Single joints

Ref. 101
Plain molded bores. Attach shafts by cross-pinning

Ref. 103
Headed brass inserts fitted 2 screws per end (size 6, one screw)

Typical

Double joints

Ref. 109
Plain molded bores.
Attach shafts by cross-pinning

Ref. 111
Headed brass inserts fitted 2 screws per end (size 6, one screw)

Constant velocity

The velocity ratio of single universal joints is not constant when the working angle is greater than zero. Their geometry gives rise to sinusoidal fluctuations at the output that increase with the working angle and which vary between:
$\omega \cos \beta$ and $\omega \sec \beta$
where ω = angular velocity

$$
\text { and } \beta=\text { operating angle }
$$

For example, when the operating angle is 5°, the maximum error is $\pm 0.4 \%$; at 7° it is $\pm 0.8 \%$, and at 10° it is $\pm 1.5 \%$. A motor shaft turning at a constant 1000 rpm , driving through a single universal joint set at an operating angle of 5°, produces an output that fluctuates between 996 rpm and 1004 rpm twice each revolution.

The fluctuations are cancelled out when using a double joint or two single joints connected back to back.

To maintain constant velocity ratio, ensure that:
a) The orientation of two single joints is correct; the inboard forks should align as in double joints.
b) The working angle of both joints, or both halves of a double joint, is the same.

| $\left.\begin{array}{ll}\text { Joint ref. } \\ \begin{array}{l}\varnothing \mathrm{B} 1 \text { ref. } \\ \varnothing \text { B2 ref. } \\ \hline \text { Metric screw with American socket } \\ \hline \text { (omit if metric screws are preferred) }\end{array} \\ \hline\end{array}\right]$ |
| :--- | :--- |

MAIN TABLE - DIMENSIONS \& ORDER CODES

Joint			$\emptyset D$ in.	in.	L1 in.	${ }^{2} \text { L2 }$ in.	L3 in.	L4 in.	ØB1, ØB2 max bores		Fasteners			${ }^{4}$ Moment of inertia lb.in ${ }^{2}$ x 10^{-5}	Mass lb .
Size	Single JOIN	Double T REF									Screw	${ }^{3}$ Torque lb.in	Wrench		
06	101.06	-	0.28	0.75	0.13	0.21	0.33	-	0.1875		-	-	-	1.0	0.002
	103.06 \ddagger U	-		1.07	-	0.37			0.1250		M3	8.3	1/16	3.8	0.007
	-	109.06		1.07	0.13	0.21	0.65	0.32	0.1875		-	-	-	2.1	0.003
	-	$111.06 \ddagger$		1.39	-	0.37			0.1250		M3	8.3	1/16	4.4	0.008
09	101.09	-	0.44	1.12	0.17	0.34	0.44	-	0.2500		-	-	-	13.7	0.006
	103.09 $\ddagger \cup$	-		1.48	-	0.52			0.1969	(5mm)	M3	8.3	1/16	46.1	0.020
	-	109.09		1.64	0.17	0.34	0.96	0.52	0.2500		-	-	-	20.2	0.010
	-	$111.09 \ddagger{ }^{\text {d }}$		2.00	-	0.52			0.1969	(5mm)	M3	8.3	1/16	52.3	0.020
13	101.13	-	0.56	1.40	0.22	0.41	0.58	-	0.3150	(8mm)	-	-	-	48.9	0.013
	103.13 $\ddagger \cup$	-		1.82	-	0.62			0.2500		M3	8.3	1/16	152.0	0.039
	-	109.13		2.02	0.22	0.41	1.20	0.63	0.3150	(8mm)	-	-	-	81.0	0.021
	-	111.13 \ddagger U		2.44	-	0.62			0.2500		M3	8.3	1/16	172.0	0.048
16	101.16	-	0.69	2.10	0.35	0.60	0.90	-	0.4375		-	-	-	110.0	0.027
	103.16	-		2.66	-	0.88			0.3937	(10mm)	M4	20.0	5/64	465.0	0.077
	-	109.16		2.97	0.35	0.60	1.78	0.87	0.4375		-	-	-	217.0	0.043
	-	111.16		3.54	-	0.88			0.3937	(10mm)	M4	20.0	5/64	608.0	0.093

Materials \& Finishes
Forked body members:
Acetal (black)
Cross pieces \& headed inserts:
Brass CZ121 (C38500 to
ASTM B455 or equivalent)
Chromate \& passivate finish
Fasteners:
Alloy steel, black oiled or Zinc plated, blue dye finish

Temperature Range

$-4^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$
$\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$

PERFORMANCE AT $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$

$\begin{aligned} & \text { Joint } \\ & \text { Size } \end{aligned}$	Single / Double	${ }^{5}$ Peak torque lb.in	Max compensation		${ }^{6} \quad$ Torsional		7 Max end loading lb .	Static break torque lb.in
			$\begin{gathered} \text { Angular } \\ \pm \text { deg } \end{gathered}$	Radial \pm in.	$\begin{gathered} \text { Rate } \\ \text { deg/lb.in } \end{gathered}$	Stiffness lb.in / rad		
06	Single	1.0	45	-	2.23	25.6	4	4
	Double	0.7	90	0.22	9.24	6.2	0	3
09	Single	3.2	45	-	0.77	74.3	8.5	17
	Double	1.4	90	0.36	1.53	38.0	0	17
13	Single	7.5	45	-	2.74	159.0	15	40
	Double	5.2	90	0.43	0.92	62.8	0	30
16	Single	14.0	45	-	0.197	300.0	22	60
	Double	11.5	90	0.61	0.53	111.0	0	60

1. Recommended datum for cross-pinning/screws, etc.
2. Max shaft penetration
3. Maximum recommended tightening torque.
4. Values apply with max bores.
5. Peak torque. Select a size where Peak Torque exceeds the adjusted torque.
6. Torsional stiffness values apply at 50% peak torque with no misalignment, measured shaft-to-shaft with largest standard bores.
7. With joints cross-pinned to shafts.

STANDARD BORES ${ }^{8}$

Joint		ØB1, ØB2 Tolerances ${ }^{9}$									
Size	Ref.	0.125	0.1875	0.250	0.375	3	4	5	6	8	10
06	101 \& 109	\bigcirc	\bigcirc			\bigcirc	\bigcirc				
	103 \& 111	\bullet				\bullet					
09	101 \& 109		\bigcirc	\bigcirc			O	\bigcirc	\bigcirc		
	103 \& 111	\bullet	\bullet			-	\bullet	\bullet			
13	101 \& 109			\bigcirc					\bigcirc	\bigcirc	
	103 \& 111		\bullet	\bullet			\bullet	\bullet	\bullet		
16	101 \& 109				\bigcirc					\bigcirc	\bigcirc
	103 \& 111			\bullet	\bullet				\bullet	\bullet	-
Bore ref.		16	19	24	31	14	18	20	22	28	32
Corresponding bore adaptor				253				251		255	257

[^0]- molded bores
- sleeved bores

Diameters for which a bore adaptor is shown can be adapted to smaller shaft sizes. See page 40 for details.

ADJUSTED TORQUE

Peak torque values apply when the working angle is zero. Adjusted torque takes account of dynamic loading at the joint bearings. To find adjusted torque, determine application speed, torque and operating angle,
Then:
a) multiply speed x working angle
b) subtract the result from 10000
c) divide the answer into 10000
d) apply the result to the application torque.

$$
\begin{array}{ll}
\text { eg. } \text { speed } & =400 \mathrm{rpm} \\
\text { application torque } & =0.9 \mathrm{lb} . \mathrm{in} \\
\text { working angle } & =20^{\circ}
\end{array}
$$

Accordingly:

a) $400 \mathrm{rpm} \times 20^{\circ}$	$=8000$
b) $10000-8000$	$=2000$
c) $10000 / 2000$	$=5$
d) $5 \times 0.9 \mathrm{lb}$. in	$=4.5 \mathrm{lb}$. in

Select a joint where Peak Torque exceeds 4.5 lb .in, ie., size 13 or larger.
Note: To remain within the capacity of the joint, the result of speed x working angle must be less than 10000 .

[^1]
[^0]: 8. Couplers can be specified with 'D' bores. See page 4 for details.
 9. Refs. 101 \& $109+0.0016 " /-0.0004^{\prime \prime}(+0.04 /-0.01 \mathrm{~mm})$

 Refs. 103 \& $111+0.0012^{\prime \prime} /-0^{\prime \prime}(+0.03 /-0 \mathrm{~mm})$
 \ddagger Insert both bore refs. in place of \ddagger.

[^1]: sleeved bores

