
Docs » Tinker Kit » 1. Introduc�on

1. Introduction

1.1. Tinker Kit Introduction

ElecFreaks Micro:bit Tinker Kit is a set of Micro:bit accessory that enables you to connect all
kinds of modules easily without a group of messy breadboard wires.

1.2. Components

Crystal Ba�ery Box - 2 x AAA x 1

Elecfreaks Micro:bit Breakout Board x 1

Micro-B USB Cable x 1

OLED Display x 1

Mini Servo(1.6kg) x 1

Octopus PIR sensor Brick x 1

Octopus Soil Moisture Sensor Brick x 1

Octopus ADKeypad x 1

Octopus Crash Sensor Brick x 1

Octopus Passive buzzer Brick OBPB01 x 1

Octopus 5mm LED Brick OBLED - Red x 1

Octopus 5mm LED Brick - Green x 1

Octopus 5mm LED Brick OBLED - Blue x 1

Octopus Analog Rota�on Brick OBARot x 1

Octopus Crash Sensor Brick x 1

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Docs » Tinker Kit » 2. Octopus:bit Introduc�on

2. Octopus:bit Introduction

2.1. Introduction

ELECFREAKS Octopus:bit is a kind of breakout boards for micro:bit. It can lead out GPIO
port, serial port, IIC port, and SPI port on the micro:bit board. The biggest feature of
Octopus:bit is that it can switch electric level for some GPIO ports, which makes micro:bit
available to be adapted to 5V sensors.

2.2. Shipping List

1 x ELECFREAKS Octopus:bit

2.3. Hardware

Features

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Input voltage: 3.3V（powered by the edge connector of micro:bit）
Extend all of GPIO ports(P0~P16, P19~P20).
Beneath each I/O port, there are pins for VCC and GND. These pins are differen�ated by
different colors, which enable you to connect your extension module easily. The spread of
pins is fully compa�ble with Octopus series’ products.
With a voltage boos�ng module, you can shi� the working voltage of P8, P9, P11~P16
between 3.3V and 5V through the voltage switch.
Lead out serial port, I2C port and SPI port, among which I2C can connect 3 channels of
I2C devices and SPI can connect 2 channels of SPI devices.
Available for direct serial port communica�on between two breakout boards.

Application

It is suitable for all condi�ons that require micro:bit GPIO such as programming educa�on,
smart device crea�on, and so on.

Pins & Connectors

2.4. More Details

Standard GVS Port

Among the standard GVS ports, the working voltage of the yellow part（P0~P7， P10）is
3.3V, while the working voltage of the blue part（P8, P9, P11~P16）can be shi�ed between
3.3V and 5V through a voltage switch. Beneath each I/O port, there are pins for VCC and
GND. These pins are differen�ated by different colors, which enable you to connect your
extension module easily. The spread of pins is fully compa�ble with Octopus series’ products.

Voltage Switch

Sliding this switch, we can change the voltage of the blue IO ports（P8, P9, P11~P16）
between 3.3V and 5V.

You can see its working range in the below:

Serial Port

The working voltage of serial port is available to be shi�ed between 3.3V and 5V through the
voltage switch. Connect TX to P8，RX to P12. The le� pins are bidirec�onal serial port,
which can run both input and output. The right female header is a one-way output serial
port.

Note : To use this port, we have to ini�alize it according to the program in the below:

2.5. Dimension

2.6. Software

Example 1 Music Broadcast

Hardware Connection

Connect passive buzzer module to PO.

Code Example

You can download the whole program from the link here:
h�ps://makecode.microbit.org/_fAmC3WERHdR2

Download the whole program into your micro:bit, the buzzer will play Happy Birthday again
and again in round.

2.7. Relative Components

BBC micro:bit

https://makecode.microbit.org/_fAmC3WERHdR2

Octopus Bricks Series

ElecFreaks Micro:bit Tinker Kit

Docs » Tinker Kit » 3. case 01 Music Machine

3. case 01 Music Machine

3.1. Goals

Get to know the ADKeypad.
Make something with ADKeypad.
Make something with Buzzer.

3.2. Materials

1 x BBC Micro:bit Board
1 x Micro USB cable
1 x ElecFreaks Micro:bit Breakout Board
1 x Octopus Passive buzzer Brick
1 x Octopus ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Tips: If you want all components above, you may need ElecFreaks Micro:bit Tinker Kit

3.3. How to Make

Step 1

A�er connec�ng one end of the USB cable to your computer, connect the other end to the
micro:bit as shown in the picture below.Then connect the side of the micro:bit where the pins
are located to the breakout board.

Step 2

Plug in the buzzer Brick to Pin 0. Plug in the ADKeypad to Pin 2. Make sure the colour of the
wire of the buzzer and the ADKeypad follows the colour of the pins on the breakout board.

Step 3

Click on Advanced in the Code Drawer to see more code sec�ons.

To code for our extra kit components (the ADKeypad and the buzzer), we have to add a
package of code.Look at the bo�om of the Code Drawer for “Add Package” and click it. This
will open up a dialogue box. Search for “�nker kit” and click on it to download this package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 4

Next, let’s create a condi�onal statement as shown in the picture. This ‘if-then’ block of code
is under the code sec�on “Logic” of the code drawer.The code shown below means that
when bu�on A is pressed on the ADKeypad while the ADKeypad is plugged in at pin P2 of
the breakout board, the buzzer will play a sound of 175 hertz.

Since there are 5 bu�ons, we need to code 5 similar condi�onal statements. Each bu�on
controls a sound of a par�cular pitch. So press each bu�on, we will get sounds of different
pitches.

If you don’t want to type these code by yourself, you can download it directly from the link
below:

h�ps://makecode.microbit.org/_3VaHYtgxqRb9

Or, you can download from the page below:

show icon

on start

key A is pressed on ADKeyb

Low F 1 beatplay tone for

key B is pressed on ADKeyb

L G 1 b tl t f

if

if

forever

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_3VaHYtgxqRb9

Success! Now you have your own Micro:bit Music Machine.

Low G 1 beatplay tone for

Microsoft MakeCode Terms of Use Privacy Download

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 4. case 02 Smart Light

4. case 02 Smart Light

In this project, we are going to create a smart light with ElecFreaks Micro:bit Tinker Kit. It will
use Octopus PIR Sensor and LED light. When there is someone in the room and detected,
the LED will light up.

4.1. Goals

Make something with Octopus PIR sensor.
Make something which is easily to be used in real life.

4.2. Materials:

—

1 x BBC micro:bit
1 x Micro USB cable
1 x Breakout board
1 X Octopus PIR sensor Brick
1 x Octopus 5mm LED Brick OBLED - Red

4.3. How to Make

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Step 1: Components

Insert the micro:bit into the breakout board and plug Octopus PIR sensor into Pin 0.

Plug LED to Pin 1. Make sure the wire colors matches pin colors.

Step 2: Pre-coding

We will add a package of code to enable us to use our kit components. Click on
“Advanced” in the Code Drawer to see more code sec�on and look at the bo�om of the
Code Drawer for “Add Package”.

This will open a dialog box. Search for “�nker kit”, and then click it to download this package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues. You have to either follow the prompts or create a new project in the
projects file menu.

Step 3: Coding

Click on Tinkercademy inside the Code Drawer to find blocks for the components in your kit.

For this project, no ini�aliza�on is required, and there isn’t much code anyway. If you don’t
want to type these code, you can download it directly from the link below:

h�ps://makecode.microbit.org/_aFUP7wcy94sv

Or, you can download from the page below:

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_aFUP7wcy94sv

If any mo�on is detected by the PIR sensor, the light is triggered. Or else, the light is turned
off. Quite simple enough.

Step 4: Success

Voilà! You have created a simple smart light! Let’s light it up !

if then

else

motion detector at pin P0 detects motion

toggle LED at pin P1 On

toggle LED at pin P1 Off

forever

Microsoft MakeCode Terms of Use Privacy Download

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 5. case 03 Electro-Theremin

5. case 03 Electro-Theremin

5.1. Goals

Learn to use an analog sensor with the micro:bit.
Make an electro-theremin!

5.2. Materials

1 x BBC micro:bit
1 x Micro USB cable
1 x Buzzer
2 x F-F Jumper Wires
1 x Poten�ometer

5.3. Procedure

Step 1

Plug in your Buzzer to Pin0. Make sure the posi�ve lead is connected to the yellow signal pin
and the nega�ve lead is connected to the black ground pin on the breakout board.
Plug in the poten�ometer to Pin1. You can plug according to the color. Make sure that the

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

wire colors and the pin colors on breakout board are well matched!

Step 2

In Makecode, we’ll track the value of the poten�ometer using a variable. Variables are like
buckets that can hold changing values.
Make a new variable called reading (or anything you like, really) in the Variable drawer.
We want to constantly set our reading variable to the analog value of the poten�ometer
instead of the digital.
Reading the analog value allows us to access a whole range of signals from the
poten�ometer, instead of just a digital 1 or 0. Find this block in the Pins drawer.

Step 3

Check your minimum and maximum values for your poten�ometer by showing the number of
the reading variable.
Turning the knob an�-clockwise all the way gives you the minimum, and clockwise all the
way gives you maximum.

No�ce how the values jump? That’s because the micro:bit takes some �me to scroll a large
number across the screen, and by the �me you read a new value, the poten�ometer would
be way ahead!

Step 4

Now we’re going to use those values you just read from your poten�ometer to map out your
notes!
Our music blocks may not have a range as wide as your poten�ometer. In this instance, we
want to make sure the highest poten�ometer value s�ll corresponds to the highest note we
can play.
Check out the value of the lowest and highest notes in the micro:bit piano keys.
Using the map block from the Pins drawer to key in all the values.

Step 5

You may have no�ced we made another variable called note in the previous step. Make sure
you set the note variable to the mapped values. Ring the tone using the note variable. Save
these code into your micro:bit and you are ready to make some noise!

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below:

h�ps://makecode.microbit.org/_5jUeetL6oKqi

Or, you can download from the page below:

analog read pin P1

reading

reading 4 1023 131map from low high to low h

High Bring tone (Hz)

set note to

show number

set reading to

forever

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_5jUeetL6oKqi

Cool stuff!

Now you’ve learned how to play around with the poten�ometer, you can try to use it to
control LEDs, servos, and other components! And if you get your hands on another analog
sensor, you’ll know just how to use it!

Microsoft MakeCode Terms of Use Privacy Download

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 6. case 04 Simple Alarm Box

6. case 04 Simple Alarm Box

6.1. Step 0: Pre-build Overview

In this project, we are going to create a simple alarm device which will alert the owner if
someone has stolen his or her property. The red LED will blink when the crash sensor detects
that the object has been taken away. Otherwise, the green LED will light up con�nuously.
The OLED will display the status of the device.

6.2. Materials:

1 x BBC micro:bit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x Micro USB cable
1 x Breakout board
1 x Octopus LED
1 x Crash Sensor
1 x OLED
1 x LED
2 x Female-Female jumper wires

6.3. Goals:

Get to know the Octopus LED, normal LED, Crash sensor and OLED.
Make something with different types of LED
Make something with Crash sensor and OLED

6.4. How to Make

Step 1 – Components

Connect LED module to pin 1.

Connect the USB cable to the micro:bit and then to the breakout board as shown in the
picture above. Making sure that the colour of the wire follows the colour of the pins on the
break out board, plug in the crash sensor to Pin 0 and the Octopus LED to Pin 8. Lastly, plug
in the OLED as shown in the picture above. You should be able to plug it into any of the three
rows.

Step 2 – Pre-coding

We’ll need to add a package of code to be able to use our kit components. Click on Advanced
in the Code drawer to see more code sec�ons and look at the bo�om of the Code Drawer for
Add Package.

This will open up a dialog box. Search for “�nker kit” and then click it to download this
package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3 – Coding

A�er that, use blocks under the Tinkercademy sec�on to ini�alize the OLED and Crash
Sensor as shown in the picture

This part of the code allows the red LED to blink con�nuously. You can adjust the speed of
blinking by changing the pause period.

Since there are only two condi�ons, we need only one ‘else-if’ statement. When the Crash
Sensor is pressed, the green Octopus LED will light up. Or else, if no force is applied to the
Crash Sensor, the red LED will blink con�nuously.

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below:

h�ps://makecode.microbit.org/_LvC6e0UfWH7c

Or, you can download from the page below:

Step 4 – Succeed!

Let’s download code into it and run it. Let’s find a book or something else and place it on the
top of device, then see what will happen. We can see the green light illuminates as showed in
the picture below. When we take away the book or something else you placed, you can see
the red light starts to flash while the green light turned off.

5
6
7
8
9
10
11
12
13
14
15

4
3
2

 OLED.showString("Your treasure is safe")
 pins.digitalWritePin(DigitalPin.P1, 0)
 pins.digitalWritePin(DigitalPin.P8, 1)
 } else {
 pins.digitalWritePin(DigitalPin.P8, 0)
 pins.digitalWritePin(DigitalPin.P1, 1)
 basic.pause(100)
 pins.digitalWritePin(DigitalPin.P1, 0)
 basic.pause(100)
 }
})

 if (tinkercademy.crashSensor()) {
basic.forever(() => {
tinkercademy.crashSensorSetup(DigitalPin.P0)

Problems 1 

Microsoft MakeCode Terms of Use Privacy Download

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_LvC6e0UfWH7c
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 7. case 05 Plant Monitoring Device

7. case 05 Plant Monitoring Device

In this ar�cle,we are going to talk about how to use micro:bit with buzzer, OLED and
moisture sensor to build a case of plant detec�on device.

7.1. Goals:

Get to know the buzzer, OLED and moisture sensor.
Make something with a moisture sensor.

7.2. Material Needed:

1 x BBC Micro:bit
1 x Micro USB Cable
1 x Breakout Board
1 x Mini Buzzer
1 x OLED
1 x Moisture Sensor
2 x Female-Female Jumper Wires

Note: You can plug components in any sequence.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

In this project, we are going to create a plant monitoring which the buzzer will sound when
there is not enough water.

A message will always be displaying on the OLED, showing the moisture level.

Firstly, plug in the OLED. You are able to plug it into any of the three rows.

Connect buzzer to P0. Make sure the color of wire follows the pin color on breakout board.

Plug in the moisture sensor to P1.

Click on Advanced in the Code Drawer to see more code sec�ons. We’ll add a package of
code to be able to use our kit components. Look at the bo�om of the Code Drawer for “Add
Package” and click it.

At this �me, a dialogue box appears. Search “�nker kit” in the box and then click on the
“�nkercademy-�nker-kit” for downloading this package.

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

A�er that, use blocks under the Tinkercademy sec�on to ini�alize the OLED.

Since there are only two condi�ons, we need only one “else-if” statement. Micro:bit reads
values from moisture sensor con�nuously. When the moisture sensor value is less than 50,
this indicates that there is not enough water in the pot. As a result, the buzzer will sound and
a message “Water your plant” will be displayed on OLED. Else if the moisture sensor value is
larger than 50, the buzzer will be in silence and a message “Your plant is in good condi�on”
will be displayed on OLED.

If you don’t want to type these code by yourself, you can download the whole program in the
link below: h�ps://makecode.microbit.org/_DV547gK8j9ms

Or you can download from this page:

Finally! You have created a device to monitor your plant! Now, let’s try it!

1
2
3
4
5
6
7
8
9
10
11
12

OLED.init(64, 128)
basic.forever(() => {
 if (tinkercademy.MoistureSensor(AnalogPin.P1) <
 OLED.showString("Moisture level is:")
 OLED.showNumber(tinkercademy.MoistureSenso
 OLED.showString("Water your plant!")
 music.playTone(247, music.beat(BeatFraction
 } else {
 OLED.showString("Your plant is in good cond
 }
})

Problems 4 

Microsoft MakeCode Terms of Use Privacy Download

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_DV547gK8j9ms
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Download these code into micro:bit. Find a green plant and plug moisture sensor panel into
the soil and watch. When there is not enough water, the buzzer will alarm to tell you “it’s
�me to water your plant!”. And when the plant has enough water, then the OLED panel will
show you water is enough and no need to water the plant. Isn’t it very interes�ng?

Docs » Tinker Kit » 8. case 06 Intruder Detec�on

8. case 06 Intruder Detection

Swiper no swiping! Stop burglars with this simple intruder detec�on system.

8.1. Step 0 – Pre-build Overview

In this project, we are going to create an intruder detec�on system which will sound when
someone opens the door. The status of the house will be displayed on the OLED.

8.2. Materials:

1 x BBC micro:bit
1 x Micro USB cable
1 x Breakout board
1 x Crash Sensor
1 x OLED
1 x Buzzer

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

2 x Female-Female jumper wires

8.3. Goals:

Get to know the Crash Sensor, OLED and Buzzer
Make something with a OLED
Make something with a Crash Sensor

8.4. How to Make

Step 1 – Components

Insert the micro:bit into the Breakout Board and plug in the micro USB cable.

Then connect the buzzer to Pin 0 using the jumper cables. Plug in the OLED as shown in the
picture below. You should be able to plug it into any of the three rows.

Plug in the crash sensor to Pin 1. Make sure the colour of the wire follows the coloured pins
on the breakout board.

Step 2 – Pre-coding

We will add a package of code to enable us to use our kit components. Click on Advanced in
the Code Drawer to see more code sec�on and look at the bo�om of the Code Drawer
for Add Package.

This will open up a dialog box. Search for “�nker kit” and then click it for downloading this
package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3 – Coding

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

You should always ini�alize the OLED at the beginning. 64 and 128 represent the height and
width of the OLED respec�vely.

Since there are only two condi�ons, we need only one “else-if”statement.
When crash sensor is triggered, the buzzer will sound and the OLED will display the message
“Intruder Detected”. Or else, if there is no force is applied to the crash sensor, the buzzer will
not sound and the OLED will display the message “The house is safe”.

If you don’t want to type these code by yourself, you can download the whole program
directly from the link below. h�ps://makecode.microbit.org/_A0zFxqMPMXbo

Or you can download from the page below.

Download

 Microsoft MakeCode Terms of Use Privacy Download

    

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_A0zFxqMPMXbo
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Step 4 – Success!

Voilà! You have created a intruder detector!

Docs » Tinker Kit » 9. case 07 Fish Feeder

9. case 07 Fish Feeder

Tired of feeding your fish by hand? Here’s the micro:bit project for you!
In this course, we will use a ADKeypad to control the mo�on of a servo to feed fish.

9.1. Step 0 – Pre-build Overview

In this project, we are going to create a fish feeding machine. The movement of the servo will
be controlled by the two red bu�ons on the ADKeypad and the OLED will display a message
showing the status of the servo.

9.2. Materials:

1 x BBC micro:bit
1 x Micro USB cable
1 x Breakout board
1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x OLED
1 x Servo
Wires

9.3. Goals:

Get to know the ADKeypad, OLED and servo
Make something with a servo
Make something with a OLED

9.4. How to Make

Step 1 – Components

Insert the micro:bit into the Breakout Board and plug in the micro USB cable, then plug in the
OLED as shown in the picture above. You should be able to plug it into any of the three rows

Connect the ADKeypad to Pin 0 and the servo to Pin 1. Make sure the colour of the wire
matches the colour of the pins on the Breakout Board.

Step 2 – Pre-coding

We will add a package of code to enable us to use our kit components. Click on Advanced in
the Code Drawer to see more code sec�on and look at the bo�om of the Code Drawer for
Add Package.

This will open up a dialog box. Search for “�nker kit” and then click it to downloading this
package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3 – Coding

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

You should always ini�alize the OLED at the beginning. 64 and 128 represent the height and
width of the OLED respec�vely.

Since there are only two condi�ons, we need only one ‘else-if’ statement. If the bu�on A of
the ADKeypad is pressed, the servo will turn to angle 70 and the OLED will display “Loading
food”. Or else,if bu�on B of the ADKeypad is pressed, the servo will turn to angle 20 and the
OLED will display “Feeding the fish”. You can adjust the servo angle to suit your requirement.

If you don’t want to type these code by yourself, you can download the whole program from
the link below.

h�ps://makecode.microbit.org/_3HJDazbma3H4

Or you can download from the page below.

Download
    


EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_3HJDazbma3H4

Step 4 – Success!

Voilà! You have created a fish feeding machine!


Microsoft MakeCode Terms of Use Privacy Download

    

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 10. case 08 Mo�on Detector

10. case 08 Motion Detector

Don’t like people sneaking up on you? Here’s just the right micro:bit project for you! In this
course, we learn how to make use of the mo�on sensor, the moisture sensor as well as how
they can be coded for.

10.1. Goals:

Get to know the PIR Sensor Brick and moisture sensor.
Make something with a PIR Sensor Brick.
Make something with a Moisture Sensor.

10.2. Materials:

1 x BBC micro:bit
1 x Micro USB cable
1 x Breakout board
1 X Mini buzzer
1 X Octopus PIR sensor Brick
1 X Moisture sensor
2 X Female-Female jumper wires

10.3. How to Make

Step 1:

A�er connec�ng one end of the USB cable to your computer, connect the other end to the
micro:bit as shown in the picture.Connect the side of the micro:bit where the pins are located
to the breakout board.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Step 2:

Plug in the buzzer to Pin 0 (the pins beside the number ‘0’ on the breakout board) . Plug in
the moisture sensor to Pin 3. Plug in the mo�on sensor to Pin 1.Make sure the colour of the
wire of the buzzer and the ADKeyboard follows the colour of the pins on the breakout board.

Step 3:

Click on “Advanced” in the code drawer to see more code sec�ons.
To code for our extra kit components (the ADKeyboard and the buzzer), we will need to add a
package of code.

Look at the bo�om of the code drawer for “Add Package” and click it to open up a dialogue
box. Search for “�nker kit” and then click on it to download this package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Click on Tinkercademy inside the Code Drawer to find our custom blocks for the various
components in your kit.

For this project, we are going to use the blocks read value from moisture sensor and mo�on
sensor.

Step 4

In this step, we will code the Micro:bit with Block Editor. We begin by coding a star�ng
screen, by placing the “Show Icon” block under the “On Start” block as shown in the picture
on the right.
This causes the icon to appear on the screen whenever the micro:bit is powered on.

Step 5

Next, let’s create some music using the moisture sensor values.
Select the “Play Tone” block under the “Music” code sec�on and place the value of Moisture
Sensor code block in it The pitch can be adjusted by mul�plying the sensor values by
different numbers, as shown in the image on the le�.

Step 6

Finally, make the buzzer sound when the mo�on sensor detects movements. The micro:bit
will only show an icon on the screen if there is no movement.
This can be done by using a condi�onal (if-then-else) statement and inser�ng the relevant
blocks in the appropriate spots, as shown in the picture on the right.

If you don’t want to type these code by yourself, you can download the whole code directly
from the link below.

h�ps://makecode.microbit.org/_8xYPibiLdeYR

Or you can download from the page below.

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_8xYPibiLdeYR

Now save these code into your micro:bit and have a try!
Succeed! You now have your very own Micro:bit mo�on detector!

Download


Microsoft MakeCode Terms of Use Privacy Download

0

    

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 11. case 09 Lie Detector

11. case 09 Lie Detector

With this machine, the truth will never escape you! As long as you can make your subject
hold a moisture sensor for a while.

11.1. Step 0 – Pre Build Overview

In this project, we will create a simple lie detector machine, which works by measuring the
electrical conduc�vity of our skin. Upon feeling nervous, our skin’s electrical conduc�vity will
increase, and the moisture sensor can pick up on that. This allows us to determine if a person
is telling the truth or not.

11.2. Material Needed

1 x BBC micro:bit
1 x Micro USB cable
1 x Breakout board
1 x Octopus OLED
1 x Moisture Sensor

Tips: If you want all components above, you may need ElecFreaks Micro:bit Tinker Kit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

11.3. Goals

Get to know the Octopus LED and Soil Moisture Sensor
Learn basic sta�s�cs
Make something using the moisture sensor

Step 1 Components

First of all, plug in the soil moisture sensor. Match the colors and note down what pin you
plug for it will influence later procedures.

Next, plug in the Octopus LED. Any of the three slots should do.

Step 2 Pre-Coding

We’ll need to add a package of code to be able to use our kit components. Click on
“Advanced” in the Code drawer to see more code sec�ons and look at the bo�om of the
Code Drawer for “Add Package”.

This will open a dialog box. In “Add Package” text field search �nker kit.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3 Coding

First of all, ini�alize the OLED using blocks in the OLED sec�on as shown in the picture.

This part of the code allows the soil moisture sensor to measure and record down the
electrical conduc�vity between the two fingers every few seconds for about 45 seconds.
Then, it calculates the average. This is the “calm” value when the user has not told any lies.

This part of the code calculates the standard devia�on of the readings obtained in that 45
seconds. The standard devia�on indicates how different the readings were. A larger standard
devia�on means more variance in the readings. The “Math.sqrt” block square roots the given
value and was added in Javascript.

A�er the ini�al readings have been made and recorded, the moisture sensor now measures
the average electrical conduc�vity over 2.5 seconds. If it is higher than the average added to
the standard devia�on, we can conclude that the user has an abnormally high electrical
conduc�vity and is thus lying. Then, the LED screen would show an “X”shape.

To relieve your �red fingers, you can download the code below.

h�ps://makecode.microbit.org/_fadAyyh27Eo3

Or you can download from the page below.

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_fadAyyh27Eo3

Step 4 Using It

First of all, you will have to a�ach each prong of the soil moisture sensor to one of your
fingers. Personally, I found that using rubber bands was a simple and effec�ve way to do so.
You can experiment with different methods, such as using crocodile clips or tape.

Download


Microsoft MakeCode Terms of Use Privacy Download

    

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Now, turn on the device. The device will record the electrical conduc�vity of your skin under
calm circumstances. Then, it will give the average value and its standard devia�on.

A�er the ini�al readings have been made, ask again! If the person has lied, he will become
nervous and the device can pick up on that, resul�ng in a cross being displayed.

Step 5 Success!

Voila! Now you can test lies with this machine easily.

Docs » Tinker Kit » 12. case 10 PADDLEBALLSUPERSMASHEM

12. case 10 PADDLEBALLSUPERSMASHEM

Learn to program a simple yet fun game on a 5 by 5 display, using JavaScript!
PADDLEBALLSUPERSMASHEM may bear uninten�onal similari�es to other, more graphical,
games.

12.1. Step 0 – Pre Build Overview

In this project, we will create a simple game, in which you bounce a ball against a wall. If you
miss, you die. Too bad. For those of you who appreciate a challenge, the game increases in
difficulty with each level!

12.2. Goals

Get to know more about the microbit microcomputer
Learn how to program a simple game
Consider all cases

12.3. Material

1 x BBC micro:bit
1 x Micro USB cable

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

12.4. How to Make

Step 1: Components

First of all, plug the microbit microcomputer into your own computer. No other components
are required.

Step 2： Pre-coding

We will add a package of code to enable us to use our kit components. Click on “Advanced”
in the Code Drawer to see more code sec�on and look at the bo�om of the Code Drawer for
“Add Package”.

This will open up a dialog box. Search for “�nker kit” and then click on it to download this
package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, you should either follow the prompts or create a new project in the
Projects file menu.

Step 3: Coding

First of all, define your variables! We are going to need many variables to store the loca�on,
speed and direc�on of the ball, the length and posi�on of the paddle, and last but not least,
your score!

Next, we will program the func�ons that control the paddle. xb represents the posi�on of the
first pixel of the paddle from the le�, and yb represents the length of the paddle. The le� and
right func�ons control xb and shi� the paddle, and the board func�on prints the paddle on
the screen.

Next, we include the func�on that controls when the ball moves. At the beginning, the ball
moves every second but as you advance, the ball moves at shorter and shorter intervals! How
exci�ng!

We now program the func�ons that control how the ball interacts with its surroundings.
When the ball hits the side, its horizontal movement is reversed but its ver�cal movement
remains the same. When the ball hits the ceiling, it can rebound in any direc�on, to make the
game more fun.

Most importantly, we need to see if the ball hits the paddle. If it misses, you lose, displaying
your score! If it doesnt miss, the ball will also rebound in a random direc�on, and the
difficulty of the game will increase.

Lastly, we have a for loop which acts as a clock so that the ball keeps moving. Also, we have
the onBu�onPressed() func�ons that move the paddle.

Save your �red fingers and download the code from the link below.

h�ps://makecode.microbit.org/63331-03858-42547-81536

Or you can download from this page.

https://makecode.microbit.org/63331-03858-42547-81536

Step 4: Using It

Just connect the microcontroller to your computer, and run the program! Easy!

Download



 

Microsoft MakeCode Terms of Use Privacy Download

    

EditSimulator Blocks JavaScript 

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

If you score more than 12 points, you will be rewarded with a smiley face! Otherwise, the
program may not be very pleased…

Step 5: Success!

Voila! You have now programmed PADDLEBALLSUPERSMASHEM on a 5 by 5 display. You
should be proud of yourself.

Docs » Tinker Kit » 13. case 11 Avoid Asteroids

13. case 11 Avoid Asteroids

Make your own li�le arcade game on the Micro:bit, and admire its 5 by 5 pixelate glory!
This tutorial was contributed by Josh Ho from Raffles Ins�tu�on.

13.1. Step 0 – Pre-build Overview

In this project, we are going to create a Raiden-esque game using Micro:bit and an
ADKeyboard only . The aim of this game is to dodge the incoming projec�les, which increase
in speed as the game goes on, for as long �me as possible. The Micro:bit LED will be our
screen and the ADKeyboard will be the controller.

13.2. Materials:

1 x BBC Micro:bit
1 x Micro USB cable
1 x Breakout board
1 x ADKeyboard

Tips: If you want all components above, you may need ElecFreaks Micro:bit Tinker Kit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

13.3. Goals:

Make a simple game with Micro:bit.
Learn advanced programming logic.
Experiment with sprites.

Step 1： Components

The ADKeyboard is the only external component in this project. Just insert the Micro:bit into
the breakout board before connec�ng the ADKeyboard. Make sure that the colors of the
wires match the colors of the pins. Quite simple!

Step 2： Pre-coding

We will add a package of code to enable us to use our kit components. Click on “Advanced”
in the Code Drawer to see more code sec�on and look at the bo�om of the Code Drawer for
“Add Package”.

This will open up a dialog box. Search for “�nker kit” and then click on it to download this
package.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, you should either follow the prompts or create a new project in the
Projects file menu.

Step 3: Coding

Variables allow us to store data in the program. We will use it to store our scores in the game.

We will use a bu�on on the Micro:bit (bu�on B) to show the high score when the game is not
in progress. The code block “On bu�on B pressed” fulfills this condi�on, and within that
block, the variable “highscore” will be displayed.

We will use bu�on A to start the game, which will trigger the countdown. Before anything
happened, we must ini�alize the sprites in the game. Sprites are basically en��es represented
by a single LED on the Micro:bit screen. They can move around and change direc�on using
the code blocks provided in MakeCode. We will also ini�alize the variables “alive”, a boolean
which accounts for whether the player is s�ll alive, and “speed”, which determines how fast
the projec�les move. Counter-intui�vely, the lower the number, the faster the projec�les
move.

Next, we will add a while loop. A while loop will repeatedly run itself as long as the
condi�ons specified are met. In this case, only if the player is s�ll alive, the game will
con�nue to run.

Note: Be careful here! Because the while loops do have the poten�al to crash your Micro:bit.

Inside the loop, we will add a group of code which governs the control of the game – the
ADKeyboard. When the red A bu�on is pressed, the sprite will move le�. When the red B
bu�on is pressed, the sprite will move right. When the blue D bu�on is pressed, the game
will immediately stop.

A�er that, we will code for the enemy projec�le’s movement. First we will choose a random
number using the pick random block from the Math module. This number will determine
which projec�le will start moving up by 1. However, this only applies if the projec�les are on

the bo�om row, as we will have more code which determines the behaviour of the projec�les
when they are off of the bo�om row.

This bit codes for the behaviour of the projec�les when they are in mo�on already. They
move up by 1 if they are in the middle three rows, and they return to the bo�om row if they
are already at the top row.

We also have to check if the sprites are touching the player so that we can know when the
player is hit. If the player is hit, the variable “alive” is changed to “False”, The while loop will
stop looping, and the game will stop too.

Finally, we will increase the score by 1 for every loop. For every 15 points gained, the variable
“speed” will be decreased by 40, causing the projec�les to speed up. The pause controls said
speed of the projec�les.

A�er the game is over, we must delete the sprites so that they do not clog up the LED
screen.

The game will display “Game Over” on the LED screen, followed by the score a�ained. If the
score is higher than the current highscore, then the highscore will be replaced.

If you don’t want to type these code by yourself, you can download the whole program from
the link below：

h�ps://makecode.microbit.org/_i92YKmDhr9Tf

Or you can download from the page below：

https://makecode.microbit.org/_i92YKmDhr9Tf

Step 4 – Success!

Voilà! You have created your own mini video game console with your Micro:bit. Now go out
there and show your friends who’s the real boss!

Download

 Microsoft MakeCode Terms of Use Privacy Download

    

EditSimulator Blocks JavaScript 

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 14. case 12 Remote Control Everything

14. case 12 Remote Control Everything

Do you already have a micro:bit project you’d like to control from afar? Partner up with a
friend, or grab a spare micro:bit, to make a remote controlled project with 2 micro:bits. (Don’t
grab a friend’s micro:bit. Be nice.)

14.1. Goals

Enable remote-controlling for the micro:bit car from this tutorial.
Use a spare micro:bit to make a remote control for an exis�ng project!
Remote control everything!

14.2. Materials

1 x BBC micro:bit
1 x Micro USB cable
1 x Ba�ery box
2 x AA ba�eries
1 x micro:bit car OR
1 x a project you’d like to remote control

14.3. How to Make

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Step 1

Set your radio group in makecode. This ensures your transmi�er and receiver are in the same
channel. Think about the usage of each bu�on on your remote controller. Radio send a
different number with each bu�on press event block by using the blocks shown. You can find
these blocks under the Radio drawer. Download this into the micro:bit you’ll use as your
remote controller. Now each bu�on on your micro:bit remote controller will send a different
command!

Step 2

In your micro:bit car project (or the par�cular project you’re trying to remote control), add the
same radio group block to your On Start block.

This ensures the project you’re trying to remote control will listen to the right commands!

Step 3

Remember the numbers sent from our remote controller every �me we pressed a bu�on?
We’re going to use that to trigger an ac�on. Find the radio received block as shown in the
Radio drawer. Use an if-then block to check if the number you received is the number you
sent when pressing bu�on A. Take the code that turns your micro:bit car le�, and place it
within this if-then block. We have also added an led indica�on poin�ng le� just to show what
was supposed to happen. Turn off the le� servo a�erward by digitally wri�ng the pin to 0.

Step 4

Do the same to the code that turns your micro:bit car to the right! Make sure you turn the
right wheel off a�erward. You can always choose to leave the wheels on without stop a�er
receiving each command. But you’ll face with a situa�on that the car keeps spinning in
circles. Download this program into your micro:bit car.

If you don’t want to type these code by yourself, you can download the whole program from
the link below.

Remote Control: h�ps://makecode.microbit.org/_gH73AW4Dy1rP Receiver:
h�ps://makecode.microbit.org/_4am87cCWb0e9

Or you can download from the page below.

Remote Control:

12radio set group

on start

1radio send number

on button A pressed

2radio send number

on button B pressed

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_gH73AW4Dy1rP
https://makecode.microbit.org/_4am87cCWb0e9

Receiver:

Awesome!

Now that all your code is snugly tucked into your micro:bits, a�ach your ba�ery packs and
get going! Play around and see what other commands you can send with the A+B bu�on, or
try different kinds of inputs instead of bu�ons. Then remote control all your other micro:bit
projects. Woo-hoo! World domina�on without leaving your seat!

Microsoft MakeCode Terms of Use Privacy Download

Download

 Microsoft MakeCode Terms of Use Privacy Download

~0 ~0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

- -

+ +

- -

+ +

j j

i i

h h

g g

f f

e e

d d

c c

b b

a a

    

EditSimulator Blocks JavaScript 

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 15. case 13 micro:bit Car

15. case 13 micro:bit Car

Make your very own self-driving micro:bit car! (Disclaimer: It’s only “self-driving” inasmuch as
a ball rolling down a hill is “self-rolling”.)

15.1. Goals

In this project, we’re going to use the Micro:bit, Breakout Board, and Servos to make a
self-driving car!
Get to know the Servo and how to use it with the Micro:bit, Breakout Board and
MakeCode.
Marvel at how ridiculous this thing is!

Note: This ac�vity uses extra parts not found in the Tinker Kit. (Stay tuned to our Online
Store for our Car Kit !)

15.2. Materials

1 x BBC micro:bit
1 x Micro USB Cable
1 x Ba�ery Box
2 x AA Ba�eries
1 x Breakout Board

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

2 x Servo
1 x Acrylic Car Body
2 x Wheels
1 x Felt Pad
S�cky Tape

15.3. How to Make

Step 1

Connect your car parts as shown in the following pictures. If you’re using our car kit, follow
the labels on the car body to insert the components correctly with the s�cky tape.
Connect the servo connectors to Pin 0 and Pin 1 on the Breakout Board.
Note that the colours of common servo cables don’t match the yellow, red, and black colour
scheme of the breakout board exactly. Match the orange servo cable to the yellow pin, and
the brown servo cable to the black pin.

Step 2

Add the blocks shown to your On Start block. What this does? Reset the servos to fixed
posi�ons whenever we start! The Servo block (coloured red) in MakeCode takes values from
0 to 180. You can find it under Advanced, then Pins. For the con�nuous servos we’re using, a
value of 90 is right in the middle. In other words, we’re telling the servo to “stay s�ll”. We
display an image to make a visual indica�on that we’ve downloaded our code into the
Micro:bit.

Step 3

Let’s make the wheels move! Add the code shown on the right to your Forever block.
The Digital Write Pin to 0 block is also found under Advanced, Pins. What’s happening here?
We’re turning one servo clockwise (180), while turning off the other servo. Then, a�er a short
pause, we’re turning off the former servo, and turning the la�er servo an�-clockwise (0).
Remember, 90 is straight ahead! Why do we need to turn off one servo at a �me? That’s
because of ba�ery power requirements—your micro:bit has trouble in powering both servos
at once. If you’re interested, you can explore by using a DC motor with an external power
source. Or you can email us to find out more! Make sure to check that your motors are facing
the right direc�ons—you can change the travel direc�ons of the motors by swapping the 0
and 180 values.

If you don’t want to type these code by yourself, you can directly download from the link
below.

h�ps://makecode.microbit.org/_Ef87EJAepcve

Or you can download from the page below.

Download

Mi f M k C d T f U P i D l d

~0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

- -

+ +

- -

+ +

j j

i i

h h

g g

f f

e e

d d

c c

b b

a a

    

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_Ef87EJAepcve
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Succeed!

When you’re ready to run your car, a�ach your ba�ery pack to your micro:bit, and your car
runs ! Besides, you can personalise your car with some cra� material to improve its
aerodynamic proper�es! For further extension, you can also hook up an ADKeyboard to
control the motors manually, instead of having the car move autonomously.


Microsoft MakeCode Terms of Use Privacy Download

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 16. case 14 Flipping Pancakes

16. case 14 Flipping Pancakes

Do you have what it takes to flip the perfect pancake?

16.1. Goals

We’re going to create a flippy pancake game where you must flip the pancake at the perfect
�me. Too fast, your pancake will be mushy; too slow, it will be burnt! You’ll learn how to…

Use a Buzzer and ADKeypad with the micro:bit.
Use if-else statements to evaluate condi�ons.
Create your own func�on on MakeCode.
Customise your game!

16.2. Materials

1 x BBC micro:bit
1 x Micro USB cable
1 x Buzzer
2 x F-F Jumper Wires
1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

16.3. How to Make

Step 1

Plug in your Buzzer to Pin0. Make sure the posi�ve lead is connected to the yellow signal pin
and the nega�ve lead is connected to the black ground pin on the breakout board.

Plug in the ADKeypad to Pin1. Match the colours of the wires to the ones on the breakout
board!

Step 2

In Makecode, we’ll track the length of �me using two variables. Variables are like buckets that
can hold changing values.

Every �me we turn on micro:bit, a hidden �mer keeps track of how long it has been on. We’re
going to use this hidden �mer to calculate the start �me, end �me, and total length of the
game.

Create a new variable called startTime (or anything you like, really) in the Variable drawer.

When we start the game, we want to set our variable startTime to the running �me of the
micro:bit.

We also want to display a flat pancake on the screen with the LEDs.

Step 3

We want to set up the game so that when you press the A bu�on on the ADKeypad, a
pancake-flipping anima�on will be played on the micro:bit.

To do this, we need to create a func�on. A func�on is a piece of code that performs a specific
task every single �me it’s called. In this case, our task is to display the pancake-flipping
anima�on.

To create your own func�on, click on the Func�ons category and choose the ‘Make a
Func�on’ bu�on. I named my func�on ‘flipPancake’.

When you do this, a new block will be added to your screen called ‘func�on flipPancake.’ This
is where we define our func�on, i.e. what will happen whenever we run the func�on block!

In this case, we’re going to add mul�ple LED blocks inside our flipPancake func�on so it
appears as if our pancake is being tossed into the air and is wobbling as it falls back down.

Once you have your func�on defined, you can run it any�me by using the new ‘call func�on
flipPancake’ block inside the Func�ons category.

Feel free to customise your own pancake-flipping anima�on. This is just one example!

Step 4

Now we’re going to sense bu�on press on the ADKeypad. To do so, we need to import a
special package into MakeCode.

Expand the ‘Advanced’ sec�on, scroll to the bo�om and click on ‘Add Packages’.

In the search box, type in ‘�nker kit’. Then click on the box labelled ‘�nker kit’.

Now you’ll see something new in MakeCode – a bright green Tinkercademy category has
been added!

Inside this category, you’ll find blocks to sense bu�on press on the ADKeypad. This package
importa�on only happens in current project. So if you start a new project, you’ll need to re-
import it.

Step 5

Now that we can sense bu�on press, let’s create the main code for the game! We need to
calculate the �me whenever a player presses bu�on A and figure out if the pancake is mushy,
perfectly cooked, or burnt.

We start off with a forever loop. Inside the forever loop, we put an if-else statement to test if
bu�on A is pressed. If-else statement judges if a condi�on is true. If it is true, then implement
the program; if it is false, then skip it. Because this if-else statement is inside a forever loop, it
will forever test to see if bu�on A is pressed.

To do this, we’re going to check the current running �me of the micro:bit and subtract the
value of our startTime variable. This gives us the total �me the current game has been
running. We store this in another variable called totalTime (you can create this in the
Variables category).

A�er calcula�ng the totalTime, we call our flipPancake func�on! This will animate the
pancake!

Next, we need to to test the totalTime to judge if the pancake is mushy, perfect, or burnt. We
use if-else statement again for this. But in this case, we’re going to link the if-else statements
together to test mul�ple condi�ons back-to-back. When if-else statements are linked
together, only one can be run. As soon as the micro:bit finds one that is true, it skips tes�ng
all others that are linked. We can add linked if-else statements by clicking on the gear icon on
the if-else block and dragging in more if-else blocks.

In this case, we start by tes�ng if totalTime is less than 7000 (keep in mind this is
milliseconds! So 7000 milliseconds = 7 seconds). If totalTime is less than 7000, we determine
that the pancake is mushy and display a frowny face and a MUSHY message. If this first
condi�on is true, the micro:bit will skip tes�ng all the following condi�ons!

If totalTime is not less than 7000, we test if totalTime is less than 8000 milliseconds. We
know at this point that totalTime is greater than 7000. So if it is also less than 8000, we
determine that the pancake is perfect and display a happy face and a PERFECT message.

Finally, if neither of the previous two condi�ons are true, then we know that totalTime must
be greater than 8000. So we determine that the pancake is overcooked and display an angry
face and a BURNT message.

Step 6

Now that we have the game running. Let’s make it so that players can play more than once
without rese�ng the micro:bit.

To do this, we’ll reset the game when bu�on B is pressed on the ADKeypad. Once again, we
use a forever loop and place an if-else statement inside to test if bu�on B is pressed (don’t
forget to specify the correct Pin number again!).

What else do we need to do when we restart the game? In this case, all we need to do is to
display a new pancake, and reset the star�ng �me.

Step 7

Now our game is working (hopefully)! Let’s add some more fun to the game! We have a
buzzer a�ached to the micro:bit but haven’t used it yet! Note: Add this onto your exis�ng
code. It’s not a brand new sec�on!

Micro:bit has lots of pre-programmed music melodies available for us to use. Let’s add music
to our game! Here we add a different melody to each outcome of the game. For mushy or
burnt pancakes, we add sad melodies. But for perfect pancakes, we play the nyan-cat
melody!

We need to set these melodies to play ‘once in the background’, otherwise it could pause the
en�re game un�l the melody is finished playing.

Step 8

Finally, let’s add some star�ng music and a star�ng message when we first start up the
micro:bit. Note: Add this onto your exis�ng code. It’s not a brand new sec�on!

We can use the buzzer once again to play a melody (once again we want it to play ‘once in
background’). We can also display the name of the game as well!

If you don’t want to type these code by yourself, you can download directly from the link
below.

h�ps://makecode.microbit.org/_aepYrcgwLFEy

Or you can download from the page below.

Cool Stuff!

Download



 

Microsoft MakeCode Terms of Use Privacy Download

~128 0

    

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_aepYrcgwLFEy
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Now you’ve learned how to use the ADKeypad, you can use it to control LEDs, servos, and
other components! You have also learned about if-else statements and crea�ng your own
func�ons, which can be useful in many micro:bit projects! Try customising your pancake
game as well!

Docs » Tinker Kit » 17. case 15 Maze Runner

17. case 15 Maze Runner

Can you make it through all levels?

17.1. Goals

We’re going to create a maze game where you must navigate a series of mazes without
running into the walls. You’ll learn how to:

Use buzzer, ADKeypad and micro:bit board
Use if statements to evaluate condi�ons
Use variables to track game states such as player loca�on
Customize your game and add your own levels!

17.2. Materials

1 x BBC micro:bit
1 x Micro USB cable
1 x Buzzer
2 x F-F Jumper Wires
1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

17.3. How to Make

Step 1

Plug in Buzzer to Pin0. Connect the posi�ve lead to the yellow signal pin and the nega�ve
lead to the black ground pin on the breakout board.

Plug in the ADKeypad to Pin1. Match wire colors to pin colors on the breakout board!

Step 2

How to create a maze game on the micro:bit? We are going to display player’s posi�on, LED
walls and the maze paths with LEDs on the micro:bit board.

How to keep track of the player’s loca�on on the screen? The 5*5 LED dot matrix on
micro:bit can be regarded as a coordinate system. The x coordinate axle starts from 0 on the
le� to 4 on the right. The y coordinate axle starts from 0 on the top to 4 on the bo�om. This
means that the upper le� LED is x=0, y=0. Likewise, the bo�om right LED is x=4, y=4.

To do this, we need to create a few variables. Variables are like buckets that store pieces of
informa�on for us. Whenever we want the stored informa�on, we can just look at the
variable. We need two variables to keep track of the player’s loca�on. Why two variables?
One will keep track of the player’s x posi�on and the other will keep track of the player’s y
posi�on. We also need a variable to keep track of the maze level (yes, we can have mul�ple
levels!) and also another variable to keep track of whether the game is ac�ve (opposite to
game over).

So let’s set these up. Inside ‘on start’ event, we (op�onally) play a melody and display the
name of the game on the micro:bit (MAZE RUNNER!). We also set up the 4 variables
men�oned above, using the names: level, playerx, playery, and gameOn.

What do we set these variables to? We start at level 1 (of course), and we set gameOn to
True because when we power on the micro:bit, we want to start the game right away. We
can choose any star�ng point for our player loca�on, but we’ll need to remember this
loca�on later on when we set up our maze level (we don’t want the player to start inside a
wall!). In this example, I choose to start the player at x=0 and y=3.

Step 3

Now that we’ve set up our star�ng variables, let’s get our player to display on the micro:bit
screen!

We want the player LED to blink on and off so that it is easy to be iden�fied. To do this, we’ll
use the ‘plot x y’ block alterna�ng with the ‘pause’ block inside a forever loop. Remember, we
want the player to forever blink on and off! However, this won’t work immediately. In step 6
when we add in the maze walls, the micro:bit will overwrite the player every �me it draws
the maze walls. By adding a pause block here, we make it so that the player won’t
immediately be re-plo�ed, crea�ng a blinking effect.

We use the playerx and playery variables that we created above. Why? If we typed in
numbers here, we wouldn’t be able to easily make our player move! Using variables allows us
to change the values of playerx and playery so that the forever loop will plot the new
loca�on of the player.

Remember the pause block is in milliseconds (so 300 ms = .3 seconds)! You can customize the
speed at which it flashes by modifying the length of the pause.

Step 4

We’ve displayed the player on the micro:bit, but we can’t move it yet! Let’s add in player
movement. We’re going to sense bu�on press on the ADKeypad. But to do so, we need to
import a special package into MakeCode.

Expand the ‘Advanced’ sec�on and scroll to the bo�om and click on ‘Add Packages’.

In the search box, type in “�nker kit”. Click on the box labelled “�nkercademy-�nker-kit”.

Now you’ll see something new in MakeCode – a bright green Tinkercademy category has
been added!

Inside this category you’ll find blocks to sense bu�on press on the ADKeypad. Note that
impor�ng this package only happens in the current project. So if you start a new project and
want to use the category, you’ll need to re-import it.

Step 5

Now that we have added Tinkercademy category, we can use the ADKeypad to move up,
down, le�, and right. In this example, we’ll set bu�on A to move up, bu�on C to move down,
bu�on D to move le�, and bu�on E to move right.

To do this, we use if statments. If statements test if a condi�on is true. If it is true, then they
run any blocks inside the if block. When we place an if statement inside a forever loop, we
forever test if the condi�on is true.

To move the player, we simply change the player x or player y variables. Remember,
decreasing or increasing playerx will cause the player to move le� or right respec�vely. While
decreasing or increasing playery will cause the player to move up or down respec�vely. We’re
constantly plo�ng the loca�on of the player using these variables. So when we change them,
it automa�cally changes the player’s loca�on!

We need to add a short 300ms pause a�er each bu�on pressed, otherwise the player would
move many spaces every �me you pressed a bu�on because the program runs so fast.

Step 6

Now that we can move the player, let’s start crea�ng our maze levels! Every �me we start a
level, we need to do a few things.

First we need to display the maze walls on the micro:bit screen; Second, we need to forever
check if the player runs into a wall (if they do, it’s gameover!). And third, we need to forever
check if the player makes it to the end of the maze level (if they do, let them know they
succeeded and move on to the next level!).

For each level, we’re going to use a forever loop. Inside the loop, we use an ‘if’ statement to
check if the level variable equals 1. This means this code will only ever run if the level
variable equals 1.

Inside the if statement, we first display the maze walls. We light up LEDs to serve as maze
walls, and leave them turned off to represent the maze path. This can be done using the
‘show leds’ block. One thing to be careful about though: remember above we set the star�ng
posi�on of the player? Make sure star�ng posi�on of your player is not inside a maze wall! In
this example, the star�ng posi�on of the player is x=0, y=3.

Next, we need to check if the player ever runs into a wall. How to do this? Once again we’ll
use if statments to check if our playerx and playery variables are ever in the same place as a
wall. We do this using the coordinate system of the 5x5 LED grid. In this example, there are
two sec�ons of walls.

The first wall exists where both playerx and playeryis less than or equal to 2. We create an if
statement with these condi�ons, inside which we set gameOn to ‘false’ (since if it’s ever ‘true’,
it means the player ran into a wall and should get a Game Over).

The second wall exists where playerx or playery equals 4. We create another if statement
with these condi�ons, and inside we set gameOn to ‘false’ (because once again if it’s ever
true, it means the player ran into a wall and game over).

Finally, the last test we need to add is to see if the player makes it successfully through the
maze! In this example level, the end of the maze is at x=3, y=0. We create another if statment
to check if x=3 and y=0, and inside we do a few things:

First, we play a success melody in the background; Second, we set the star�ng posi�on of
the player for the next level (in this example, we use the same star�ng posi�on, but it can be
different!). Third, we show a smile face to tell the player they succceeded! And fourth, we
change the level variable by 1 (this will cause the next level to display).

Step 7

Se�ng up a level costs us a lot of work! Now that we have a single level, let’s make
something happen when a player gets a game over. This will happen whenever they run into
a wall, and it’s tracked by the ‘gameOn’ variable.

Inside a forever loop, we use an if statment to check the value of the ‘gameOn’ variable. If it
equals ‘false’, then we want our game over code to run!

In this example, we play a sad melody in the background, reset the ‘level’, unplot the player
LED, show an angry face, and finally display a string telling the player they can press B to
restart the game.

Step 8

Speaking of pressing B to restart the game, we haven’t yet created the code to do that!

Inside a forever loop, we test if bu�on B on the ADKeypad is pressed. If it is, we want to set
‘level’ to 1, reset the player’s star�ng loca�on by se�ng the ‘playerx’ and ‘playery’ variables
to 0 and 3 respec�vely, and set the ‘gameOn’ variable back to ‘true’.

Step 9

Now our game should work as intended! The only thing missed is more levels!

It’s quite easy to add more levels by duplica�ng our level 1 code from above. The only thing
that will change is the maze walls and the coordinates for our if statments (for tes�ng if the
player moves into a wall or completes the level).

Tips: some�mes it can be complicated to create if statements to test for every wall. In these
cases, try to break down your walls into separate rectangles and create an if statement for
each rectangle.

One thing to watch out: a�er the player has completed a level, you have to reset its playerx
and playery variables, making sure the posi�on matches your next level. Otherwise it would
start inside a wall!

Step 10

Once you have done this, you can op�onally create a victory sec�on. In this example, once
the player have successfully completed the first 3 levels and level equals 4, we unplot the
player by playing a victory melody in the background, and showing a victory message!

If you don’t want to type these code by yourself, you can download directly from the link
below:

h�ps://makecode.microbit.org/_fCqa4399XUpv

Or you can download from the page below:

17.4. Cool stuff!

Now that you’ve learned how to use the ADKeypad, you can try to control LEDs, servos, and
other components! You’ve also learned about if statements which are useful in many
micro:bit projects! Try to customize your maze runner game by adding more levels!

Download

 Microsoft MakeCode Terms of Use Privacy Download

~128

    

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_fCqa4399XUpv
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 18. case 16 QUICK MATHS

18. case 16 QUICK MATHS

QUICK MATHS is a game where its all about tes�ng your mental calcula�on. Too slow, you
lose; too fast, you may make mistakes.

18.1. Step 0 – Pre Build Overview

Use a Buzzer and OLED with the micro:bit.
Use if-else statements to evaluate condi�ons.
Create your own func�on on MakeCode.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

18.2. Materials required

1 x BBC micro:bit
1 x Micro USB cable
1 x Buzzer
1 x Octopus:bit
1 x OLED

18.3. How to Make

Step 1 – Components

Connect the buzzer to P0.

Plug in the OLED as shown in the picture above. You can plug it into any of the three rows.

Step 2 – Pre-coding

We’ll need to add a package of code to be able to use our kit components. Click on Advanced
in the Code drawer to see more code sec�ons and look at the bo�om of the Code Drawer for
Add Package.

This will open up a dialog box. Search for OLED. Click on the search icon or press enter, then
select the oled-ssd1306.

Step 3 – Coding Initial Screen

From the music sec�on start the power up melody, this is the game’s introduc�on music.
A�er that, create a variable named started and set it to false, as the game has not started.
Finally, use the blocks under the Tinkercademy sec�on to ini�alise the OLED and display the
messages as shown in the picture above.

Step 4: Coding Randomiser Function

In this step, we will randomise the ques�ons that will be displayed. Firstly, create a variable
named answer. In this, we will store whether the answer should be true or false. We
determine this by using the randomiser block under Math.

Next, we create 3 more variables – i1, i2 and a. i1 + i2 = a this is an example of what these
variables would be used for. We then assign a random value from 1 to 9 to i1 and i2. The
value of a would be set later.

A�er this, we create a variable name type, which will be used to store what type of ques�on
this is. (0: Addi�on, 1: Subtrac�on, 2: Mul�plica�on, 3: Division) type would then be given a
random number from 0 to 3 using the block under math.

From here, there is an if-else statement that checks what type of ques�on it is in order to
generate an answer.

For Addi�on (0), if the answer for this is supposed to be true, we set a to the sum of i1 and
i2. However, if this is supposed to be false, we add 1 to correct answer. For Subtrac�on (1), if
the answer for this is supposed to be true, we set a to the sum of i1 and i2, a�erwards we
swap the values of a and i1. However, if this is supposed be false, we add 1 to i1. For
Mul�plica�on (2), if the answer for this is supposed to be true, we set a to the product of i1
and i2.

However, if this is supposed to be false, we add 1 to correct answer. For Division (3), if the
answer for this is supposed to be true, we set a to the product of i1 and i2, a�erwards we
swap the values of a and i1. However, if this is supposed be false, we add 1 to i1.

Step 5: Coding Display Function

In this step, we will create a func�on that displays the ques�on on the screen. First, ini�alise
the OLED as shown in the picture. Next, we want to determine what sign to use, so we
create a variable named sign. A�erwards set the value of sign by using an if-else statement
that checks what type of ques�on it is. (0: +, 1: -, 2: x, 3: /) Now we have what we need to
display the equa�on. Under the OLED sec�on, select the show string block and add the
variables i1, sign, i2. Now that the display func�on is done, call the func�on at the end of the
randomise func�on, as you would want the ques�on to be displayed a�er the values have
been randomised.

Step 6: Coding the Start Action

Now that we can randomise the ques�ons, it is �me we start the game. Firstly, create a start
func�on. In this func�on, set the start value to be true and call the randomise func�on.
A�erwards, from the game sec�on in advanced, add the set score block and set the value to
0. Now that the func�on is complete, add the 2 bu�on pressed blocks under the input
sec�on for both bu�ons A and B. In both blocks, create an if-else statement to check if the
game has started. If it hasn’t, call func�on start.

Step 7: Coding Check Function

Con�nuing from step 6, now we will be working on the part if the game has started. Firstly,
create 2 func�ons – correct and wrong. In the correct func�on, select the change score block
from under the game sec�on and change the score by 1. Next call the randomise func�on to
get the next ques�on and lastly start melody ba ding that repeats once for addi�onal sound
effects. Moving on to the wrong func�on, start melody wawawawaa repea�ng once and
show icon X to indicate that the player has chosen the wrong answer. A�erwards, ini�alise
OLED as shown in image. Lastly, we want to check the high score. Start off by crea�ng a high
score variable. Next create an if-else statement as shown above, in this logic gate we are
checking if the score is higher than the player’s high score. If it is, then the high score value
will be set to the current score. Don’t forget to set the start variable to be false when the
game has ended. Now that we have completed the correct and wrong func�ons, we need to
call them as shown in the image.

Bonus step 8: Coding Timer

Now you have a func�oning game. But to make things more exci�ng, we should add a �mer.
Before we dive into that, there are a few things we have to do first.
Firstly, create an end func�on. Set up in the func�on accordingly. This may seem familiar as
this is the last part of the wrong func�on. You can replace that por�on by calling this
func�on. This func�on would be called again to prevent reprogramming.

Next, create a slow func�on. This would be called if the player does not answer in �me.
Create the blocks as shown in the image.

Following that, we have to create a new variable called �me. Time stores when the player
started a specific ques�on. A�erwards, set its value to the running �me (ms) block which can
be found under the more tab of the input sec�on.

Micro:bit does not have a built-in �mer, thus we have to design one by using what they offer.
Now we know the star�ng �me is when the player started the ques�on, and running �me is
how long the program has been running. From this, if we subtract them we get how long the

player has spent on that ques�on. For this game, we only allow the player to have 2.5s
(2500ms) for each ques�on. Hence, they will lose if they are too slow.

Lastly, in the correct func�on add a block that sets the value of �me to current running �me.
This is to refresh the star�ng �me for a new ques�on.

That’s it! You’ve officially completed this tutorial.

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below.

h�ps://makecode.microbit.org/_ThdfipEwFbWs

Or you can download from the page below.

https://makecode.microbit.org/_ThdfipEwFbWs

Docs » Tinker Kit » 19. case 17 Pitch Perfect

19. case 17 Pitch Perfect

Do you think your ears are pitch perfect, then try my game. Or even be�er, create one!

19.1. Goals

Learn how to use a ADKeypad, the OLED screen and the buzzer.
Make something with a ADKeypad, OLED screen and the buzzer.
Learn the if-else statement func�onality.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

19.2. Materials Needed

1 x BBC micro:bit
1 x Micro USB cable
1 x Buzzer
2 x F-F Jumper Wires
1 x OLED
1 x ADKeypad
1 x Breakout Board

19.3. How to Make

Step 1:

Firstly, plug in your buzzer to Pin 0, making sure the posi�ve side (usually the longer end) is
connected to the yellow signal pin and the nega�ve end is connected to the black ground pin
on the breakout board.

Plug in the ADKeypad to Pin 1, making sure that the colour of the wire and breakout board
matches. Then, a�ach the OLED screen at the bo�om le� socket of the breakout board.

Step 2:

We will need to add a package to the code editor to use the kit components. Click on the
advanced in the micro bit text editor and you will see a sec�on that says Add Package.

This will open up a dialog box. Search for OLED. Click on the search icon or press enter, then
select the oled-ssd1306.

Note: If you get a warning telling you some packages will be removed because of
incompa�bility issues, either follow the prompts or create a new project in the Projects file
menu.

Step 3:

First, you have to ini�alise the OLED screen to a height of 64 and width of 128 so to run the
screen in the proper sizing.

Next, you have to set a variable star�ng score to 0 for the ini�al play. This means you have a
score of 0 at the start of your game. Then you need the OLED display show a text of “Pitch
Perfect”.

You need to write a simple instruc�on on how to start. Thus, a simple sentence “Press A to
start ” will do.

Step 4:

Since at step 3 we wrote that you need to press A to start, we need to write a condi�on for
it. A condi�on basically means a requirement for a program to start loading its instruc�ons.
Thus, an if-else statement of the A bu�on being pressed would suffice. Moreover, this will be
nested on a forever bracket.

Next, you have to write another set of instruc�ons on how to play the game. What I wrote
was : “You have guess which pitch it is by pressing the correct key”. Then you have to have a
�meout around 5000ms (5 seconds) to let the user read the instruc�ons.

Step 5:

You are gonna introduce the user to listen to the pitch of the sound being played. What I did
was to play the pitch (for example: C) for 4 beat (4 seconds), flash the led on the MicroBit of
the pitch C and OLED display on the screen itself.

A�er that, I will put in a �meout so the user can process the pitch to the correct alphabet and
the ADKeyboard. Addi�onally, you can put in the OLED screen on what bu�ons are to be
pressed for a certain pitch. Example, when Pitch C is being played, I wrote “Le� blue bu�on”
to indicate that is the bu�on.

If you are wondering, why the in�alise OLED display and show string block is repeated, it is
because it would simulate a refresh in web browser. If you do not initalise the display, the
text would just be brought down instead of new text being created.

Step 6:

Once the user have gone through the mini-briefing of how the pitch sounds, you can get
them ready. You can have a countdown for them to get ready on the game itself.

Now, you can build your pitch tests. So, to do that, you need to play a pitch and you can
customise by displaying by any image on the MicroBit and a message “Key #1” at the same
�me.

Then, if the user pressed the correct bu�on on the ADKeypad, they would get a point. If not,
no points. Thus you set the variable score to change by 1 if the get it correct and otherwise, a
-1. Thus, an if-else statement on whether the user pressed the correct bu�on will do.

To let the user know if they got the correct answer, you can display of an image �ck for a
correct answer and a cross for a wrong answer.

Repeat this step so you can have many tests to play with!

Step 7:

Once you are contempted with your tests, you can end the game by showing the latest
scores. You can display in the OLED screen “Your score is:” with the variable score shown.
Put a smiley for fun sake. And you are done! Enjoy the game.

If you don’t want to type these code by yourself, you can directly download the whole
program from the link below.

h�ps://makecode.microbit.org/_A26fCxRz1P1g

Or you can download from the page below.

Download

 Microsoft MakeCode Terms of Use Privacy Download

    

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_A26fCxRz1P1g
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 20. case 18 Finger Dexterity

20. case 18 Finger Dexterity

Are your psychomotor skills as bad as mine?

20.1. Goals

We are going to create a game where the player must click on a key (on the ADKeypad) that
corresponds to the column on which a random LED lights up (A for the first column and E for
the last). The pace at which the LED lights up gets quicker and quicker as the game goes on.
You’ll learn how to：

use an ADKeypad with the micro:bit.
use func�ons recursively.
use while loops.
improve your finger dexterity!

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

20.2. Materials and Pre-requisites

1 x BBC micro:bit
1 x Micro USB cable
1 x F-F Jumper Wires
1 x ADKeypad Or ElecFreaks Micro:bit Tinker Kit (contains all components in the above.)

You also need some experience about if-else statements, variables etc.

20.3. How to Make

Step 1

Plug in your ADkeypad to Pin0, making sure the posi�ve lead is connected to the yellow
signal pin and the nega�ve lead is connected to the black ground pin on the breakout board.

Step 2

In order for the ease of randomisa�on of the LED that lights up, we will use a func�on
recursively. A func�on used recursively will call itself (!) so as to acheive the end goal. I
created the func�on plotLight for this reason. If you have not covered func�ons, go here.

Then i set two variables randomLightXIndex and randomLightYIndex to integers between 0
and 4. This will correspond to the specific LED that lights up. Doing this will ensure
randomness (let us not get into the discussion as to where true randomness can really be
generated) of the LED that lights up so the game will be different and unpredictable every
�me.

I also set the variable bool to true. While this may not be obvious now, it will come in handy
later (in reality this was a later addi�on that I decided to add a�er the rest of the func�on
was fleshed out. The reason for this will come to light later). This is a common technique in
coding (especially with while loops).

In order to increase the difficulty, it was my judgement that a �me variable could be useful.
We use this later to decrease the pause �me betwen one LED ligh�ng up and the next. We
have set a lower limit for the pause �me at half a second so as to not make the game
impossible. When we call the func�on recursively, the if-statement modifying the pause �me
is what will decrease the pause �me every�me the func�on is called.

I have created a bunch of if-else statements inside a loop. These statements periodically
check if a bu�on on the keyboard was pressed and if the bu�on corresponds to the x-
coordinate of the LED that lights up. We have to do this because the pressing of the keypad
does not emit an event that our event listeners in micro:bit’s core modules can respond to
(like how it does for shaking or bu�on presses). Thus, we had to create our own event
listener. This event listener only runs as long as bool (which we created earlier) is true.

Step 3

Inside the if-else statement, we check to see which key was pressed and if it corresponds to
the column of the LED (x-coordinate). If it was, we CALL THE FUNCTION AGAIN. This is
how recursive programming works. By calling the func�on again, we basically start over with
a new LED. Note that when we call the func�on again we decrease the value of the �me
variable and thus the pause dura�on will be shorter.

Note that I unplo�ed the point first LED. This is to ensure that we don’t have more than one
LED in each round so as to not confuse the player. If you wanted to make the game more
difficult, you could show mul�ple LEDs and play for only the most recent LED that lights up.
Treat that as an extension! Interes�ngly, I have set bool to false. Why?

Step 4

The bool is set to false so as to terminate the above while loop. This is not strictly necessary
and I ini�ally disregarded this. However, it is important to note that termina�ng the while
loop greatly improves the efficiency of your program and efficiency of our programs is
something generally worth considering.

I have also created and called a func�on to handle the case where the player types the wrong
key. This will be covered later.

Step 5

That was quite a lot for one func�on! It can be quite a bit for a newbie at programming so let
me go through that one more �me.

We use random integers between 0 and 4 for the determina�on of the LED that lights up.
(Note that we use an index that starts with 0 – this means that the top le� corner is (0,0))

In an�cipa�on of the func�on being called in some point in the future, we decrease the
pause �me so that when that happens the game is more difficult.

We run our own homemade event listener (the name betrays its func�on – it simply waits for
an event to happen and acts with our preset code when it does). We use a while loop to
listen for an event. If it does not find an event in one loop the if-else statements inside will
not be ac�vated and thus, it will go on to the next itera�on. When the event does happen (in
this case the pressing of the key), the if-else statement is ac�vated from its slumber and thus,
in this rather ingenious way, we have created an event listener. (Extension: Browsers listen
for events like clicks or keypad presses in the same way).

Step 6

Inside each if-else statement, we have decided to end the game if the wrong keypad was
pressed and tell the player what we think of him/her.

If the right key was pressed, we immediately go on to the next LED light whilst ending the
previous while loop or effeciency purposes (just to be clear, your code will s�ll work but it’s
best not to foster such bad habits). Whilst going on to the next LED light, we make use of a
concept called recursion. To fully understand the inner workings of recursions we must be
familiar with concepts like execu�on contexts, which is beyond the scope of this tutorial.

Step 7

That was a lot of work!!

But in the end, we have created a wonderful func�on that can be called recursively. It is
remarkable that such a game can be simplified so much so that its crux is in one block of
code!

Step 8

Now we just want to �e up some loose strings. The lose func�on is one that we will call
when the player presses the wrong key. It is mostly self-explanatory and if you could get past
the previous parts, it should be obvious what the code does.

Step 9

Now to start the first LED.
We call the func�on when the file loads. Due to the recursiveness of the func�on, the game
will take care of itself therea�er with minimal effort from us. How is that for effeciency!

If you don’t want to type these code by yourself, you can download the whole program from
the link below.

h�ps://makecode.microbit.org/_eeyAFJMcg8z5

Or you can download from the page below.

Wonderful!

Download


Microsoft MakeCode Terms of Use Privacy Download

0

    

EditSimulator Blocks JavaScript 

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

You have completed this tutorial! If you wish to challenge yourself further, go ahead and add
a counter that counts the number of points a player gets before he/she loses. Clue: Create a
variable called counter and increment it as you see fit. Remember to display it as well!

Congratula�ons!

This tutorial was possibly a level higher than the rest and if you got here you are definitely
rocking it. If you didn’t, take solace in the fact that it took me weeks to get my head around
concepts like recursions too. Good luck!

Docs » Tinker Kit » 21. case 19 Electric Spirit Level

21. case 19 Electric Spirit Level

Use this spirit level to quickly and easily display the �lt of any object a�ached! Created by
Kaitlyn from Raffles Ins�tu�on.

21.1. Goals

Learn to read �lt with micro:bit’s built-in accelerometer.
Learn to work with micro:bit’s 5x5 LED Display!

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

21.2. Materials

1 x BBC micro:bit
1 x Micro USB cable
2 x AA Ba�eries
1 x Double AA Ba�ery Pack

21.3. Pre Coding: Connect your Micro:Bit

Connect the BBC micro:bit to your computer using a micro USB cable.
Access the javascript editor for the micro:bit at makecode.microbit.org.

Step 0: Code Flow

Before we begin wri�ng the code, we need to decide what we want to achieve with the
program and in what order should each component run.

For the electric spirit level, the steps that we will take in the code for each loop are:

Read �lt readings from accelerometer. Convert �lt readings to �lt levels to be displayed on
LED matrix. Check for change in �lt level readings from previous loop. Create array of LED
coordinates for different �lt cases and direc�ons. Plot LED coordinates onto micro:bit LED
matrix.

A few addi�onal func�ons we need to include are:

Calibra�on for ini�al �lt posi�on. Returning to default �lt calibra�on.

21.4. How to Make

Step 1: Defining Variables

We start by defining variables needed as shown. A breakdown of a few variables are:

�ltList: Array that stores extent of �lt from values 0-4 in the order [Le�, Right, Forward,
Backward] �ltBoundary: Boundary of the first �lt level between 0 (no �lt) and 1 (slight �lt)
prevState: Array that stores the �lt values of the micro:bit from a previous loop in the same

format as �ltList, used to check for a change in �lt between itera�ons ledPlotList: Plot led
coordinate arrays in the form (x, y). To define an array , we use the type number[][] to indicate
a nested array of variables of type: number.

Step 2: Convert tilt values to levels

As the 5x5 LED matrix can only display so much informa�on, the actual �lt values will not be
useful for display.

Instead, a func�on �ltExtent() takes the parameter num, which refers to the �lt value from
the accelerometer, and converts these �lt values (num) to �lt levels from 0 to 4.

0 indicates no �lt in the given direc�on and 4 indicates very large �lt, while -1 is returned
when there is an error.

Here, �ltBoundary and �ltSensi�vity are used as the boundary values between �lt levels.

Step 3: Compile tilt levels

The two func�ons checkRoll() and checkPitch() write the �lt levels obtained from �ltExtent()
into �ltList for the roll (le�-right) and the pitch (forward-backward) axes respec�vely.

Before using the �lt values, we calibrate them using a zeroed value for both pitch (zeroPitch)
and roll (zeroRoll) obtained from a calibra�on func�on wri�en later.

As the accelerometer readings are nega�ve for both le� and forward �lt, we need to use the
Math.abs() func�on to obtain the modulus of the nega�ve value to be given to the �ltExtent()
func�on as a parameter for these two direc�ons.

Step 4: Write LEDPlotList Functions

Having obtained the �lt levels in �ltList we can now write the led plo�ng func�ons for the
different cases that can arise, namely

plotSingle(): Tilt only in a single direc�on, taking extent of �lt in given direc�on as parameter.
plotDiagonal(): Tilt in two direc�ons of the same magnitude, taking extent of �lt in either
direc�on as parameter. plotUnequal(): Tilt in two direc�ons of different magnitudes, taking
extent of �lt in each direc�on as parameter. Uses plotDiagonal() first and adds on to
ledPlotList array a�erwards.

These plo�ng func�ons write an array of led coordinates to ledPlotList to be plo�ed later
on.

Step 5: Plot LED Matrix for Each Case

Using the plo�ng func�ons from the three cases in step 4, we can now plot the actual LED
matrix for the different possible combina�ons of �lt levels. As the three func�ons in step 4
do not discriminate with direc�on, we need to adjust the coordinate values passed to the
LED matrix to plot the LEDs in the right direc�ons.

PlotResult() contains mul�ple if condi�ons that check the kind of �lt and plot the LED matrix
accordingly using led.plot(x, y). The possible combina�ons of �lt are:

Single direc�on: Le� Only or Right Only.

Single direc�on: Forward Only or Backward Only.

Two direc�ons: Forward-le� or Backward-le�.

Two direc�ons: Forward-right or Backward-right.

Note: For �lt in two direc�ons, each combina�on can have the same or different magnitude
(checked by comparing maxX and maxY), and hence plo�ed using plotDiagonal() or
plotUnequal() respec�vely.

Step 6: Write Calibration Functions

Having completed the bulk of the code, we now add in the calibTilt() and the resetTilt()
func�ons.

calibTilt() allows users to tare the �lt to zero at the micro:bit’s current posi�on resetTilt()
resets the calibra�on of the board to its original state.

Step 7: Write State Function

We add a simple func�on checkState() to check whether the �lt levels have changed from a
previous itera�on.

If there is no change in �lt levels from a previous itera�on i.e. stateChange == 0, we can
directly move on to the next itera�on and skip the plo�ng of the LED matrix, reducing
computa�on needed.

Step 8: Putting It All Together Part 1!

Now we can finally place all the necessary func�ons into the micro:bit’s infinite loop to run it
repeatedly.

Firstly, we set bu�on A and B on the micro:bit to the calibTilt() and resetTilt() func�ons
respec�vely using input.onBu�onPressed(), and plot a �ck on the LED matrix when
calibra�on is completed.

Step 9: Putting it All Together Part 2!

Next run the necessary func�ons according to our code flow in Step 0 and check for a state
change (meaning that there has a change in the �lt of micro:bit since the last itera�on).

If there is a change in �lt levels i.e. stateChange == 1, the code will update prevState to the
new �lt levels and set stateChange back to 0 for the next itera�on, and plot the updated �lt
levels on the LED matrix using PlotResult().

If you don’t want to type these code by yourself, you can directly download from the link
below.

h�ps://makecode.microbit.org/56811-31458-64502-76623

Or you can download from the page below.

Step 10: Assembly

Flash the completed code to your micro:bit.
A�ach your micro:bit and the ba�ery pack securely to any object and it is ready for use!

Download

 Microsoft MakeCode Terms of Use Privacy Download

    

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/56811-31458-64502-76623
https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Awesome!

Have fun with your electric spirit level! And while you’re at it, why not try to extend the
capabili�es of the �lt sensor or even turn it into a game?

Docs » Tinker Kit » 22. case 20 Space Shooter

22. case 20 Space Shooter

Are you �red of complicated flashy modern games? Prefer to play your games on a 5 x 5
resolu�on rather than a 4K resolu�on? Have some arcade fun on your micro:bit with Space
Shooter! This tutorial is in JavaScript. Typing! Many typing!

22.1. Step 0： Pre Build Overview

In this project, we will create a simple space shooter game where you have to try to shoot
and avoid falling projec�les.

22.2. Materials:

1 x BBC micro:bit
1 x Micro USB cable
1 x Breakout board
1 x ADKeypad

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

22.3. Goals

Learn to use the ADKeyboard.
Learn basic game programming.
Learn more about programming with Javascript.

22.4. How to Make

Step 1 – Components

First of all, plug in the ADKeypad. Ensure the colours match and take note of what pin you
plug them into as it will be relevant later.

Step 2 – Coding

In this project, we will use Javascript to code, so first of all, switch to Javascript mode on the
top of the page.

At the beginning of our code, we will need to ini�alise the variables we will use: playerscore
for the current player’s score, noalien as a storage of whether or not there are aliens currently
on the screen, hi for the current highscore, gamestart to keep track of what state the game is
currently in, destroyedpos as an array to store where the player collided with an alien, shots
to store the posi�on of the shots that the player has shot, aliens to store the posi�ons of the
aliens, pos to keep track of the player’s current posi�on, toprow to store if there is an alien
currently in each posi�on of the top row, as well as a few temporary variables. We will need
to use all these variables later.

This func�on, unrendership, turns off the LEDs that represents our spaceship. We will use
this to move the spaceship around.

This func�on, rendership, turns on the LEDs that represents our spaceship. A�er using
unrendership, we can update the player’s posi�on then use rendership to change the
spaceship’s posi�on.

This func�on, unrendershots, turns off the LEDs that represents the player’s fired shots.
Similarly, we will use this func�on to update the posi�ons of the shots.

This func�on, rendershots, turns on the LEDs that represents the player’s fired shots. Similar
to unrendership and rendership, a�er using unrendershots, we can update the shots’
posi�ons then use rendershots to change all fired shots’ posi�on.

This func�on, checkcollision, checks for two types of collisions: between the player and an
alien, and between an alien and a shot fired by the player. Firstly, for the collision between
the player and an alien, due to the shape of our ship, we have to check if there is an alien on
the lowest or second lowest row and in the same column of the centre of the spaceship, as
well as if there is an alien on the lowest row and to the le� or right of the centre of the
spaceship. Note that in Javascript, && represents “and” and || represents “or”. If there is
indeed an alien in one of these posi�ons, we will set destroyedpos to the posi�on where this
alien collided with the spaceship and change the value of gamestart to 2 to signify that the
game is over. Next, for collision between the player and a shot fired by the player, since each
of these only occupy one LED, we just have to check if their posi�ons are exactly the same.
However, since there can be mul�ple shots and/or aliens, we have to loop through every shot
for every alien and check if they are in the same posi�on. If they are, we turn off the LED for
that posi�on. If the alien was in the toprow, we set the value of toprow for that column to 0
to signify that there is no longer an alien in the top row of that column. Then, we set the
height of the shot to -1 and the height of the alien to 5, moving both of them out of the
screen, where we will remove them later. Lastly, we increase the player’s score by 1 for
shoo�ng an alien.

Now that we have wri�en all the required func�ons, we can finally start linking them
together! You may already be familiar with the forever func�on from coding in blocks mode.
In Javascript, we use this by typing basic.forever(() => {Code to run forever here}. Firstly, if the
value of gamestart is 0, we show the current highscore on the display. Next, if the value of
gamestart is 2, that means that the player’s game has just ended. We make the posi�on
where the player collided with an alien blink 3 �mes to let the player know where the
collision happened, then display a happy face if the player set a new highscore, and a sad face
if not. A�er that, we display the player’s score, and set the value of gamestart back to 0.

To start the game, we detect if the player pressed the “A” bu�on on the ADKeypad and the
value of gamestart is 0. If so, we set the value of gamestart to 1 to signify that the game has
started, reset the player’s posi�on to the centre, set the player’s score to 0, turn off all the
LEDs on the screen then render the ship using the func�on we made earlier.

Finally, if the value of gamestart is 1, the player is currently playing the game! At the start of
each loop, we turn off the LEDs of each shot the player fires, since they need to move
upwards by 1 posi�on. We use the Math.random() func�on to randomly determine if we
should spawn an alien this frame. You can lower the number to make game harder, or
increase the number to make it easier. Here, the value we use is 15, which means that there
is a 1/15 chance that an alien will spawn every loop. However, we need to check that the top
row of the column we want to spawn in is not occupied, or there will be overlapping aliens!
Next, we loop through the aliens and move them downwards by 1 posi�on every 5 �mes the
forever loop runs. If an alien enters the top row, we set the value of toprow of that column to
1, and if an alien leaves the top row, we set it to 0.

Then, we check if each alien is outside the screen, and, if it is, we remove it from our aliens
array. Lastly, if there are no aliens on screen, we spawn an alien in the same was we would if
it spawned from the 1/15 chance.

A�er upda�ng the aliens’ posi�ons, we check for collisions, then update the shots’ posi�ons.
Then, we spawn a shot if the player pressed the D bu�on on the ADKeyboard. A�er that, we
remove any shots which are outside the screen.

Finally, we check if the player has pressed the C or E keys on the ADKeyboard, and update
the ship’s posi�on accordingly. A�er that, we render the shots that the player has fired, then
set a pause of 0.08 seconds per loop so that the game advances at a playable speed.

For the whole program, you can download directly from the link below：

h�ps://makecode.microbit.org/_euRV3uHYJAfx

Or download from the page below.

0

EditSimulator Blocks JavaScript 

https://makecode.microbit.org/_euRV3uHYJAfx

Step 3: Using It

Playing the game is very simple. Just use the A bu�on on the ADKeyboard to start the game,
use the C and E bu�ons to move and the D key to shoot the aliens!

Step 4 – Success!

Voila! Time to have some old fashioned arcade fun with your new space shooter. What
highscore can you reach?

Download


Microsoft MakeCode Terms of Use Privacy Download

    

https://makecode.com/
https://makecode.com/termsofuse
https://makecode.com/privacy

Docs » Tinker Kit » 23. case 21 Flappy Bird

23. case 21 Flappy Bird

Take flight and achieve your pipe dreams with your own version of the notoriously
challenging Flappy Bird game, using nothing but a micro:bit (no extras needed) and some
Python code.

Made by Cheryl from Raffles Ins�tu�on. Warning: heavy dosage of bird puns included.

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

23.1. Goals

We’re going to create a full-fledged interac�ve game on your 5x5 LED screen, playable for
ages 9 days to 90 years old. In the process, you’ll learn how to: First step is to import the
micro:bit library into Python. Then, let a ‘READY’ message scroll across the screen and ini�ate
countdown that shows when the game starts.

Line 1: This imports the micro:bit program.
Line 4: This ini�ates the ‘READY’ message that scrolls across the screen. Double
quota�on marks indicate a string (in this case ‘READY’).
Lines 5-10: This flashes each number on the screen for 1 second (or 1000 milliseconds,
the measurement involved) by using the sleep() func�on.
Line 11: clears the screen for us to draw the bird and walls later on.

Note:

It’s always good to add comments to explain your own code for others or yourself to
understand when coming back to it. You add a comment with ‘#’. Also space out your code
when necessary to indicate different segments that do different things.

23.2. Materials

1 x BBC micro:bit
1 x Micro USB Cable (Seriously, that’s all you need.)

23.3. Why Python?

Reads like English – Python is one of the easiest languages to read, which makes it such a
fantas�c beginner’s language.
Versa�le – Python is industry standard for good reason. It can be used to do so much.
This is why Google and YouTube u�lise the language for part of its back-end so�ware.
Ac�ve community – Python is one of the most popular languages for beginners. There are
tons of resources and many more than willing to help look over your code, which will
prove invaluable to helping you get over stumbling blocks in your coding journey.

Actual coding looks cooler than block-based drag-drop coding. I know it’s in�mida�ng, but
look at these colours! (Demo of Flappy Bird on Sublime Text) How Do I Start Coding in
Python?

If you’re a fledgling to programming, you probably don’t have Python lying around. Don’t
worry! Just go to the official micro:bit Python editor or download the offline Python editor
mu to write code and send it to your micro:bit. You can also your own text editor (three
cheers to Sublime 3 and Atom) but you have to flash it to the micro:bit. This might turn out to
be quite troublesome. Alterna�vely, you can use a micro:bit simulator, which is really useful
to test code out without downloading the .hex file each �me, and makes it easier to fix
errors.

Once set up, connect your micro:bit to your computer using the micro-USB cable. It should
connect to the port at the top of the backside of the micro:bit. Once ready to be flashed, the
micro:bit should light up bright yellow. Ignore this step if you’re on the simulator. Otherwise,
stop reading and set it up if you haven’t already. Don’t worry, I’ll wait.

Welcome back. Without feather ado, let’s get started! A Bird’s Eye View of What We’re
Doing.

The key to tackling every programming problem is to break it into bite-sized achievable bits.
Let’s look at what we’ll need. Refer to the video to see a demo of the game. As we go through
the process, let’s ask what elements are within the game. A ‘READY’ message and countdown
shows when the screen starts.

Create a coordinate to indicate the bird. Move the bird around by pressing bu�on A. Keep
track of the number of pipes the bird passes. Create walls for the bird to fly past When the
bird collides with a wall, the game is over. You might already know how to do some of these.

http://www.python.microbit.org/
https://codewith.mu/
https://create.withcode.uk/

Try covering these steps on your own first. If necessary, break the steps down further into
smaller steps. There are also game checks which should be the progress you’ve made by that
step. Use these to make sure you’re on track.

23.4. How to Make

Step 1 – Hello, World!

First step is to import the micro:bit library into Python. Then, let a ‘READY’ message scroll
across the screen and ini�ate countdown that shows when the game starts. Line 1: This
imports the micro:bit program Line 4: This ini�ates the ‘READY’ message that scrolls across
the screen. Double quota�on marks indicate a string (in this case ‘READY’) Lines 5-10: This
flashes each number on the screen for 1 second (or 1000 milliseconds, the measurement

involved) by using the sleep() func�on. Line 11: clears the screen for us to draw the bird and
walls later on. Note: It’s always good to add comments to explain your own code for others
or yourself to understand when coming back to it. You add a comment with ‘#’. Also space
out your code when necessary to indicate different segments that do different things. What
you’re doing is applying func�ons to the object display such that the LCD screen lights up. In
Python, you also have the flexibility of slowing down the scrolling rate of text in line 4.
display.scroll(“READY”, delay = 200) scrolls the text twice as fast and display.scroll(“READY”,
delay = 800) scrolls the text at half the speed. The standard delay se�ng is 400. Increasing
the value decreases scroll speed and decreasing the value increases scroll speed.
Congratula�ons! You finished the pre-game message! Next, we have to actually set up the
game for the user to play.

Step 2 – Fly, Birdie!

Next, we have to create the image of the bird. For those who never analysed the game,
Flappy Bird only allows the bird to move upwards and downwards, and pushes it at a
constant speed towards the walls. Of course, our screen only has 5 rows of LED so it’s quite
limited. To make the bird-flapping more realis�c, we’ll be spli�ng these 5 segments into 100
different posi�ons. This gives us more flexibility when adding speed of descent later on. In
this case, the top of the screen is posi�on y=0 and the bu�on is posi�on y=99 so there are
100 posi�ons. The start posi�on is y=50. Line 13: This sets the start posi�on of the bird right
in the middle, as y=0 is the top and y=99 is at the bo�om. Line 17: This determines the actual
posi�on of the bird on screen, since there are 100 posi�ons and 5 LED rows. Hence, you
divide the value stored in variable y by 20 so you scale the bird down onto the screen Line
18: This displays the bird on the screen using the display.set_pixel func�on, which has 3
parameters: x, y and brightness. The x-coordinate is 1 so it will appear in the second column.
The y-coordinate is presently 2 because we divided 50 by 20 and rounded it down. That’s the
third row. (Note: Indexes begin at 0 usually for computer programming, so you have rows 0-4
from above to below and columns 0-4 for le� to right.) Brightness can be any integer from 0
to 9, with 9 being the brightest. In this case, 7 will suffice to avoid eye-strain. We add a while
loop to tell the micro:bit to keep repea�ng the block of code that is indented. (Python uses
indenta�ons to separate code.) The sleep code tells the micro:bit to run this loop every 20ms
so it makes your game far more manageable and makes sure your CPU doesn’t work too hard
and crash the browser, which would otherwise happen. Game check: At this point, a welcome
message should appear, then disappear for a bird to appear.

Step 3 – Leaving The Nest

The previous step only created the bird image, but it s�ll can’t move! This is what we will do
in the next step, by simula�ng realis�c gravity. Firstly, let’s add a new variable ’speed’ right
below the y-coordinate. Shi� the display.clear() into the while loop such that it no longer just
clears the welcome message, but also clears the old posi�on of the bird, as it runs before the
new posi�on is set each �me Lines 25-29: This sets a new y-coordinate of the bird within the
borders (max y=99, min y=0), based on the ‘gravity’ ac�ng at that point. Why place it all in
the while loop? Well, you want this block to con�nually update the posi�on of the bird every
few milliseconds (20 to be exact) so this block will keep repea�ng itself Terminal velocity: to
make the mo�on of the bird more realis�c, speed reaches a constant rate of 2, but only a�er
two itera�ons of the code whereby speed = 0 becomes speed =2. The if func�on ensures
that speed does not increase beyond 2. You can play around with this to vary the speed of
bird descent.

Step 4 – Defying Gravity

Now, we have to get the bird to hop by pressing bu�on A. In this step, we also include a new
‘score’ variable to track the number of walls that the bird flies past. This can be accessed at
any point using bu�on B. To react to key-pressing of A, run ‘bu�on_a.was_pressed()’ under an
if-loop like in line 21. If, during that itera�on, the A bu�on was pressed at any �me, we bring
the bird up, reset the falling rate, then let it accelerate back down to the ground, giving the
falling and flapping mo�on. Change the value of speed on flapping, which is currently -8, to
see the visual changes to rate of bird’s descent. Add variable ‘score = 0’ to set new variable
score to 0, underneath the speed and y variables. As a coding habit, try to set all your
variables in one place, above the code that uses it so it’s easier to follow, and actually can be
inpu�ed for use. Show score when bu�on B is pressed by crea�ng an if loop similar to bu�on
A. display.show(score) shows the score at any point in �me. We’ll learn to vary and count the
score a�er each wall-passing later. Game check: Welcome message appears, disappears, then
bird appears that falls down. Press A for it to flap upwards and B to check the score, which
should remain at 0 right now.

Step 5 – Pipe Blaster

We’re going to create our first pipe using a make_pipe func�on! Then we’ll assign it to
variable i, and show pipe within the while loop. I know it’s complicated, but it’ll also be the
start of owl/our game finally looking complete! Func�ons are blocks of code that are run

conveniently under the func�on name. By calling a func�on, we can run the en�re block of
code within it. This makes it easier to understand what we’re doing at each step. In this case,
we’ll name our func�on make_pipe() which runs code to make a new pipe each �me. Let’s
break down what each step of the make_pipe() func�on does At line 19, we define the
func�on using def make_pipe(): – the indented blocks beneath make up the func�on At line
20, a custom image is drawn, with the ‘0’ indica�ng 0 brightness for each coordinate, star�ng
from row 1, column 1 then row 1, column 2 and so on. This basically lights up the LED of the
en�re last column with the brightness of 4. (You can tweak this as you like. I personally like
for the bird to be clearly brighter than the wall so you can iden�fy its posi�on.) At line 21, we
use the random library to call a random number between and inclusive of 0 and 3. This
means 0, 1, 2 and 3. We don’t use 4 because we blast two holes, one which is gap+1. If 4 was
selected, we would blast a hole in column 4, row 5. But there’s no row 5 so an error is
returned. We have to return this image so that it can be called as the value of i later on. The
hole is blasted by se�ng the LED brightness for the gap posi�on and the LED above it to be
zero. Pre�y cool, eh? That’s your first func�on. Good job! Note: always define the func�ons
above the actual code, beneath the variables. This is just a conven�on, but it makes your
program readable! Let’s assign variable i to the func�on, as per line 27. Now, in the while
loop, if we add a display.show(i), the display now shows the pipe (and hole) i. Persevere!
We’re nearly there. Now, we just have to get the wall moving, count scores and react to bird-
wall collisions. Game check: Same as step 4, and now there’s an unmoving wall with holes!
Check earlier steps if something has gone afowl.

Step 6 – Frame Rate

This step is where we set up the game constants. Here, the frame variable starts at 0, then
increases by 1 every 20ms so it takes 400ms or 0.4s for the frames variable to increase by
20. Remember this, it’ll be easier for the incoming math. These constants aren’t used un�l
Step 7, but let’s set them up first. Line 15 just indicates the �me taken (in ms) for frame to
increase by 1, which is added as part of the while loop in line 37 (frame += 1). You can change
the sleep(20) at the bo�om of the code to sleep(DELAY) so it corresponds. Line 16 sets the

�me taken for the wall to shi� by 1 column. This is currently 0.4s or 20 frames. Line 17 sets
the �me between the occurrence of another wall. This is currently 2.0s or 100 frames. Line
18 sets the �me between the score increasing. This should always be equivalent to the
FRAMES_PER_NEW_WALL value so that each wall you pass is equivalent to one addi�onal
score. To make the game harder, you would adjust these game constants, perhaps reducing
the distance between each new wall for more walls (but change FRAMES_PER_SCORE to
correspond to it). The game is currently set for one wall on the screen at any �me, but you
can definitely make it more chao�c by playing around with the values. Note: The game
constants are in uppercase, differen�a�ng them from the other variables used. These are just
standard rules for Python programming. It’ll s�ll work without following it, but your code
should follow conven�ons to be readable.

Step 7 – Pipe Dreams

Here, we will compare the frame value with game constants to move the wall le�, create a
new wall and increase the score. This is all within the while loop so it’s checked every 20ms.
Ready? Let’s go. At this step, we’ll use the modulo sign (%). This provides the remainder when
a number is divided by another number. So 4 % 2 returns 0 but 4 % 3 returns 3. Here, we’ll
use it to check that the frame variable is equal to any of the game constants. Moving wall
le�: Look at lines 65-67. This means the wall shi�s when the frame is equal to 20, 40, 60…
since they’re divisible by FRAMES_PER_WALL_SHIFT value of 20. You can vary this to make
the walls move faster and increase the difficulty. Currently, the walls move every 0.4s.
Crea�ng new wall: Look at lines 69-71. Every 100 frames, or 2 seconds, a new pipe is made
by calling the make_pipe() func�on for i. This is the constant used to create and move the
wall. Increasing the score: look at lines 73-75. This means that a point is added when the bird
travels for 2 seconds, or 1 wall. This value corresponds with the distance between walls so
each wall passed is one point. Game check: The game should be almost fully playable, with
the welcome message, then the bird moving by pressing bu�on A. You can see score with

https://www.python.org/dev/peps/pep-0008/

bu�on B. There’s gravity ac�ng on the bird so it falls down over �me. Then the walls created
randomly move right past it. Wow, you’re nearly done! Now, we just have to react to pipe
collisions, ending the game and revealing the score when the bird collides with any pipe.

Step 8 – Collision Course

Phew, you made it to the last step! Ready to wing it? Now, we just need to add a collision
reac�on. This uses a get_pixel func�on that returns the LED brightness value at that posi�on.
‘!=‘, the NOT func�on is also used. Let’s explain how it’s used below. Add this collision
checking code to the while loop, between the bird-drawing and wall-shi�ing. This means it
checks for collision before new walls are created so there’s no extra scores by error. As
shown in line 66, we use an if loop. ‘i.get_pixel(1, led_y) != 0 checks if there is a pipe in the
posi�on of column 1 (where the bird is), specifically at led_y, the displayed posi�on of the
bird. If there is a pipe pixel in the same posi�on as the bird’s coordinates, the i.get_pixel(1,
led_y) returns 4, the brightness of the wall. This is NOT 0 so the func�on beneath, the
collision checker, runs Line 67-68 display the in-built sad face image for 0.5s. You can change
how long this lingers, and to whatever other image you like. Python has a lot of images you
can input. You can find the en�re list here. Line 69 displays the score as a string, behind
“Score”. Line 70 ends the while loop so the game ends. This means that it’s ‘game over’.

Start Game!

And… that’s it! You’re done. Your game should be able to run and end, revealing the score at
the end. It’s now a full-fledged frustra�ngly simple yet challenging game. Pat yourself on the
back! That was a lot of he�y coding and new concepts. Look through your code, and try and
figure out what each line. Add comments to explain it to yourself if necessary. This is a good
prac�ce for you to easily read your own code when coming back to it months later.

Good job! Have fun frustra�ng your friends with this novel interface for the annoying game.
Now, you’re free as a bird to look for other projects, with a be�er understanding of the
Python code. Extension: Add a game loop, such that you can play again without rese�ng the

http://microbit-micropython.readthedocs.io/en/latest/tutorials/images.html

device. I suggest changing the while loop’s requirements from True to a certain variable, a
play_again func�on which can be changed with the press of a bu�on. Look at other Python
game loops for inspira�on, like a scissors, paper, stone game.

Docs » Tinker Kit » 24. case 22 Wire Transmission

24. case 22 Wire Transmission

Communicate between two micro:bits using Morse code, fishing line, a servo and a sensor!
Why use micro:bit’s radio when this is so much cooler?

24.1. Goals

Use Python to programme the micro:bit
Use dic�onaries to encode and decode Morse code
Move the servo, and detect using the crash sensor

24.2. Materials

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

2 x BBC Micro:bit
2 x Breakout board
2 x Micro-USB cable
1 x Servo
1 x Crash Sensor
A thin string (e.g. fishing line)
Op�onal: Cardboard sheet

You can’t see the string in this gif, but it’s there between the servo and crash sensor!

24.3. Why Python?

Reads like English – Python is one of the easiest languages to read, which makes it such a
fantas�c beginner’s language.
Versa�le – Python is industry standard for good reason. It can be used to do so much.
This is why Google and YouTube u�lise the language for part of its back-end so�ware.
Ac�ve community – Python is one of the most popular languages for beginners. There are
tons of resources and many more than willing to help look over your code, which will
prove invaluable to helping you get over stumbling blocks in your coding journey.

24.4. How Do I Start Coding in Python?

You can write your code in Python on the official micro:bit Python editor. To run a program,
click the download bu�on, and drag the .hex file into the MICROBIT drive connected to your
computer.

24.5. Overview

We’ll be using two micro:bits, one to transmit Morse code and one to receive Morse code.
The transmission of data will be done over a length of string. As the servo tugs on the string
(based on the encoded input), the crash sensor detects the tugging and decodes it from
morse code into le�ers. Of course, you could transmit data over the radio component of the
micro:bit, but where’s the fun in that?

24.6. Physical Assembly

A�ach the servo to the cardboard sheet, and �e the string around the end of the rotor
a�ached to the servo. Tie the other end of the string around the metal flap of the crash
sensor. A�ach the crash sensor at a distance such that when the servo turns, the string is
pulled and the sensor is ac�vated. If you don’t have a cardboard sheet, you could tape
everything to a table. For the transmi�ng micro:bit, a�ach the servo to pin 0 on the breakout
board. For the receiving micro:bit, a�ach the crash sensor to pin 0 on the breakout board.

24.7. What’s Morse Code?

Morse code is a type of code used to transmit text by a combina�on of short (“.”, or “dit”) and
long (“-“, or “dah”) signals. Every le�er of the alphabet and number from 0 to 9 has its own
Morse code representa�on. Le�ers are separated by pauses.

24.8. Transmitter

Step 1: Encoding Text into Morse Code

Suppose we are given the text “HELLO WORLD”, and would like to convert this into Morse
code. First, we need to have a ‘table’ of what each le�er’s morse code is, so that we could, for
example, find that “E” is “.” and “W” is “.–”.

We can use one of Python’s data structures, the dic�onary, which allows us to associate keys
to values. In this case, the keys should be the le�ers of the alphabet, and the values should
be the Morse code representa�on of the corresponding le�er.

Here is a dic�onary that should do the trick:

MORSE_CODE = {‘A’: ‘.-‘, ‘B’: ‘-…’, ‘C’: ‘-.-.’, ‘D’: ‘-..’, ‘E’: ‘.’, ‘F’: ‘..-.’, ‘G’: ‘–.’, ‘H’: ‘….’, ‘I’: ‘..’, ‘J’: ‘.—‘, ‘K’:
‘-.-‘, ‘L’: ‘.-..’, ‘M’: ‘–‘, ‘N’: ‘-.’, ‘O’: ‘—‘, ‘P’: ‘.–.’, ‘Q’: ‘–.-‘, ‘R’: ‘.-.’, ‘S’: ‘…’, ‘T’: ‘-‘, ‘U’: ‘..-‘, ‘V’: ‘…-‘, ‘W’: ‘.–‘,
‘X’: ‘-..-‘, ‘Y’: ‘-.–‘, ‘Z’: ‘–..’, ‘0’: ‘—–‘, ‘1’: ‘.—-‘, ‘2’: ‘..—‘, ‘3’: ‘…–‘, ‘4’: ‘….-‘, ‘5’: ‘…..’, ‘6’: ‘-….’, ‘7’: ‘–…’, ‘8’:
‘—..’, ‘9’: ‘—-.’ }

Now that we can translate each individual le�er into Morse code, we should assemble the
en�re message, adding a space to the end of each le�er to tell the receiver that a le�er has
been sent.

Step 2: Moving the Servo based on Morse Code

Once we’ve converted our message into the Morse code form, the next step is to move the
servo based on the encoded message. In this case, dit will represent a 0.6s tug, dah a 1.2s
tug, and a space a 1.6s tug.

First, we need to find the correct angles for the servos that will either tug on the sensor to
ac�vate it, or release the string to deac�vate the sensor. We’ll call these values press_angle
and release_angle. For this set-up, their values are 150 and 60, but this will differ based on
how you’ve posi�oned the sensor and servo.

To move the servo, we’ll need to use a class, which can be obtained here. To use this class
with the online editor, copy and paste this code at the start of the programme.

For each character (dit, dah or space), we should tug on the string for the appropriate length
of �me, and then release the string for a short period of �me.

24.9. Receiver

Step 1: Translating Sensor Data into Morse Code

When the string tugs on the sensor, it will press the flap down, and this can be detected
using analog input. Whenever the flap is down, the analog reading of the pin drops below a
threshold value. In this case, we’ll use a threshold value of 100.

While we could use event listeners that trigger events when the flap is pressed, it’ll be easier
to perform polling, which means checking the analog reading at a certain interval, in this case
0.1s.

If in a cycle, the flap is being held down, we’ll increase the press_length by 100, to keep track
of how long the flap has been pressed so far. If the flap is found to be released, we can use
press_length to figure out how long the bu�on has been pressed, and use it to determine
what character (dit, dah or space) has been transmi�ed. We’ll add this to the variable
cur_le�er, which keeps track of the dits and dahs that have been sent over so far.

Step 2: Translating Morse Code into Letters

Every �me a space is detected, it should take the characters (dits or dahs) detected so far,
and convert that into a le�er. We’ll need to use a dic�onary again. This �me the keys should
be the Morse code representa�on, and the value should be the le�er of the alphabet.

Here’s the code for the decoding dic�onary:

MORSE_DECODE = {‘.-‘: ‘A’, ‘-…’: ‘B’, ‘-.-.’: ‘C’, ‘-..’: ‘D’, ‘.’: ‘E’, ‘..-.’: ‘F’, ‘–.’: ‘G’, ‘….’: ‘H’, ‘..’: ‘I’, ‘.—‘: ‘J’,
‘-.-‘: ‘K’, ‘.-..’: ‘L’, ‘–‘: ‘M’, ‘-.’: ‘N’, ‘—‘: ‘O’, ‘.–.’: ‘P’, ‘–.-‘: ‘Q’, ‘.-.’: ‘R’, ‘…’: ‘S’, ‘-‘: ‘T’, ‘..-‘: ‘U’, ‘…-‘: ‘V’, ‘.–‘:
‘W’, ‘-..-‘: ‘X’, ‘-.–‘: ‘Y’, ‘–..’: ‘Z’, ‘—–‘: ‘0’, ‘.—-‘: ‘1’, ‘..—‘: ‘2’, ‘…–‘: ‘3’, ‘….-‘: ‘4’, ‘…..’: ‘5’, ‘-….’: ‘6’, ‘–…’:
‘7’, ‘—..’: ‘8’, ‘—-.’: ‘9’}

Now, whenever a le�er is detected (a space is pressed), we can look in the decode dic�onary
to obtain the original le�er. However, some�mes the receiver may not correctly detect the
sequence of string tugs, and so the sequence cannot be found in the dic�onary. If we try to
look for a sequence that cannot be found in the dic�onary, Python will throw an error and
the programme will stop execu�ng.

Hence, we should first check if the sequence exists in the dic�onary’s keys, and if it does not,
we’ll set the current character to “?”. Once we have the current character, we can display it
on the LEDs, by se�ng the cur_char variable. At each cycle, we’ll display the character
detected.

24.10. Putting it all Together

If the set-up doesn’t work flawlessly at first, that’s fine! Try adjus�ng the posi�ons and
orienta�ons of the servo or sensor, as well as the press and release angles of the servo. Also,
you can try adjus�ng the dura�ons of the tugs.
Here is the full code for the transmi�er and receiver.

24.11. Extensions

Although this method of data transmission isn’t used for …obvious reasons, many concepts in
data transfer are relevant. Try to experiment with the length of string to see how long
distance can be reliably transferred, and at what point the “signal” becomes too weak to be
detected.

To boost the “signal”, a third micro:bit can be used as an amplifier that converts sensor signals
into new tugs, similar to how signal amplifiers are installed every 20km in underwater fibre-
op�c cables.

Morse code certainly isn’t the most efficient way to transmit data, nor is it the most reliable
way. Experiment with different types of encodings (binary + ASCII, Hamming codes, etc.), as
well as explore some error-correc�ng codes to detect and fix any losses/errors in
transmission.

https://pastebin.com/Qm7ZjxHJ
https://pastebin.com/JLEkPyYS

Docs » Tinker Kit » 25. case 23 Snake Game

25. case 23 Snake Game

Anyone remembers the Snake game that used to come with old Nokia phones? This micro:bit
version in glorious 5×5 resolu�on is easy to make and fun to play!

25.1. Goals

In this step by step guide, we will build a snake game from scratch, handling controls,
movement, win and lose condi�ons, as well as the drawing of the game board.

25.2. Materials

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x BBC micro:bit
1 x Micro USB Cable
1x Pa�ence (coding should take approx. 30 min)

25.3. Why Python?

Reads like English – Python is one of the easiest languages to read, which makes it such a
fantas�c beginner’s language.
Versa�le – Python is industry standard for good reason. It can be used to do so much.
This is why Google and YouTube u�lise the language for part of its back-end so�ware.
Ac�ve community – Python is one of the most popular languages for beginners. There are
tons of resources and many more than willing to help look over your code, which will
prove invaluable to helping you get over stumbling blocks in your coding journey.
Actual coding looks cooler than block-based drag-drop coding. I know it’s in�mida�ng,
but look at these colours!

25.4. How Do I Start Coding in Python?

If you’re a fledgling to programming, you probably don’t have Python lying around. Don’t
worry! Just go to the official micro:bit Python editor or download the offline Python editor
mu to write code and send it to your micro:bit. You can also your own text editor (three
cheers to Sublime 3 and Atom) but you have to flash it to the micro:bit. This might turn out to
be quite troublesome. Alterna�vely, you can use a micro:bit simulator, which is really useful
to test code out without downloading the .hex file each �me, and makes it easier to fix
errors.

Once set up, connect your micro:bit to your computer using the micro-USB cable. It should
connect to the port at the top of the backside of the micro:bit. Once ready to be flashed, the
micro:bit should light up bright yellow. Ignore this step if you’re on the simulator. Otherwise,
stop reading and set it up if you haven’t already.

25.5. Six Simple Steps to SNAKE!

By breaking the code into separate por�ons, each aspect of the game can be tested
individually to ensure that they are all func�oning as they should.

Import libraries
Ini�alize variables
Create the main loop
Display snake and food
Move snake every frame

http://www.python.microbit.org/
https://codewith.mu/
https://create.withcode.uk/

Set win and game over condi�ons

By checking the code constantly, we can be sure that what has been wri�en so far is correct.

25.6. How to Make

Step 1 – Import

All necessary libraries for the project.

Since the project is a fairly simple one, we just need the default micro:bit library and this ni�y
func�on called randint that produces the random numbers we need.

Step 2 – Initialize

All the variables we will need later.

A point on the board is represented by a list [x, y] with x represen�ng the column and y
represen�ng the row. The snake is a list of these points (yes, a list of lists!) as it contains more
than one point. It starts as a single pixel at the top le� of the screen, denoted by [0,0]. A�er
which, more points will get appended to the list. The food is a single pixel posi�oned
randomly somewhere else (not in the same row or column).

Each direc�on is represented by a list containing an increase/decrease in the column, or
increase/decrease in the row (In essence, a vector). For example, right is represented by [1, 0]
– an increase in the column by one, and no increase in the row. The snake is moving right by
default, which is the first op�on in the list of direc�ons. For the snake to turn le�wards, we
simply go to the next direc�on in the list (right -> up -> le� -> down -> right). For the snake
to turn rightwards, we go to the previous direc�on in the list.

Step 3 – Create

The main loop.

The code within the loop repeats an infinite number of �mes, or un�l the loop is broken.
Remember, this is Python, so all subsequent lines will have to be indented.

Step 4 – Display

The snake and the food.

First, we clear the display of anything that was previously drawn, so that we start with a
blank slate. Next, we draw the food par�cle as a bright light on the display. A�er that, we
loop through the snake list and draw every single pixel at medium brightness. Then, the
program pauses for 0.8 second before redrawing the screen again.

Run the code! It is important to constantly check that everything is as it should be. At this
point, there should be two pixels on the board ligh�ng up on the board. Press the reset
bu�on and the food par�cle will move to a different loca�on.

Step 5 – Move

The snake and figure out what happens next.

The whole code should be placed on top of the previous display code. (See completed code
for reference). The first line determines the next pixel the snake will move to. Based on the
current loca�on of the head of the snake and adding the direc�on (in terms of row and
column), we can find the next pixel. By obtaining the modulo 5, we can wrap the snake
around the edge of the board.

What happens if this next block is already occupied by the body of the snake? In this case, a
collision happens and the game ends. Note that break stops the while: True loop from
running.

The next block is now made the new head of the snake. Next, we check if a piece of food has
been eaten. If so, then a new piece of food should be generated. If not, the tail of the snake
should removed so that the snake is moving, not simply growing longer.

Run the code! Become infuriated as you realize that there is no way to win the game.

Step 6 – Win the game!

This code should be placed on top of the display code, but below the movement code. (See
completed code for reference). What it does it con�nually check if the snake contains twenty
five pixels, which is the en�re board. If that is the case, the player wins!

Congratulations!

Enjoy your fully func�onal snake game.

Docs » Tinker Kit » 26. case 24 Game bit

26. case 24 Game bit

26.1. Put together the Game:bit!

Let’s figure out where all those screws are supposed to go.

Goals

Assemble the game:bit.
Try not to break it.
Helpful Hint: Toggle through pictures for each step for more photographic detail!

Materials

1 x Game:bit kit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x Screwdriver

Step 1 – Buttons!

1. A�ach the ADKeypad first with the red bu�ons on top.
2. Screw the 4 corners in and secure them at the back with the golden standoffs

Step 2 – Wire it up!

1. Thread the tri-coloured wire through the hole and a�ach it to ADKeypad. Brown to G
(ground), red to V (voltage) and orange to S (signal).

2. The colours of the jumper wires don’t actually affect how the electronics work. But it is
good prac�ce to follow a colour conven�on so that you can easily iden�fy where which
cables are a�ached to.

Step 3 – Wiring Firing

1. Posi�on your micro:bit at the top and on top of your shell.
2. Place a screw into the P1, 3V and GND holes of the micro:bit. We’re going to

communicate with our ADKeypad through P1 of the micro:bit.
3. On the back, secure the ring terminal of the orange (S) wire from the ADKeypad to the

screw on P1 using a nut. Do the same for the red (V) wire with the screw a�ached to 3V.
4. Posi�on the brown (G) wire to the GND screw but don’t a�ach it yet!

Step 4 – Add a Buzzer

1. The buzzer has both a posi�ve and nega�ve wire! You can find markings on the green
bo�om of the buzzer. Take note of which colour is posi�ve (+) and which is nega�ve (-).
The power supply capabili�es and parameters, which be�er define how you can use the
GND and 3V rings.

2. A�ach the nega�ve wire to the GND screw above the ring terminal from the ADKeypad.
Bolt it in �ght!

3. A�ach the posi�ve wire to P0 of the micro:bit using the same screw and nut method.
4. Take note that the buzzer will only work with the micro:bit when you a�ach it to P0! You

won’t be able to use the makecode Music blocks otherwise.

Step 5 – Battery Powered

1. Last thing to go into your game:bit will be your ba�ery pack!
2. Add two AAA ba�eries into your ba�ery pack.
3. Posi�on your ba�ery pack horizontally in the game:bit so that the On-Off switch is

accessible from the hole in the back.

Step 6 – Closing Time

1. Close up the game:bit and align the 4 holes at the back to the standoffs securing the
ADKeypad.

2. Screw down into the standoffs to secure the back.

Step 7 – Closing Time

1. Screw two screws into the two holes at the edge of the shell with the lock holder behind.
Secure them with nuts.

2. Repeat on the other edge of the shell.
3. The lock holder helps to hold everything together so don’t lose it! (Of course this advice is

given right at the end of the instruc�ons)

Cool stuff!

Now you’ve go�en your game:bit fixed together – get your game on and start coding! Follow
along with our tutorials and make cool games like Avoid the Asteroids, Maze Runnerand
Flappy Bird.

Docs » Tinker Kit » 27. case 25 µ reMorse

27. case 25 µ reMorse

27.1. µ reMorse

Make a Morse Code “Keyboard”/Editor the hard way.

microbitKit\Tinker_Kit\./images/aSEflPU.jpg

Goals

A Morse Code keyboard/Editor made using the C/C++ Micro:bit Run�me

1. Interprets a combina�on of short and long bu�on presses into characters using Morse
code.

2. Send characters over the serial interface to your computer, just like a “keyboard”.
3. Special bu�on combina�ons for non-visible characters such as spaces and newlines.
4. Unfortunately, the author use unable to figure out how to send keyboard events,

hence a “keyboard” in quotes.
5. Built using only the Micro:Bit run�me in C/C++
6. Leverage the built Micro:Bit display provide an interac�ve typing experience.

Materials & Prerequsites

1 x BBC micro:bit
1 x Micro USB cable
1 x Computer with Unix Like OS
C language experience
Command Line experience

Step 1 – Development Envrioment

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

microbitKit\Tinker_Kit\./images/X2ptgqb.png

1. Install the dependencies to build your microbit project. Using your package manager
(brew, apt-get, pacman, …), or any method you fancy, install yo�a and srecord. Direct your
terminal to the project directory. Here you will write your code in source/main.cpp.

2. To build the program, Micro:Bit run�me program employs the Yo�a build system. First we
would target the architecture of Micro:Bit by running yo�a target bbc-microbit-classic-
gcc. We can now build the project with yo�a build. Finally, to install the compiled program
into your microbit, plug in your Micro:Bit and find a file ending with .hex in the
build//source/ folder. Copy this file into your Micro:Bit, which should now be mounted.

3. Check out module.json where you can configure the program’s name, version, descrip�on,
source code folder … etc.

4. Now that is quite an overwhellming amount of infoma�on all at once, fortunately what
you need to do would be much simpler. The author has provided a convience makefile to
handle building with yo�a and installing the compiled file into the microbit.

5. To build the project, run make and to install the compiled program into the microbit, run
make install. When the micro:bit is recieving instruc�on, the LED on the back of the
microbit near the USB port would flash. Once installa�on is complete, the LED at the
micro-USB port would stop flashing and the program would run automa�cally.

6. To reset the Micro:Bit at any �me and restart the program running the Micro:Bit, press the
bu�on next to the micro-USB port on the back of the Micro:Bit

7. For more infoma�on, see the run�me documenta�on on se�ng up the development
enviroment here.

Step 2 – Hello World

1. Lets begin by wri�ng the �me tested “Hello World” program on the microbit. Copy this
into main.cpp. As usual, but different from the Arduino prototyping pla�orm, code
execu�on starts from the main func�on.

2. First we would include the MicroBit.h to get the Mirco:Bit run�me defin�ons. (The
include path would be configured automa�cally by the build system). The Micro:Bit
program is centred around one object/instance, the MicroBit object, which you will
interact with do almost every ac�on that involves the microbit. In this tutorial, we will
name the object “uBit“. The first thing any Mirco:bit program should do is ini�alise the
Micro:Bit using uBit.init().

3. Now we want the Micro:Bit to scroll “Hello World!” across its screen. This is done using
uBit.display.scroll() which displays its argument scrolling across the display. Note that the
call blocks while the text is displaying scrolls across the screen.Take a look at uBit.display
for more infoma�on on driving the Micro:Bit’s built in display, such as non blocking calls.

4. Thats it, run make && make install with your Microbit plugged in to install the program.
Once the program is installed, “Hello World!” should scroll across the screen.

Step 3 – Buttons & Events

1. We will employ the two bu�ons on the Micro:Bit, namely bu�on A & B in some
combina�on of clicks & holds to trigger a specific func�onality.

2. When something happens to the bu�ons on the Micro:Bit, this happening is tranlated into
an ‘event’ in to the system. Events are not simply limited to bu�on presses. They could
represent anything from a the radio recieve a datagram or the accelerometer detec�ng a
change in orienta�on.

3. To run code whenever a specific event is raised, we write an ‘event handler’, which is
simply a func�on that contains the code that you want to run. The func�on takes in an
MicroBitEvent argument, which is the event that caused the func�on to be run and
returns nothing.

4. Micro:Bit uses messageBus as it to deliver events run registered event handlers when a
certain event happens, such when one of the bu�ons on the microbit is pressed, which
messageBus would call the event handler, provided that the event meets the handlers
listening criteria.

5. Use uBit.messageBus.listen() to register your func�on as an event handler for a speicific
event criteria. Here we are registering event handlers to the bu�ons on micro:bit, for any
event. This means that any event that is related to the specified bu�on would call the
event handler that was registered for that bu�on. In an actual program, we can be more
specific like specifing MICROBIT_EVT_BUTTON_HOLD to run the event handler only if
the specific bu�on is held down for some �me.

6. Note that ALL execu�on would cease if the Micro:Bit reaches the end of main() func�on,
hence, we release the main thread or this case the main “fibre” to allow the micro:bit to
process bu�on events.

7. Thats it, run it with make && make install. Once the program is installed, pressing
bu�on(s) A and/or B should scroll “A” or “B” depending on which bu�on you press. If you
press A and B together, you should see “AB” scrolling across the screen.

Step 4 – Registering Morse Code

1. Morse code is made up of a variable combina�on short and long signals, or in this case,
bu�on presses.

2. Expand the ‘Advanced’ sec�on and scroll to the bo�om and click on ‘Add Packages’
3. In the search box, type in ‘Tinker’. Click on the box labelled ‘�nkercademy-�nker-kit’
4. Now you’ll see something new in MakeCode – a bright green Tinkercademy category has

been added!
5. Inside this category you’ll find blocks to sense bu�on presses on the ADKeypad. Note

that impor�ng this package only happens for the current project. So if you start a new
project and want to use the category, you’ll need to re-import it.

Step 5

1. Now that we have our Tinkercademy category added, we can use the ADKeypad to move
up, down, le�, and right. In this example, we’ll set the A bu�on to move up, the C bu�on
to move down, the D bu�on to move le�, and the E bu�on to move right.

2. To do this, we use if statments. If statements test to see if a condi�on is true; if it is true,
then they run any blocks inside the if block. When we place an if statement inside a
forever loop, we forever test to see if the condi�on is true.

3. To move the player, we simply change the player x or player y variables. Remember,
decreasing or increasing playerx causes the player to move le� or right respec�vely, and
decreasing or increasing playery causes the player to move up or down respec�vely.

We’re constantly plo�ng the loca�on of the player using these variables, so when we
change them, it automa�cally changes the player’s loca�on!

4. Note that we add a short 300ms pause a�er each bu�on press. Otherwise the micro:bit
would move you many spaces every �me you pressed a bu�on because it runs the code
so fast.

Step 6

1. Now that we can move our player around, let’s start crea�ng our maze levels! Every �me
we start a level we need to do a few things: First we need to display the maze walls on
the LED display. Second, we need to forever check if the player runs into a wall (if they
do, it’s gameover!). And third, we need to forever check if the player makes it to the end
of the maze level (if they do, let them know they succeeded and move onto the next
level!).

2. For each level, we’re going to use a forever loop. Inside the loop, we use an ‘if’ statement
to check if the level variable equals 1. This means this code will only ever run if the level
variable equals 1.

3. Inside the if statement, we first display the maze walls. We light up LEDs to serve as maze
walls, and leave them turned off to represent the maze path. This can be done using the
‘show leds’ block. One thing to be careful about though: remember above we set the
star�ng posi�on of the player? Make sure your player star�ng posi�on is not inside a
maze wall! In this example, the star�ng posi�on of the player is x=0, y=3.

4. Next, we need to check if the player ever runs into a wall. How to do this? Once again
we’ll use if statments to check if our playerx and playery variables are ever in the same
place as a wall. We do this using the coordinate system of the 5x5 LED grid. In this
example, there are two sec�ons of walls.

5. The first wall exists where playerx is less than or equal to 2 AND playery is less than or
equal to 2. We create an if statement with these condi�ons, and inside we set gameOn to
‘false’ (since if it’s ever ‘true’, it means the player ran into a wall and should get a Game
Over).

6. The second wall exists where playerx equals 4 OR playery equals 4. We create another if
statement with these condi�ons, and inside we set gameOn to ‘false’ (because once again
if it’s ever True, it means the player ran into a wall and should get a Game Over).

7. Finally, the last test we need to add is to see if the player makes it successfully through
the maze! In this example level, the end of the maze is at x=3, y=0. We create another if
statment to check if x=3 AND y=0, and inside we do a few things: First, we play a success
melody in the background. Second, we set the star�ng posi�on of the player for the next
level (in this example, we use the same star�ng posi�on, but it can be different!). Third,
we show a smily face to tell the player they succceeded! And fourth, we change the level
variable by 1 (this will cause the next level to display).

Step 7

1. Whew, se�ng up a level was a lot of work! Now that we have a single level, let’s make
something happen when a player gets a game over. This will happen whenever they run
into a wall, and it’s tracked by the ‘gameOn’ variable.

2. Inside a forever loop, we use an if statment to check the value of the ‘gameOn’ variable. If
it equals ‘false’, then we want our game over code to run!

3. In this example, we play a sad melody in the background, reset the ‘level’, unplot the
player LED, show an angry face, and finally display a string telling the player they can
press B to restart the game.

Step 8

1. Speaking of pressing B to restart the game, we haven’t yet created the code to do that!
2. Inside a forever loop, we test to see if bu�on B on the ADKeypad is pressed. If it is, we

want to set ‘level’ to 1, reset the player’s star�ng loca�on by se�ng the ‘playerx’ and
‘playery’ variables to 0 and 3 respec�vely, and set the ‘gameOn’ variable back to ‘true’.

Step 9

1. Now our game should be working as intended! The only thing missing is more levels!
2. It’s quite easy to add more levels by duplica�ng our level 1 code from above. The only

things that will change are the maze walls and the coordinates for our if statments (for
tes�ng if the player moves into a wall or completes the level.

3. Tip: some�mes it can be complicated to create if statements to test for every wall. In
these cases, try to break down your walls into separate rectangles and create an if
statement for each rectangle.

4. One thing to watch out for: a�er the player completes the level and you reset their
playerx and playery variables, make sure the posi�on matches your next level. Otherwise
they could start inside a wall!

Step 10

1. Once you’re done adding in levels, you can op�onally create a victory sec�on. In this
example, once the player successfully completes the first 3 levels and level equals 4, we:
unplot the player, play a victory melofy in the background, and show a victory message!

Cool stuff!

Now that you’ve learned how to use the ADKeypad, you can try using it to control LEDs,
servos, and other components! You also learned about if statements which are useful in many
micro:bit projects! Try customising your maze runner game by adding more levels!

Docs » Tinker Kit » 28. case 26 Coin Sorter with micro:bit

28. case 26 Coin Sorter with micro:bit

28.1. Coin Sorter with micro:bit

Ever just accumulate a bunch of coins in a jar and now want to sort out the giant mess
your past self should have foreseen? No? Just me? Ok well let’s build a coin sorter for fun
then, adding on an ultrasound to count the amount you have sorted. Wri�en by Hannah
from Raffles Ins�tu�on during a job a�achment.

Goals 

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1. Make a simple mechanical coin sorter.
2. Learn how to wire up and use an ultrasound HC SR04.
3. Have fun!

Materials

3 5x25cm pieces of cardboard
2 25x2.5cm pieces of cardboard
2 19x26cm pieces of cardboard
2 5x19cm pieces of cardboard
6 5x5cm pieces of cardboard
1 2x5cm piece of cardboard
Jumper wires and 3 crocodile clip heads
Solder
5V ba�ery supply or 3AA ba�eries and a ba�ery holder
1 micro:bit
1 micro USB cable
1 Ultrasound HC SR04
Superglue

Hardware Step 1 – Creating the slots

1. Take a 5x25cm piece of cardboard (A) and draw a line 0.5cm away from the long edge of
the cardboard.

2. Leave a gap of 5cm from the short edge to the cardboard and draw a reference line.
3. Place a 5cm coin at the corner of these two lines and trace its edges.
4. Draw a rectangle of width which is the diameter of the coin and length 0.2cm shorter

than the diameter of the coin. Shade this rectangle to indicate that it is to be cut out later.

5. Leave a 2cm gap from this rectangle and draw another reference line
6. Repeat steps 3 to 5 using a 10 cents, 20 cents, 50 cents and $1 coins in this order.
7. Cut out the shaded rectangles using a pen knife.
8. Since the cu�ng of the board le� some parts fla�er than others, fla�en the whole piece

of cardboard.
9. Since the cardboard is pre�y rough, there might be too much fric�on for the coins to slide

down. Rec�fied this by taping the cardboard in smooth scotch tape (p.s. The transparent
scotch tape might also have too much fric�on)

10. Measure the distance from the middle of each of the 2cm gap to the end of the
cardboard. Taking these measurements, draw reference lines on the other piece of
5x25cm cardboard (B).

11. Paste the two pieces of 2.5x25cm pieces of cardboard on to the edges of A.

Step 2 – Creating the front piece

1. Leave a 5.5cm gap from the edge of the 19x26cm piece of cardboard (C) and draw a
reference line.

2. Draw a rectangle at the corner of the C (within the area enclosed by the 5.5cm gap) as
shown.

3. Cut out this rectangle.
4. Draw a 5x18cm rectangle from this reference line as shown. This will be the opening to

the sorted coins.
5. Cut out the widths of the rectangle as shown to make a door.
6. Using a ruler, press in the side of the door to make it easier to bend outwards

Step 3 – Creating the side piece

1. Take a piece of 5x19cm piece of cardboard (D).
2. Create a rectangular coin slot of 0.3x3cm dimensions whose lower length is 16cm from

the bo�om of the cardboard. (see picture for be�er visualisa�on)
3. Create a hole for the wires by cu�ng out a 1x2cm rectangle whose lower length is 10cm

from the bo�om of the cardboard. (see picture for be�er visualisa�on)

Step 4 – Setting up the electronics

1. Solder one male header jumper wire to a crocodile clip as shown. Insulate the exposed
wire using either electrical tape or shrink tubing.

2. Repeat step 1 2 more �mes to create 2 signal connec�on wires and 1 ground wire.
3. Connect the 2 signal connec�on wires to the trig and echo pins of the ultrasound and

pins 0 and 1 respec�vely on the microbit.
4. Connect the the ground pin of the ultrasound and the ground of the microbit using the

ground wire.
5. Paste the ultrasound to the 2x5cm piece of cardboard such that the the large flat back of

the ultrasound is flushed against the board and the pins are s�cking out.

6. Connect the micro USB of the microbit.
7. Connect a jumper wire separately to the 5V and ground pin of the ultrasound.

Step 5 – Putting it altogether

1. Paste the 6 5x5cm pieces of cardboard on B on its reference lines.
2. Paste D on the right side of B
3. Paste the ultrasound about 5.7cm from the bo�om of the D
4. Using tape, tape the microbit 0.5cm from the bo�om of B, with its screen and bu�ons

facing outwards
5. Thread all the wires through the hole for the wires.
6. Paste the other 5x19cm board (E) at the back of B
7. Orientate A such that the 5 cent slot is on the right. Paste the back of A on B such that

the �p of A near the $1 slot is 9cm from the bo�om of B and the 5 cent slot side is 16cm
from the bo�om of B. (see picture for be�er visualisa�on)

8. Paste C to the front of the coin sorter such that A is 8cm and 15cm from the bo�om of C.
9. Paste the other 5x19cm piece to the le� side of the coin sorter and the last 5x25cm

board onto the top of the sorter to close the setup.

Step 6 – Powering the microbit and ultrasound

1. A�ach the ground and 5V wires of the ultrasound to a 4.5V to 5V power supply
2. Power the microbit in parallel to the ultrasound using the same power supply.

3. If a different power supply is used, a�ach the ground wire of the microbit in parallel to the
ground from the same 5V power supply. (Sharing of the ground wire)

Software Step 1 – Calibrating the ultrasound

Every ultrasound is different and the environmental condi�ons at your place might be
different from mine so the values I use might be different from yours. Calibra�on helps
you find what values you should be using in your situa�on.

–

1. Download the Sonar package for easy access to the ultrasound func�on.
2. Create a func�on to get the distance of the ultrasound as shown.
3. Create a func�on to show the distance that the ultrasound is sensing on the screen

4. Con�nuously call this func�on
5. Drop different coins into the coin sor�ng machine and record the minimum and maximum

distances you get from each type of coin.

Do make sure that the ultrasound is placed neatly ver�cally and is not obstructed by anything.

Step 2 – Sum of the value of the coins

1. Record the min and max values from above as variables.
2. Ini�alise the sum of the coins to be 0.
3. Logically, if the ultrasound gets a reading between the min and max of a coin, the coin

that has been sorted must be of that par�cular value. Hence, if the reading is larger than
or equal to the min value and smaller than or equal to the max value, it is for example a 5
cent coin. Store the value of the current coin being sorted in a variable.

4. If the coin has been found, we need to increase the total sum value by its value. Create a
func�on that checks for and does this.

5. Con�nuously call this func�on.
6. Now we need a way to restart the sum value if we take out our coins, so go ahead and

reset the sum to 0 if the bu�ons A&B are pressed.

Good job!!!

Hopefully, you had fun building the coin sor�ng machine. Now, think of ways to further
develop the project… maybe add a func�on to see if the machine is full? Either way, enjoy ^
^

Docs » Tinker Kit » 29. case 27 Make a Waving Fortune Cat

29. case 27 Make a Waving Fortune Cat

29.1. Make a Waving Fortune Cat

Use a micro:bit and mini servo to make your very own Maneki-Neko, or Fortune Cat, who
waves its hand when you press a bu�on!Designed and wri�en by Tim Ho from the
Na�onal University of Singapore.

Goals

1. Make a moving cardboard cat.
2. Give cat an ac�on which you desire.
3. Hint: Follow the steps and pictures during your building process!

Materials

1 x ADKeypad
1 x Ba�ery Pack
2 x Yellow LED
1 x Breakout Board
1 x micro:bit
1 x Mini Servo

Step 1 – Choose a cat

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

Find a cat image and s�ck over a cardboard for support.
Choose a cat personality of your choice. Happy, relaxed or friendly!

Step 2 – Connect electronic parts

Connect the following on the breakout board

1. ADKeypad to Pin ‘0’.
2. Mini Servo to Pin ‘1’.
3. Two LED lights to Pin ‘2’ and Pin ‘8’.

The colours of the jumper wires don’t actually affect how the electronics work. But it is good
prac�ce to follow a colour conven�on so that you can easily iden�fy where which cables are
a�ached to.

Step 3 – Join up electronics to cardboard

1. Mount the mini servo to right side of your cardboard cat.
2. Create two openings on the cardboard for the LED lights to shine through

Step 4 – Code Microbit

1. Create block code in make code on the le�.
2. When Bu�on ‘A’ is pushed (Two LED lights up, Servo motor turns)

Cool stuff!

Now you’ve brought your cat to life. Think of a variety of movements for your cat. Enjoy and
add them on to the cat!

Docs » Tinker Kit » 30. case 28 Put together the Krazy Kar v2

30. case 28 Put together the Krazy Kar v2

30.1. Put together the Krazy Kar v2

Got our Krazy Kar Kit and ready to get started? Follow along to put it together here. Don’t
like instruc�ons? Use your crea�vity and make a krazy octopus instead.

Goals

1. Make the Krazy Kar.
2. Don’t break anything.
3. (Or if you break anything, learn how to fix it).

Materials

1 x Krazy Kar Shell
2 x Con�nuous Servos
2 x Wheels for Servos
Some x Tape
1 x Basic:bit

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

5 x Screws
1 x micro:bit
1 x Ba�ery Pack

Step 1 – Shell it!

Fold up the cardboard shell where the line cuts are.
Tape it such that the sides stand 90 degrees to the base.
You should be able to slot the top shell (one with 5 holes) into the bo�om shell now.

Step 2 – Put in the Innards.

Insert the two servo motors into the holes at the sides.
Behind the stabilizing rectangle is some double-sided tape. Peel off the paper and push
the rectangle in between the servos to secure them in. S�ck it down well onto the base!
Fill the ba�ery pack with ba�eries and place it in the front of the krazy kar.

Step 3 – On to the Outside!

Screw the wheels onto the con�nuous servo motors.
Thread the servos and ba�ery pack’s wire through the rectangular hole in the top shell.
And fit the top shell onto the bo�om.

Step 4 – Upgrade the micro:bit

Screw the micro:bit onto the basic:bit using the longer screws provided. Note that the
holes should align, P0 to P0 and G to G.
Affix the two servos into P1 and P2 of the basic:bit, making sure that the brown wires
goes to G and the yellow wires go to S.
Switch the P0/Buzzer switch on the basic:bit to buzzer. If it was already there – lucky you.

Step 5 – On to the Outside!

Using the 5 screws, fit the micro+basic:bit cyborg into the 5 holes on the top of the krazy
kar.
Decorate decadently. And code it to get moving!

Docs » Tinker Kit » 31. case 29 Shoot Em Up Kit

31. case 29 Shoot Em Up Kit

31.1. Shoot Em Up Kit

You’ve got a town to save and a dragon to shoot! This here is the formula to get your own
tabletop shooter arcade working in good form!

Goals

1. Connect all the parts of the Shoot Em Up Kit.
2. Code the micro:bit to fly dragons, detect lasers and score your player.

Materials

1 x Shoot Em Up Box

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x Light Sensor
1 x Servo motor
1 x Ring:bit
5 x Screws
1 x micro:bit
3 x AAA ba�eries

Step 1 – Put your town in order!

Insert all the mountain cutouts and bushes around the path to your town.
Fit the servo motor into the hole at the pop-up center.

Thread the servo’s wires into the hole and out the box at the front.

Step 2 – Attach your ring:bit

A�ach the micro:bit atop the ring:bit and screw it down with all 5 screws.
Insert all 3 ba�eries into the back of the pack.
Switch the le� switch to P2 and the right switch to OFF. We’ll turn it on a�er we’ve
coded the micro:bit.

Step 3 – Connect all the parts!!

Connect the servo to P2 on the ring:bit. And make sure that the brown wire goes to G
and the yellow wires go to P2.

Connect the light sensor to P1 on the ring:bit. The black wire should connect to G.

Step 4 – Code it up!

Step 5 – The real challenge – calibration.

Calibrate your dragon to make sure it’s flying back and forth in the sky and not face flat into
the ground repeatedly.

With your servo firmly in place – code the micro:bit to turn your servo to 0 deg when
bu�on A is pressed, and to turn to 180 deg when bu�on B is pressed.
Place a servo arm onto the head of the servo a�er pressing bu�on A and watch to see
where it goes when you press bu�on B. If the servo arm points too far down or to the
side, adjust the arm and reduce the angle coded. (e.g. adjust 0 – 180 deg to 20 – 160
deg).
Replace the servo arm with the dragon arm at the same angle and screw it down to
secure it.

Step 6 – Calibration Part 2

On to the light sensor. We’ve got to capture the current light levels and when a laser passes
over, the sensor will alert the micro:bit that the light levels has suddenly gone way up.

Thread the light sensor through the hole under the pop-up and to the front of the box.
Place the light sensor into the dragon’s mouth and tape it down to secure it.
Code the micro:bit to detect the light level through the light sensor when a bu�on is
pressed.

Step 7 – Putting it all together.

Now we want to be able to stop the dragon when it gets hit and also score points!

So we should combine the two pieces of code and use an IF logic block to check if we got
hit.
IF we get hit, then we change the icon on the micro:bit and pause for a while, before
changing back to the default icon.
ELSE (if we don’t detect and hits) then we allow the servo to move as per normal.
Also – add in more blocks so when the dragon gets hit it increases a score variable.

Cool stuff!

You’ve killed the dragon. Now what? Add extra mountains, make it more challenging. Or
write your own story, and see what you can do with your magical micro:bit!

Docs » Tinker Kit » 32. case 30 Reac�on Time Tester

32. case 30 Reaction Time Tester

32.1. Reaction Time Tester

Test yourself with this Python-based mini-game for the micro:bit and OLED! Wri�en by
Jensen from Raffles Ins�tu�on.

Goals

1. Assemble a reac�on �me tester.
2. Try not to break it when tes�ng yourself!

Materials

1 x Tinker Kit (or OLED display)
1 x Brain
1 x You

Step 1 – Input/Output

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

A�ach the MicroBit to the Breakout Board.
Connect the LED to pin 12, which is a digital pin.
Connect the light detector to pin 8, another digital pin.
Brown to G (ground), red to V (voltage) and orange to S (signal).
These tell us if light is on or off.
Connect the OLED display to the I^2C pins. Any one set will do.
Connect your micro:bit to the computer, and download the Mu Editor.

Step 2 – File Transfer

We need to download some modules to be used in the project.
From This link, download the module as a zip file.
Write the code (first screenshot) in Mu Editor to import the files.
Be sure to have the files in the same folder as the project.
Transfer a few of the files from your computer to the microbit.
On Windows, be sure to put the files in a folder under users/”Username”/mu-code for
them to be detected my mu-editor.
These files are the modules that are not originally present on the micro:bit for you to
import.

Step 3 – Loading Screens

This step isn’t really necessary , but it adds a li�le flair into your project.
We display this loading on the OLED module
Using the module “add_text”, we can display text and other characters onto the display
We show the anima�on using the func�on “loading_screen()”
If you want more varia�ons of the loading screen, head down to the bo�om of the post.

Step 4 – Code the Game

Here’s the actual test itself.
First, we have to have a �me to wait before showing the indicator for the player to press
the bu�on.
We randomly generate the number and parse it into milliseconds by adding “000” to the
end of the number a�er turning the original number into a string.
The variables �me1 and �me2 refer to 2 arbitrary points in �me before the “#” (the
indicator to the player) symbol is shown.
One quirk about micropython and the MicroBit to note is that the �me module is replaced
by the u�me module, and u�me has to be imported instead of �me.

Step 5 – A Little More Logic

This is the step where we calculate and display the player’s reac�on �me.
This is done by calcula�ng the �me between when the indicator is displayed and when
the player presses the bu�on.
Then, we display the player’s reac�on �me to the OLED display.

Bonus loading effects:

This one u�lizes the light sensor and the LED to start the game.
It detects light and once the light is covered, the game will start.

This next anima�on is simple: display the characters “3”, “2” , and “1”, as a countdown before
star�ng the game. The code is pre�y self explanatory.

Docs » Tinker Kit » 33. case 31 morse code transmi�er

33. case 31 morse code transmitter

33.1. Morse Code Transmitter

Make a simple morse code transmi�er using MakeCode, micro:bits, and some crocodile
clips! This tutorial was wri�en by Anahita from the University of California at Berkeley,
during her summer internship in Singapore.

Goals

1. Connect two micro:Bits together.
2. Send signals from the first micro:Bit to the second micro:Bit by pressing the A and B

bu�ons.
3. Receive signals from the first micro:Bit.
4. Learn how to code in MakeCode.

Materials

2 x micro:Bits
4 x Crocodile Clips
1 x micro USB cable

Step 0 – Preview

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

We will be wri�ng two sets of code: one for the sending micro:Bit and another for the
receiving micro:Bit
In order for the receiver to know which signal is being sent, we will adjust the length of
�me between when the signal turns “on” and “off”
That way, we can differen�ate the two signals by the pause length

Step 1 – Crocodile Clips

We want to send signals from pin 1 of the first micro:Bit to pin 2 of the second micro:Bit (and
vice versa)

Connect:

1. GND to GND
2. 3V to 3V
3. Pin 1 to Pin 2
4. Pin 2 to Pin 1

Step 2 – Sender: button A

We want a signal to be sent when the A bu�on is pressed. Let’s make this one the “dot”
signal.

1. Open up MakeCode and name this file “Sender”
2. Drag and drop an if-then-else block from the Logic drawer to the Forever block
3. From the Input drawer, a�ach a bu�on A is pressed block to the if sec�on
4. From the Basic drawer, a�ach a show led block in the then sec�on to display the “dot” on

the sender screen
5. Add a digital write pin block from the Pins drawer (under Advanced) and set it to 1(This

means the signal will turn “on”;Make sure to change it to p1 since that’s where we
a�ached the clip)

6. Add a pause block from the Basic drawer and set it to 230 ms(This pause will be
associated with the “dot” signal)

7. Add another digital write pin block and set it to 0(This means the signal will turn “off”)
8. Add another pause for 50 ms just to give it some �me

Step 3 – Sender: Button B

We want a “dash” signal to be sent when the B bu�on is pressed.

1. Add an else if block to the if-then-else block from earlier
2. Repeat the steps as with Step 2, except (Use bu�on B is pressed,Display a “dash” in the

LED,Pause for 470 ms)
3. Add a clear screen block from Basic or an icon to the else statement

Step 4 – Receiver: detecting the signal

We want to record the dura�on of �me between whenever the signal is received and when it
stops. We will be using the running �me (ms) block for this.

1. Create another project on MakeCode called “Receiver”
2. Drag a while loop from the Loops drawer
3. From the Logic drawer, a�ach an equals sign block to the while loop
4. A�ach a digital read pin block to the equals sign block and set it equal to 1(This means

that a signal is being detected;Make sure to change it to p2 since that’s where the
crocodile clip is)

5. In the Variables drawer, make a variable called “keyDownTime”

6. A�ach an if-then block to the body of the while loop
7. A�ach a not block from the Logic drawer to the if statement and then a�ach the

keyDownTime variable to it
8. You can find the running �me (ms) block by searching for it in the search bar

Step 5 – Receiver: displaying the signal

We want to display the correct signal on the screen.

1. Drag and drop an if-then block underneath the while loop and a�ach the keyDownTime
variable to it(This is so that this block of code will only run if a signal has been detected)

2. Create another variable called “dura�on” and set it to be the difference between running
�me and keyDownTime(The minus opera�on is under the Math drawer,This variable tells
us how long it’s been since the program started running and when the signal was
detected)

3. Drag an if-then block and a�ach a less than block from the Logic drawer and make it so
that it’s dura�on < 250(We chose 250 ms since the “dot” takes 230 ms)

4. Display the “dot” led in the body of the if statement
5. Add an else if block to the if-then-else block from earlier and do the same thing as above

except the “dash” threshold is 500 since the “dash” takes 470 ms and then show the
“dash” led

6. Add a clear screen so that the screen clear a�er a signal comes in
7. A�er the first if-then block make sure to set keyDownTime to 0 so that it works every

�me you send a new signal

Done!

Make sure to flash the code to the respec�ve micro:bits and test it out! It should display the
same signal on both screen when you press a bu�on.

For an added challenge, try to translate the morse code on the second micro:bit.

Docs » Tinker Kit » 34. case 32 reclusebot

34. case 32 reclusebot

34.1. Reclusebot

Make a reclusive robot that squeals when toggled, touched, or when it detects mo�on
Use the micro:bit to make a robot that squeals when it detects mo�on, is touched on any
of its sensors or when li�ed up. Wri�en by Shaun Toh, from the Singapore University of
Technology & Design, on his summer internship.

Goals

1. Assemble a shy reclusive robot
2. Input code to make a shy robot

Required Materials

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x Micro:bit
Ba�eries
Any Box (Large enough to fit Micro:bit)
PIR Sensor
Poten�ometer
Passive Buzzer
2 x Female-Female Jumper Wires

Step 1 – Connect the Micro:bit parts

1. A�ach the buzzer into pin 0 as shown. The + sign on your buzzer connects with the
yellow port on the breaker board.

2. A�ach the soil moisture sensor to pin 1.
3. Connect the PIR sensor to pin 2.
4. Connect the Poten�ometer into pin 3.

Step 2: Add the Tinker Kit Package

1. We will need to add a package to the code editor to enable to use the kit components.
Click on the advanced in the micro bit text editor and you will see a sec�on that says Add
Package.

2. This will open up a dialog box. Search for Tinker Kit. Click on the search icon or press
enter, then select �nkercademy-�nker-kit.

3. This will add two libraries: Tinkercademy, for general-purpose sensors found in our kit,
and OLED, for the OLED module (ours has a height of 64 and width of 128). We’re not
using the OLED module in this tutorial, but you can!

Step 3 – Start Coding!

Put on the Micro:bit code- Coding your reclusive robot. Your program consists of a few “if”
statements. We want the robot to only react to four condi�ons.

1. The first condi�on is the robot being picked up.
2. The second condi�on is someone touching the soil moisture sensors.
3. The third condi�on is if the robot detects movement in front of it.
4. And the last condi�on is someone toggling the poten�ometer.

You’re Done!

You have finished building all components needed to make a reclusive robot that makes a
sound whenever someone surprises it! Place it into any box you large enough to contain the
components while leaving some of them s�cking out, and you have your very own recluse
bot! Feel free to dress it up, but take care or it’ll start squealing in surprise!

Docs » Tinker Kit » 35. case 33 access denied

35. case 33 access denied

35.1. Access Denied! A Door Entry Tutorial

Enhancing door security with micro:bit. This tutorial was wri�en by Sean Lew, from the
Singapore University of Technology and Design, during his summer internship with us in
2018.

Goals

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1. Build your own wireless door security!
2. Se�ng up alerts for any intruders or unlocked doors!

Required Materials

2 x micro:bit

1 x Breakout Board
1 x Crash Sensor
1 x Buzzer

Step 1 – Setting Up!

1. Slot one of the micro:bit into the breakout board.
2. Connect the Buzzer to Pin 0 of the breakout board and the crash sensor to Pin 1.
3. Before moving on to Step 2, make sure you download the “�nkercademy-�nker-kit”

package.

Step 2 – Code away!

1. Drag these set of codes into your makecode pla�orm and download it into the micro:bit
connected to your breakout board.

2. Give the crash sensor a few press to see if your code is working correctly!

Step 3 – Almost there!

1. Download this set of codes for the second micro:bit (receiver).
2. Now give test out the crash sensor to see if the receiving micro:bit is working correctly!
3. Now that you have set up your very first wireless door security, you can try it with more

than just 1 door!
4. Feel free to also add add other form of alerts on the receiving micro:bit to enhance your

own security.

Docs » Tinker Kit » 36. case 34 micropython

36. case 34 micropython

36.1. Getting Started

Pre-coding:

Get hold of a Micro:bit Tinker Kit
Download the Mu editor Mu editor

36.2. Project 01: Music Machine

Pin Layout

Buzzer: Pin0
ADKeypad: Pin2

Small note about the ADKeypad

The ADKeypad returns an analog signal when its bu�ons are pressed. Each bu�on pressed
would return a unique integer value ranging from 0 (meaning 0V) to 1023 (meaning 3V).
However, it is not uncommon that each bu�on would give a small range of values when
pressed at different �mes and different ADKeypads might give different signals yet again.
Hence, in this example code, we provide a range of possible values that your ADKeypad’s
bu�ons are likely to return when pressed. Feel free to test out the values that your
ADKeypad might return when pressed and change the values in the example code. ^ ^

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html
https://codewith.mu/

36.3. Project 02: Smart Light

Pin Layout

PIR Sensor: Pin0
LED: Pin1

36.4. Project 03: Electro-Theremin

Pin Layout

Buzzer: Pin0
Poten�ometer: Pin1

36.5. Project 04: Simple Alarm Box

Pin Layout

Crash Sensor: Pin0
LED: Pin8
OLED: I2C row (at the bo�om of the BoB)

36.6. Project 05: Plant Monitoring Device

Pin Layout

Buzzer: Pin0
Soil Moisture Sensor: Pin1

OLED: I2C row (at the bo�om of the BoB)

Get Creative!

Mix and match the component in the Tinker Kit to create your own projects.

For a more comprehensive explana�on of MicroPython, visit the official documenta�on here

https://microbit-micropython.readthedocs.io/en/latest/tutorials/introduction.html

Docs » Tinker Kit » 37. case 35 build your own microbit security Door

37. case 35 build your own microbit security Door

37.1. Build your own Micro:bit Security Door!

Protect your house or valuables with a micro:bit, a servo motor, and a 4x4 keypad!
Created by Mohd Shafiq from NUS.

Goals

1. Connect the wiring to interface the keypad with the microbit
2. Set your own unique password for the lock
3. Add a lock down counter in case an intruder tries to guess your password

Required Materials

1 x Breakout board
1 x micro:bit
1 x Mini Servo

https://www.elecfreaks.com/learn-en/index.html
https://www.elecfreaks.com/learn-en/microbitKit/Tinker_Kit/index.html

1 x Breadboard
4 x 4 Membrane keypad
3 x 5kohm resistor
3 x 1kohm resistor
1 x 10kohm resistor
Jumper Wires
1 x OLED
18.5cm x28cm Acrylic
1 x small Metal Hinge

Step 1 – Interfacing the Keypad

1. The membrane keypad has 16 different switches which have 16 different characters
2. The switches are grouped together by row and column for example (R1,C1) corresponds

to 1 and so on. When the controller detects a 1 at Pin 1 and Pin 5 it would mean key 1 is
pressed.This is called digital output

3. Therefore we can use the Microbit’s digital pins to interface with they keypad.However if
we do that it will be quite messy.

4. Let’s create a driver circuit for the 4x4 keypad!
5. Follow the diagram as shown:

Step 2 – Wire it Up

1. A�ach the 3 pins of the Servo motor to P2 of the breakout board
2. A�ach Ground (Black pin) of the Micro:bit to the 10kOh resistor
3. A�ach the 3V (Red pin) to the 5k Ohm resistor
4. A�ach A0 (Yellow pin) to the point between the 10k Ohm Resistor and 1k Ohm resistor

Connect GND,VCC,SCl and SDA of the breakout board to GND,VCC,SCl and SDA of the
OLED respec�vely.

Step 3 – Coding the micro:bit

On start we have to:

Ini�alize the servo to posi�on 180 (Locked Posi�on)
Ini�alize the OLED display
Ini�alize a 4x1 array
Ini�alize the lockdown counter

Bu�on A acts as the enter character bu�on
Every �me you press a key on the 4x4 keypad you have to press Bu�on A in order to key
in a 4 digit Number

Now we need to set up the micro:bit to detect the key presses!

Each key press corresponds to a unique analog value from 0 to1023 by using the driver
circuit
The analog value can be read using the analog read func�on
The value in the character is stored in the “TempString” variable
The code block is quite long,so the download link is provided below

Bu�on B acts as the final “Enter” bu�on
Pressing bu�on B causes the program to check if the entered string is equal to “369#”
using the compare block
If the answer is 0 it means that the strings are equal.If it is 1,then the strings are not equal
The number of wrong A�empts will increase by 1 every �me an intruder enters the wrong
password
Once 3 wrong a�empts are detected,the program will enter a loop for 60 seconds

To reset the number of a�empts and the characters entered,press Bu�on A+B
The reset bu�on also resets the servo to the “Locked Posi�on”

Step 4 – Build it!

1. Using a laser cu�er cut out 18.5cm by 28cm of 3mm acrylic
2. If you do not have acrylic you can use cardboard instead
3. Cut out slots for the OLED as well as the keypad wires
4. Drill/poke holes forthe door hinge and use screws to fasten the door
5. A�ach an ice-cream s�ck to the servo.This will serve as the lock
6. Glue the servo with the ice-cream s�ck on the other side of the door

Step 5 – Demo Time!

1. Each �me you press a key,the corresponding character will appear on the OLED
2. To unlock the door key in 3,Bu�on A,6,Bu�on A,9,Bu�on A,#
3. Then press bu�on B
4. To reset press A+B
5. If you try to enter the wrong password three �mes the OLED will display a lockdown

�mer.You will only be able to enter the password a�er 60 seconds have passed.
6. Congratula�ons! You have made your own micro:bit door.

