro:bit, attach the servo to pin O on the breakout
board. For the receiving micro:bit, attach the crash sensor to pin O on the breakout board.

24.7. What's Morse Code?

Morse code is a type of code used to transmit text by a combination of short (“”, or “dit”) and
long (“-“, or “dah”) signals. Every letter of the alphabet and number from O to 9 has its own
Morse code representation. Letters are separated by pauses.

24 8. Transmitter

Step 1: Encoding Text into Morse Code

Suppose we are given the text “HELLO WORLD”, and would like to convert this into Morse
code. First, we need to have a ‘table’ of what each letter's morse code is, so that we could, for
example, find that “E” is “." and “W" is “.-".

We can use one of Python’s data structures, the dictionary, which allows us to associate keys

to values. In this case, the keys should be the letters of the alphabet, and the values should
be the Morse code representation of the corresponding letter.

microbit

MORSE

_CODE
[

I'clfl;
'D":
'3': ... -
'"6": naGe D/t e

'9":

message_to_send "HELLO WORLD"
encaded_message = "".join([MORSE_CODE[letter] letter message_to_send])

Here is a dictionary that should do the trick:

MORSE_CODE = {{A": “.-{ ‘B -, ‘C: -.- ‘D = B P -0 Gl =0 H L)) =K
S M OIN SO = P = QT = R S L T U LV L W
K=Y =0 == = 2 =B L A LR L e L T L) 8
=9 =l

Now that we can translate each individual letter into Morse code, we should assemble the
entire message, adding a space to the end of each letter to tell the receiver that a letter has
been sent.

Step 2: Moving the Servo based on Morse Code

Once we've converted our message into the Morse code form, the next step is to move the
servo based on the encoded message. In this case, dit will represent a 0.6s tug, dah a 1.2s
tug, and a space a 1.6s tug.

First, we need to find the correct angles for the servos that will either tug on the sensor to
activate it, or release the string to deactivate the sensor. We'll call these values press_angle
and release_angle. For this set-up, their values are 150 and 60, but this will differ based on
how you've positioned the sensor and servo.

To move the servo, we'll need to use a class, which can be obtained here. To use this class
with the online editor, copy and paste this code at the start of the programme.

For each character (dit, dah or space), we should tug on the string for the appropriate length
of time, and then release the string for a short period of time.

press_angle = 150
release_angle = 60

Servo(pin@).write_angle(release_angle)

char encoded_message:
display.show{char, wait)
char e
Servo(pin@).write_angle(press_angle)
sleep(600)
char '=':
Servo(pin®@).write_angle(press_angle)
sleep(1200)

Servo(pin@).write_angle(press_angle)

sleep(2000)
Servo(pin@).write_angle(release_angle)
sleep(1600)

24.9. Recelver

Step 1: Translating Sensor Data into Morse Code

When the string tugs on the sensor, it will press the flap down, and this can be detected
using analog input. Whenever the flap is down, the analog reading of the pin drops below a
threshold value. In this case, we'll use a threshold value of 100.

While we could use event listeners that trigger events when the flap is pressed, it'll be easier
to perform polling, which means checking the analog reading at a certain interval, in this case
0.1s.

If in a cycle, the flap is being held down, we'll increase the press_length by 100, to keep track
of how long the flap has been pressed so far. If the flap is found to be released, we can use
press_length to figure out how long the button has been pressed, and use it to determine
what character (dit, dah or space) has been transmitted. We'll add this to the variable
cur_letter, which keeps track of the dits and dahs that have been sent over so far.

cur_letter = ""
press_length = @

pin@. read_analog() < 100:
press_length 100
press_length 0:
press_length < 600:
cur_letter S
press_length < 1200:
cur_letter -t

press_length = @

sleep(100)

Step 2: Translating Morse Code into Letters

Every time a space is detected, it should take the characters (dits or dahs) detected so far,
and convert that into a letter. We'll need to use a dictionary again. This time the keys should
be the Morse code representation, and the value should be the letter of the alphabet.

Here’s the code for the decoding dictionary:

MORSE_DECODE = {'.-% ‘A, -.... ‘B, .- ‘)C, - 'D) B - =G L H T =D
LUK LRV Y MY RN =0 =P - Q) - R LS ST LU LV =
‘W, -0 =Y - == 0 = =2 =B A L L e =L
7 =8 ‘—-!19"

microbit

MORSE_DECODE = {'.-': 'A', '—-...':
R IDI, 1T IEI, = IFI,
IGI, I....I: IHI, |..|: III,
. I-]Il N IKI, N |L|lI
IMII ' INI, 1. |0|'
. IPI, [IQI, . IRI,
ISI, 11 ITI, N IUI,
V', 'a—": W', '-..-": 'X',
IYI, L' IZI,
Iell
|3|'
Iﬁl,
Igl}

cur_letter = ""
cur_char = ""
press_length = 0

display.show(cur_char, wait
pin@. read_analog() < 100:
press_Llength 1900
press_length 0:
press_length < 600:
cur_letter S
press_length < 1200:
cur_letter "

cur_letter MORSE_DECODE. keys () :
cur_char = MORSE_DECODE [cur_letter]

cur_char = "?"

press_length = 0

sleep(100)

Now, whenever a letter is detected (a space is pressed), we can look in the decode dictionary
to obtain the original letter. However, sometimes the receiver may not correctly detect the
sequence of string tugs, and so the sequence cannot be found in the dictionary. If we try to
look for a sequence that cannot be found in the dictionary, Python will throw an error and
the programme will stop executing.

Hence, we should first check if the sequence exists in the dictionary’s keys, and if it does not,
we'll set the current character to “?”. Once we have the current character, we can display it
on the LEDs, by setting the cur_char variable. At each cycle, we'll display the character
detected.

24.10. Putting it all Together

If the set-up doesn’t work flawlessly at first, that’s fine! Try adjusting the positions and
orientations of the servo or sensor, as well as the press and release angles of the servo. Also,
you can try adjusting the durations of the tugs.

Here is the full code for the transmitter and receiver.

24.11. Extensions

Although this method of data transmission isn’t used for ...obvious reasons, many concepts in
data transfer are relevant. Try to experiment with the length of string to see how long
distance can be reliably transferred, and at what point the “signal” becomes too weak to be
detected.

To boost the “signal”, a third micro:bit can be used as an amplifier that converts sensor signals
into new tugs, similar to how signal amplifiers are installed every 20km in underwater fibre-
optic cables.

Morse code certainly isn't the most efficient way to transmit data, nor is it the most reliable
way. Experiment with different types of encodings (binary + ASCIl, Hamming codes, etc.), as
well as explore some error-correcting codes to detect and fix any losses/errors in
transmission.

https://pastebin.com/Qm7ZjxHJ
https://pastebin.com/JLEkPyYS

- transmitter -

—— receiver —

crash
sensor

microbit +
breakout
board

transmitter

amplifier

receiver

Morse Code
Transmitter &
Receiver

Morse Code
Amplifier
(for longer
distances)

Docs » Tinker Kit » 25. case 23 Snake Game

25. case 23 Snake Game

‘OQ#Q?QCQO

—__—— Q. Micro:Bit
Snoke Game

Easy/Funny/Creative

R TE s SR U g N . S U S e e P SR g, S

Anyone remembers the Snake game that used to come with old Nokia phones? This micro:bit
version in glorious 5x5 resolution is easy to make and fun to play!

25.1. Goals

In this step by step guide, we will build a snake game from scratch, handling controls,
movement, win and lose conditions, as well as the drawing of the game board.

25.2. Materials

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 1 x BBC micro:bit
e 1 x Micro USB Cable
e 1x Patience (coding should take approx. 30 min)

25.3. Why Python?

e Reads like English - Python is one of the easiest languages to read, which makes it such a
fantastic beginner’s language.

e Versatile - Python is industry standard for good reason. It can be used to do so much.
This is why Google and YouTube utilise the language for part of its back-end software.

e Active community - Python is one of the most popular languages for beginners. There are
tons of resources and many more than willing to help look over your code, which will
prove invaluable to helping you get over stumbling blocks in your coding journey.

e Actual coding looks cooler than block-based drag-drop coding. | know it's intimidating,
but look at these colours!

25.4. How Do I Start Coding in Python?

If you're a fledgling to programming, you probably don’t have Python lying around. Don't
worry! Just go to the official micro:bit Python editor or download the offline Python editor
mu to write code and send it to your micro:bit. You can also your own text editor (three
cheers to Sublime 3 and Atom) but you have to flash it to the micro:bit. This might turn out to
be quite troublesome. Alternatively, you can use a micro:bit simulator, which is really useful
to test code out without downloading the .hex file each time, and makes it easier to fix
errors.

Once set up, connect your micro:bit to your computer using the micro-USB cable. It should
connect to the port at the top of the backside of the micro:bit. Once ready to be flashed, the
micro:bit should light up bright yellow. Ignore this step if you're on the simulator. Otherwise,
stop reading and set it up if you haven't already.

25.5. Six Simple Steps to SNAKE!

By breaking the code into separate portions, each aspect of the game can be tested
individually to ensure that they are all functioning as they should.

e Import libraries

e Initialize variables

e Create the main loop

e Display snake and food
e Move snake every frame

http://www.python.microbit.org/
https://codewith.mu/
https://create.withcode.uk/

e Set win and game over conditions

By checking the code constantly, we can be sure that what has been written so far is correct.

25.6. How to Make

Step 1 — Import
All necessary libraries for the project.

Since the project is a fairly simple one, we just need the default micro:bit library and this nifty
function called randint that produces the random numbers we need.

from microbit import

from random import randint

Step 2 - Initialize
All the variables we will need later.

A point on the board is represented by a list [x, y] with x representing the column and y
representing the row. The snake is a list of these points (yes, a list of lists!) as it contains more
than one point. It starts as a single pixel at the top left of the screen, denoted by [0,0]. After
which, more points will get appended to the list. The food is a single pixel positioned
randomly somewhere else (not in the same row or column).

Each direction is represented by a list containing an increase/decrease in the column, or
increase/decrease in the row (In essence, a vector). For example, right is represented by [1, O]
- an increase in the column by one, and no increase in the row. The snake is moving right by
default, which is the first option in the list of directions. For the snake to turn leftwards, we
simply go to the next direction in the list (right -> up -> left -> down -> right). For the snake
to turn rightwards, we go to the previous direction in the list.

snake = [[©,0]]
food = [randint(1,4),randint(1,4)]

directions = [[)]J[F]:[' 2]J[]]]
direction =

Step 3 — Create

The main loop.

The code within the loop repeats an infinite number of times, or until the loop is broken.
Remember, this is Python, so all subsequent lines will have to be indented.

while :

Step 4 — Display
The snake and the food.

First, we clear the display of anything that was previously drawn, so that we start with a
blank slate. Next, we draw the food particle as a bright light on the display. After that, we
loop through the snake list and draw every single pixel at medium brightness. Then, the
program pauses for 0.8 second before redrawing the screen again.

display.clear()
display.set_pixel(food[2], food[1], 9)

for i in ((snake)):
display.set_pixel(snake[i][©], snake[i][1], -(i/ (snake) *5)%5 +
sleep()

Run the code! It is important to constantly check that everything is as it should be. At this
point, there should be two pixels on the board lighting up on the board. Press the reset
button and the food particle will move to a different location.

Step 5 — Move

The snake and figure out what happens next.

next_block = [(snake[@][2] + directions[direction][2]) %
(snake[©][1] + directions[direction][1]) % 5]

2

if next_block in snake:
display.scroll(
break

snake = [next_block] + snake
if next_block == food:
while food in snake:

food = [randint(@,4),randint(o,4)]

else:
snake.pop()

The whole code should be placed on top of the previous display code. (See completed code
for reference). The first line determines the next pixel the snake will move to. Based on the
current location of the head of the snake and adding the direction (in terms of row and
column), we can find the next pixel. By obtaining the modulo 5, we can wrap the snake
around the edge of the board.

What happens if this next block is already occupied by the body of the snake? In this case, a
collision happens and the game ends. Note that break stops the while: True loop from
running.

The next block is now made the new head of the snake. Next, we check if a piece of food has
been eaten. If so, then a new piece of food should be generated. If not, the tail of the snake

should removed so that the snake is moving, not simply growing longer.

Run the code! Become infuriated as you realize that there is no way to win the game.

o o

0o FATL IOV FAERTR sl e

Step 6 — Win the game!

This code should be placed on top of the display code, but below the movement code. (See
completed code for reference). What it does it continually check if the snake contains twenty
five pixels, which is the entire board. If that is the case, the player wins!

if (snake) ==

display.scroll(
break

Congratulations!

Enjoy your fully functional snake game.

Docs » Tinker Kit » 26. case 24 Game bit

26. case 24 Game b1t

26.1. Put together the Game:bit!

e Let’s figure out where all those screws are supposed to go.

Goals

e Assemble the game:bit.
e Try not to break it.
e Helpful Hint: Toggle through pictures for each step for more photographic detail!

Materials

e 1 x Game:bit kit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 1 x Screwdriver

Step 1 — Buttons!

1. Attach the ADKeypad first with the red buttons on top.
2. Screw the 4 corners in and secure them at the back with the golden standoffs

Step 2 — Wire it up!

1. Thread the tri-coloured wire through the hole and attach it to ADKeypad. Brown to G

(ground), red to V (voltage) and orange to S (signal).

2. The colours of the jumper wires don’t actually affect how the electronics work. But it is
good practice to follow a colour convention so that you can easily identify where which
cables are attached to.

Step 3 — Wiring Firing

e e

1. Position your micro:bit at the top and on top of your shell.

2. Place a screw into the P1, 3V and GND holes of the micro:bit. We're going to
communicate with our ADKeypad through P1 of the micro:bit.

3. On the back, secure the ring terminal of the orange (S) wire from the ADKeypad to the
screw on P1 using a nut. Do the same for the red (V) wire with the screw attached to 3V.

4. Position the brown (G) wire to the GND screw but don't attach it yet!

Step 4 — Add a Buzzer

1. The buzzer has both a positive and negative wire! You can find markings on the green
bottom of the buzzer. Take note of which colour is positive (+) and which is negative (-).
The power supply capabilities and parameters, which better define how you can use the
GND and 3V rings.

2. Attach the negative wire to the GND screw above the ring terminal from the ADKeypad.
Bolt it in tight!

3. Attach the positive wire to PO of the micro:bit using the same screw and nut method.

4. Take note that the buzzer will only work with the micro:bit when you attach it to PO! You
won'’t be able to use the makecode Music blocks otherwise.

Step 5 — Battery Powered

1. Last thing to go into your game:bit will be your battery pack!

2. Add two AAA batteries into your battery pack.

3. Position your battery pack horizontally in the game:bit so that the On-Off switch is
accessible from the hole in the back.

Step 6 — Closing Time

1. Close up the game:bit and align the 4 holes at the back to the standoffs securing the
ADKeypad.
2. Screw down into the standoffs to secure the back.

Step 7 — Closing Time

1. Screw two screws into the two holes at the edge of the shell with the lock holder behind.
Secure them with nuts.

2. Repeat on the other edge of the shell.

3. The lock holder helps to hold everything together so don’t lose it! (Of course this advice is
given right at the end of the instructions)

Cool stuff!

Now you've gotten your game:bit fixed together - get your game on and start coding! Follow

along with our tutorials and make cool games like Avoid the Asteroids, Maze Runnerand
Flappy Bird.

Docs » Tinker Kit » 27. case 25 u reMorse

27. case 25 1 reMorse

27.1. p reMorse

e Make a Morse Code “Keyboard”/Editor the hard way.
QmicrobitKit\Tinker_Kit\./images/aSEﬂPU.jpg

Goals

¢ A Morse Code keyboard/Editor made using the C/C++ Micro:bit Runtime

1. Interprets a combination of short and long button presses into characters using Morse
code.
2. Send characters over the serial interface to your computer, just like a “keyboard”.

w

. Special button combinations for non-visible characters such as spaces and newlines.

4. Unfortunately, the author use unable to figure out how to send keyboard events,
hence a “keyboard” in quotes.

5. Built using only the Micro:Bit runtime in C/C++

6. Leverage the built Micro:Bit display provide an interactive typing experience.

Materials & Prerequsites

e 1 x BBC micro:bit

e 1 x Micro USB cable

e 1 x Computer with Unix Like OS
e Clanguage experience

e Command Line experience

Step 1 — Development Envrioment

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

ureMorse

Auto-updated Homebrew!

Updated Formulae

Deleted Formulae

Downloading https://homebrew.bintray.com/bottles/srecord-1.64.high sierra.bottle.tar.gz

Pouring srecord-1.64.high_sierra.bottle.tar.gz

2

ureMorse

w.microbitKit\Tinker_Kit\./images/X2ptgqgb.png

& iy A

" s
prrririten

N BLE ANTENNA
RESET ——
BATTERY —!

BEE

1. Install the dependencies to build your microbit project. Using your package manager
(brew, apt-get, pacman, ...), or any method you fancy, install yotta and srecord. Direct your
terminal to the project directory. Here you will write your code in source/main.cpp.

2. To build the program, Micro:Bit runtime program employs the Yotta build system. First we
would target the architecture of Micro:Bit by running yotta target bbc-microbit-classic-
gcc. We can now build the project with yotta build. Finally, to install the compiled program
into your microbit, plug in your Micro:Bit and find a file ending with .hex in the
build//source/ folder. Copy this file into your Micro:Bit, which should now be mounted.

3. Check out module.json where you can configure the program’s name, version, description,
source code folder ... etc.

4. Now that is quite an overwhellming amount of infomation all at once, fortunately what
you need to do would be much simpler. The author has provided a convience makefile to
handle building with yotta and installing the compiled file into the microbit.

5. To build the project, run make and to install the compiled program into the microbit, run
make install. When the micro:bit is recieving instruction, the LED on the back of the
microbit near the USB port would flash. Once installation is complete, the LED at the
micro-USB port would stop flashing and the program would run automatically.

6. To reset the Micro:Bit at any time and restart the program running the Micro:Bit, press the
button next to the micro-USB port on the back of the Micro:Bit

7. For more infomation, see the runtime documentation on setting up the development
enviroment here.

Step 2 — Hello World

1. Lets begin by writing the time tested “Hello World” program on the microbit. Copy this
into main.cpp. As usual, but different from the Arduino prototyping platform, code
execution starts from the main function.

2. First we would include the MicroBit.h to get the Mirco:Bit runtime defintions. (The
include path would be configured automatically by the build system). The Micro:Bit
program is centred around one object/instance, the MicroBit object, which you will
interact with do almost every action that involves the microbit. In this tutorial, we will
name the object “uBit". The first thing any Mirco:bit program should do is initialise the
Micro:Bit using uBit.init().

3. Now we want the Micro:Bit to scroll “Hello World!” across its screen. This is done using
uBit.display.scroll() which displays its argument scrolling across the display. Note that the
call blocks while the text is displaying scrolls across the screen.Take a look at uBit.display
for more infomation on driving the Micro:Bit’s built in display, such as non blocking calls.

4. Thats it, run make && make install with your Microbit plugged in to install the program.
Once the program is installed, “Hello World!” should scroll across the screen.

Step 3 — Buttons & Events

1. We will employ the two buttons on the Micro:Bit, namely button A & B in some

combination of clicks & holds to trigger a specific functionality.

. When something happens to the buttons on the Micro:Bit, this happening is tranlated into
an ‘event’ in to the system. Events are not simply limited to button presses. They could
represent anything from a the radio recieve a datagram or the accelerometer detecting a
change in orientation.

. To run code whenever a specific event is raised, we write an ‘event handler’, which is
simply a function that contains the code that you want to run. The function takes in an
MicroBitEvent argument, which is the event that caused the function to be run and
returns nothing.

. Micro:Bit uses messageBus as it to deliver events run registered event handlers when a
certain event happens, such when one of the buttons on the microbit is pressed, which
messageBus would call the event handler, provided that the event meets the handlers
listening criteria.

. Use uBit.messageBus.listen() to register your function as an event handler for a speicific
event criteria. Here we are registering event handlers to the buttons on micro:bit, for any
event. This means that any event that is related to the specified button would call the
event handler that was registered for that button. In an actual program, we can be more
specific like specifing MICROBIT_EVT_BUTTON_HOLD to run the event handler only if
the specific button is held down for some time.

. Note that ALL execution would cease if the Micro:Bit reaches the end of main() function,
hence, we release the main thread or this case the main “fibre” to allow the micro:bit to
process button events.

. Thats it, run it with make && make install. Once the program is installed, pressing
button(s) A and/or B should scroll “A” or “B” depending on which button you press. If you
press A and B together, you should see “AB” scrolling across the screen.

Step 4 — Registering Morse Code

Add Package... ? X

’ tinker Q

tinkercademy-tinker-kit tinkercademy-microbot

MakeCode package for modules in Tinkercademy MakeCode package

the Micro:bit Tinker Kit by for controlling the Tinkercademy

ElecFreaks and Tinkercademy Micro:bot with the BBC micro:bit
(beta)

1. Morse code is made up of a variable combination short and long signals, or in this case,
button presses.

2. Expand the ‘Advanced’ section and scroll to the bottom and click on ‘Add Packages’

3. In the search box, type in ‘Tinker’. Click on the box labelled ‘tinkercademy-tinker-kit’

4. Now you'll see something new in MakeCode - a bright green Tinkercademy category has
been added!

5. Inside this category you'll find blocks to sense button presses on the ADKeypad. Note
that importing this package only happens for the current project. So if you start a new
project and want to use the category, you'll need to re-import it.

Step 5

=== forever

|§| if (, <» key [MB] is pressed on ADKeyboard at pin [ZHED

© unplot x [VAN playery v |

(ELT-CE playery ~ Ra)Y

£ pause (ms)

¢/> key (@B is pressed on ADKeyboard at pin

[sElgI-{-0 playery v NV

pause (ms)

</> key [DJED is pressed on ADKeyboard at pin

change by

pause (ms)

</> key (3B is pressed on ADKeyboard at pin

1. Now that we have our Tinkercademy category added, we can use the ADKeypad to move
up, down, left, and right. In this example, we'll set the A button to move up, the C button
to move down, the D button to move left, and the E button to move right.

2. To do this, we use if statments. If statements test to see if a condition is true; if it is true,
then they run any blocks inside the if block. When we place an if statement inside a
forever loop, we forever test to see if the condition is true.

3. To move the player, we simply change the player x or player y variables. Remember,
decreasing or increasing playerx causes the player to move left or right respectively, and
decreasing or increasing playery causes the player to move up or down respectively.

We're constantly plotting the location of the player using these variables, so when we
change them, it automatically changes the player’s location!

4. Note that we add a short 300ms pause after each button press. Otherwise the micro:bit
would move you many spaces every time you pressed a button because it runs the code
so fast.

Step 6

sz forever

e J0- -1 1
show leds
O O .
0O O O
J J
- 0
O (

0
M playerx v -. playery -.

then Eet CITEED to |

7) o] e | | (oo aofl

then (set to |

e T e] -

W=ol=Epmlyl- once in background -

¢y start melody ba ding -

set to M)
set to N

EEE show icon D

change by

1. Now that we can move our player around, let’s start creating our maze levels! Every time
we start a level we need to do a few things: First we need to display the maze walls on
the LED display. Second, we need to forever check if the player runs into a wall (if they
do, it's gameover!). And third, we need to forever check if the player makes it to the end
of the maze level (if they do, let them know they succeeded and move onto the next
level!).

2. For each level, we're going to use a forever loop. Inside the loop, we use an ‘if’ statement
to check if the level variable equals 1. This means this code will only ever run if the level
variable equals 1.

3. Inside the if statement, we first display the maze walls. We light up LEDs to serve as maze
walls, and leave them turned off to represent the maze path. This can be done using the
‘show leds’ block. One thing to be careful about though: remember above we set the
starting position of the player? Make sure your player starting position is not inside a
maze wall! In this example, the starting position of the player is x=0, y=3.

4. Next, we need to check if the player ever runs into a wall. How to do this? Once again
we'll use if statments to check if our playerx and playery variables are ever in the same
place as a wall. We do this using the coordinate system of the 5x5 LED grid. In this
example, there are two sections of walls.

5. The first wall exists where playerx is less than or equal to 2 AND playery is less than or
equal to 2. We create an if statement with these conditions, and inside we set gameOn to
‘false’ (since if it's ever ‘true’, it means the player ran into a wall and should get a Game
Over).

6. The second wall exists where playerx equals 4 OR playery equals 4. We create another if
statement with these conditions, and inside we set gameOn to ‘false’ (because once again
if it's ever True, it means the player ran into a wall and should get a Game Over).

7. Finally, the last test we need to add is to see if the player makes it successfully through
the maze! In this example level, the end of the maze is at x=3, y=0. We create another if
statment to check if x=3 AND y=0, and inside we do a few things: First, we play a success
melody in the background. Second, we set the starting position of the player for the next
level (in this example, we use the same starting position, but it can be different!). Third,
we show a smily face to tell the player they succceeded! And fourth, we change the level
variable by 1 (this will cause the next level to display).

Step 7

=== forever

SR cancon [- [Faise -]
@ start melody repeating (SIS

set to 0N

Lo AN'SN playerx ~ IBA : (playery v |

show icon

show string Press B to restart

1. Whew, setting up a level was a lot of work! Now that we have a single level, let's make
something happen when a player gets a game over. This will happen whenever they run
into a wall, and it's tracked by the ‘gameOn’ variable.

2. Inside a forever loop, we use an if statment to check the value of the ‘gameOn’ variable. If
it equals ‘false’, then we want our game over code to run!

3. In this example, we play a sad melody in the background, reset the ‘level’, unplot the
player LED, show an angry face, and finally display a string telling the player they can
press B to restart the game.

Step 8

=== forever

s-ét playery v B¢
set to |

1. Speaking of pressing B to restart the game, we haven't yet created the code to do that!
2. Inside a forever loop, we test to see if button B on the ADKeypad is pressed. If it is, we
want to set ‘level’ to 1, reset the player’s starting location by setting the ‘playerx’ and

‘playery’ variables to O and 3 respectively, and set the ‘gameOn’ variable back to ‘true’.

Step 9

i== forever

J O
8@ 0
8@ 0
o

)

Ce

(((A
(@) if (¢ oo - o r

then Get "zameon - KoK

& (1 oo | an] |0 | eommn) el

then Getlmto (

@ if (¢ oomm el | T oomm| aadEl

then (set (EEITIIED to

7) [oo | cof | =0 | comm | en |

then (set (CEIECIND to

(&] if | r r m Mf ::|1a = m.

=W ERel, 8 once in background -

start melody ba ding -

show icon m

set to

s:ét playery v R
change by

HH -For'ever‘

OC00C0C0 &
Toecees

:CICIC

()

i la er'x v m. \ or = la er' mﬁ

then (set (CEITEIRD to

|| eomn |l | T2 comm| el |

then (set (EEITTD to |

SR i < 1

then ("set (EEITERRD to

=] T - 1

then (st to |

{
(| oo | aad] |0 comm | ani |
¢ start melody ba ding v BaE:ti=LId once in background v

set to
set to

EEE show icon D

change oy OfER)

1. Now our game should be working as intended! The only thing missing is more levels!

2. It’s quite easy to add more levels by duplicating our level 1 code from above. The only
things that will change are the maze walls and the coordinates for our if statments (for
testing if the player moves into a wall or completes the level.

3. Tip: sometimes it can be complicated to create if statements to test for every wall. In
these cases, try to break down your walls into separate rectangles and create an if
statement for each rectangle.

4. One thing to watch out for: after the player completes the level and you reset their
playerx and playery variables, make sure the position matches your next level. Otherwise
they could start inside a wall!

Step 10

=== forever

e evel (- [4

© unplet x (OEE| v (OOTTE
start melody repeating 4
show string

1. Once you're done adding in levels, you can optionally create a victory section. In this
example, once the player successfully completes the first 3 levels and level equals 4, we:
unplot the player, play a victory melofy in the background, and show a victory message!

Cool stuff!
Now that you've learned how to use the ADKeypad, you can try using it to control LEDs,

servos, and other components! You also learned about if statements which are useful in many
micro:bit projects! Try customising your maze runner game by adding more levels!

Docs » Tinker Kit » 28. case 26 Coin Sorter with micro:bit

28. case 26 Coin Sorter with micro:bit

28.1. Coin Sorter with micro:bit

e Ever just accumulate a bunch of coins in a jar and now want to sort out the giant mess
your past self should have foreseen? No? Just me? Ok well let’s build a coin sorter for fun
then, adding on an ultrasound to count the amount you have sorted. Written by Hannah
from Raffles Institution during a job attachment.

Goals %

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1. Make a simple mechanical coin sorter.

2. Learn how to wire up and use an ultrasound HC SR04.
3. Have fun!

Materials

3 5x25cm pieces of cardboard

2 25x2.5cm pieces of cardboard

2 19x26cm pieces of cardboard

2 5x19cm pieces of cardboard

6 5x5cm pieces of cardboard

1 2x5cm piece of cardboard

Jumper wires and 3 crocodile clip heads

Solder

5V battery supply or 3AA batteries and a battery holder
1 micro:bit

1 micro USB cable

1 Ultrasound HC SR04

Superglue

Hardware Step 1 — Creating the slots

1. Take a 5x25cm piece of cardboard (A) and draw a line 0.5cm away from the long edge of
the cardboard.

2. Leave a gap of 5cm from the short edge to the cardboard and draw a reference line.

3. Place a 5cm coin at the corner of these two lines and trace its edges.

4. Draw a rectangle of width which is the diameter of the coin and length 0.2cm shorter
than the diameter of the coin. Shade this rectangle to indicate that it is to be cut out later.

00 N O U

10.

11.

. Leave a 2cm gap from this rectangle and draw another reference line

. Repeat steps 3 to 5 using a 10 cents, 20 cents, 50 cents and $1 coins in this order.

. Cut out the shaded rectangles using a pen knife.

. Since the cutting of the board left some parts flatter than others, flatten the whole piece

of cardboard.

. Since the cardboard is pretty rough, there might be too much friction for the coins to slide

down. Rectified this by taping the cardboard in smooth scotch tape (p.s. The transparent
scotch tape might also have too much friction)

Measure the distance from the middle of each of the 2cm gap to the end of the
cardboard. Taking these measurements, draw reference lines on the other piece of
5x25cm cardboard (B).

Paste the two pieces of 2.5x25cm pieces of cardboard on to the edges of A.

Step 2 - Creating the front piece

1. Leave a 5.5cm gap from the edge of the 19x26cm piece of cardboard (C) and draw a
reference line.

2. Draw a rectangle at the corner of the C (within the area enclosed by the 5.5cm gap) as
shown.

3. Cut out this rectangle.

4. Draw a 5x18cm rectangle from this reference line as shown. This will be the opening to
the sorted coins.

5. Cut out the widths of the rectangle as shown to make a door.

6. Using a ruler, press in the side of the door to make it easier to bend outwards

Step 3 — Creating the side piece

1. Take a piece of 5x19cm piece of cardboard (D).

2. Create a rectangular coin slot of 0.3x3cm dimensions whose lower length is 16cm from
the bottom of the cardboard. (see picture for better visualisation)

3. Create a hole for the wires by cutting out a 1x2cm rectangle whose lower length is 10cm
from the bottom of the cardboard. (see picture for better visualisation)

Step 4 — Setting up the electronics

. Solder one male header jumper wire to a crocodile clip as shown. Insulate the exposed
wire using either electrical tape or shrink tubing.

. Repeat step 1 2 more times to create 2 signal connection wires and 1 ground wire.

. Connect the 2 signal connection wires to the trig and echo pins of the ultrasound and
pins 0 and 1 respectively on the microbit.

. Connect the the ground pin of the ultrasound and the ground of the microbit using the
ground wire.

. Paste the ultrasound to the 2x5cm piece of cardboard such that the the large flat back of
the ultrasound is flushed against the board and the pins are sticking out.

6. Connect the micro USB of the microbit.
7. Connect a jumper wire separately to the 5V and ground pin of the ultrasound.

Step 5 — Putting it altogether

1. Paste the 6 5x5cm pieces of cardboard on B on its reference lines.

2. Paste D on the right side of B

3. Paste the ultrasound about 5.7cm from the bottom of the D

4. Using tape, tape the microbit 0.5cm from the bottom of B, with its screen and buttons
facing outwards

5. Thread all the wires through the hole for the wires.

6. Paste the other 5x19cm board (E) at the back of B

7. Orientate A such that the 5 cent slot is on the right. Paste the back of A on B such that
the tip of A near the $1 slot is 9cm from the bottom of B and the 5 cent slot side is 16cm
from the bottom of B. (see picture for better visualisation)

8. Paste C to the front of the coin sorter such that A is 8cm and 15cm from the bottom of C.

9. Paste the other 5x19cm piece to the left side of the coin sorter and the last 5x25cm
board onto the top of the sorter to close the setup.

Step 6 — Powering the microbit and ultrasound

1. Attach the ground and 5V wires of the ultrasound to a 4.5V to 5V power supply
2. Power the microbit in parallel to the ultrasound using the same power supply.

3. If a different power supply is used, attach the ground wire of the microbit in parallel to the
ground from the same 5V power supply. (Sharing of the ground wire)

Software Step 1 — Calibrating the ultrasound

Add Package... 7 x

ponat a

A DEBot package Tor pt-microbl A Mcrosof MakeCode paciage to
Fandie sonar sensons and pings

Comicrochit B Proem wf Sew

T Leoogs
X Logie
B Vatisbes

E Math

b s (=
& Advanced

& Funclions

I2 Arwys

L Text

G

= images

Comicrohit B Pesos of ew

e Every ultrasound is different and the environmental conditions at your place might be
different from mine so the values | use might be different from yours. Calibration helps
you find what values you should be using in your situation.

1. Download the Sonar package for easy access to the ultrasound function.
2. Create a function to get the distance of the ultrasound as shown.
3. Create a function to show the distance that the ultrasound is sensing on the screen

4. Continuously call this function
5. Drop different coins into the coin sorting machine and record the minimum and maximum
distances you get from each type of coin.

Do make sure that the ultrasound is placed neatly vertically and is not obstructed by anything.

Step 2 — Sum of the value of the coins

(microchit B Poet o See

& Loopas
X Logc
B Varinhies
E Mah
e Sonar

o Advanced

& Funciions

IE Arwys
L Text

o T

& Images

1. Record the min and max values from above as variables.

2. Initialise the sum of the coins to be O.

3. Logically, if the ultrasound gets a reading between the min and max of a coin, the coin
that has been sorted must be of that particular value. Hence, if the reading is larger than
or equal to the min value and smaller than or equal to the max value, it is for example a 5
cent coin. Store the value of the current coin being sorted in a variable.

4. If the coin has been found, we need to increase the total sum value by its value. Create a
function that checks for and does this.

5. Continuously call this function.

6. Now we need a way to restart the sum value if we take out our coins, so go ahead and
reset the sum to O if the buttons A&B are pressed.

Good job!!!

Hopefully, you had fun building the coin sorting machine. Now, think of ways to further

develop the project... maybe add a function to see if the machine is full? Either way, enjoy *
N

Docs » Tinker Kit » 29. case 27 Make a Waving Fortune Cat

29. case 27 Make a Waving Fortune Cat

29.1. Make a Waving Fortune Cat

e Use a micro:bit and mini servo to make your very own Maneki-Neko, or Fortune Cat, who
waves its hand when you press a button!Designed and written by Tim Ho from the
National University of Singapore.

Goals

1. Make a moving cardboard cat.

2. Give cat an action which you desire.
3. Hint: Follow the steps and pictures during your building process!

Materials

e 1 x ADKeypad

e 1 x Battery Pack

e 2x Yellow LED

e 1 x Breakout Board
e 1 x micro:bit

¢ 1 x Mini Servo

Step 1 — Choose a cat

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e Find a cat image and stick over a cardboard for support.
e Choose a cat personality of your choice. Happy, relaxed or friendly!

Step 2 — Connect electronic parts

=Cc30

| 6 7, 7, o S N

Connect the following on the breakout board

1. ADKeypad to Pin ‘O’
2. Mini Servo to Pin ‘1.
3. Two LED lights to Pin ‘2’ and Pin ‘8.

The colours of the jumper wires don’t actually affect how the electronics work. But it is good

practice to follow a colour convention so that you can easily identify where which cables are
attached to.

Step 3 — Join up electronics to cardboard

g2 forever

@) if (© button [¥D is pressed
(& show leds

1. Mount the mini servo to right side of your cardboard cat.
2. Create two openings on the cardboard for the LED lights to shine through

Step 4 — Code Microbit

(. <> key 3B is pressed on ADKeyboard at pin LI5S
servo write pin to ﬂ

pause (ms) L]

servo write pin to m

pause (ms) (L]
servo write pin to n

pause (ms) L[]

digital write pin to n

pause (ms) 1000

22 forever

<> key 389 is pressed on ADKeyboard at pin
at pin
at pin

A P2 » Off ~
ol P8 v Off ~

1. Create block code in make code on the left.
2. When Button ‘A’ is pushed (Two LED lights up, Servo motor turns)

Cool stuff!

Now you've brought your cat to life. Think of a variety of movements for your cat. Enjoy and
add them on to the cat!

Docs » Tinker Kit » 30. case 28 Put together the Krazy Kar v2

30. case 28 Put together the Krazy Kar v2

30.1. Put together the Krazy Kar v2

e Got our Krazy Kar Kit and ready to get started? Follow along to put it together here. Don'’t
like instructions? Use your creativity and make a krazy octopus instead.

Goals

1. Make the Krazy Kar.
2. Don’t break anything.
3. (Or if you break anything, learn how to fix it).

Materials

e 1 x Krazy Kar Shell

¢ 2 x Continuous Servos
e 2 x Wheels for Servos
e Some x Tape

e 1 x Basic:bit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 5 x Screws
e 1 x micro:bit
e 1 x Battery Pack

Step 1 — Shell it!

e Fold up the cardboard shell where the line cuts are.

e Tape it such that the sides stand 90 degrees to the base.
e You should be able to slot the top shell (one with 5 holes) into the bottom shell now.

Step 2 — Put in the Innards.

e Insert the two servo motors into the holes at the sides.

e Behind the stabilizing rectangle is some double-sided tape. Peel off the paper and push
the rectangle in between the servos to secure them in. Stick it down well onto the base!

o Fill the battery pack with batteries and place it in the front of the krazy kar.

Step 3 — On to the Outside!

e Screw the wheels onto the continuous servo motors.

e Thread the servos and battery pack’s wire through the rectangular hole in the top shell.
And fit the top shell onto the bottom.

Step 4 — Upgrade the micro:bit

N e
'/\. S

®

S

e Screw the micro:bit onto the basic:bit using the longer screws provided. Note that the
holes should align, PO to PO and G to G.
o Affix the two servos into P1 and P2 of the basic:bit, making sure that the brown wires

goes to G and the yellow wires go to S.
e Switch the PO/Buzzer switch on the basic:bit to buzzer. If it was already there - lucky you.

Step 5 — On to the Outside!

e Using the 5 screws, fit the micro+basic:bit cyborg into the 5 holes on the top of the krazy

kar.
e Decorate decadently. And code it to get moving!

Docs » Tinker Kit » 31. case 29 Shoot Em Up Kit

31. case 29 Shoot Em Up Kit

31.1. Shoot Em Up Kit

e You've got a town to save and a dragon to shoot! This here is the formula to get your own
tabletop shooter arcade working in good form!

Goals

1. Connect all the parts of the Shoot Em Up Kit.
2. Code the micro:bit to fly dragons, detect lasers and score your player.

Materials

e 1 x Shoot Em Up Box

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x Light Sensor
1 x Servo motor
1 x Ring:bit
e 5xScrews

e 1 x micro:bit
e 3 x AAA batteries

Step 1 — Put your town in order!

e |nsert all the mountain cutouts and bushes around the path to your town.

e Fit the servo motor into the hole at the pop-up center.

e Thread the servo'’s wires into the hole and out the box at the front.

Step 2 — Attach your ring:bit

e Attach the micro:bit atop the ring:bit and screw it down with all 5 screws.

e Insert all 3 batteries into the back of the pack.
e Switch the left switch to P2 and the right switch to OFF. We'll turn it on after we've

coded the micro:bit.

Step 3 — Connect all the parts!!

()]
w
2
b A
3
T
3
Ng
ug
Q<
E E
g3
S
E:'z
]
4

) - S

Re el e e S v L

e Connect the servo to P2 on the ring:bit. And make sure that the brown wire goes to G
and the yellow wires go to P2.

e Connect the light sensor to P1 on the ring:bit. The black wire should connect to G.

Step 4 — Code it up!

COmicro:bit & Poects <@ % Blocks = JavaScript e o = Microsoft

e E F
® Input

¢y Music
O Led

.all Radio

B o X C' Loops
20 Logic

= Variables
B Math

ss Advanced

@ Add Package

@ < Download Untitled B

Step 5 — The real challenge - calibration.

® on button MY pressed
servo write pin [ZIE to

® on button I8 pressed

@j servo write pin to

Calibrate your dragon to make sure it’s flying back and forth in the sky and not face flat into

the ground repeatedly.

o With your servo firmly in place - code the micro:bit to turn your servo to O deg when
button A is pressed, and to turn to 180 deg when button B is pressed.

e Place a servo arm onto the head of the servo after pressing button A and watch to see
where it goes when you press button B. If the servo arm points too far down or to the
side, adjust the arm and reduce the angle coded. (e.g. adjust O - 180 deg to 20 - 160
deg).

e Replace the servo arm with the dragon arm at the same angle and screw it down to
secure it.

Step 6 — Calibration Part 2

® on button MY pressed
servo write pin [GEIRS to

® on button [EIES pressed

@j servo write pin to

On to the light sensor. We've got to capture the current light levels and when a laser passes
over, the sensor will alert the micro:bit that the light levels has suddenly gone way up.

e Thread the light sensor through the hole under the pop-up and to the front of the box.

e Place the light sensor into the dragon’s mouth and tape it down to secure it.

e Code the micro:bit to detect the light level through the light sensor when a button is
pressed.

Step 7 — Putting it all together.

=2 forever

for from @ to
do (@]

I
il OB e | o oft)

Now we want to be able to stop the dragon when it gets hit and also score points!

e So we should combine the two pieces of code and use an IF logic block to check if we got
hit.

e |F we get hit, then we change the icon on the micro:bit and pause for a while, before
changing back to the default icon.

e ELSE (if we don'’t detect and hits) then we allow the servo to move as per normal.

e Also - add in more blocks so when the dragon gets hit it increases a score variable.

Cool stuff!

You've killed the dragon. Now what? Add extra mountains, make it more challenging. Or
write your own story, and see what you can do with your magical micro:bit!

Docs » Tinker Kit » 32. case 30 Reaction Time Tester

32. case 30 Reaction Time Tester

32.1. Reaction Time Tester

o Test yourself with this Python-based mini-game for the micro:bit and OLED! Written by
Jensen from Raffles Institution.

Goals

1. Assemble a reaction time tester.
2. Try not to break it when testing yourself!

Materials

e 1 x Tinker Kit (or OLED display)
e 1 xBrain
e 1xYou

Step 1 — Input/Output

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

§ mmm""-’mm
.n:’,l. "II' _ﬂ' @ e e
.-Lai__,_q: 9 y.‘__-;_: g - r-_.qg:

Attach the MicroBit to the Breakout Board.
Connect the LED to pin 12, which is a digital pin.
Connect the light detector to pin 8, another digital pin.
e Brown to G (ground), red to V (voltage) and orange to S (signal).
e These tell us if light is on or off.
e Connect the OLED display to the [*2C pins. Any one set will do.
e Connect your micro:bit to the computer, and download the Mu Editor.

Step 2 — File Transfer

*

utime

random

e We need to download some modules to be used in the project.

e From This link, download the module as a zip file.

e Write the code (first screenshot) in Mu Editor to import the files.

e Be sure to have the files in the same folder as the project.

e Transfer a few of the files from your computer to the microbit.

e On Windows, be sure to put the files in a folder under users/"Username”/mu-code for
them to be detected my mu-editor.

e These files are the modules that are not originally present on the micro:bit for you to
import.

Step 3 — Loading Screens

This step isn’t really necessary , but it adds a little flair into your project.

We display this loading on the OLED module

Using the module “add_text”, we can display text and other characters onto the display
We show the animation using the function “loading_screen()”

If you want more variations of the loading screen, head down to the bottom of the post.

Step 4 — Code the Game

nds_to_walt = randc

milliseconds_to_wait
milliseconds_to _wait

e Here's the actual test itself.

e First, we have to have a time to wait before showing the indicator for the player to press
the button.

e We randomly generate the number and parse it into milliseconds by adding “000” to the
end of the number after turning the original number into a string.

e The variables timel and time2 refer to 2 arbitrary points in time before the “#” (the
indicator to the player) symbol is shown.

e One quirk about micropython and the MicroBit to note is that the time module is replaced
by the utime module, and utime has to be imported instead of time.

Step 5 — A Little More Logic

e This is the step where we calculate and display the player’s reaction time.

e This is done by calculating the time between when the indicator is displayed and when
the player presses the button.
e Then, we display the player’s reaction time to the OLED display.

AN eSSl GNA

=i
REoSoc ki Of
T: M E
iiismswv

Bonus loading effects:
e This one utilizes the light sensor and the LED to start the game.
e |t detects light and once the light is covered, the game will start.

This next animation is simple: display the characters “3”, “2” , and “1”, as a countdown before
starting the game. The code is pretty self explanatory.

Docs » Tinker Kit » 33. case 31 morse code transmitter

33. case 31 morse code transmitter

33.1. Morse Code Transmitter

o Make a simple morse code transmitter using MakeCode, micro:bits, and some crocodile
clips! This tutorial was written by Anahita from the University of California at Berkeley,
during her summer internship in Singapore.

Goals

L
L]
L]
L]
i

—

o ot
el o qu?l

1. Connect two micro:Bits together.

2. Send signals from the first micro:Bit to the second micro:Bit by pressing the A and B
buttons.

3. Receive signals from the first micro:Bit.

4. Learn how to code in MakeCode.

Materials

e 2 x micro:Bits
e 4 x Crocodile Clips
e 1 x micro USB cable

Step 0 — Preview

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

o We will be writing two sets of code: one for the sending micro:Bit and another for the
receiving micro:Bit

e In order for the receiver to know which signal is being sent, we will adjust the length of
time between when the signal turns “on” and “off”

e That way, we can differentiate the two signals by the pause length

Step 1 — Crocodile Clips

We want to send signals from pin 1 of the first micro:Bit to pin 2 of the second micro:Bit (and
vice versa)

Connect:
1. GND to GND
2.3V to 3V

3. Pin 1 to Pin 2
4. Pin2toPin1l

Step 2 — Sender: button A

g2 forever

@) if (© button [¥D is pressed
(& show leds

We want a signal to be sent when the A button is pressed. Let’s make this one the “dot”
signal.

. Open up MakeCode and name this file “Sender”
. Drag and drop an if-then-else block from the Logic drawer to the Forever block
. From the Input drawer, attach a button A is pressed block to the if section

N WO N R

. From the Basic drawer, attach a show led block in the then section to display the “dot” on
the sender screen

5. Add a digital write pin block from the Pins drawer (under Advanced) and set it to 1(This
means the signal will turn “on”;Make sure to change it to p1 since that’s where we
attached the clip)

6. Add a pause block from the Basic drawer and set it to 230 ms(This pause will be
associated with the “dot” signal)

7. Add another digital write pin block and set it to O(This means the signal will turn “off”)

8. Add another pause for 50 ms just to give it some time

Step 3 — Sender: Button B

else if || @ button BED is pressed

then [@ show leds

We want a “dash” signal to be sent when the B button is pressed.

1. Add an else if block to the if-then-else block from earlier

2. Repeat the steps as with Step 2, except (Use button B is pressed,Display a “dash” in the
LED,Pause for 470 ms)

3. Add a clear screen block from Basic or an icon to the else statement

Step 4 — Receiver: detecting the signal

gz forever

(T
while [(" g digital read pin (Z33 :B
do (& 1 (keyDownTime

then |:5ét LEDETEED to ([@ running time (ms)

We want to record the duration of time between whenever the signal is received and when it
stops. We will be using the running time (ms) block for this.

1. Create another project on MakeCode called “Receiver”

2. Drag a while loop from the Loops drawer

3. From the Logic drawer, attach an equals sign block to the while loop

4. Attach a digital read pin block to the equals sign block and set it equal to 1(This means
that a signal is being detected;Make sure to change it to p2 since that’'s where the
crocodile clip is)

5. In the Variables drawer, make a variable called “keyDownTime”

6. Attach an if-then block to the body of the while loop

7. Attach a not block from the Logic drawer to the if statement and then attach the
keyDownTime variable to it

8. You can find the running time (ms) block by searching for it in the search bar

Step 5 — Receiver: displaying the signal

[set CITECIID to | (7 o running time (ms) | EED DI |
RN Giration] < L 250 |
then [@ show leds

]
|
e

L

else if |

We want to display the correct signal on the screen.

1. Drag and drop an if-then block underneath the while loop and attach the keyDownTime
variable to it(This is so that this block of code will only run if a signal has been detected)

2. Create another variable called “duration” and set it to be the difference between running
time and keyDownTime(The minus operation is under the Math drawer,This variable tells
us how long it’s been since the program started running and when the signal was
detected)

3. Drag an if-then block and attach a less than block from the Logic drawer and make it so
that it's duration < 250(We chose 250 ms since the “dot” takes 230 ms)

4. Display the “dot” led in the body of the if statement

5. Add an else if block to the if-then-else block from earlier and do the same thing as above
except the “dash” threshold is 500 since the “dash” takes 470 ms and then show the
“dash” led

6. Add a clear screen so that the screen clear after a signal comes in

7. After the first if-then block make sure to set keyDownTime to O so that it works every
time you send a new signal

Done!

Make sure to flash the code to the respective micro:bits and test it out! It should display the
same signal on both screen when you press a button.

For an added challenge, try to translate the morse code on the second micro:bit.

Docs » Tinker Kit » 34. case 32 reclusebot

34. case 32 reclusebot

34.1. Reclusebot

o Make a reclusive robot that squeals when toggled, touched, or when it detects motion
Use the micro:bit to make a robot that squeals when it detects motion, is touched on any
of its sensors or when lifted up. Written by Shaun Toh, from the Singapore University of
Technology & Design, on his summer internship.

Goals

1. Assemble a shy reclusive robot
2. Input code to make a shy robot

Required Materials

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 1 x Micro:bit

o Batteries

e Any Box (Large enough to fit Micro:bit)
¢ PIR Sensor

o Potentiometer

o Passive Buzzer

e 2 x Female-Female Jumper Wires

Step 1 — Connect the Micro:bit parts

1. Attach the buzzer into pin O as shown. The + sign on your buzzer connects with the
yellow port on the breaker board.

2. Attach the soil moisture sensor to pin 1.

3. Connect the PIR sensor to pin 2.

4. Connect the Potentiometer into pin 3.

Step 2: Add the Tinker Kit Package

Add Package... ? x

Bearch or enter project URL... Q

devices bluetooth
Camera, remote control and other Bluetooth services
Bluetooth services
neopixel
AdaFruit NeoPixel driver
Add Package... ? x
tinker kit Q

tinkercademy-tinker-kit

MakeCode package for modules in
the Micro:bit Tinker Kit by
ElecFreaks and Tinkercademy

1. We will need to add a package to the code editor to enable to use the kit components.
Click on the advanced in the micro bit text editor and you will see a section that says Add
Package.

2. This will open up a dialog box. Search for Tinker Kit. Click on the search icon or press
enter, then select tinkercademy-tinker-kit.

3. This will add two libraries: Tinkercademy, for general-purpose sensors found in our kit,
and OLED, for the OLED module (ours has a height of 64 and width of 128). We're not
using the OLED module in this tutorial, but you can!

Step 3 — Start Coding!

22 forever
T = T S | : W
@ if [' @ acceleration (mg) '
Pedins i e R B G B T R B S e |

then E.".'} play tone High A# [Riels

2 T

P
then u;i play tone High A# Bl

@] if [, ¢» motion detector at pin detects motion

2 T

then Lﬁ play tone High A# BEfls

- @ analog read pin [GEIED

then E’; play tone High A# [Rils 2 v

Put on the Micro:bit code- Coding your reclusive robot. Your program consists of a few “if”
statements. We want the robot to only react to four conditions.

1. The first condition is the robot being picked up.

2. The second condition is someone touching the soil moisture sensors.
3. The third condition is if the robot detects movement in front of it.

4. And the last condition is someone toggling the potentiometer.

You're Done!

You have finished building all components needed to make a reclusive robot that makes a
sound whenever someone surprises it! Place it into any box you large enough to contain the
components while leaving some of them sticking out, and you have your very own recluse
bot! Feel free to dress it up, but take care or it'll start squealing in surprise!

Docs » Tinker Kit » 35. case 33 access denied

35. case 33 access denied

35.1. Access Denied! A Door Entry Tutorial

e Enhancing door security with micro:bit. This tutorial was written by Sean Lew, from the
Singapore University of Technology and Design, during his summer internship with us in
2018.

Goals

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

-y A00BR4
S 1401

i ?‘-" 148867
-k {H48

T

1. Build your own wireless door security!
2. Setting up alerts for any intruders or unlocked doors!

Required Materials

e 2 X micro:bit

e 1 x Breakout Board
e 1 x Crash Sensor
e 1 x Buzzer

Step 1 - Setting Up!

Add Package... ? x

tinker Q

tinkercademy-tinker-kit tinkercademy-microbot

MakeCode package for modules in Tinkercademy MakeCode package

the Micro:bit Tinker Kit by for controlling the Tinkercademy

ElecFreaks and Tinkercademy Micro:bot with the BEC micro:bit
(beta)

1. Slot one of the micro:bit into the breakout board.

2. Connect the Buzzer to Pin O of the breakout board and the crash sensor to Pin 1.

3. Before moving on to Step 2, make sure you download the “tinkercademy-tinker-kit”
package.

Step 2 — Code away!

on start
</> Setup crash sensor at pin (ZHE3

.l radio set group m

forever

radio send number

22 show icon

play tone High B Bilg

¢/> crash sensor pressed

show icon .v

1. Drag these set of codes into your makecode platform and download it into the micro:bit
connected to your breakout board.
2. Give the crash sensor a few press to see if your code is working correctly!

Step 3 — Almost there!

forever

=2 show 1con EI' radio set group m

1. Download this set of codes for the second micro:bit (receiver).
2. Now give test out the crash sensor to see if the receiving micro:bit is working correctly!
3. Now that you have set up your very first wireless door security, you can try it with more

than just 1 door!
4. Feel free to also add add other form of alerts on the receiving micro:bit to enhance your

own security.

Docs » Tinker Kit » 36. case 34 micropython

36. case 34 micropython

36.1. Getting Started
Pre-coding:

e Get hold of a Micro:bit Tinker Kit
e Download the Mu editor Mu editor

36.2. Project 01: Music Machine

Pin Layout

e Buzzer: PinO
e ADKeypad: Pin2

Small note about the ADKeypad

The ADKeypad returns an analog signal when its buttons are pressed. Each button pressed
would return a unique integer value ranging from O (meaning OV) to 1023 (meaning 3V).
However, it is not uncommon that each button would give a small range of values when
pressed at different times and different ADKeypads might give different signals yet again.
Hence, in this example code, we provide a range of possible values that your ADKeypad'’s
buttons are likely to return when pressed. Feel free to test out the values that your
ADKeypad might return when pressed and change the values in the example code. * ~

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html
https://codewith.mu/

from microbit import #
import music

#pins
ADKeyboard_pin = pin2
Buzzer pin = pin@

while True
#buttonh
if ADKeyboard pin.read_analog()>® and ADKeyboard pin.read_analog()<18:
music.play('f3:4', pin = Buzzer_pin)

#buttonB
if ADKeyboard pin.read_analog()>45 and ADKeyboard pin.read _analog()<55:
music.play('g3:4', pin = Buzzer pin)

#buttonC
if ADKeyboard pin.read _analog()>90 and ADKeyboard pin.read _analog()<18@:
music.play('a3:4', pin = Buzzer_pin)

#buttonD
if ADKeyboard pin.read analog()>136 and ADKeyboard pin.read analog()<139:
music.play('b3:4', pin = Buzzer_pin)

#buttonE
if ADKeyboard pin.read_analog()>»535 and ADKeyboard pin.read_analog()<545:
music.plav('c2:4', pin = Buzzer pin)

36.3. Project 02: Smart Light

Pin Layout

¢ PIR Sensor: PinO
e LED: Pinl

from microbit import *#

#pins
PIR _pin = pin®
LED pin = pinl

while True:
if PIR Sensor detects motion, turn on LED
if PIR pin.read digital():
LED pin.write digital(1)
else:
LED pin.write digital(e)

36.4. Project 03: Electro-Theremin

Pin Layout

e Buzzer: PinO
e Potentiometer: Pinl

from microbit import *
import music

#pins
Potentiometer_pin = pinl
Buzzer_pin = pin2

values for mapping
highest_p_note = 1823
lowest_p_note = 1
highest_note = 988
loviest_note = 131

potentiometer_note = @
modified_note = lowest_note

#modify the note

def modify_note(p_value): # p is potentiometer
new_note = (p_value-lowest_p_note)/(highest_p_note-lowest_p_note)*(highest_note-lowest_note}+ lowest_note
return int(new_note)

while True:
potentiometer_note = Potentiometer_pin.read_analog()
display.show(potentiometer_note)
modified_note = modify_note(potentiometer_note)
music.pitch{modified_note, pin = Buzzer_pin)

36.5. Project 04: Simple Alarm Box

Pin Layout

e Crash Sensor: PinO
e LED: Pin8
e OLED: I12C row (at the bottom of the BoB)

from microbit import *
2| import time
2| dmport math

5 # adapted from https://github. com/fizban99/microbit_ssd13686
6 | OLED_ADDR = @x3c
cled_screen = bytearray('bYx48') + bytearray{512)

def oled_initialize():
B for ¢ in ([Bxae], [@xad], [6xd5, @xfa), [BxaB, 0x3f]), [0xd3d, @x98], [0 | exe], [PxBd, ox14], [8x20, @xea], [ox21, A, 127], [#x22, @,
] iZe.write(OLED_ADDR, b''\x88' + bytearray{c))

1
1
1
13 | def oled_set_pos{col=8, page=9):

14 iZe write(OLED_ADDR, b'\x08' + bytearray([@xbe | pagel))
15 €l, c2 = col *# 2 & @w@F, col >» 3

1 i2c.write(OLED_ADDR, b'\x88' + bytearray([&x82 | <1]})

1 iZe.write (OLED_ADDR, b'\x88' + bytearray([ox1e | c2]))

i

1

def oled_clear_screen{c=i):
28 global cled_screen
2 oled_set_posi{)
22 for 1 in range{l, 513):
23 aled_sereen[i] = @
24 oled_drau_screen()

def oled draw screen():
global oled_screen
oled_set_pos()
i2e. wreite(OLED_ADDR, oled_screen)

def oled_add_text(x, v, text):

32 global oled_secreen

13 for i dn range{®, min{len{text), 12 - x}):
14 for ¢ in range(®, 5):

35 col = @

1 far p dn range(l, 6):
17 p = Image{text[i]).get_pixel{c, r - 1}

18 eel = col | (1 <¢ r) if {p 1= 8) else col

€ ind = x # 1@ + y * 128 + 1 # 18 + c * 2 + 1

48 oled_screen[ind], cled_screen[ind + 1] = col, col
41 oled_set_pos{x * 5, y)

42 indd = x * 18 + y * 128 + 1

43 i2c.write(OLED_ADDR, b''»x4B8" + oled_screen[ind® : (ind+1}]}
a2

45 | #allow overflow to go onto the next line

A def oled_add_text_new_line(x, y, text):

a7 length_text = len(text)

48 separated_text = []

49 counter = @

num_of_lines = math.ceil(length_texts12)
letters_in_line = 12

for line in range(®,num_of_lines):

separated text.append([])

#separated text[line].append(y*({line+l))

for 1 in range(@,letters in line):
separated_text[line].append(text[letters_in_line*line+l])
counter +=1
if counter == length_text:

break

#draw letters
for 1 in range(@,len(separated text)):
oled add_text(x,y+i,separated_text[i])

Screen divided into 12 columns and 4 rows

oled_initialize()}
oled_clear_screen()

Start Simple Alarm Box Code here

#pins
CrashSensor_pin = pin®
LED_pin = pin8

#set up crash sensor
CrashSensor_pin.set pull{CrashSensor pin.PULL_UP)

#other variables
has_text = False

while True:
if CrashSensor_pin.read_digital() ==
if has text == False : #checks if oled screen has the message already, if not add it
oled_add_text_new_line(8, ®, "Your treasure is safe")
has_text = True
LED pin.write digital(1)

else:
#clear oled screen
oled_clear_screen()
has_text = False

#make LED blink
LED_pin.write_digital(e)
time.sleep(8.1)
LED_pin.write_digital(1)
time.sleep(8.1)

36.6. Project 05: Plant Monitoring Device

Pin Layout

e Buzzer: PinO
e Soil Moisture Sensor: Pin1l

e OLED: I12C row (at the bottom of the BoB)

fram micrebit import *
impert time
impert math
impert music

Adapted from https://github.com/fizban9%/microbit_ssd1306
7 OLED_ADDR = Bx3c
4| oled screen = bytearray('b\x48') + bytearray(512)

def oled_initialize():
1 for ¢ in ([Oxae], [@xad], [@xd5, Bxfe], [Bxa8, @x3f], [@xd3, Bxea], [0 | oxe], [ex8d, 6x14], [8x20, ox08], [@x21, @, 127], [@x22,
] i2c.write(OLED_ADDR, b''\x22' + bytearray(c})

1
1
1
1
14 def oled_set_pos(col=0, page=0):

15 iZc.write(OLED_ADDR, b*\x88' + bytearray([fxbe | pagel))
1€ €l, ¢2 = col * 2 & OuBF, col > 3

1 ide write(OLED ADDR, b"\x88" + bytearray([8x00 | <11))

1

1

& ide. write(OLED_ADDR, b"\x88" + bytearray([8:18 | £21))
28 | def oled_clear_screen(c=A):

21 global oled_screen

22 oled_set_pos()

fer 1 in range{l, 513):

2 oled_screen[1] = @

25 oled_draw_screen(}

2

27 def cled_draw_screeni):

28 global oled_screen

29 oled_set_pos()

L] i2c.write(OLED_ADDR, cled_screen)

12 | def oled_add_text(x, v, text):
13 glebal oled_scraen
for 1 in range(@, min(len{text), 12 - x)):

35 for ¢ in range{@, 5):

3 col = @

34 for r in range(l, 6):

38 p = Image(text[i]).get_pixel(c, r - 1)

39 col = cal {1 2¢ r) if (p !'= 8) else col

48 ind = x * 10 ¢y * 128 + 1 * 10 +¢c * 2 + 1
cled_screen[ind], ecled_screen[ind + 1] = zol, col
42 oled_set_pos(x * 5, vy}

43 indd = x * 10 + y * 128 4 1

i2c.write(OLED _ADDR, b"\xd8" + oled_screen[indd : (ind+1)])

#allow overflow to go onte the next line
def oled_add_text_new_line(x, y, text):
length_text = len(text)
separated_text = []
58 counter = &
num_of_lines = math.ceil{length_texts12)
letters_in_line = 12

4 for line in range(@,num_of_lines):

55 separated_text.append([])

56 #separated_text[line].append(y*(line+1))

57 for 1 in range(®,letters_in_line):

58 separated text[line].append{text[letters in line*line+l])
59 counter +=1

60 if counter == length_text:

&1 break

63 #draw letters

64 for i in range(0,len(separated_text)):
65 oled_add_text(x,y+i,separated_text[i])

68 # Screen divided into 12 columns and 4 rows

78 | oled_initialize()
oled clear screen()

Start Plant Monitoring Device Code here

#pins

76 Buzzer_pin = pin@
MoistureSensor_pin = pinl
78 Servo_pin = pin8

20 #other variables

] healthWarning = False

82 oled_add_text_new_line(®, ®, "Your plant is in good condition™)

84 while True:

85 if MoistureSensor_pin.read_analog() <50:

a6 if healthWarning == False : #ichecks if oled screen has the message already, if not add it

87 oled_clear_screen()

88 oled add_text new line(®, @, “"Moisture level is: ¥d" % MoistureSensor_pin.read_analog())
89 oled_add_text_new_line(8, 2, "Water your plant!")

98 healthWarning = True

91 music.play('b3:1', pin = Buzzer_pin)

93 else:

94 #clear oled screen

95 if healthlWarning == True:

96 oled_clear_screen()

97 healthWarning = False

9B oled_add_text_new_line(®, ®, "Your plant is in good condition")

Get Creative!

Mix and match the component in the Tinker Kit to create your own projects.

For a more comprehensive explanation of MicroPython, visit the official documentation here

https://microbit-micropython.readthedocs.io/en/latest/tutorials/introduction.html

Docs » Tinker Kit » 37. case 35 build your own microbit security Door

37. case 35 build your own microbit security Door

37.1. Build your own Micro:bit Security Door!

e Protect your house or valuables with a micro:bit, a servo motor, and a 4x4 keypad!
Created by Mohd Shafig from NUS.

Goals

1. Connect the wiring to interface the keypad with the microbit
2. Set your own unique password for the lock
3. Add a lock down counter in case an intruder tries to guess your password

Required Materials

e 1 x Breakout board
e 1 x micro:bit
e 1 x Mini Servo

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

e 1 x Breadboard

e 4 x4 Membrane keypad
e 3 x 5kohm resistor

e 3 x 1kohm resistor

e 1 x 10kohm resistor

e Jumper Wires

e 1xOLED

e 18.5cm x28cm Acrylic

e 1 x small Metal Hinge

Step 1 — Interfacing the Keypad

KEY4X4M01

pint

pin2

pin3

BEEx
EEEE
BEEC

fritzin

1. The membrane keypad has 16 different switches which have 16 different characters

2. The switches are grouped together by row and column for example (R1,C1) corresponds
to 1 and so on. When the controller detects a 1 at Pin 1 and Pin 5 it would mean key 1 is
pressed.This is called digital output

3. Therefore we can use the Microbit’s digital pins to interface with they keypad.However if
we do that it will be quite messy.

4. Let’s create a driver circuit for the 4x4 keypad!

5. Follow the diagram as shown:

Step 2 - Wire it Up

1. Attach the 3 pins of the Servo motor to P2 of the breakout board

2. Attach Ground (Black pin) of the Micro:bit to the 10kOh resistor

3. Attach the 3V (Red pin) to the 5k Ohm resistor

4. Attach AO (Yellow pin) to the point between the 10k Ohm Resistor and 1k Ohm resistor

Connect GND,VCC,SCI and SDA of the breakout board to GND,VCC,SCI and SDA of the
OLED respectively.

on start

O initialize OLED with height TS width

O show string Enter Password:

J show string

servo write pin (ZFEES to Rk

Step 3 — Coding the micro:bit

On start we have to:

Initialize the servo to position 180 (Locked Position)
Initialize the OLED display
Initialize a 4x1 array

Initialize the lockdown counter

® on button (X383 pressed

(chqnge N ~ 1Y

set value at to I’J@
'] um) co ol
Eﬂm set value at M TempString
if | r:ﬁlm

set value at to [B

e Button A acts as the enter character button
e Every time you press a key on the 4x4 keypad you have to press Button A in order to key
in a 4 digit Number

analog read pin GEIES

2 E't :
et LI:I show string “

tﬁuﬁr .hmt'—’ “m:ﬂ
| 1021
LI;I show string
C ST, : '-!:‘_: .:

14 C EL

‘_IZ; show string n

| set EEEERITIED to ¢ & (3%
(] oo i

[_IZI show string “

iiétﬁl' Ea to -j':cﬂ:u

" IEED | S5
i.';' <

|;| show string n

ST

[,J show string “

k_-_'
if |

‘ LJ show string “

L_E"t E ::--H-_m to [&6 E’ ”

| 7o [1coz
" Lj show string “

_set EETEIRITED to (| € 6%

1 show string
! i =
Ps

wiiE

] show string

Ljét Temnstring - I 2 bl
Llj show string -

B enstring - I < K

Llj show string -

u [TempString - RGBT 1 &2
e 1L o> |
L:l shm string _

L_et [TempString - Ravle s = EL
ST >]
Llj show string

l~‘_si_i.'fc MTempstring » Rl 7 B

Now we need to set up the micro:bit to detect the key presses!

e Each key press corresponds to a unique analog value from 0 t01023 by using the driver
circuit

e The analog value can be read using the analog read function

e The value in the character is stored in the “TempString” variable

e The code block is quite long,so the download link is provided below

® on button EES pr'ea'sed
i' set (FISIIITINED to ([(S | get value at ﬂ

4 Sccondhunber « K :| COTETmEa | get value at ol

Lﬂptm to (' gerames | get value at .
| TR

| set (TR to ((goyuymama| get value ot)]

= TXo LTI

] show string Wrong Password!

change [ESTIIEEIED by

=

] show string Initiating Lockdown I

for from @ to ﬂ
T [ockdovnCounter - Bl

then

El show number '_'I ockdo

e Button B acts as the final “Enter” button

e Pressing button B causes the program to check if the entered string is equal to “369#”
using the compare block

e If the answer is O it means that the strings are equal.lf it is 1,then the strings are not equal

e The number of wrong Attempts will increase by 1 every time an intruder enters the wrong
password

e Once 3 wrong attempts are detected,the program will enter a loop for 60 seconds

@ on button EXEEER pressed

@ servo write pin [ZEES to REELE]

e To reset the number of attempts and the characters entered,press Button A+B
e The reset button also resets the servo to the “Locked Position”

Step 4 — Build it!

1. Using a laser cutter cut out 18.5cm by 28cm of 3mm acrylic

2. If you do not have acrylic you can use cardboard instead

3. Cut out slots for the OLED as well as the keypad wires

4. Drill/poke holes forthe door hinge and use screws to fasten the door
5. Attach an ice-cream stick to the servo.This will serve as the lock

6. Glue the servo with the ice-cream stick on the other side of the door

8.9cm

I:| 0.4cm 18.5cm
1.2cm

13.9cm

I P

2.2cm

28cm

Step 5 - Demo Time!

" -
.

8

1. Each time you press a key,the corresponding character will appear on the OLED

2. To unlock the door key in 3,Button A,6,Button A,9,Button A #

3. Then press button B

4. To reset press A+B

5. If you try to enter the wrong password three times the OLED will display a lockdown
timer.You will only be able to enter the password after 60 seconds have passed.

6. Congratulations! You have made your own micro:bit door.

